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Abstract

Inline Tests

Yu Liu, PhD
The University of Texas at Austin, 2024

SUPERVISORS: Milos Gligoric, Owolabi Legunsen

Testing is essential for assuring code quality. Developers write various cate-
gories of tests, including unit tests, integration tests, and end-to-end tests to validate
each program component’s functionality and its interaction with other components.
However, these categories of tests can be too coarse-grained or ill-suited for testing
individual program statements, leading to frequent single-statement bugs. Addition-
ally, many statements are deeply embedded within complex program logic, making it
difficult to test them.

To simplify the testing of single statements and increase code coverage, we
introduce inline tests, a novel category of tests designed to check code correctness at
the statement level. We implement the first inline testing framework, I-Test, for
Java and Python. Manually writing inline tests can be time-consuming and tedious,
so we develop a technique to automatically extract inline tests from developer written
and automatically generated unit tests.

This dissertation introduces inline tests, presents the design and implementa-
tion of an inline testing framework, I-Test, and an automatic inline-test generation
technique, ExLi.

First, this dissertation motivates and introduces inline tests through several
programming language features and testing scenarios in which inline tests could be

6



beneficial. We implement I-Test to aid developers in writing and executing inline
tests, and evaluate it on 144 statements in 31 Python projects and 37 Java projects.
We also conduct a user study. All nine user study participants say that inline tests
are easy to write and beneficial. The cost of running inline tests is negligible, at
0.007x–0.014x.

Second, this dissertation introduces ExLi, the first technique for automatically
generating inline tests. ExLi records all variable values at a target statement (i.e.,
the statement to be tested) during unit test execution and uses these values as test
inputs and test oracles for generating inline tests. At this point, target statements
that are executed many times could have redundant inline tests. To remove redun-
dant inline tests, ExLi uses a novel coverage-then-mutants based reduction process.
Implemented for Java, ExLi generates inline tests for 718 target statements in 31
projects, reducing 17,273 initial inline tests to 905. The final set of inline tests kills
up to 25.1% more mutants on target statements than developer written and automat-
ically generated unit tests, thus improving the fault-detection capability of the test
suites that they are extracted from.
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Chapter 1: Introduction

Testing is essential for checking code quality during software development.
Developers write various categories of tests, including unit tests, integration tests, and
end-to-end tests to validate each component’s functionality and its interaction with
other components. However, these categories of tests can still be too coarse-grained
or ill-suited for testing individual program statements. As a result, unit tests, which
are commonly used for function-level testing, often fail to detect single-statement
bugs [80, 81]. Existing programming languages allow developers to write complicated
program logic in one statement. Some statements are hard to understand and error
prone. Additionally, statements are often deeply embedded in complex program logic,
posing a challenge for conventional tests to reach them.

To address these limitations of existing test categories, we introduce inline
tests [103], a novel category of tests designed to check correctness at the statement
level. They are not a replacement for unit tests but a complement to existing cat-
egories of tests. Inline tests, placed directly after the statement to be checked, i.e.,
the target statement, allow developers to specify inputs and expected outputs. For
example, Figure 1.1 shows a Java code snippet that performs string manipulation.
Line 5 uses a regular expression (regex) to tokenize a string. The inline test on line 6
checks if the string is correctly split into a three-element list of strings. An inline
test has three components: (1) a declaration that marks its start (using itest()

constructor), (2) assignments of inputs (e.g., assign a value to the sql variable with
given()), and (3) assertions for expected outputs (e.g., check if lines has three
elements using checkEq()).

To support developers in writing and executing inline tests, we define the
requirements that inline testing frameworks should meet and build I-Test, the first
inline testing framework, which executes inline tests and reports the results. We
develop I-Test for two programming languages, Java and Python. We have also
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1 public static int executeSqlScript(Context context, Database db,
2 String assetFilename, boolean transactional) throws IOException{
3 byte[] bytes = readAsset(context, assetFilename);
4 String sql = new String(bytes, "UTF-8");
5 String[] lines = sql.split(";(\\s)*[\n\r]");
6 itest().given(sql, "CREATE TABLE MINIMAL ENTITY ( id INTEGER PRIMARY

KEY);\nINSERT INTO MINIMAL ENTITY VALUES (1);\nINSERT INTO
MINIMAL ENTITY \nVALUES (2);").checkEq(lines.length, 3);

7 ... }

Figure 1.1: String manipulation in Java, and an inline test in blue.

integrated I-Test with pytest, the most popular testing framework for Python, as a
plugin named pytest-inline [105].

We evaluate I-Test on 144 statements in 31 Python projects and 37 Java
projects. The cost of running inline tests is negligible, at 0.007x for Python and 0.014x
for Java on average. We conduct a user study with nine participants to evaluate the
usability and effectiveness of inline tests. All study participants found inline tests easy
to write and beneficial. Also, it took study participants an average of 2.5 minutes to
write inline tests.

Manually writing inline tests can be time-consuming and tedious. To improve
developer productivity, increase the adoption of inline tests and collect a dataset of
inline tests for future research, we propose ExLi [104], a technique and tool that au-
tomatically extracts inline tests from developer written and automatically generated
unit tests. ExLi automatically identifies target statements, collects runtime values
of variables, and constructs inline tests from them.

Without additional processing, ExLi can generate too many inline tests, po-
tentially exceeding the maximum allowable size of a Java method [129], and severely
impacting readability and maintainability. To mitigate this excess, ExLi introduces
a coverage-then-mutants based test reduction process. We consider an inline test to
be redundant if it has the same fault-detection capability as other inline tests in terms
of code coverage and mutants killed.

ExLi reduces tests in two rounds. The first round removes redundant inline
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tests that do not cover additional instructions of the target statement or subsequent
statements in the same program scope during unit-test execution. The second round
reduces the number of inline tests by performing mutation analysis, retaining a smaller
set of inline tests that kill all mutants that the original inline tests kill. If no mutants
are generated for a target statement, ExLi keeps all first-round coverage reduced
inline tests. If no mutant for a target statement is killed by the first-round reduced
inline tests, ExLi adds back all inline tests from before reduction.

For evaluation, ExLi identifies 718 target statements in 31 projects. Initially,
ExLi extracts 17,273 inline tests from both developer written and automatically
generated unit tests. After first-round reduction, 1,333 inline tests remain. After
second-round reduction with mutant generation tools universalmutator [63] and Ma-
jor [79], ExLi further reduces the inline tests to 905 with universalmutator and 930
with Major, achieving reduction rates of 94.8% and 94.6%, respectively.

We evaluate fault detection capabilities of inline tests on mutants generated
by universalmutator. ExLi achieves a mutation score of 87.9% with universalmutator
and 82.9% with Major. Compared to unit tests, inline tests kill 658 more mutants than
unit tests with universalmutator and 645 with Major, representing 20.1% and 19.7%
of all killed mutants, or 25.1% and 24.6% more mutants killed than by unit tests,
respectively. The inline tests extracted by ExLi thus improve the fault detection
capability of the test suites from which they are extracted. This improvement is
attributed to their capacity to check the states of local and private variables, which
cannot be checked by unit tests. This improvement also shows that inline tests can
complement unit tests in detecting faults.

This dissertation makes the following key contributions:

? I-Test We introduce inline tests, the benefits that they provide, and requirements
for testing frameworks that support them. We implement I-Test, the first inline
testing framework. We evaluate I-Test on 144 statements in 31 Python projects
and 37 Java projects. Also, we conduct a user study where users find that inline
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tests are easy to write and beneficial. The cost of running inline tests is negligible,
at 0.007x–0.014x.

? ExLi is the first technique for automatically generating inline tests; it extracts
them from unit tests. ExLi generates the largest dataset of inline tests to date.
Implemented for Java, ExLi generates inline tests for 718 target statements in 31
projects, reducing 17,273 initial inline tests to 905. The final set of inline tests
kills up to 25.1% more mutants on target statements than developer written and
automatically generated unit tests, improving the fault-detection capability of the
test suites that they are extracted from.

The code and data for I-Test 1 and ExLi 2 are open sourced to facilitate
future research. We have integrated I-Test with pytest as a plugin named pytest-
inline 3 4 to make it easier for developers around the world to use our technique.

1https://github.com/EngineeringSoftware/inlinetest
2https://github.com/EngineeringSoftware/exli
3https://github.com/pytest-dev/pytest-inline
4https://pypi.org/project/pytest-inline/
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Chapter 2: Inline Tests

Inline tests are a new category of tests that allows developers to check the
correctness of single statements in their code. This chapter motivates and introduces
inline tests in more detail. Then, we propose requirements that an inline testing
framework should satisfy. Next, we describe I-Test, the first inline testing framework
that allows developers to write and execute inline tests in Python and Java. We
evaluate I-Test on 144 statements in 31 Python projects and 37 Java projects. The
results show that I-Test has a negligible overhead, at 0.007x–0.014x. We perform a
user study to understand the benefits and limitations of inline testing. All nine user
study participants say that inline tests are easy to write and that inline testing is
beneficial. Lastly, we discuss the limitations of I-Test and conclude the chapter.1

2.1 Motivating and Introducing Inline Tests

Nowadays, testing frameworks only support three levels of test granularity—
unit tests, integration tests and end-to-end tests. These levels, shown in the top three
layers of Figure 2.1 (known as the testing pyramid), reflect developer testing needs.
Developers write unit tests to check the correctness of logical units of functionality,
e.g., methods or functions [29, 149]. Integration tests are used to check that logical
units interact correctly [61, 99, 130, 180]. Developers use end-to-end tests to check if
code runs correctly in its operating environment, and if functional and non-functional
requirements are being met [181, 188].

Unfortunately, there is little support for developer testing needs below the
unit-test level. Yet, developers may want to test individual statements for at least

1Parts of this chapter are published at ASE 2022 [103] and ICSE Demo 2023 [105]. Compared to
these published papers, this chapter updates the API of the inline testing framework. For example,
it changes the construct from new Here() to itest() and assertion on if conditions from Group to
group.
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Figure 2.1: The classic testing pyramid and how inline tests extend it.

four reasons:

1. Single-statement bugs occur frequently [80, 81], but unit tests rarely fail on com-
mits that introduce single-statement bugs [91].

2. The statement to be checked, i.e., the target statement, may be buried deeply
inside complicated program logic.

3. Developers may want to check and better comprehend hard-to-understand tradi-
tional programming language features like regular expressions (regexes) [30, 31,
85, 118, 193], bit manipulation [8, 95], and string manipulation [37, 90, 140].

4. Recent programming language features, e.g., Java Stream API [34], allow writing
complex program logic in one statement where one would previously have written
a method that can be unit tested.

Due to the lack of direct support for statement-level testing, developers often
resort to wasteful or ad hoc manual approaches. We briefly mention three of them
here and describe them and others in Section 2.2. First, in the commonly-practiced
“printf debugging” [9, 14, 60, 75, 100, 137], developers wastefully add and then
remove print statements to visually check correctness at specific program points.
Second, if the target statement is in privately accessible code, some developers violate
core software engineering principles to enable checking them with unit tests. For
example, google/guava [59] developers use the “@VisibleForTesting” annotation to
expose non-public variables or methods for unit testing [134, 135]. Lastly, developers
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lose productivity when they repeatedly use any of the many third-party websites
[16, 35, 179] or in-IDE pop-ups like the one in IntelliJ [78] to test regexes.

We argue that there is a need for specialized support to allow testing individual
statements “in place”. A simple approach is to first extract the target statement into
a method by itself and then write a unit test for the extracted method. Doing so
would not be effective for three reasons. First, to correctly set up the right state for
testing, developers may have to duplicate code from the method that contains the
target statement to the test for the extracted method. Second, if there are many
target statements, extracting each one can devolve into a hard-to-maintain “one unit
test per statement” scenario. Finally, programs may become harder to comprehend
if one has to look up method bodies to understand individual statements.

We introduce inline tests, a new category of tests that makes it easier to check
individual program statements. An inline test is a statement that allows developers
to provide arbitrary inputs and test oracles for checking the immediately preceding
statement that is not an inline test. Inline tests can be viewed as a way to bring the
power of unit tests to the statement level. Structurally, inline tests add a new level
of granularity below unit tests to the testing pyramid in Figure 2.1.

Inline tests could provide software development benefits beyond testing. For
example, prior work showed that tests and code do not usually co-evolve grace-
fully [13]. Unlike unit tests, inline tests are co-located in the same file as target
statements. So, inline tests could be easier to co-evolve with code. Prior work also
showed that test coverage can stay stable over time because existing tests cover newly-
added code [113]. Inline tests can help find faults in newly-added code. The inputs
and expected outputs in inline tests are a form of documentation and they could
improve code comprehension. Also, inline tests could improve developer productivity
by being more durable and less wasteful than “printf debugging”.

Inline tests are different from the assert construct that many programming
languages provide, e.g., Java [128] and Python [174]. Assert statements can enable
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production-time enforcement of conditions on program state at given code locations
without requiring developer-provided inputs. For example, an assert can be used
to ensure that a variable’s value is in range, or that a method does not return null.
Differently, inline tests require developer-provided inputs and oracles, and they only
enable test-time checking of individual statements.

We define language-agnostic requirements for inline testing frameworks (Sec-
tion 2.3.1). For example, it should not be possible to use inline tests in place of unit
tests or debuggers.

We implement I-Test, the first inline testing framework. The requirements
that we define provide a basis for I-Test and they can provide guidance for the
development of other inline testing frameworks. Our current I-Test implementation
supports inline testing for Python and Java, and it satisfies most of the requirements.

We evaluate I-Test on open-source projects by using it to test 144 statements
in 31 Python projects and 37 Java projects. We perform a user study to assess how
easy it is to write inline tests, and to obtain feedback about inline testing. Lastly,
we measure the runtime cost of inline tests. All nine participants who completed the
study say that inline tests are easy to write, needing an average of 2.5 minutes to
write each inline test, and that inline testing is beneficial. Inline tests incur negligible
cost, at 0.007x for Python and 0.014x for Java on average, and our inline tests helped
find two new faults that have been fixed by developers after we reported the bugs.
These results show the promise of inline tests.

The main contributions of this chapter include:

? Idea. We introduce inline tests, the benefits that they provide, and requirements
for testing frameworks that support them.

