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Abstract—Refactorings, by definition, preserve the behavior of
a target program. Such a strong semantic property is encoded
by a set of preconditions for each refactoring. Only if all
preconditions are satisfied will a target program be transformed.
The code transformation that implements the refactoring follows
another set of rules to produce syntactically-correct, refactored
code. Consequently, it is easy to believe that most behavior-
changing violations in refactorings are induced by incorrect
preconditions or lack of required checks. In this paper, however,
we show that code transformations for Move-Instance-Method
Refactoring available in several popular Java Integrated Develop-
ment Environments do not preserve program behavior. We report
these errors and propose solutions for each identified problem.

I. INTRODUCTION

Work on software quality improvement that uses refactor-
ings [1]–[3], like finding refactoring opportunities [4]–[14],
assumes refactorings preserve program behavior. Using off-
the-shelf Integrated Development Environment (IDE) refac-
torings implicitly adopts frailties of IDE refactoring engines.
Refactorings are believed to be built on rock-solid foundations;
to our chagrin, this is not so [15], [16].

Among primitive refactorings, a Move-Instance-Method Re-
factoring (MIMR) affects many different types of program ele-
ments by applying code transformations on modifiers, method
signatures, method calls, and method bodies. It is also among
the most commonly used and representative refactoring of
today’s IDEs [17], [18].

In the last few years, we extensively used the Eclipse Java
Development Tools (JDT) refactoring engine [19], [20] and
(as a consequence of the problems that we found) have built
a new refactoring engine for Java [21]. In doing so, we have
become aware of the limitations of IDE refactoring engines,
and appreciative of the difficulties to meet the high standards
expected of refactorings, namely behavior preservation.

In this paper, we distill our experiences. We investigate
how MIMR transforms code in the latest versions of Eclipse
JDT [22], IntelliJ IDEA [23], Apache NetBeans [24], and
Oracle JDeveloper [25] IDEs. Regardless of preconditions that
these Java IDEs check, we found all may change program
behavior due to incorrect code transformation rules.

II. MOVE INSTANCE METHOD

A MIMR moves a non-static (instance) method from one
class declaration to another. The method can be moved via an

existing parameter or via a field variable, whose type (a user-
defined class) becomes the destination of the moved method.
Figures 1 and 2 show typical examples where method m is
moved from class A to class B via a parameter and a field
variable, respectively.

class A{
int i = 0;

void m(B b){
i++;

}

void n(){
new A().m(new B());

}
}

class B{
}

(a) Before

class A{
int i = 0;

void n(){
new B().m(new A());

}
}

class B{
void m(A a){
a.i++;

}
}

(b) After moving m

Fig. 1. MIMR via a Parameter in Move A.m(B) to B.m(A)

class A{
int i = 0;

B b = new B();

void m(){
i++;

}

void n(){
new A().m();

}
}

class B{
}

(a) Before

class A{
int i = 0;

B b = new B();

void n(){
new A().b.m(new A());

}
}

class B{
void m(A a){

a.i++;
}

}

(b) After moving m

Fig. 2. MIMR via a Field in Move A.m() via A.b to B.m(A)

Table I lists 20 preconditions for MIMR and shows which
are considered by each Java IDEs. The complete set of MIMR
(and other refactoring) preconditions is unknown; we manually
created the list for JDT whose source code and error messages
are publicly available (the lastest JDT skips preconditions
#6 and #11 in Table I). We also used JDT’s regression test
examples to fill the precondition checks of other IDEs in Table
I.

This table shows these Java IDEs use different sets of pre-
conditions for MIMR. A consequence is that it is easy to find



Precondition Eclipse JDT IntelliJ IDEA Apache NetBeans Oracle JDeveloper
1. Abstract method 3 3 3 3
2. Annotation declaring type 3 7 3 3
3. Conflicting parameter name 3 7 3 7
4. Conflicting target method 3 3 7 3
5. Constructor 3 3 3 3
6. Destination-type variable in the LHS of assignment 7 7 7 7
7. Duplicated generic type 3 3 7 7
8. Generic-type destination 3 3 3 3
9. Inaccessible to references 3 3 7 3
10. Inaccessible to target method 3 7 7 7
11. Interface declaring type 7 7 3 3
12. Native method 3 7 7 7
13. null value of the destination-type parameter 3 3 7 3
14. Polymorphic target method 3 3 3 7
15. Recursive invocation 3 7 7 7
16. Reference to enclosing instance 3 7 7 7
17. Reference to non-local generic type 3 7 7 3
18. Super reference 3 7 7 3
19. Synchronized method 3 7 7 7
20. Unavailable destination-type 3 3 3 3

Total 18 9 8 11
– 3 precondition checked by IDE. It does not necessarily mean that a correct precondition is used or the precondition is implemented

correctly. For example, IntelliJ IDEA correctly moves an abstract method only when the method is not run-time polymorphic, but
inadequately skips to check if the destination class is abstract.
– 7 precondition not checked by IDE.