? Framework. We implement I-Test, the first inline testing framework. I-Test
works for Python and Java.
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? User study. We evaluate programmer perceptions about inline testing, and obtain
feedback about their inline testing needs.

? Performance evaluation. We measure runtime costs of I-Test using 152 inline
tests that we write in 68 projects.

Our code and data are publicly available at
https://github.com/EngineeringSoftware/inlinetest.

2.2 Examples

We show examples of some programming language (PL) features and one com-
mon testing scenario for which inline tests could be beneficial. For each, we discuss
problems that developers face due to the lack of direct support for statement-level
testing, and show example inline tests that can help.

2.2.1 An Example Inline Test

We start by illustrating what inline tests look like because we show several of
them in this section, before the I-Test API is described (Section 2.3.4). Consider this
inline test that we write for a target statement in apprenticeharper/DeDRM tools [168];
its target statement is shown and described in Figure 2.5:

itest() .given(dt, (1980, 1, 25, 17, 13, 14)) .check eq(dosdate, 57)
Declare Assign Assert

The “Declare” portion tells the inline testing framework to process the state-
ment as an inline test. The “Assign” portion allows a developer to provide test inputs
to the inline test. In this case, (1980, 1, 25, 17, 13, 14) is to be used as the value of
the dt variable that is in the target statement. Finally, the “Assert” portion allows
a developer to specify a test oracle. In this case, given the test input for dt, the
dosdate variable that is being computed in the target statement should equal 57 for
the inline test to pass.
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1 def parse_diff(diff: str) -> Diff:
2 ...
3 nm = re.match(r’ˆ--- (?:(?:/dev/null)|(?:a/(.*)))$’, line)
4 itest().given(line, '--- a/python/regex.py').

check true(nm).check eq(nm.groups(), ('python/regex.py',))
5 if nm:
6 name, = nm.groups()

Figure 2.2: Regex example in Python code, and an inline test in blue.

2.2.2 Some Programming Language Features that Inline Tests Can Help
Check

Regular expressions (regexes). Prior work showed that regexes are widely used,
but they are difficult for developers to understand and to use correctly [22, 30, 31,
118]. So, inline tests allow developers to check what regexes do, and to test them
in place. Consider the Python code fragment in Figure 2.2, which is simplified from
pytorch/pytorch [86]. The regex on line 3 is a search pattern that starts with “--- ”
and ends with the non-capturing group “/dev/null” or “a/(.*)”. A matched string is
assigned to the name variable.

Checking what the regex on line 3 matches, or testing if it is correct, is difficult
without direct support for statement-level testing. Three unit tests check parse diff

(these unit tests are written in a different file and executed using pytest [141]), but
they mock [176] the parse diff inputs and do not directly test the regex. In fact,
we are unaware of an easy way to directly unit-test the regex on line 3 with pytest.

In practice, a main way of checking regexes is to use regex-checking web-
sites [16, 35, 179]. Figure 2.3a shows one such website. One could also use in-IDE
pop-ups like the one in Figure 2.3b for IntelliJ [78]. These websites and in-IDE
pop-ups strengthen our argument for statement-level testing in four ways. First, the
existence and usage of these websites or pop-ups show that developers have a need
to directly test regexes. Second, these websites and pop-ups are not connected to the
target statement(s), so developers cannot easily specify where in the code the checks
should be performed, what kind of oracles should be used, and what the expected
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(a) A regex-checking website [35]

(b) IntelliJ pop-up for checking regexes [78]

Figure 2.3: Screenshots of a website and an in-IDE pop-up for checking regexes.

outcome should be. Third, each time developers leave their development environment
to use websites or pop-ups, they mentally switch context and may lose productivity as
a result [92, 93]. Lastly, knowledge gained from using websites and pop-ups may not
be documented, so (other) developers in the same organization may later wastefully
re-check the same regex.

Line 4 in Figure 2.2 shows how inline tests can be used to directly test a regex.
There, a developer specifies an input and an expected output. Then a framework like
I-Test can run the inline test to provide feedback on what the regex does. Using
inline tests as shown in Figure 2.2 mitigates the aforementioned problems of using
regex-checking websites and in-IDE pop-ups: developers have more control to specify
how to test the target statement, they do not have to leave their development envi-
ronment to perform checks, and inline tests self-document knowledge about regexes.

We showcase an additional benefit of using inline tests to check regexes: it
helped us find a fault. Figure 2.4 shows a fix that we report to developers of a project
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1 orig = os.path. splitext (os.path. basename ( infile ))[0]
2 if (re.match(’ˆB[A-Z0 -9]{9}( _EBOK|_EBSP| _sample )?$’, orig) or
3 -re.match ( ’ˆ{0 -9A-F -}{36} $’, orig)
4 +re.match ( ’ˆ[0 -9A-F -]{36} $’, orig)
5 ):
6 # Kindle for PC / Mac / Android / Fire / iOS
7 itest().given(orig,

'0123456789ABCDEF0123456789ABCDEF0123').check true(group(1))
8 clean_title = cleanup_name (book. getBookTitle ())

Figure 2.4: Fix for faulty regex that an inline test helped find.

in our evaluation, who accepted our pull request2. The goal of the faulty regex on
line 3 is to match valid string representations of 36-digit hexadecimal numbers or “-”,
but it wrongly matches “{0-9A-F-” followed by 36 repetitions of “}”. The inline test
on line 7 helped us find this fault. The inline test input (provided using I-Test’s
given function) is a string that represents a 36-digit hexadecimal number. group

is an I-Test construct for automatically matching conditional expressions in if or
while statement headers; it accepts a zero-based index that represents the position
of a condition in the header. So, group(1) matches the second conditional expression
in the if statement in Figure 2.4, i.e., re.match('ˆ{0-9A-F-}{36}$', orig). We
expected the matched condition to be True, but it was False and the inline test
failed. Our fix is on line 4. In sum, an inline test was useful for reducing the burden
of setting up and writing a unit test for this regex without the need to first perform
some throw-away refactoring to extract the regex from the conditional expression.

Bit manipulation. Figure 2.5 shows a simplified code fragment from apprentice-
harper/DeDRM_tools [168]. Line 3 parses the year, month, and day into a 32-bit
DOS date. Line 5 uses the hour, minute, and second to compute a 32-bit DOS time.
The FileHeader function that contains the fragment in Figure 2.5 has many other
statements that we elide, and it can be unit tested to check that it constructs correct
headers. However, it is hard to directly test lines 3 and 5 without first extracting
these statements into separate functions. Also, bit manipulation is fast but it may

2https://github.com/noDRM/DeDRM_tools/commit/012ff53
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1 def FileHeader(self):
2 dt = self.date_time
3 dosdate = (dt[0] - 1980) << 9 | dt[1] << 5 | dt[2]
4 itest().given(dt, (1980, 1, 25, 17, 13, 14)).check eq(dosdate, 57)
5 dostime = dt[3] << 11 | dt[4] << 5 | (dt[5] // 2)
6 itest().given(dt, (1980, 1, 25, 17, 13, 14)).check eq(dostime, 35239)
7 if self.flag_bits & 0x08:
8 # Set these to zero because we write them after the file data
9 CRC = compress_size = file_size = 0

Figure 2.5: Bit manipulation example in Python code, and inline tests in blue.

1 public static int executeSqlScript(Context context, Database db, String
assetFilename, boolean transactional)

2 throws IOException {
3 byte[] bytes = readAsset(context, assetFilename);
4 String sql = new String(bytes, "UTF-8");
5 String[] lines = sql.split(";(\\s)*[\n\r]");
6 itest().given(sql, "CREATE TABLE MINIMAL ENTITY ( id INTEGER PRIMARY

KEY);\nINSERT INTO MINIMAL ENTITY VALUES (1);\nINSERT INTO
MINIMAL ENTITY \nVALUES (2);").checkEq(lines.length, 3);

7 int count;
8 if (transactional) {
9 count = executeSqlStatementsInTx(db, lines);

10 }
11 ...
12 return count;
13 }

Figure 2.6: Another string manipulation example in Java code, and an inline test in
blue.

be hard to understand. With the inline tests on lines 4 and 6, we are able to directly
check these statements individually. Also the inputs and expected outputs in those
inline tests document what the target statements compute.

String manipulation. Figure 2.6 shows simplified code in a method from greenrobot/

GreenDAO [62]. Line 5 uses a regex to tokenize a string. The result of line 5 is sub-
sequently used to query a database on line 9, so a developer may want to check that
the split is correct. Although there is a unit test for this function, it only indirectly
checks line 5 together with the logic that is implemented in lines 7 to 11. The inline
test on line 6 directly tests line 5.
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1 ...
2 - elif ch < ’ ’ or ch == 0x7F:
3 + elif ch < ’ ’ or ord(ch) == 0x7F:
4 out.write(’\\x’)
5 out.write( hexdigits [( ord(ch) >> 4) & 0x000F ])
6 - itest ().given(ch , 0x7F). check_eq (( ord(ch) >>4)&0 x000F , 0x07)
7 + itest ().given(ch , chr (0 x7F)). check_eq (( ord(ch) >>4)&0 x000F , 0x07)
8 out.write( hexdigits [ord(ch) & 0x000F ])

Figure 2.7: Inline test helped find this string manipulation fault.

Using an inline test to check statements that manipulate strings also helped
us find a fault, which we show together with the fix in Figure 2.7. Specifically, the
condition on line 2 is faulty because it directly compares a string with an integer. So,
the inline test on line 6 fails with the message, “TypeError: ord() expected string of
length 1, but int found”. Changing the condition to be as shown on line 3 fixes the
fault and the developers have accepted our pull request3. Line 7 is our updated inline
test after our fix. No unit test covers this function, but there are other functions that
can call it in production.

Streams. The target statement on lines 3 to 8 in Figure 2.8 uses Java Stream API; it
is from apache/flink [43] and it extracts the values of an expression’s children to a
list. Using unit tests to check whether the aliases variable is computed correctly will
require using sophisticated Java features like reflection [114] (the target statement is
in a private method). Moreover, a unit test cannot help to directly check aliases;
only the value computed on line 11 is returned. Lastly, the unwrapFromAlias method
is not directly tested by any unit test, but it is called by methods in other classes. The
inline test on line 9 directly tests the target statement. Also, given the complexity
of the statement on lines 3 to 8, a new apache/flink developer is likely to be better
able to understand the code with the inline test than they would do without it.

3https://github.com/python/cpython/commit/5535f3f
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1 private CalculatedQueryOperation unwrapFromAlias(CallExpression call) {
2 List<Expression> children = call.getChildren();
3 List<String> aliases =
4 children.subList(1, children.size())
5 .stream()
6 .map(alias -> ExpressionUtils.extractValue(alias, String.class)
7 .orElseThrow(() -> new ValidationException("Unexpected: " + alias)))
8 .collect(toList());
9 itest().given(children, Arrays.asList(new Expression[]{new

SqlCallExpression("SELECT MIN(Price) AS SmallestPrice FROM Products; "),
new SqlCallExpression("SELECT COUNT(ProductID) FROM
Products;")})).checkEq(aliases, Arrays.asList("SELECT COUNT(ProductID)
FROM Products;"));

10 CallExpression tc = (CallExpression) children.get(0);
11 return createFunctionCall(tc, aliases, tc.getResolvedChildren());
12 }

Figure 2.8: Java code using Streams, and an inline test in blue.

2.2.3 A Common Scenario: “printf debugging”

Developers often perform “printf debugging” by temporarily adding print
statements so that they can visually check whether correct values are being computed
at the target statement. Then, after some time, they remove these print statements.

One indication of “printf debugging” popularity can be seen by searching for
“remove debug” on GitHub or by going to link [51]. (We found 3,344,094 matching
commits in May 2022, but we did not look through them all to see if they are all about
“printf debugging”.) GitHub commits likely underestimate “printf debugging”
popularity; developers may clean the print statements before committing their code.
Dedicated utilities like git−remove−debug [19] and others [27, 84, 111] clean up
after “printf debugging”. Figure 2.9 shows a GitHub commit4 that cleaned up
after “printf debugging” a complex statement in a private method. Researchers
found many reasons why developers do “printf debugging”: lack of familiarity with
debuggers [14], lack of platform-specific debuggers [9, 75], perceived speed [137] and
simplicity [100] of “printf debugging”, the inability of debuggers to handle parallel
programming language constructs [60], etc.

4https://github.com/redis/redis-om-spring/commit/f808c9b
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1 private List <Field > getNestedField (...) {
2 if ( subField . isAnnotationPresent ( Indexed . class )) {
3 - System .out. println (">>> Found Indexed SUBFIELD ....") ;
4 boolean sfIsTagField = (( subField
5 . isAnnotationPresent ( Indexed . class )
6 && (( CharSequence .class . isAssignableFrom ( subField . getType ())
7 || ( subField . getType () == Boolean .class )
8 || ( maybeCollectionType . isPresent ()
9 && ( CharSequence .class

10 . isAssignableFrom ( maybeCollectionType .get ())
11 || ( maybeCollectionType .get () == Boolean .class )))))));
12 - System .out. println (">>> sfIsTagField ==> " + sfIsTagField );
13 itest().given(subField, new Object() {@Indexed CharSequence

f;}.getClass().getDeclaredField("f")).checkEq(sfIsTagField, true);
14 ...
15 }}}

Figure 2.9: Inline tests can nicely replace Java “printf debugging”.

We do not claim that inline tests could replace “printf debugging”. The many
reasons for the longevity and popularity of “printf debugging” suggests that there is
no silver bullet. However, inline tests can help to reduce some of the wastefulness of
adding and then removing print statements during “printf debugging”. Specifically
developers could use inline tests to persist knowledge that they gain during “printf

debugging”. For example, line 13 in Figure 2.9 shows how one could manually migrate
the print statements from “printf debugging” into inline tests.

2.3 The I-Test Framework

We start this section with a list of language-agnostic requirements for inline
testing frameworks. Then, we give an overview of the inline testing framework I-
Test. Lastly, we introduce I-Test’s API, and describe our current implementation.

2.3.1 Inline Testing Framework Requirements

Section 2.2 motivated the need for inline tests. We now turn to the ques-
tion, what are the requirements for inline testing frameworks? Answering it helps to
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(1) distinguish inline testing from existing granularity levels of testing, (2) provide
a road map for inline testing development, and (3) provide a basis for evaluating
I-Test. Inline testing frameworks should meet this minimum set of requirements:

1. Inline tests are not replacements for unit tests or debuggers. 3

2. An inline test should only check one target statement. 3

3. Multiple inline tests can check the same target statement. 3

4. An inline test should allow developers to provide multiple values for a variable in
the target statement. 3

5. Inline tests should be easy for developers to write and run using similar idioms as
those they already use, to ease adoption. 3∗

6. Inline testing frameworks should be easy to integrate with testing frameworks and
IDEs that developers use. 3∗

7. To aid readability, when integrated with IDEs, inline testing frameworks should
hide inline tests by default, and allow developers to hide or view inline tests as
needed. 7

8. It should be possible to enable inline tests during testing and to disable them in
production. 3

9. When enabled, the runtime cost of inline tests should be low. 3

10. When disabled, inline tests should have negligible overhead. 3

11. It should be possible for developers to run subsets of all inline tests—developers
often perform manual test selection [54]. u

12. It should be possible to run inline tests in parallel. u

13. It should be possible to write inline tests for target statements that invoke methods
or functions whose arguments need initialization. 7
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Figure 2.10: A test report in the HTML format generated by I-Test.

14. It should be possible to write inline tests for expressions in branch conditions,
without requiring developers to copy those expressions into the inline test. 3

I-Test currently meets requirements marked with 3, partially supports those in
Python and Java marked with 3∗and does not support those marked with 7. The u

in requirements 11 and 12 means that our current Python implementation satisfies
the requirements but our current Java implementation does not.

These are initial requirements based on our understanding so far, and they
are likely incomplete. Our goal for providing them is to bootstrap the development
of inline testing and to aid better community understanding of inline testing.

2.3.2 Overview of the I-Test Framework

I-Test is our inline-testing framework that provides support for statement-
level testing. I-Test’s API provides three kinds of methods that allow developers
to (1) declare an inline test, (2) provide input values that should be assigned to
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the variables in the target statement during testing, and (3) specify test oracles. If
developers write multiple inline tests, they can run the inline tests separately or in
a batch. We integrate I-Test with two popular unit testing frameworks—JUnit

and pytest. Figure 2.10 is an example test report generated by I-Test, based on
the pytest-html plugin [142] that it uses. Inline tests must be the next statements
after a target statement. Since inline tests are co-located with code, I-Test provides
facilities for turning off the execution of inline tests in production environments.
When inline testing is turned off, the inline tests are still in the code but running the
code should incur negligible runtime overhead.

2.3.3 I-Test Development Process

To ground I-Test in likely developer needs, we focus our current implemen-
tation on selected kinds of statements from open-source projects. Based on our own
programming experience, these kinds of statements could benefit from inline testing.
We described some of these kinds of statements in Section 2.2.2, but we focus our im-
plementation on five of them: regexes, string manipulation, bit manipulation, Stream
API usage, and collection handling code.

One challenge is to better understand the API that I-Test should provide for
statement-level testing for the kinds of statements that we focus on. To address this
challenge, we collect examples of these kinds of statements from open-source projects,
manually inspect them, and iteratively refine our I-Test API. Each example is a file
from an open-source project that contains at least one target statement that we aim
to test. Specifically, we first collect Java and Python projects from GitHub. Then,
we filter out projects that do not contain the kinds of statements that we focus on.
Lastly, we find examples from those that remain and use them to guide our API
design. Inline tests are not limited to these kinds of statements, but we focus on
them to bootstrap. We next describe our example collection process, and provide
more details on the current API.
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2.3.3.1 Example Collection Process

We are interested in target statements that are in possibly complicated code
blocks, such that the target statement may be difficult to test directly with unit tests.
(See Section 2.1 for a discussion of the pitfalls of extracting individual statements into
methods or functions for the sole purpose of enabling unit testing.) We look for Java
and Python statements with regular expressions, as well as those that manipulate
strings and bits. We also look for statements that use the Stream API in Java and
those that manipulate collections in Python.

We perform keyword search (such as “re.match” and “re.split” for Python
regular expressions) among the 100 top-starred Java and Python projects on GitHub
(a total of 200 projects). All keywords that we use for each language and the number
of matches that we find are provided in our repo5. We manually inspect metadata for
these projects and remove those that are about tutorials, e.g., interview questions.
We then use the remaining 83 Java projects and 91 Python projects. For each project
that remains, we select examples and manually inspect them for suitability to help
guide our API design.

To make our manual check easier, we make our keyword search return five
lines of leading and trailing context for each match. We then manually check whether
the matched lines are for the kinds of target statements that we focus on. We
filter out cases where keywords only appear in comments or in which we deem
the code too simple to warrant an inline test, e.g., for keyword “split” we find
String[] errorMessageSplit = e.getMessage().split(” ”);. We also filter out key-
word searches that yield false positives. For example, we search for >> as the right
shift operator in bit manipulation but the search sometimes matches the closing tag
of a parameterized generic type, e.g., <String, Box<Integer>>. Among the rest, for
each kind of target statement per project, we extract an example which is the first
snippet with a target statement that can be tested at the statement level. Finally,

5https://github.com/EngineeringSoftware/inlinetest/blob/main/appendix.pdf
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Table 2.1: Number of examples and the inline tests that we write to guide API design.
PL= programming language, #Projs= number of projects, #Examples= number of
examples, #Target stmts= number of target statements, and #Inline tests= number
of inline tests.

PL #Projs #Examples #Target
stmts #Inline tests

Python 31 50 80 87
Java 37 50 64 65

based on randomly extracted 50 examples of Python and 50 examples of Java, we
design the I-Test API.

2.3.3.2 Corpus

Data about the selected examples that we base our design of I-Test API on
are shown in Table 2.1. For Python, we write 87 inline tests for 80 statements in 50
examples from 31 projects. For Java, we write 65 inline tests for 64 statements in 50
examples from 37 projects. There are sometimes multiple target statements in some
examples, and we sometimes write multiple inline tests for a target statement.

Table 2.2 shows a breakdown of the number of inline tests that we write for
each kind of target statement. Columns represent the kind of target statement, the
PL, the number of projects, the number of examples, the number of target statements,
and the number of inline tests. We write at least one inline test per target statement.
There are fewer numbers in the “Collection” row because although operations on
collections, like list comprehension or sorting, look complicated, some developers may
want to test them and others may not. Our user study results report this variation
in preferences (Section 2.6).

2.3.4 The I-Test API

We design the I-Test API to have three components, based on what they
allow developers to do:

(1) Declare and initialize an inline test. This API component signals to the I-
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Table 2.2: Breakdown of the inline tests that we wrote.

Kind PL #Projs #Examples #Target
stmts #Inline tests

Regex Python 15 17 19 22
Java 15 17 17 17

String Python 13 14 30 32
Java 15 15 20 20

Bit Python 15 15 26 27
Java 16 16 25 26

Collection Python 4 4 5 6
Streams Java 2 2 2 2

Test framework to process a statement as an inline test and allows users to optionally
specify a name for the inline test. If a test name is not specified, I-Test defaults to
using a name which is the concatenation of the current file name and the line number
of the inline test. This component comprises the itest() and itest(test name = “”)
functions in Python and the itest() and itest(testName) methods in Java. With
these itest() functions or methods, users can also provide optional parameters for
customizing inline test execution. These parameters include those that (1) set the
number of times to re-rerun an inline test in case it is flaky [12, 88]; (2) disable the
inline test so that it is not executed (similar to the @Ignore annotation in JUnit);
(3) indicate that sets of values can be used to parameterize an inline test; (4) tag
inline tests so that users can filter out those that they do not want to run (similar
to the @Tag annotation in JUnit [169]); (5) set the timeout for an inline test, so
that an inline test fails if its execution time exceeds the given duration; (6) set the
assumption under which an inline test should run; and (7) set the order in which
inline tests should run first.

(2) Provide test inputs. Developers can use this API component to initialize
variables in the target statement to desired test input values. The rationale is that,
to directly test a target statement, I-Test has to be able to re-initialize the variables
in that statement to the values that should be used for testing. In Python and
Java, this API component is the given(variable, value) function or method. I-
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Test assigns value to variable only while running the inline test. Two input-
related needs may arise during inline testing: a target statement may have multiple
variables, or a developer may want to test a target statement using multiple values
of the same variable. To address the first need, I-Test allows chaining given(. . .)
calls. To address the second need, I-Test allows to provide a list of values in each
given(. . .) call if itest(parameterized = True) is used. This feature is similar to
parameterized unit tests [177, 178].

(3) Specify test oracles. This API component allows developers to make as-
sertions on the results of running the inline test. Driven by the examples that
we base our design on, I-Test supports checking equality of two expressions with
check eq(expr1, expr2), checking whether a condition holds or not with check true

(expr) and check false(expr). The last two are for convenience; they are equiva-
lent to check eq(expr, True) and check eq(expr, False), respectively. These three
suffice to check the target statements in our corpus (Section 2.3.3.2). In Java, we
support oracles with the same functionality but they have camel-case naming. Unit
testing frameworks typically support more kinds of assertions. As I-Test grows, we
support more kinds of assertions, for example, we support eight kinds of assertions
in total in pytest-inline plugin [105].

Even though our initial design is based on selected examples from open-source
projects, we are encouraged that our API design has produced components that
should be familiar to developers who already know how to write unit tests. The API
is consistent across both Java and Python. Even if small tweaks may be needed to
support other programming languages, current evidence suggests that the same inline
testing API components could be broadly applicable.

2.3.5 I-Test Implementation

Figure 2.11 shows the workflow of I-Test for Python; it is similar for Java.
Given a source file, Finder searches for statements that start with itest calls. Parser
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Figure 2.11: Workflow of I-Test for Python.

traverses the AST of the source file to discover the target statement. Parser also uses
the output of Finder to reconstruct assignments and assertions and to collect inline
tests of a target statement into a new source file that can be executed. Moreover,
Parser copies the import statements used by the target statement and the inline
test to the new source file; thus, execution of this new source file only requires the
packages used by the target statement and the inline test. Finally, Runner executes
the inline test files and generates test reports like the one shown in Figure 2.10.

Python. We implement I-Test as a standalone Python library, which can be run
from the command line; we also integrate I-Test into pytest. I-Test uses the
Python AST library [165] to parse the source code, extract the target statement,
process the input assignments and assertions, compose an executable test, and execute
the inline test in the name space of the module in which target statement exists. More
precisely, I-Test uses the visitor design pattern [49] to detect inline test initialization
and to find target statements. Oracles are implemented on top of the assert construct
in Python. If an assertion fails, the resulting error message shows the line number of
the failing inline test, and its observed and expected outputs. We integrate I-Test
as a plugin into pytest to reuse the various testing options that pytest provides and
to generate test reports.

Java. We use JavaParser [76] to manipulate Java AST. Java I-Test additionally
infers variable types in given calls using a symbol table that it maintains. For
example, in given(a, 1), I-Test looks up the declared type of a in the program. We
support two compilation modes for Java inline tests. The first (guard mode) keeps
the inline test in the resulting bytecode and uses a flag to skip or run the inline test.
The second (delete mode) discards the inline tests from the bytecode. I-Test also
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supports two ways to run inline tests in Java. The first generates an ad hoc class for
each source file, where each inline test is converted to a method and a main method
is added to run all the inline tests. The second produces a JUnit test class for the
given file, where each inline test is converted to a test method that can be executed
using a JUnit runner.

2.4 Usage

In this section, we describe how to use pytest-inline to execute tests.

2.4.1 Installation

We recommend conda [26] for installing pytest and pytest-inline. A conda
environment with Python 3.9 can be created like so (pytest requires Python 3.7 or
higher):
$ conda create --name inlinetest python =3.9 pip -y
$ conda activate inlinetest

Next, install pytest and pytest-inline in the conda environment:
$ pip install pytest - inline

2.4.2 Command-Line Interface

By default, pytest recursively discovers and runs all “test *.py” or “* test.py”
files in the current directory. pytest-inline also recursively processes all “.py” files
in the current directory. Users can specify what files to process, e.g., to run inline
tests in “.py” files that start with “a”:
$ pytest a*.py

Use inlinetest-group to run tagged inline tests:
# run only the tests with tags "str" and "bit"
$ pytest --inlinetest -group="str" --inlinetest -group="bit"
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The -k option allows specifying inline tests to run by name:
$ pytest -k "add" # run the inline tests whose names match the

given string expression

Inline tests can be run in three modes: default, inlinetest-only, and inlinetest-
disable. The default mode runs inline tests and unit tests; inlinetest-only mode runs
only inline tests; and inlinetest-disable mode skips inline tests but runs unit tests:
$ pytest # run all tests
$ pytest --inlinetest-only # run only inline tests
$ pytest --inlinetest-disable # skip inline tests

When collecting inline tests, pytest-inline imports dependencies and throws
an error if those dependencies are not installed. Users can use inlinetest-ignore-

import-errors to ignore such errors and skip the collection of the affected files (doing
so also skips the inline tests in those files):
$ pytest --inlinetest -ignore -import - errors

The default line-number order of running inline tests can be overridden using
tags and inlinetest-order:
# run test tagged "str", then "bit", and then the rest
$ pytest --inlinetest -order="str" --inlinetest -order="bit"

Inline tests can be run in parallel after installing pytest-xdist [143] by using -n

to specify the number of processes.
$ pip install pytest -xdist
$ pytest -n 4 # run tests in parallel with 4 processes
$ pytest -n auto # run tests in parallel with all CPU cores

Lastly, to generate HTML test reports, users can use the pytest-html plugin
and the html option:
$ pip install pytest -html
$ pytest --html= report .html
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2.5 Performance Evaluation for I-Test

We answer these research questions to assess inline testing costs:

RQ1:. How long does it take to run inline tests?

RQ2:. What is the runtime overhead when inline tests are enabled during the exe-
cution of existing unit tests?

RQ3:. What is the runtime overhead when inline tests are disabled during the exe-
cution of existing unit tests?