TABLE I
MOVE-INSTANCE-METHOD PRECONDITION COMPARISON.

examples where program behavior is not preserved [26], [27].
Despite relatively stronger precondition checks in JDT, we and
others continue to discover incorrect preconditions [15], [16],
[19], [21].

Precondition checks filter refactorings that may change
program behavior. If all checks pass, the code is transformed
into refactored code without syntactic errors. However, flaws
in code transformation rules in Java IDEs can also break
behavior preservation in MIMR, which we consider next.

III. CODE TRANSFORMATION FLAWS

A. Parameter Optimization

When an instance method is moved, an extra parameter is
added to reference members of the origin class. All four IDEs
apply parameter optimization [19] in MIMR, meaning that the
extra parameter is not added when the target method’s body
does not reference members of the origin class.

class A{
void m(B b){}

void n(){
new A().m(new B());

}
}

class B{
}

(a) Before

class A{
void n(){

new B().m();
}

}

class B{
void m(){}

}

(b) After moving m

Fig. 3. Parameter Optimization in Move A.m(B) to B.m()

Figure 3 illustrates parameter optimization. A consequence
is that the class creation expression new A() in Figure 3a is
removed. If there are side-effects in the prefix expression of
a target method call (such as new A()), its elimination alters

program behavior [28].1 To be fair, checking for side-effects
is a complicated and expensive analysis [30]–[35].

B. Swapping Prefix and Parameter Expressions

When a parameter (not a field variable) type is used as
the destination in a MIMR, the prefix expression of each
method invocation becomes the value of a newly-introduced
origin-type parameter. Also, the value of the parameter used
as destination in a method invocation becomes the prefix
expression after move. Figure 4 shows two class creation
expressions new A() and new B() are swapped after a move.

class A{
int i = 0;

void m(B b,C c,D d){
i++;

}

void n(){
new A().m(new B(),

new C(),
new D());

}
}

class B{
}

(a) Before

class A{
int i = 0;

void n(){
new B().m(new A(),

new C(),
new D());

}
}

class B{
void m(A a,C c,D d){
a.i++;

}
}

(b) After moving m

Fig. 4. Swapping Prefix & Parameter Expressions in Move A.m(B,C,D) to
B.m(A,C,D)

1The same problem occurs when Change-Method-Signature Refactoring
(CMSR) removes an existing parameter, thereby removing the corresponding
expression in a method call [29]. CMSR in JDT, NetBeans and JDeveloper
fail to check this precondition.



In JDT’s MIMR, the new origin-type parameter takes the
position where the destination-type parameter existed before
the move. This means the position of a new parameter is
determined by the position of the destination-type parameter as
in Figure 4. The other three IDEs work differently by placing
the new parameter last; doing so alters the signature of method
m in Figure 4b to:

(1) void m(C c, D d, A a) { a.i = 0; }

When a method call expression is executed in Java, the
prefix of a method call is evaluated first and then parameter
expressions are evaluated in left-to-right order. Therefore,
swapping the prefix and parameter expressions changes their
evaluation order, which may change program behavior if there
are side-effects [36].2

NetBeans has a serious bug that always uses this keyword
to reference the origin-class members regardless of a prefix
expression. So method n in Figure 4a is transformed to (2)

after the move. The last argument should have the value of
new A().

(2) void n() {
new B().m(new C(), new D(), this); }

C. Dereferenced Null

When a method call explicitly lists null as the destination
argument, the method cannot be moved as null becomes the
prefix expression after move. NetBeans does not check this
precondition #13 in Table I.

class A{
int i = 0;

void m(B b){
i++;

}

void n(){
B b = null;
m(b);

}
}

class B{
}

(a) Before

class A{
int i = 0;

void n(){
B b = null;
b.m(this);

}
}

class B{
void m(A a){

a.i++;
}

}

(b) After moving m

Fig. 5. Dereferenced Null in Move A.m(B) to B.m(A)

A more challenging problem is to know whether the desti-
nation parameter’s value (which becomes the prefix expression
after a move) evaluates to null [38] as in Figure 5. There are
analyses to determine dereferenced nulls [39]–[44] but we
are unaware if null-analyses have been used in refactoring
engines. We do know that only JDT warns about the possible
(not all) conditions of null pointer access as in Figure 5b.