We measure the times for answering these questions using the inline tests
from the 100 examples that we write (Section 2.3.3.2). We also duplicate each of
these inline tests 10, 100, and 1000 times, so that we can simulate the costs as the
number of inline tests grows. We evaluate RQ2 and RQ3 on 21 projects in our corpus
where we could run the unit tests.

2.5.1 Experimental Setup

Standalone experiments. To run the inline tests available in an example, I-Test
does not need all code elements (class, method, or field) in that example. Rather,
it only needs code elements used by the target statement and its inline tests. For
example, the code fragment in Figure 2.6 has classes Context and Database in the
method signature. But, the inline test there does not need these classes; it only needs
the String class from the standard library and method itest from I-Test. On the
contrary, running a unit test for the same example requires loading all these classes.
So, I-Test can run all 152 inline tests under the standalone mode without setting
up the environments needed to run unit tests. For Python, we run the inline tests
in each example using the pytest-inline plugin that we integrate into pytest. For
Java, we run the inline tests in each example by using I-Test to produce an ad-hoc
class and then invoke its main method.

Integrated experiments. To measure the runtime overhead of inline tests, we need
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to run them together with unit tests using the runtime environment specified by each
project. We write inline tests directly in the projects from which we extract the
examples. But, we face difficulties in setting up some runtime environments or in
running unit tests. So, we perform the experiments for answering RQ2 and RQ3 on a
subset of 21 projects. Below, we discuss the difficulties that we face for both Python
and Java projects, respectively.

I-Test for Python relies on pytest to run inline tests. Of 31 Python projects
in our corpus, we could not setup the appropriate pytest runtime environment for
2: keras-team/keras uses the Bazel build system which requires additional time to
setup; and kovidgoyal/kitty mixes C++ with Python code, leading to problems
with importing C++ code into pytest using a pyi interface file. Of the other 29
projects, 5 have no unit tests. We confirm absence of unit tests by (1) checking the
README.md and CONTRIBUTING.md files which contain instructions for setting
up the projects; (2) inspecting the Continuous Integration logs, if any; and (3) search-
ing for ∗test ∗ .py in the repositories. 5 projects do not use pytest to run unit tests.
Lastly, another 5 projects have many unit tests that consistently fail. If a project
manifests less than 10 flaky unit tests [12, 87, 89, 109, 157] that can be skipped with-
out causing more failures, we run the remaining unit tests in that project. We run
inline tests and unit tests for the remaining 14 projects (first column of Table 2.4a).

For Java, we use I-Test to generate ad-hoc classes for the integrated examples,
and compile the generated classes together with the other source code in the project.
Of 37 projects in our corpus, 10 have compilation failures (before integrating any
inline test) and 3 have no unit tests. We confirm that these projects have no unit
tests and handle flaky tests similarly as we did for Python projects. If running unit
tests across a multi-module project fails, we retry running only the unit tests in the
sub-modules that we write inline tests for (and refrain from using the project in our
experiments if there are still too many failures). We run inline tests and unit tests
for the remaining 7 projects, shown in the first column of Table 2.4c.
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Duplicating inline tests. Since the work in this chapter is the first to explore inline
tests, the number of inline tests we have written for each project is often not as much
as the number of unit tests that a project typically has. In the future, equal or even
more inline tests than unit tests may be written. To simulate the performance of
I-Test in such scenario with the corpus that we use in this chapter, we experiment
with duplicating each inline test 10, 100, and 1000 times. When duplicating inline
tests 1000 times, two Java projects (alibaba/fastjson and apache/kafka) do not
compile because the size of the bytecode in the method containing the target state-
ment exceeded the allowable limit in Java [129]. So, we exclude these two projects
(only when duplicating 1000 times).

Experimental procedure and environment. We run inline tests and unit tests
four times. The first run is for warm-up, and we average the times for the last three
runs. We run experiments on a machine with Intel Core i7-11700K @ 3.60GHz (8
cores, 16 threads) CPU, 64 GB RAM, and Ubuntu 20.04. We use Java 8 and Python
3.9 in the standalone experiments, and use the versions required by each project in
the integrated experiments.

2.5.2 Results

Table 2.3: Results of standalone experiments. Dup = duplication count, #IT= to-
tal number of inline tests, TIT[s]= total inline-tests running time, tIT[s]= inline-test
running time per test.

(a) Python
Dup #IT TIT[s] tIT[s]
x1 87 12.78 0.147
x10 870 13.41 0.015
x100 8,700 19.86 0.002
x1000 87,000 124.92 0.001

(b) Java
Dup #IT TIT[s] tIT[s]
x1 65 23.08 0.355
x10 650 24.92 0.038
x100 6,500 34.21 0.005
x1000 65,000 67.87 0.001

RQ1: cost of running only inline tests. Table 2.3 shows the results of running
Python and Java inline tests in standalone mode. Without duplicating the inline tests
in each example, the average time for running each inline test is 0.147s for Python and
0.355s for Java. As we duplicate the inline tests in each example, the average time
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Figure 2.12: Line plots of duplication times vs. total/per-test time when running
inline tests in standalone mode.

for running each inline test reduces to 0.001s for Python and 0.001s for Java. There
could be two reasons for this reduction in average time. First, the cost of reading a
file and extracting inline tests is amortized. Second, repeatedly executing the same
inline test is faster than different inline tests.

Figure 2.12 shows how total and per-test execution time scale as the number of
inline tests grows. There, the total time for running inline tests stays almost constant
when duplicating the inline tests 10 or 100 times (corresponding to around 10 and 100
inline tests per file), but grows dramatically when duplicating 1000 times. I-Test
for Java scales better than I-Test for Python, as it is slower initially but faster when
duplicating 1000 times, probably due to just-in-time compilation.

RQ2: overhead of running unit tests with inline tests enabled. Table 2.4
shows the results of running Python and Java inline tests after integrating with the
open-source projects and their unit tests. There, the OITE columns show the over-
head when inline tests are enabled and executed during the execution of existing
unit tests. Overall, without duplicating inline tests (Tables 2.4a and 2.4c), the over-
head of running inline tests is negligible compared to unit tests, and is 0.007x for
Python and 0.014x for Java. This observation holds when duplicating inline tests
(tables 2.4b and 2.4d); for example, when duplicating inline tests 1000 times, which
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Table 2.4: Results of integrated experiments. Project= project name, Dup = dupli-
cation times, #UT= total number of unit tests, #IT= total number of inline tests,
tUT[s]= time to run each unit test, tIT[s]= time to run each inline test, TITE [s]= total
time to run all unit tests with inline tests enabled, tITE[s]= time to run each unit
test with inline tests enabled, OITE= overhead of running unit tests with inline tests
enabled, TITD[s]= total time to run unit tests with inline tests disabled, tITD[s]= time
to run each unit test with inline tests disabled, OITD= overhead of running unit tests
with inline tests disabled.

(a) Python
Project #UT #IT TUT [s] tUT[s] TITE [s] tITE[s] OITE TITD[s] tITD[s] OITD
RaRe-Technologies/gensim 968 2 225.92 0.233 226.90 0.234 0.004 226.35 0.234 0.002
Textualize/rich 622 2 3.71 0.006 3.94 0.006 0.063 3.72 0.006 0.002
bokeh/bokeh 8,616 8 49.63 0.006 50.91 0.006 0.026 50.13 0.006 0.010
chubin/cheat.sh 1 3 0.34 0.337 0.74 0.186 1.204 0.33 0.334 -0.010
davidsandberg/facenet 3 1 0.97 0.323 1.83 0.458 0.888 0.98 0.325 0.006
geekcomputers/Python 1 4 0.17 0.169 0.38 0.075 1.217 0.18 0.179 0.058
google-research/bert 15 1 2.05 0.137 2.69 0.168 0.314 2.07 0.138 0.011
joke2k/faker 1,596 4 16.73 0.010 16.91 0.011 0.011 16.64 0.010 -0.006
mitmproxy/mitmproxy 1,287 1 7.50 0.006 7.85 0.006 0.046 7.45 0.006 -0.007
numpy/numpy 19,644 2 147.82 0.008 145.88 0.007 -0.013 145.36 0.007 -0.017
pandas-dev/pandas 147,307 2 278.43 0.002 279.81 0.002 0.005 278.88 0.002 0.002
psf/black 236 1 6.96 0.029 7.29 0.031 0.048 7.02 0.030 0.009
pypa/pipenv 106 1 3.63 0.034 4.17 0.039 0.151 3.64 0.034 0.003
scrapy/scrapy 2,246 2 130.07 0.058 130.93 0.058 0.007 130.42 0.058 0.003
avg 13,046.29 2.43 62.42 0.005 62.87 0.005 0.007 62.37 0.005 -0.001
Σ 182,648 34 873.93 N/A 880.24 N/A N/A 873.16 N/A N/A

(b) Python, with duplicating inline tests
Dup #UT #IT TUT [s] tUT[s] TITE [s] tITE[s] OITE TITD[s] tITD[s] OITD
x1 182,648 34 873.93 0.005 880.24 0.005 0.007 873.16 0.005 -0.001
x10 182,647 340 871.73 0.005 922.03 0.005 0.058 914.68 0.005 0.049
x100 182,648 3,400 876.13 0.005 884.16 0.005 0.009 873.65 0.005 -0.003
x1000 182,647 34,000 872.59 0.005 949.02 0.004 0.088 889.00 0.005 0.019

(c) Java
Project #UT #IT TUT [s] tUT[s] TITE [s] tITE[s] OITE TITD[s] tITD[s] OITD
alibaba/fastjson 5,022 2 44.99 0.009 45.59 0.009 0.013 44.86 0.009 -0.003
alibaba/nacos 971 1 249.45 0.257 250.67 0.258 0.005 249.93 0.257 0.002
apache/dubbo 3,180 1 678.86 0.213 680.26 0.214 0.002 679.43 0.214 0.001
apache/kafka 221 1 9.84 0.045 10.76 0.048 0.094 10.09 0.046 0.026
apache/shardingsphere 44 2 5.03 0.114 5.75 0.125 0.143 5.04 0.115 0.002
jenkinsci/jenkins 32 2 4.67 0.146 5.29 0.156 0.132 4.64 0.145 -0.007
skylot/jadx 709 1 66.57 0.094 76.21 0.107 0.145 75.47 0.106 0.134
avg 1,454.14 1.43 151.34 0.104 153.50 0.105 0.014 152.78 0.105 0.009
Σ 10,179 10 1,059.41 N/A 1,074.53 N/A N/A 1,069.47 N/A N/A

(d) Java, with duplicating inline tests
Dup #UT #IT TUT [s] tUT[s] TITE [s] tITE[s] OITE TITD[s] tITD[s] OITD
x1 10,179 10 1,059.41 0.104 1,074.53 0.105 0.014 1,069.47 0.105 0.009
x10 10,179 100 1,059.36 0.104 1,065.38 0.104 0.006 1,060.47 0.104 0.001
x100 10,179 1,000 1,059.11 0.104 1,073.50 0.096 0.014 1,068.44 0.105 0.009
x1000 4,936 7,000 1,004.24 0.203 1,012.16 0.085 0.008 1,008.55 0.204 0.004

brings the number of inline tests closer the number of unit tests, the overhead is
0.088x for Python and 0.008x for Java.
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RQ3: overhead of running unit tests with inline tests disabled. The OITD

columns in Table 2.4 show the overhead when inline tests are disabled during the exe-
cution of existing unit tests. The inline tests are not executed, but having them in the
codebase may require unit tests to execute additional no-op statements. Nevertheless,
we found such overhead to be negligible, even when duplicating the inline tests for
10–1000 times; the negative close-to-zero overhead numbers (e.g., -0.001x for Python
when not duplicating inline tests) are likely due to nondeterministic execution.

2.6 User Study

The goals of our study are to evaluate the ease with which participants learn
and use I-Test, and to obtain their perceptions about inline testing or how I-Test
can be improved.

2.6.1 Study Design

We ask participants to complete three activities: (1) a short tutorial to learn
about inline testing and I-Test (expected duration: 20 minutes), (2) four testing
tasks in which they write inline tests for four specified target statements (expected
duration: 10 minutes per task), and (3) a questionnaire with six questions (unspecified
duration). We suggest a one-hour time limit, but results show that most participants
finish faster. We write scripts to process the responses, and manually check the
correctness of participants’ inline tests.

We only use I-Test for Python in our user study to keep participants focused
on inline testing and not on switching between programming languages. . A sample
user study (without responses) is in our GitHub repository 6. We briefly describe the
activities that participants undertake.

(1) Tutorial. We provide an overview of I-Test’s API (Section 2.3.4), then ask each

6https://github.com/EngineeringSoftware/inlinetest/tree/main/userstudy/content
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participant to run a provided script to setup the environment. Finally, we illustrate
I-Test using three examples. The first example is a toy “hello world” example; the
other two are examples from our corpus. Each example contains a code snippet,
specifies a target statement or two together with one or two inline tests per target
statement. We also describe I-Test’s API and instructions for running inline tests.

(2) Using inline tests. We ask participants to write and run inline tests for four
examples from our corpus. For each example, we present the participant with the
code snippet (without our inline tests) and specify a target statement. Then, we
ask participants to write one or more inline tests for the target statement. We also
ask participants to ensure that their inline tests pass. Finally, we ask participants
to separately report the time taken to understand the target statement and the time
taken to write all inline tests.

(3) Survey. We ask participants to fill a questionnaire, to record their experiences with
I-Test and their feedback. Specifically, we ask participants to (a) rate the difficulty
of learning I-Test’s API and of writing inline tests, (b) report their number of years
of general and Python programming experience (to understand if expertise impacts
their experiences with I-Test), (c) say whether they think writing inline tests is
beneficial for each of the four tasks compared with unit tests (they can optionally
justify their “yes” or “no” responses), (d) comment on how to improve I-Test.

Participants. Our valid user study participants are six graduate students and two
undergraduate students from our institutions and one professional software engineer.
We start with 13 participants. Two participants partake in a pilot study, but we
discard their responses after using those responses to refine the user study. We then
send the study to the other participants in batches of five and six. No participant
is a co-author of I-Test framework, and we confirm that none of them contributes
to the open-source projects being tested. We got nine valid responses. We exclude
one response who did not meet the requirement and did not provide a rationale for
why inline tests are beneficial. We exclude another response that directly copied the
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target statement into the assignment function call (given(var, value)), which makes
the test always pass and is not the intended use of the I-Test API. Participants
report an average 6.1 years (median: 6.0 years) of programming experience. On a
scale of 1 to 5, with 1 being novice and 5 being expert, participants self-rate their
Python expertise as 3.4 on average (median: 3.0).

Inline tests vs. unit tests. We did not ask user study participants to write unit
tests or to directly compare them with inline tests for the testing tasks. Rather, we
only ask for anecdotal comparisons of inline tests and unit tests in the questionnaire.
We chose this study design for three reasons. First, setting up the unit testing en-
vironment per project is hard (even for us) and differs across projects. So, asking
participants to set up environments before writing unit tests could be a source of
bias. Second, providing a Docker image (or similar) could induce bias—installing and
running Docker containers could be hard for participants who are unfamiliar with
Docker. Lastly, we do not assume familiarity with pytest, which participants would
need to write unit tests in Python. To work around these three problems, we provide
participants with a script that sets up a minimal Python runtime environment for
inline tests. It takes only about one minute to run the script.

2.6.2 User Study Results

Quantitative analysis. Our user study results are shown in Table 2.5, grouped
by the four tasks. For each task, we show the average time (in minutes) spent by
each participant on understanding the target statement, writing all inline tests, and
writing each inline test. We also show the number of inline tests that participants
write, the number of participants for whom all inline tests pass, and the number of
participants who answer “yes” to “writing inline tests is beneficial compared with just
writing unit tests”. On a scale of 1 to 5 (1 being very difficult and 5 being very easy),
participants rank the difficulty of learning I-Test as 4.2 (median: 4.0) and rank
the difficulty of writing inline tests as 4.1 (median: 4.0). On average, participants
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write 1.7 inline tests (median: 1.7) per task, and spend 2.8 (median: 2.8) minutes to
understand a target statement and 3.5 (median: 3.6) minutes to write an inline test.

Qualitative analysis. All participants found inline tests to be beneficial for some
of the tasks. In fact, for all four tasks, most participants think that writing inline
tests is beneficial, and all participants agree that inline tests are beneficial for Task 4.
The one participant who said that inline testing is not beneficial for Task 1 preferred
to extract the target statement into a function and then write unit tests. So, while
they did not use inline testing for this task, they still found it important to test the
target statement. For Task 2, the one participant who did not find inline testing
beneficial said that they think that the target statement is too trivial to test. Lastly,
the four participants who did not find inline testing useful for Task 3 provide two
kinds of reasons: (1) the variable in the target statement is being returned from the
function, so a unit test would suffice (two participants); and (2) the target statement
performs sorting, which is easy to understand and does not warrant inline testing (two
participants). The variance in perceptions on Tasks 1, 2, and 3, plus the different
reasons given by participants who think that a target statement does not warrant an
inline test shows that developers will likely use inline tests in different ways.

Participants provide feedback on how to further improve I-Test, including
by (a) minimizing the long stack traces that are shown when inline tests fail (“The
stack trace you get when a test fails is quite long, but this is an easy fix”); (b) allowing
inline tests to use symbolic variables (“Having tests with symbolic values, meaning that
you don’t provide values for inputs”); (c) providing other methods in the API that
allow writing other kinds of oracles beyond equality checks (“Other kinds of checks
besides equality”); (d) supporting parameterized inline tests (“I would like shortcut
for checking for multiple inputs”), which we have now implemented.

Participants also share feedback on using I-Test. A participant liked having
inline tests in addition to unit tests: “it is quite useful to have an inline testing
option available. Unit testing and inline testing don’t have to be exclusionary, there
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Table 2.5: User study results. Tu[min]= time to understand each task, Tw[min]=
time to write all inline tests per task, #IT= number of inline tests, Tw/#IT [min]=
average time to write each inline test, Corr= ratio of participants who write passing
inline tests, Adv= ratio of participants who find inline tests beneficial.

Task Tu[min] Tw[min] #IT Tw/#IT [min] Corr Adv
avg med avg med avg med avg med

1 4.0 4.0 3.7 3.0 1.7 1.0 2.8 2.0 9/9 8/9
2 1.6 1.0 3.4 3.0 1.6 1.0 2.5 2.0 9/9 8/9
3 2.2 2.0 4.1 4.0 1.7 2.0 3.0 2.0 9/9 5/9
4 3.3 3.0 2.8 2.0 1.8 2.0 1.9 1.0 9/9 9/9
avg 2.8 2.8 3.5 3.6 1.7 1.7 2.5 2.6 N/A N/A

are some situations where one might be preferable but having both as an option is
nice”. Another participant commented that there is a learning curve: “I experienced
a learning curve to using the framework. I was able to understand the structure of
how to make ... tests much better after doing the first task”. It will be important in
the future to investigate ways to lower the learning curve. A participant was curious
to know what the overhead is when inline tests are disabled: “Does inline testing
add overhead during production runs (i.e. no testing is needed)?”. We answer this
question in Section 2.5.2. Also, a participant thinks inline tests may be better than
assert statements (“Inline tests can be good replacement for assertions”). Lastly, a
participant made the connection to “printf debugging”: “I would legitimately want
to use a framework like this next time I felt the need to do printf debugging”.

2.7 Limitations

We design the I-Test API based on 100 examples that we select from open-
source projects. Also, the inline test inputs and expected outputs that we use in
those tests were neither chosen by the open-source project developers nor confirmed
by them. So, it is not yet clear if those developers will find our inline tests acceptable.

Our own programming experience tells us that more kinds of oracles will likely
need to be supported in I-Test. For example, we do not yet support expected
exceptions or allow checking near equality between floating point values. The current
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limited set of oracles in I-Test results from using 100 examples to guide our design.
In the future, by collecting more examples and requirements, I-Test can possibly be
extended to support more kinds of oracles.

In terms of implementation, Section 2.3.1 shows the list of language agnostic
requirements that I-Test does not yet support (7) and those that it only partially
supports (3∗). This chapter motivates, defines, and evaluates inline tests as a way to
prove the concept. The engineering effort to fully support all the requirements is a
matter of time and resources that we will invest into seeing that inline tests become
more mature.

An inline test is inserted as code directly following the code under test. In the
unlikely case when the code under test is in a large method or file, inserting inline
tests may cause code-too-large errors due to limitations of compilation tool chains (for
example, a Java method can only have a maximum of 65535 bytes of bytecode [129]).

Our current Java I-Test implementation is designed to support language
features of Java 8, and it may not work for newer language features in more recent
Java versions. In the opposite direction, our current Python I-Test implementation
is designed to support language features of Python 3.7 and above, so it may not work
for older Python versions.

If a target statement invokes a method with arguments that need to be assigned
in an inline test, then the current I-Test implementation cannot be used to check
that target statement (Hence, the 7 on Requirement 13 in Section 2.3.1). We already
observed a consequence of this limitation in our attempt to write inline tests for
statements that use Java Stream API. Most stream operations invoke the kind of
method-with-arguments that we do not yet support. Also, stream operations typically
invoke several methods, so testing them with inline tests can seem like writing unit
tests. Finding smart ways to support the testing of stream operations will be a
priority—the complexity and popularity of stream operations make them attractive
candidates for inline testing.
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Inline testing may not generalize well to programming languages that do not
use the imperative style like Java and Python. In particular, more thoughts need to
be given in the future on whether and how inline testing can be realized effectively
for functional languages like Haskell, logic programming languages like Prolog, or
domain-specific languages like SQL.

We have not investigated how well inline testing can fit into different software
and test design processes. So, it is not yet clear what impact, if any, inline tests
will have in the presence of different testing methodologies. For example, since inline
tests check existing target statements, its role may be limited in organizations that
follow test-driven development (TDD) [7, 11, 150]. (In TDD, tests are written prior
to writing code.) As another example, what role should inline tests play during
regression testing and how often should they be re-run during software evolution?
Similarly, it may be that inline tests are more useful in systems where testability [47]
was not a first-class concern during programming. That is, inline tests may be more
helpful in legacy systems or systems with large monolithic components than in newer
systems that are designed to be unit-testable from the ground up. We leave the
investigation of how to fit inline tests into different software- and test-design processes
as future work.

2.8 Conclusion

If developers could write tests for individual program statements, then they
would be able to meet testing needs for which they currently have little to no support.
Such needs are at a lower granularity level than what today’s testing frameworks sup-
port, or for which currently supported categories of tests are ill-suited. We introduced
a new category of tests, called inline tests, to help test individual statements. We
implemented the first inline testing framework, I-Test, to meet language-agnostic
requirements that we define. Our assessment of I-Test via a user study and via
performance measurements showed that inline testing is promising—participants find
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it easy to learn and use inline testing and the additional cost of running inline tests
is tiny. We outline several directions in which I-Test can be extended to make it
more mature and to meet developer needs across programming languages.
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Chapter 3: Extracting Inline Tests from Unit Tests

Despite the progress we made in chapter 2, developers still have to write inline
tests manually for each target statement they want to test. But, existing code can
have many target statements. So, automatic generation of inline tests is an important
next step towards increasing their adoption. In this chapter, we propose ExLi, the
first technique for automatically generating inline tests. 1

3.1 Motivating and Introducing ExLi

Automatic generation of inline tests is an important next step towards increas-
ing their adoption for two reasons. First, automatic generation can reduce manual
developer effort for retrofitting inline tests into existing codebases that have many
target statements. Second, automatic generation can enable future inline testing re-
search by providing more inline tests for evaluation than exist today. For example,
we previously simulated runtime costs by repeatedly executing 152 manually-written
inline tests thousands of times (in chapter 2).

We propose ExLi, the first technique for automatically generating inline tests.
ExLi extracts inline tests from unit tests. Unit tests are an attractive source of inline
tests: they are abundant in practice and they can be automatically generated [44,
131, 145]. In turn, the extracted inline tests can help find single-statement bugs
that unit tests miss [91]. Extracted inline tests can also help find bugs in executed
statements that are deeply-nested in conditional expressions, which can be missed by
automatically generated unit tests [3].

Given the code under test (CUT), a target statement, and unit tests that cover
the target statement, ExLi generates a set of inline tests for the target statement.

1This chapter is published at ISSTA 2023 [104].
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ExLi can automatically discover four kinds of target statements that we identified in
previous chapter as being able to benefit from inline testing, and extract inline tests
from the unit tests that cover them.

ExLi is agnostic to the source of unit tests; they can be manually written
by developers or automatically generated by tools like Randoop [131, 145] or Evo-
Suite [44]. ExLi outputs a new version of the CUT in which the target statement is
immediately followed by the generated inline tests. Since ExLi is a first step towards
inline test generation, we assume that unit tests correctly exercise the CUT. That is,
the inline tests generated by ExLi on one code version can detect regression bugs in
future versions of the code.

ExLi first instruments the CUT to record all observed variable values in the
target statement during unit testing. Then, the recorded values are used to auto-
matically generate inline tests. For example, consider assignment statements. The
recorded values of right-hand side variables are used as input values, and the recorded
values of the left-hand side variable are used as expected values in the generated in-
line test. ExLi can also generate inline tests for declarations and expressions in if

conditions. We plan to support more locations of target statements in the future.

Inline tests are co-located with target statements, so an important concern is
that readability could be degraded if too many inline tests are generated per target
statement. Compilation could also fail if adding the generated inline tests causes a
method’s body to exceed the maximum allowable size [129]. Too many inline tests
can be generated for target statements in which many sets of values are observed
during unit testing. Such many-valued target statements could be covered by many
unit tests, or they may be in loops. In an extreme case, 14,928 sets of values were
recorded for a target statement during our experiments.

To address the concern of generating too many initial inline tests per target
statement, ExLi introduces a coverage-then-mutants based test reduction process. We
consider an inline test to be redundant if it has the same fault-detection capability as
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other inline tests with respect to code covered and mutants killed. Code coverage [20,
53] and mutation score [77, 148] are established metrics for measuring the quality
and fault-detection capability of unit tests. ExLi adapts these two metrics to guide
inline-test reduction.

ExLi uses both target coverage—code covered while executing the target
statement—and context coverage—code covered while executing the enclosing pro-
gram scope of the target statement. ExLi also builds on existing mutation analysis
tools [63, 79] but it only mutates the target statements.

The coverage-then-mutants based test reduction process in ExLi works as fol-
lows. ExLi tracks the code covered in the target statement and its context during
unit testing, and only records sets of values that cover code that was not covered
by previously extracted sets of values. ExLi also mutates the target statement and
ensures that each generated inline test kills at least one unique mutant. If no mutant
is generated for a target statement, ExLi’s reduction is based on coverage. If cov-
erage and mutation scores are computed, reduction prioritizes coverage, followed by
mutation score. Coverage is prioritized because it is collected on the fly during unit
test execution and considers the context of the target statement, while mutation score
considers the target statement itself. But mutation score is also important because
some previous studies have shown that mutation score is a more accurate metric of
the fault-detection capability than coverage [155].

We implement ExLi for Java and apply it to 718 target statements in 31
projects. ExLi generates an initial set of 17,273 inline tests. ExLi-UM, which uses
universalmutator [63] for mutation analysis, generates a final set of 905 inline tests
(reduction rate: 94.8%). ExLi-Major, which uses Major [79] for mutation analysis,
generates a final set of 930 inline tests (reduction rate: 94.6%).

We also evaluate whether generated inline tests enhance the fault-detection
capability of test suites from which they are extracted. We do so by performing
mutation analysis only on the target statements. ExLi-UM kills 25.1% more mutants,
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and ExLi-Major kills 24.6% more mutants than those killed by developer written
and automatically generated unit tests. Our manual inspection shows why generated
inline tests can kill more mutants: the unit tests reach the target statements and infect
the program state, but those unit tests lack “local” oracles at the target statement.
That is, errors induced by mutants do not propagate to the assertions in the unit
tests, or those assertions do not check relevant parts of state.

This chapter makes the following contributions:

? Technique. ExLi is the first technique for automatically generating inline tests;
it extracts inline tests from unit tests.

? Reduction approach. ExLi uses a novel inline test reduction approach that is
based on both code coverage and mutation score.

? Evaluation. ExLi’s reduction strategy is effective, yielding inline tests that im-
prove the fault-detection capability of unit test suites.