D. Duplicated Prefix Expression

When a method is moved via a field variable, a different
code transformation rule is applied (recall Figure 2). In a

2The same problem occurs when CMSR reorders the positions of parame-
ters [37]. This precondition is not checked in all four IDEs.

reference to the moved method, the prefix expression is
not exchanged with the destination parameter’s expression
(Section III-B). Instead, a field variable name used as the
destination is added to the prefix. Also, a new origin-type
parameter is introduced as described in Section III-A. The
new parameter’s value is a copy of the prefix expression in a
method call. This means that the prefix expression is evaluated
twice at run-time after a move [45] (see Figure 6).3 Even
when a field variable is used as a destination, NetBeans still
transforms method invocations incorrectly as in (3). It drops
origin prefix new A() and uses this keyword to reference the
origin-class members.

(3) void n(){ b.m(this); }

class A{
int i = 0;

B b = new B();

void m(){
i++;

}

void n(){
new A().m();

}
}

class B{
}

(a) Before

class A{
int i = 0;

B b = new B();

void n(){
new A().b.m(new A());

}
}

class B{
void m(A a){
a.i++;

}
}

(b) After moving m

Fig. 6. Duplicated Prefix Expression in Move A.m() to B.m(A)

IV. PROPOSED SOLUTIONS

We propose solutions to each of the flaws discussed earlier.
We believe our solutions are (or can be made) practical.

Parameter Optimization is a failure of separation of
concerns. Parameter optimization is a distinct refactoring that
is bundled with MIMR and should be unbundled. It should be
applied only when the prefixes of all method invocations are
simple variables, which are free from side-effects. Otherwise,
parameter optimization may change program behavior as in
Figure 3. As it is not a distinct and unbundled refactoring, we
discovered that it is impossible for programmers to manually
use an available MIMR in IDEs to construct, say, a Visitor
design pattern [19].

Swapping Prefix and Argument Expressions can be
addressed by evaluating each prefix/parameter expression of
a method call in a distinct statement prior to invoking the
method. The following method invocation evaluates expres-
sions exp1 and exp2 and then executes method call m.

exp1.m(exp2);

3A similar problem occurs when CMSR adds a new parameter whose default
value is not a simple variable expression [46]. CMSR in all four IDEs does
not check this precondition.



For behavior-preserving MIMR, additional statements are
needed to evaluate exp1, exp2 and the method call. Assume
that expression expi below has type typei:

type1 var1 = exp1;
type2 var2 = exp2;
var1.m(var2);

After a move, the order of the exp1 and exp2 evaluations are
unchanged:

type1 var1 = exp1;
type2 var2 = exp2;
var2.m(var1);

Another approach is always to make MIMR leave a delegate
method behind. When a delegate is introduced, the target
method signature is not transformed after a move. Conse-
quently, all method invocations are not transformed either as
shown in Figure 7.

class A{
void m(B b){}

void n(){
new A().m(new B());

}
}

class B{
}

(a) Before

class A{
void m(B b){ //delegate
b.m(this);

}

void n(){
new A().m(new B());

}
}

class B{
void m(A a){}

}

(b) After moving m

Fig. 7. Move via Parameter Leaving a Delegate in Move A.m(B) to B.m(A)

Dereferenced Null detection requires a static null analy-
sis. To date, such analyses are too expensive to be used by
incremental compilers, and so too by refactoring engines. An-
other approach is to extend the Java type system or annotations
as existing tools like Checker Framework [47], FindBugs [48]
and Java Modeling Language (JML) [49] do. The recent JDT
compiler also supports annotation-based null analysis in Java
8. It means that a method whose parameter types are annotated
with either @NonNull or @Nullable can detect possible null
references at compile-time, making the program free from Null
Pointer Exceptions at run-time after a move. We suggest this
problem be delegated to the Java compiler community, and
leverage what Java itself offers natively. This solution will take
time to realize, but ultimately will be correct and dependable.