? Dataset. ExLi generates the largest dataset of inline tests to date. ExLi and our
dataset can enable future work on inline tests.

ExLi and our dataset is open-sourced at
https://github.com/EngineeringSoftware/exli.

3.2 Example

Figure 3.1 shows an example code with a target statement and inline tests
that ExLi generates for that target statement after reduction. The example is sim-
plified from mp911de/logstash− gelf [108]. Method setAdditionalFields splits
the value stored in spec using MULTI VALUE DELIMITTER (“,”) as the delimiter, stores
the results in properties, and adds each field in properties that contains EQ (“=”)
to gelfMsg. Line 7 is the target statement; it finds the index of the first occurrence of
EQ in field. All variables in this example have primitive or String types, but ExLi
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1 public static final String MULTI_VALUE_DELIMITTER = ",";
2 public static final char EQ = ’=’;
3 public static void setAdditionalFields(String spec,GelfMsg gelfMsg){
4 if (null != spec) {
5 String[] properties = spec.split(MULTI_VALUE_DELIMITTER);
6 for (String field : properties) {
7 final int index = field.indexOf(EQ); // target statement
8 itest().given(field, "profile.requestStart.ms").given(EQ,

’=’).checkEq(index, -1);
9 itest().given(field, " mdcName=’long’]").given(EQ, ’=’).checkEq(index, 8);

10 if (-1 == index) { continue; }
11 ... // add field to gelfMsg
12 }}}

Figure 3.1: A target statement with ExLi-generated inline tests.

supports complex non-primitive types as well (see example in Figure 3.6, Section 3.4).
A developer could use ExLi to generate inline tests for this target statement; it is in
a loop and it is reached by lots of other methods.

Line 8 is one of the two inline tests that ExLi generates. All inline tests have
three parts. First, the “Declare” part—itest()—marks the current statement as an
inline test. Second, the “Assign” part—given(field, "profile.requestStart.ms")

and given(EQ, '=')—provides inputs to the inline test. Third, the “Assert” part—
checkEq(index,−1)—specifies a test oracle, including an expected output. In Fig-
ure 3.1, given the inputs for field and EQ, the index variable computed by the target
statement should be −1 for the inline test on line 8 to pass.

The example target statement is executed 2,413 times with 215 unique sets
of values during unit testing. But, directly generating 215 inline tests to check one
statement could be overkill for two reasons. First, many of the 215 sets of values
are redundant because they exercise the target statement in the same way. So, using
them all is wasteful. Second, adding 215 inline tests for this target statement will
likely make the code harder to read and maintain. So, ExLi must reduce the number
of generated inline tests by eliminating redundancy. ExLi’s coverage-then-mutants
based reduction process reduces those 215 inline tests to the two shown in Figure 3.1,
without loss in fault-detection capability.
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Figure 3.2: The steps in ExLi’s workflow.

3.3 Technique

Figure 3.2 shows ExLi’s procedure for generating inline tests. The inputs are
the CUT (required), the unit tests (required), and line numbers of target statements
(optional, not shown). ExLi outputs the generated inline tests after the coverage-
then-mutants based reduction. ExLi also produces two intermediate outputs for
evaluation and debugging purposes: ExLi-Base inline tests without any reduction;
and ExLi-Cov inline tests with reduction based only on code coverage but not mu-
tation score.

3.3.1 Finding and Analyzing Target Statements

The first two steps of ExLi’s workflow are for finding and analyzing the target
statements. In step 1 , TargetStmtFinder parses the abstract syntax tree (AST) of
the CUT and extracts the target statements. If developers provide the optional input
of line numbers of target statements, ExLi will skip this step and directly use the
developer-specified target statements. Then, in step 2 , VariablesFinder identifies
the variables used in each target statement, which will be used as the input or output
variables in the generated inline tests. For example, VariablesFinder should identify
three variables for the target statement in Figure 3.1: two input variables, field and
EQ, and one output variable index.

3.3.2 Generating Inline Tests

We here describe steps 3 , 4 , 5 , and 7 , which generate ExLi-Base inline
tests without performing reduction.
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The Instrumenter (step 3 ) adds code before each target statement to collect
the values of input variables and after each target statement to collect the values
of output variables. Figure 3.3 shows how we instrument the code in Figure 3.1:
collectInputs (line 7) is added before the target statement to collect the values
of field and EQ, and collectOutputs (line 9) is added after the target statement
to collect the value of index. Other code added by Instrumenter for inline-test
reduction is described in Section 3.3.3.

Then, the Executor (step 4 ) runs unit tests on the instrumented code, and
the Collector stores in memory the unique sets of values observed during unit testing
(step 5 ).

Using the collected sets of values, InlineTestConstructor (step 7 ) synthe-
sizes inline tests. To do so, the value collected for each input variable is used in
given(. . . ) calls which can be chained. That is, the inline test will assign each value
to the corresponding input variable when testing the target statement. Then, the
value collected for each output variable is used in a check eq(. . .) construct. That is,
inline tests check that the output values after executing the target statement match
those recorded during unit testing.

The InlineTestConstructor (step 7 ) also edits the CUT to insert con-
structed inline tests right after the target statement. After that, ExLi uses I-Test
(our inline testing tool for Java in chapter 2) to run each generated inline test. If
any inline test fails, ExLi filters it out: the failing inline test is removed from the
CUT. Such failing inline tests are due to the target statement using inputs other than
the input variables (e.g., a static variable used in a method invoked from the target
statement). ExLi does not collect such inputs; future work can explore storing such
inputs from the global program state.
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1 public static void setAdditionalFields(String spec,GelfMsg gelfMsg){
2 if (null != spec) {
3 String[] properties = spec.split(MULTI_VALUE_DELIMITTER);
4 for (String field : properties) {
5 try {
6 collectCov(); // cov1
7 collectInputs(field, EQ);
8 final int index = field.indexOf(EQ); // target statement
9 collectOutputs(index);

10 collectCov(); // cov2
11 if (-1 == index) { continue; }
12 ... // add field to gelfMsg
13 } finally { collectCov(); } // cov3
14 }}}

Figure 3.3: Example showing how ExLi instruments a target statement.

3.3.3 Coverage-then-Mutants Based Reduction

ExLi-Base generates an inline test for each unique set of values collected while
executing unit tests. But, too many sets of values could be collected for some target
statements even if we only keep unique sets of values (Section 3.1). We observe in
our experiments that many sets of values are redundant with respect to one another:
they have similar fault-detection capability and exercise the target statement in the
same way. (Recall that, from a unit testing point of view, the sets of values that
ExLi collects are intermediate values.)

To avoid generating redundant inline tests, ExLi uses a novel coverage-then-
mutants based test reduction process: reducing the inline tests (or sets of values, if
reducing before constructing inline tests) that have redundant fault-detection capa-
bility, using both code coverage [20, 53] and mutation score [77, 148] as metrics for
fault-detection capability.

3.3.3.1 Reduction by Code Coverage

ExLi collects code coverage using JaCoCo [121], a widely-used code coverage
tool for Java. To fit the inline testing scenario, ExLi considers two kinds of code cov-
erage: target coverage, the coverage collected while executing the target statement;
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and context coverage, the coverage after executing the target statement while execut-
ing the context of the target statement. The context of a target statement is defined
as code between the target statement and the end of its enclosing program scope. For
example, for the target statement in Figure 3.1 (line 7), its enclosing program scope
is the for loop from lines 6 to 12, and its context is the code from lines 10 to 12.

Using context coverage in addition to target coverage makes reduction more
accurate. The target coverage alone may not provide enough information to distin-
guish non-redundant inline tests. For example, the inline tests at line 8 and line 9
in Figure 3.1, which have different fault-detection capability, have the same target
coverage, but they have different context coverage because only the first inline test
covers the then branch of the if statement in the context at line 10.

To collect target coverage and context coverage, Instrumenter (step 3 ) adds
code to collect code coverage at three points, see the collectCov calls in Figure 3.3:
(1) the instruction-level coverage just before the target statement (line 6, cov1),
(2) the instruction-level coverage right after the target statement (line 10, cov2) and
(3) the instruction-level coverage at the end of the target statement’s enclosing pro-
gram scope (line 13, cov3). Then, CovReducer (step 6 ) processes each collected set
of values and instruction-level coverage information. Only sets of values that increase
either target coverage or context coverage of the corresponding target statement are
kept and sent to InlineTestConstructor.

The shouldKeepValues procedure in Algorithm 1 describes how CovReducer

computes the target coverage and context coverage and decides when to keep a set
of values. The inputs are code coverage information cov1, cov2, cov3, and target
statement `0. CovReducer uses a global map, tgtStmtToCovered, to store the code
coverage metric: the lines of code covered by the collected sets of values (which is
initialized to empty) of each target statement. shouldKeepValues checks if the
target coverage changed (line 2) and if the context coverage changed (line 3) and
returns true if either changed. covChanged compares the code coverage at two
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Algorithm 1 CovReducer
Global var: tgtStmtToCovered: mapping from target statement to the set of lines covered

by the target statement’s collected values
Inputs: cov1, cov2, cov3: code coverage information for the current set of covered in-

structions; `0: target statement’s line number
Output: true if the set of values should be kept, false otherwise
1: procedure shouldKeepValues(cov1, cov2, cov3, `0)
2: tgtCovChanged← covChanged(cov1, cov2, `0)
3: ctxCovChanged← covChanged(cov2, cov3, `0)
4: return tgtCovChanged ∨ ctxCovChanged
5: procedure covChanged(cov, cov′, `0)
6: change← false
7: for ` ∈ cov′.keys() do
8: if ` /∈ cov ∨ cov[`] < cov′[`] then . line `’s coverage changed
9: if ` /∈ tgtStmtToCovered[`0] then

. line ` is not covered by collected values at `0
10: change← true
11: tgtStmtToCovered[`0]← tgtStmtToCovered[`0] ∪ {`}
12: return change

points, and checks if the later one has covered any line not covered by the former one
(line 8) and that line was not covered by previously collected values (line 9). If so,
covChanged updates tgtStmtToCovered and returns true. The instruction-level
coverage reported by JaCoCo is a mapping from line number to the count of instruc-
tions on that line being covered. So, line 8 considers a line’s coverage as changed if
its instruction counts changed (from zero to non-zero; or, from non-zero to a larger
value for ternary operators or Boolean expressions).

3.3.3.2 Reduction by Mutation Score

Mutation score is an established measure of the fault-detection capability of
tests [77, 148]; it is the ratio of mutants killed by tests (i.e., that cause the tests to fail)
to the total number of mutants. Mutants are typically small syntactic modifications to
the CUT that simulate seeded faults. ExLi uses two popular mutation generators for
Java: universalmutator [63] and Major [79]. ExLi uses all default mutation operators
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in the two generators, but it only mutates target statements. To do so, we specify
line numbers to mutate (for universalmutator) or filter out mutants that are not for
the target statements (for Major).

MutReducer (step 8 ) performs reduction by mutation score, given the ExLi-
Base inline tests without reduction and ExLi-Cov inline tests after reduction by code
coverage. Note that the mutant generator may fail to generate mutants for some
target statements (9.6% for universalmutator, 8.9% for Major), in which case muta-
tion score cannot be computed, and MutReducer will directly output the ExLi-Cov
inline tests for those target statements. For all other target statements, MutReducer

further reduces the coverage-reduced inline tests by mutation score, which prior work
suggests measures fault-detection capability more accurately than coverage [155].

MutReducer first executes the ExLi-Base and ExLi-Cov inline tests on the
mutants and maps each inline test to mutants that it kills. Then, MutReducer uses
the Greedy test-suite reduction algorithm [189] (used in prior work [155, 156, 158]),
based on the mapping of ExLi-Cov inline tests to killed mutants, to minimize the set
of ExLi-Cov inline tests that kill the same mutants. Each inline test in the reduced
set kills at least one unique mutant. Finally, if ExLi-Base inline tests kill any mutant
that is not killed by the reduced ExLi-Cov inline tests, then reduction by coverage
would result in a loss in mutation score. So, MutReducer adds one ExLi-Base inline
test that killed that mutant to the reduced inline tests to remedy this loss.

We refer to the final set of inline tests after MutReducer as ExLi-UM or ExLi-
Major, when using universalmutator or Major as the mutant generator, respectively.
So, the final set of inline tests preserves fault-detection capability, as measured by
mutation score, compared to ExLi-Base inline tests before reduction.

Remark 1. Conceptually, ExLi could directly use test-suite reduction with respect
to mutants on the target statement to reduce the collected sets of values. Instead,
we make the design choice to first use reduction by code coverage for three reasons.
First, using mutants for minimization requires to first generate inline tests for all the
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collected sets of values. It is not always possible to do so due to limits on method
sizes [129]. Second, using reduction by code coverage has the benefit that we can use
mutation testing as a sanity check of the fault-detection capability of the reduced set
of inline tests. There would be no automated sanity check if mutation testing is used
initially. Lastly, ExLi will need to preserve all inline tests for target statements in
which no mutant is created. So, if ExLi only uses reduction by mutation score and if
a frequently covered target statement has no mutants, then readability may degrade
because too many inline tests are generated.

Remark 2. Implicitly, generating inline tests from unit tests induces a trade-off
space among the competing goals of good readability, high coverage, and high fault-
detection capability. Since inline tests are co-located with the CUT, fewer inline tests
will likely lead to better readability, but at the cost of possibly lower coverage or
lower fault-detection capability. We design ExLi to have high readability and high
fault-detection capability at the cost of possible loss in the code coverage of the target
statement or its context. Specifically, reduction by mutation score is not guaranteed
to preserve the code coverage achieved by ExLi-Cov inline tests. We optimize for
code maintenance settings where high readability with high fault-detection capability
is likely preferable to poor readability. ExLi can be configured to optimize differently
along the trade-off space by setting the size of inline tests stored in memory. Also,
now that ExLi can generate many more inline tests than previously possible, future
work can more easily perform user studies of developers’ trade-off preferences.

3.4 Implementation

We describe our ExLi implementation, using the same step numbers as in
Section 3.3 to make our descriptions easier to follow.

1 Find target statements. ExLi currently supports finding the same four kinds of
Java target statements mentioned in chapter 2.2.2: regular expressions, string manip-
ulation, bit manipulation, and stream processing. Given a kind of target statement,
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Table 3.1: Search terms used to filter statements.
Type API

Regex Matcher.matches(), Matcher.find(), Matcher.group()

String String.split(), String.substring(), String.indexOf(),
String.format(), String.replace()

Bit », «, &, —, ˆ, ˜, &=, —=, ˆ=, »=, «=

Streams Stream.of(), *.stream()

TargetStmtFinder searches for target statements that use APIs that are commonly
used in the kinds of statements of interest. Table 3.1 lists the terms that ExLi searches
for. Unlike our earlier I-Test prototype that searches program text, ExLi improves
accuracy by parsing the AST (using JavaParser [76]) to find target statements.

2 Identify variables. VariablesFinder parses the AST of a given target state-
ment (using JavaParser) to identify its free variables, i.e., not including the variables
whose scope is the target statement. For example, in the following target statement,
str and list are free variables, but item is not:

String str = list.stream().map(item -> item.replace("a", "b"))

.collect(Collectors.joining(","));

An array indexing expression, e.g., arr[i], is also treated as a variable, because
inline tests may only need to assign to, or check certain elements of the array.

3 Instrument CUT. Instrumenter is implemented using JavaParser. ExLi cur-
rently supports instrumenting target statements at three syntactic locations:

• Condition of an if statement. Figure 3.4 shows an example from json-schema-

validator [123]. Line 7 is the target statement; it checks if value matches a
pattern. Instrumenter adds code before the if statement (line 6) to collect input
variables, at the beginning of the then branch (line 8) to collect true as the value
of the output variable—the result of evaluating a conditional expression, and at the
start of the else branch (line 15) to collect false as the value of the output variable.
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1 public String[] match(String value) { ...
2 for (int i = 0; i < patterns.length; i++) {
3 try {
4 Matcher matcher = patterns[i].matcher(value);
5 collectCov(); // cov1
6 collectInputs(matcher);
7 if (matcher.matches()) { // target statement
8 collectOutputCond(true);
9 collectCov(); // cov2

10 int count = matcher.groupCount();
11 String[] groups = new String[count];
12 for (int j = 0; j < count; j++)
13 groups[j] = matcher.group(j + 1);
14 return groups;
15 } else { collectOutputCond(false); }
16 } finally { collectCov(); } // cov3
17 }
18 return null; }

Figure 3.4: Example of ExLi instrumenting a target statement at a condition of an
if statement.

• Declaration statement. Instrumenter adds code before the target statement to
collect right-hand side variable values and after the target statement to collect left-
hand side variable values.

• Assignment statement. Instrumenter adds code to collect left- and right-hand side
variable values before the target statement and to collect left-hand side variable
values after the target statement. Left-hand side variables are collected both before
and after the target statement, because they may be both input and output variables
in compound assignment statements like a += 1.

Moreover, Instrumenter handles the following special cases:

• If there is an increment/decrement expression in an array index, Instrumenter

rewrites the array-indexing expression such that the correct element is collected.
For example, in Figure 3.5, the output variable on line 6 is mOutBuffer[ptr + +],
but its value is collected on line 7 as mOutBuffer[ptr− 1] because ptr would be
incremented after executing the target statement.
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1 public void write(int c) throws IOException {...
2 if (c < 0x800) {
3 try {
4 collectCov(); // cov1
5 collectInputs(ptr, c);
6 mOutBuffer[ptr++] = (byte) (0xc0 | (c >> 6)); // target statement
7 collectOutputs(mOutBuffer[ptr-1]);
8 // wrong: collectOutputs(mOutBuffer[ptr]);
9 collectCov(); // cov2

10 ...
11 } finally { collectCov(); } // cov3
12 } ... }

Figure 3.5: Example of ExLi instrumenting a target statement with an increment
expression in an array index.

• Some target statements are in if blocks that have jump (return, break, continue,
throw, etc.) instructions in the then and else branches. To avoid compilation er-
ror (unreachable code) that would occur if Instrumenter adds code to the end of
blocks in such branches, Instrumenter always wraps the parent node of the target
statement in the AST in a try block. If the target statement’s parent node is a con-
structor body whose first statement is a constructor call (e.g., super() or this()),
ExLi excludes such constructor calls from the try block to avoid compilation error
(super/this has to be the first statement).

4 Execute unit tests and 5 collect values. Executor runs unit tests on
the instrumented CUT and the Collector stores the values of input and output
variables that are observed during execution. ExLi is agnostic to the source of unit
tests; they can be manually written or automatically generated. We currently use
Randoop [131, 145] and EvoSuite [44] for automatic unit test generation; future work
can investigate other test generators.

When the variable whose value is to be collected is of a primitive type, a
wrapper type for a primitive type, a String, or an array of these types, Collector

directly stores the collected values (which will be used on the constructed code for the
inline test). Otherwise, Collector uses XStream [187] to serialize the values, which
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1 public CompiledTemplate compile(IdentifiableStringTemplateSource
2 templateSource) throws TemplateException {
3 // target statement
4 String id = templateSource.getId().replace(’/’, ’;’);
5 .itest().given(templateSource, "25.xml")
6 .checkEq(id, ";root;body@;folder;descriptor.txt");
7 String source = templateSource.getSource();
8 StringTemplateSource currentTemplateSource =
9 (StringTemplateSource) templateLoader.findTemplateSource(id)

;
10 ... }

(a) An inline test with an object serialized to an XML file.
1 <org.craftercms.core.util.template.impl.IdentifiableStringTemplateSource>
2 <id>/root/body@/folder/descriptor.txt</id>
3 <source>${body}</source>
4 </org.craftercms.core.util.template.impl.IdentifiableStringTemplateSource>

(b) The contents that are serialized to “25.xml”.

Figure 3.6: An inline test that saves an object to an XML file.

will be deserialized in future executions of the generated inline test. This support for
complex non-primitive types was introduced in ExLi, not I-Test.

Figure 3.6 shows an example inline test using XStream to support complex
non-primitive types, from craftercms/core [167]. Line 4 is the target statement; it
replaces “/” in templateSource’s id with “;”. Line 5 is an inline test that ExLi gen-
erates. The variable being assigned, templateSource, is of a complex non-primitive
type IdentifiableStringTemplateSource, whose value is serialized into “25.xml”
(Figure 3.6b).

6 Reduction by code coverage. CovReducer reduces redundancy by removing
sets of variable values that do not increase the coverage rate of the target statement,
which means that they have the same effect on the statement.

We set JaCoCo [121], the code coverage tool used by ExLi, to instrument
and collect all classes in the current project and dependency libraries, including the
Java standard library. However, some classes in the Java standard library (e.g.,
java.lang.String) are loaded during JaCoCo initialization and are thus not instru-
mented. To avoid missing coverage information in such classes, especially for string-
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related and regex-related target statements, our implementation uses wrapper classes
that we write for java.lang.String and java.util.Matcher so that the method calls
of these classes can be instrumented. It is necessary to wrap java.util.Matcher

because some java.lang.String methods that are used by our evaluation subjects
depend on it.

7 Construct inline tests. InlineTestConstructor creates the inline tests at the
AST level with the help of JavaParser [76].

8 Reduce by mutation score. MutReducer performs mutation analysis, using
universalmutator [63] and Major [79], and test-suite reduction, using an existing im-
plementation [154], to further reduce the generated inline tests. The test-suite re-
duction implementation [154] supports four algorithms: Greedy [189], GE, GRE [23],
as well as HGS [71]. We found that the four algorithms always result in the same
number of inline tests in the reduced set (but different inline tests are selected) in our
experiments, so we set Greedy as the default algorithm.

3.5 Evaluation

We answer the following research questions:

RQ1: How many inline tests does ExLi generate before reduction?

RQ2: How many inline tests does ExLi generate after reduction?

RQ3: How effective are the generated inline tests in terms of fault-detection capa-
bility, compared with unit tests?

RQ4: What is the runtime cost of ExLi?

Experimental environment. We run all experiments on a machine with Intel Core
i7-11700K @ 3.60GHz (8 cores, 16 threads) CPU, 64 GB RAM, Ubuntu 20.04, Java
8, and Maven 3.8.6.
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Table 3.2: Projects used in our evaluation.
PID Project SHA LOC

P1 AquaticInformatics/aquarius-sdk-java 8f4edb9 21,634
P2 Asana/java-asana 52fef9b 5,572
P3 awslabs/amazon-sqs-java-extended-client-lib 58fed25 1,288
P4 Bernardo-MG/maven-site-fixer 60244c0 1,689
P5 Bernardo-MG/velocity-config-tool 26226f5 358
P6 craftercms/core 4d394a9 10,233
P7 CycloneDX/cyclonedx-core-java d933705 6,011
P8 finos/messageml-utils b4c75c6 21,765
P9 fleipold/jproc b872abf 1,189
P10 hyperledger/fabric-sdk-java da35400 33,677
P11 jenkinsci/email-ext-plugin 699277c 13,190
P12 jkuhnert/ognl 5c30e1e 18,190
P13 jscep/jscep b20e944 6,310
P14 lamarios/sherdog-parser aa6806a 1,546
P15 liquibase/liquibase-oracle 6ab7dea 7,170
P16 maxmind/geoip-api-java 1030316 11,526
P17 medcl/elasticsearch-analysis-pinyin 01dda56 2,169
P18 mojohaus/build-helper-maven-plugin f1fac8c 2,424
P19 mojohaus/properties-maven-plugin 6cf7c2b 891
P20 mp911de/logstash-gelf 66debd8 13,130
P21 mpatric/mp3agic 407f7a9 9,907
P22 netceteragroup/trema-core fa9f76d 3,285
P23 phax/ph-pdf-layout f2d7b98 14,408
P24 ralscha/extclassgenerator 40ad147 6,271
P25 red6/pdfcompare 1259ef2 4,213
P26 restfb/restfb 35a34dd 42,022
P27 steveash/jopenfst 14c4a1d 5,180
P28 TNG/property-loader 928f414 1,860
P29 uwolfer/gerrit-rest-java-client a0bf7cc 14,594
P30 visenze/visearch-sdk-java 0efcda3 7,643
P31 wmixvideo/nfe 1ccdba7 133,698∑

N/A N/A 423,043
Avg N/A N/A 13,646.5
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Table 3.3: Statistics about unit tests used in this chapter.

PID Dev Randoop EvoSuite
#tests T[s] L[%] B[%] #tests T[s] L[%] B[%] #tests T[s] L[%] B[%]

P1 165 2.3 1 50 8,728 12.2 67 43 167 5.7 9 51
P2 67 1.9 24 79 1,476 7.7 89 36 1,040 10.8 90 41
P3 36 3.3 69 63 16,400 20.4 18 7 3 4.3 12 3
P4 73 3.5 88 84 2,098 7.7 24 8 62 4.0 38 44
P5 15 4.7 100 100 18,927 17.4 24 7 11 3.0 37 28
P6 63 7.6 52 47 3,741 10.2 40 23 396 10.6 23 19
P7 371 6.6 67 37 3,286 17.3 55 28 37 5.0 3 3
P8 1,170 5.3 89 81 2,886 12.5 44 27 1,221 34.0 55 43
P9 38 14.1 89 89 4,867 8.7 31 23 39 3.0 24 20
P10 430 215.2 12 9 8,697 18.2 25 20 77 38.0 1 0
P11 334 435.0 66 54 7,032 29.6 23 11 9 11.0 1 0
P12 939 10.8 70 61 494 7.7 29 17 1,905 8.3 44 35
P13 210 38.3 80 73 1,412 8.2 32 29 104 5.1 12 10
P14 12 24.1 68 52 1,212 220.4 73 43 70 14.5 49 28
P15 140 3.3 37 9 11,098 14.6 67 49 72 5.8 12 12
P16 11 2.5 22 5 10,869 11.8 17 4 18 2.9 11 0
P17 20 3.1 78 76 7,341 12.1 35 24 144 215.6 81 76
P18 55 4.2 14 7 19,884 20.6 31 23 45 3.6 11 8
P19 10 3.7 30 22 2,159 7.9 36 32 20 3.2 7 5
P20 269 9.2 78 70 11,467 12.7 53 30 81 5.2 4 8
P21 495 2.7 88 68 10,147 11.8 68 49 1,257 5.6 81 70
P22 60 3.5 72 61 4,332 8.9 44 31 98 4.6 20 16
P23 99 5.6 70 58 2,708 10.7 27 18 45 7.5 3 2
P24 99 3.4 78 70 763 5.3 24 11 176 5.9 49 41
P25 73 10.3 43 37 2,968 10.4 36 29 126 5.2 20 16
P26 1,273 21.0 59 75 7,100 23.6 68 30 442 16.1 12 12
P27 88 1.9 84 74 7,843 12.4 36 33 75 3.7 12 8
P28 105 2.8 85 91 3,421 6.5 74 54 113 3.6 78 68
P29 244 3.6 51 35 10,961 10.9 53 34 435 7.8 24 16
P30 151 3.9 75 68 3,496 134.1 73 51 15 3.1 2 0
P31 3,600 3.6 32 13 17,451 21.7 49 14 2,287 24.3 20 13∑

10,715 861.0 N/A N/A 215,264 734.3 N/A N/A 10,590 481.2 N/A N/A
Avg 345.6 27.8 57.2 50.6 6,944.0 23.7 44.0 27.0 341.6 15.5 27.3 22.5

3.5.1 Curating an Evaluation Dataset

We start with a large set of projects from a work on learning to complete unit
tests [126]. That prior work used different experimental requirements than this work
to filter projects. So, we start from the original unfiltered set containing 1,535 Java
projects that use Maven, have no compilation error, and have appropriate licenses. To
simplify our experiments, we select the subset of 1,209 single-module projects. From
these, we select the 128 actively-maintained projects that have commits after January
1, 2022, to facilitate future work on integrating the generated inline tests into these
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Figure 3.7: Number of target statements that we find for four kinds of APIs, covered
by (all, developer written, Randoop, and EvoSuite) unit tests, and for which ExLi
generates inline tests.
projects. Next, we filter out projects in which developer written unit tests fail (84
remain), in which JaCoCo fails (73 remain), and in which Randoop or EvoSuite fails
(48 remain).