Duplicated Prefix Expression can be addressed by using
the approaches described in Swapping Prefix and Argument
Expressions above. Suppose we move m below via field
variable fld in type1.

exp1.m();

We can reuse variable var1 to hold the prefix value exp1 as
the value of extra parameter:

type1 var1 = exp1;
var1.fld.m(var1);

Also, use of a delegate method does not produce duplicated
prefix expression either (see Figure 8).

class A{
B b = new B();

void m(){}

void n(){
new A().m();

}
}

class B{
}

(a) Before

class A{
B b = new B();

void m(){ //delegate
this.b.m(this);

}

void n(){
new A().m();

}
}

class B{
void m(A a){}

}

(b) After moving m

Fig. 8. Move via Field and Leaving a Delegate in Move A.m() to B.m(A)

V. RELATED WORK

We already referenced key papers related to our work. There
are other points and papers we want to discuss.

It is now over a quarter century since the refactorings were
first described [1], [2]. To the best of our knowledge, there
is still no commonly known central repository of technical
definitions of primitive refactorings, their preconditions, and
code transformation rules; only vague, informal, and unde-
scriptive descriptions exist [50], [51]. The best reference for
used preconditions are comments in the source code of the
Eclipse refactoring engine [22], for which we are grateful.
Still, as a community, we should aspire for more.

Even individual refactorings, such as MIMR, are not par-
ticularly well documented. (An exception [52] exists.) Only
Tsantalis et al. [11] described ten preconditions of MIMR.
We found that eight of them are a subset of the preconditions
in Table I. The other two are not required.

Ouni et al. [53] proposed search-based refactorings that min-
imize changes of program semantics. When program elements
are moved among class declarations, the semantic proximity of
two classes is measured by evaluating (1) vocabulary similarity
in declaration and variable names and (2) dependency of
method calls in call graphs and shared field access. It is based
on the assumption that a refactored program is syntactically
correct and behavior-preserving.

Yang et al. [54] proposed purity-guided refactoring that
checks semantic behavior preservation of “pure methods”
which are free from side-effects. They showed the approach
works for Memoization refactoring that returns the cached
result for the same input instead of executing a method call.
It requires parameters to have primitive types. They also
observed that 22∼24% methods in four Java applications
satisfy purity.

Finally, we agree with Brant and Steimann with their
critiques of refactorings [55]: the existing refactoring (which
should be called “transformation”) tools can be immensely
helpful in particular cases where correctness is less considered.



VI. CONCLUSIONS

Refactorings are widely understood to preserve program
behavior. In our experience, too often they do not. The
reasons are clear: not all preconditions are implemented or
they approximate what should be used. In surveying four
Java IDEs (Eclipse JDT, IntelliJ IDEA, Apache NetBeans,
and Oracle JDeveloper), we discovered that all implement
different sets of preconditions for MIMR, move-instance-
method refactorings. Not surprising, it is not difficult to find
programs where each IDE refactoring engine fails to preserve
behavior. Moreover, even if the ‘right’ preconditions are used,
the code transformations that realize the refactoring may not
be behavior-preserving. We also suggested how these flaws
could be corrected.

Although Eclipse JDT may have the most reliable refactor-
ing engine, we have reported 25 MIMR-related JDT bugs since
2012 [56]. 15 of them change program behavior and the other
10 produce compilation errors. Only 6 have been fixed to date,
and one bug took 266 days to fix [57]. The oldest MIMR bug
that we reported has remained unfixed for five years. Other
IDEs are no different. We published a technical report [58] on
this work in July, 2016. We made very few changes to Table
I in January, 2019.

Refactoring is a centerpiece of modern software develop-
ment. Refactoring engines are standard tools in today’s IDEs,
yet their reliability does not hold up to a close scrutiny, as we
have shown. They are definitely usable, but their reliability is
limited. We see improving refactoring engines as a significant,
interesting and intellectual challenge, because the behavior
preservation property of refactoring engines is within reach
– provided that there are pioneers to make it so.
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[26] M. Schäfer, A. Thies, F. Steimann, and F. Tip, “A Comprehensive

Approach to Naming and Accessibility in Refactoring Java Programs,”
IEEE Transactions on Software Engineering, Nov. 2012.

[27] F. Steimann and A. Thies, “From Public to Private to Absent: Refactor-
ing Java Programs Under Constrained Accessibility,” in ECOOP, 2009.

[28] “Eclipse Bug 495899,” https://bugs.eclipse.org/bugs/show bug.cgi?id=
495899.

[29] “Eclipse Bug 495902,” https://bugs.eclipse.org/bugs/show bug.cgi?id=
495902.
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