On these remaining 48 projects, we use ExLi to find target statements and
generate inline tests. We filter out 6 projects that do not have the kinds of target
statement that we look for (section 2.2.2); one project where all target statements are
not covered by any unit test; and one project for which ExLi does not generate any
passing inline test because XStream could not serialize an object. We also filter out
8 projects where ExLi’s instrumentation clashes with the projects’ instrumentation
for other purposes, and one project where developer written tests take more than one
hour.

We use the remaining 31 projects as our evaluation subjects. Table 3.2 shows
the PIDs and names of these projects, the commit SHA that we use, and total lines of
Java code (LOC). Figure 3.7 shows statistics about the number of target statements in
the 31 projects. ExLi initially finds 1,104 target statements (84 for regular expression,
745 for string manipulation, 241 for bit manipulation, and 34 for stream operations).
Of these, 820 target statements are covered by at least one unit test (532 are covered
by at least one developer written unit test, 491 are covered by at least one Randoop-
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Values ExLi-Base ExLi-Cov ExLi-UM ExLi-Major
100

101

102

103

104

Figure 3.8: Distribution of inline tests per target statement.

generated unit test, and 613 are covered by at least one EvoSuite-generated unit
test). After removing failing inline tests and corresponding target statements, ExLi
generates inline tests for 718 target statements (79 for regular expression, 432 for
string manipulation, 192 for bit manipulation, and 15 for stream operations); we use
them in the rest of our evaluation.

3.5.2 Extracting Inline Tests

First, we run Randoop and EvoSuite to obtain automatically generated unit
tests for each project in our dataset. We run Randoop with a time limit of 10 min-
utes to generate unit tests for each project (as suggested by the Randoop user man-
ual [175]); we set other options to default values. We run EvoSuite with a time limit of
120 seconds (as suggested by the configuration in the recent SBST competition [152])
for each class with at least one target statement.

Table 3.3 shows the statistics about the unit tests: number of test meth-
ods (#tests), test-running time (T[s]), line coverage (L[%]), and branch coverage
(B[%]). Note that EvoSuite’s line and branch coverage for some projects are low.
Because it is setup to only generate unit tests for classes with target statements,
which may be a small proportion of the CUT.

Next, we run ExLi to extract inline tests from unit tests. We compile and
run developer written, Randoop-generated, and EvoSuite-generated tests separately
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Figure 3.9: Number and execution time of inline tests extracted by ExLi with differ-
ent levels of reduction.

to allow flexible set up of different environments for each source of unit tests. We run
developer written and Randoop-generated tests using Maven, but we run EvoSuite-
generated tests with a custom JUnit runner. EvoSuite puts generated tests in cus-
tomized runners that cause problems with Maven.

When performing coverage-based reduction, ExLi supports saving the code
coverage information at the end of previous run and loading it at the beginning of
the next run. For example, the extraction of inline tests from Randoop-generated
unit tests could reuse coverage information collected from developer written unit
tests. Similarly, extraction from EvoSuite-generated unit tests could reuse coverage
information collected from developer written and Randoop-generated unit tests.

For each source of unit tests, we set an upper limit for the number of inline tests
generated per target statement to 100, to avoid excessive disk space consumption in
corner cases (especially when not performing reduction). With three sources of tests,
our upper limit for inline tests generated per target statement is 300.

We compare the four sets of inline tests generated by ExLi as intermedi-
ate or final results (also see workflow in Figure 3.2): ExLi-Base without reduction,
ExLi-Cov with only reduction by code coverage, ExLi-UM with coverage-then-
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mutants based reduction using universalmutator, and ExLi-Major with coverage-
then-mutants based reduction using Major.

Figure 3.8 shows the distribution of generated inline tests per target statement.
We also include the number of unique sets of variable values collected during execution
of unit tests (denoted as Values), to show the number of inline tests that ExLi would
generate without setting the 300 upper limit. The average number of inline tests
per target statement for Values, ExLi-Base, ExLi-Cov, ExLi-UM, and ExLi-Major
are 88.9, 24.1, 1.9, 1.3, and 1.3, respectively. The medians for Values, ExLi-Base,
ExLi-Cov, ExLi-UM, and ExLi-Major are 10.0, 9.0, 2.0, 1.0, and 1.0, respectively.

The distribution of the number of inline tests per target statement for Values
is long-tailed, which justifies our decision to set an upper limit of number of inline
tests to prevent issues in corner cases. We observe that 95% of target statements
are not affected by the limit of 300 inline tests per target statement. The number of
inline tests per target statement at the 95th percentile is 225.8.

Answer to RQ1. ExLi could generate an average of 88.9 inline tests per target
statement if recording all values during execution. Limiting to at most 300 per
target statement and removing the failing ones, ExLi generates 24.1 inline tests
before reduction per target statement on average.

Figure 3.9 shows the number of inline tests and their execution time (note that
we did not include compilation time here). To evaluate the effectiveness of ExLi’s
reduction, we consider ExLi-Base as the baseline before reduction; it generates 17,273
inline tests that take 23.8 seconds to execute.

ExLi’s coverage-based reduction (ExLi-Cov) reduces the number of inline
tests to 1,333 (reduction rate: 92.3%) and their execution time to 3.0 seconds (re-
duction rate: 87.4%). Then, when performing mutation-based reduction using uni-
versalmutator (ExLi-UM), the number of inline tests is further reduced to 905 (cu-
mulative reduction rate: 94.8%) and the time to 2.2 seconds (cumulative reduction
rate: 90.8%). When using Major (ExLi-Major), the number of inline tests is further
reduced to 930 (cumulative reduction rate: 94.6%) and the time to 2.3 seconds (cu-
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mulative reduction rate: 90.2%). The reduction rate of ExLi-UM and ExLi-Major
with respect to ExLi-Cov is 32.1% and 30.2% in terms of number of inline tests, and
27.1% and 22.2% in terms of execution time, respectively.

Comparing ExLi-UM and ExLi-Major, we observe that using universalmu-
tator achieves higher reduction than using Major. Our inspections showed that uni-
versalmutator generates more mutants than Major (3,784 vs. 2,388 mutants), and
that mutants generated by Major tend to be generic (e.g., changing right hand side of
an assignment to null) compared to the ones generated by universalmutator. Future
work can explore improving the quality of the generated mutants, e.g., by using mu-
tation operators that are designed for the four kinds of target statements, to further
improve the effectiveness of ExLi’s mutation-based reduction.

Answer to RQ2. ExLi’s coverage-then-mutants based reduction can effec-
tively reduce all generated inline tests by 94.8% (with universalmutator) or
94.6% (with Major), resulting in an average of 1.3 inline tests per target state-
ment.

3.5.3 Performing Mutation Analysis

In this section, we perform mutation analysis using the mutants [25, 138] for
the target statements generated by universalmutator. We reuse the same mutants
that universalmutator generated during step 9 in Section 3.4 for reducing inline
tests. We report results based on the 649 target statements that have non-stillborn
mutants [4], and compare the mutation scores of inline tests generated by ExLi
against unit tests. Note that universalmutator did not generate any mutant for any
target statement in liquibase/liquibase− oracle (P15), so we excluded it from
the mutation analysis evaluation.
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Table 3.4 shows the number of tests and mutation scores of developer written,
Randoop-generated, and EvoSuite-generated unit tests, and ExLi-Base, ExLi-Cov,
ExLi-UM, and ExLi-Major inline tests. Note that the mutation scores of ExLi-
UM and ExLi-Base are always the same by design, because during the mutation-
based reduction, ExLi adds any inline test from ExLi-Base that kills a mutant
that survives ExLi-Cov inline tests. The average mutation score of ExLi-Base is
87.9%, which is much higher than the mutation score of developer written (67.9%),
Randoop-generated (31.4%), and EvoSuite-generated (43.8%) unit tests. These scores
are computed only on the target statement. ExLi-Cov achieves 80.4%, slightly lower
than ExLi-Base, but higher than the mutation score of unit tests. By perform-
ing additional mutation-based reduction, ExLi-UM fully recovers the mutation score
to 87.9%, and ExLi-Major improves the mutation score to 82.9%. The difference
between ExLi-UM and ExLi-Major is small, and suggests that the two mutation
generation tools are quite similar (see also reports in prior work [63]).
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Figure 3.10: Sets of mutants killed by inline tests and unit tests.

Figure 3.10 shows a Venn diagram illustrating the overlap among the sets of
mutants killed by all unit tests (named Unit in the figure) and inline tests from ExLi-
Cov, ExLi-UM (which is the same as ExLi-Base), and ExLi-Major. All inline tests
and unit tests kill 3,278 mutants in total. 2,404 mutants are killed by both inline tests
and unit tests. The set of mutants killed by ExLi-Major inline tests is a subset of the
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set of mutants killed by ExLi-UM inline tests, but the difference is small: ExLi-UM
inline tests kills 111 or 3.8% more mutants than ExLi-Major inline tests. Compared
with ExLi-UM inline tests, ExLi-Cov inline tests miss 299 mutants (9.1% of all killed
mutants). Compared with unit tests, ExLi-UM inline tests miss 216 mutants (6.6%
of all killed mutants). This is because unit tests can check global program state (e.g.,
fields) that is modified by the target statement, but inline tests currently cannot;
future extensions of inline tests can address this limitation. But, ExLi-UM kills 658
more mutants than unit tests (20.1% of all killed mutants or 25.1% of mutants killed
by unit tests).

We manually inspect surviving mutants that lead to loss of mutation scores
when ExLi-Cov is compared with ExLi-Base. So far, we found two limitations of
ExLi that lead to such intermediate losses. (1) There are multiple clauses in an
if condition, but the mutation operator only modifies one of them. This limita-
tion occurs because, unlike pytest-inline [105], I-Test does not yet support testing
individual clauses in a condition. This limitation will go away as I-Test matures.
(2) Multiple sets of values can kill a mutant but they all cover the target statement
and its context in the same way as a chosen set of values that cannot kill the mutant.
This is a limitation of reduction by coverage as we discussed in Section 3.3.

Observe from Figure 3.10 that inline tests and unit tests are complementary
in terms of their fault-detection capability on the target statements. So, inline tests
can enhance the fault-detection capability of the unit test suites from which they are
extracted. To understand why some mutants on target statements can be killed by
inline tests but not by the unit tests, we manually inspected 63 randomly sampled
mutants from the 658. We found two reasons: (1) unit tests lack good assertions to
kill the mutants, i.e., the mutant could be killed if we add assertions to the unit tests
(77.8% of cases); (2) the mutant does not change program state that propagates to
unit tests, i.e., it only changes local variables or control flow but not the return value
or global variables, but inline tests’ “local” assertions kill such mutants (22.2% of the
cases).
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Answer to RQ3. Inline tests complement the fault-detection capability of
unit tests on the target statements. ExLi-UM and ExLi-Major generate inline
tests with average mutation scores of 87.9% and 82.9%, respectively, which are
higher than the mutation scores on the target statements of unit tests written
by developers (67.9%), and those generated by Randoop (31.4%) and EvoSuite
(43.8%).

3.5.4 Measuring ExLi’s Runtime Cost

Generating inline tests with ExLi-UM and ExLi-Major takes, on average
across projects, 1,053.7s and 949.9s, respectively. (We omit compilation time of the
mutants; it is an offline process and is currently slow because we recompile per mutant.
Future work can optimize this process by compiling in parallel or by using incremental
compilation.) The breakdown of the average runtime is: 67.0s for running unit tests,
598.2s for recording variable values, coverage-based reduction, and generating inline
tests, and 388.5s (universalmutator) or 284.7s (Major) for mutation-based reduction.

We are very encouraged by these early results on runtime costs, especially
when compared with our estimated amount of time that it would take developers to
write all 905–930 inline tests that ExLi generates. Our prior user study (section 2.6)
showed that participants spent around 6.3 minutes (378s) to understand and write
inline tests for each target statement in Python. Assume that the times to understand
target statements and write inline tests is uniformly distributed and are the same for
Java and Python. Then, on average, participants would have needed 271,404s (∼75
hours) to write inline tests for all 718 target statements that we use.

Answer to RQ4. Running ExLi-UM/ExLi-Major takes 949.9s/1,053.7s on
average per project, excluding mutant compilation times. Our estimates, based
on our prior user study, suggest that these average times provide an evidence
that ExLi can reduce manual effort for writing inline tests.
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3.6 Discussion

Limitations. (1) ExLi uses coverage of the target statement and its context for
initially reducing the set of inline tests. Flaky tests [12, 65, 88, 109, 133, 157] can
cause coverage to fluctuate. We do not control for flaky tests in the unit tests that
ExLi uses. (2) Extracted inline tests may be flaky and fail if the expected output
in the oracles that are generated depend on data that may change, e.g., current date
or device configuration. (3) When potential inputs cause the target statement or its
context to throw an exception, ExLi does not use such values to construct inline tests
because I-Test [103] does not yet support using expected exceptions as test oracles.
(4) We do not evaluate the extracted inline tests with developers of the open-source
projects that we evaluate. But, we have initial confidence from our prior user study,
which showed that participants find inline tests useful. We plan to communicate more
with open-source developers in the future, especially as I-Test matures.

Threats to validity. Our code to instrument target statements, collect coverage
rates, and perform reduction could contain bugs. To mitigate this threat, we reviewed
the code and inspected the results. Our findings could be limited to projects that we
evaluate and their unit tests. To mitigate this threat, we used open-source projects
with various characteristics and used automatically generated unit tests. The ideas in
ExLi are general but our results may not generalize to other programming languages.
We plan to use our pytest-inline tool [105] as a basis for a tool that extracts inline
tests from Python unit tests.

3.7 Conclusion

In this chapter, we presented ExLi, a technique for automatically generating
inline tests with coverage-then-mutants based test reduction. The coverage-based
reduction is based on context-aware coverage feedback, and the mutation-based re-
duction is based on killed mutants. We evaluate ExLi on 31 Java projects and find
that ExLi generates between 905 (when using universalmutator to reduce tests) and
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930 (when using Major to reduce tests) inline tests for 718 target statements. ExLi
reduces initially generated inline tests by more than 94%. ExLi enables developers
to enhance the fault-detection capability of their test suites by easily obtaining and
adding inline tests.

80



Chapter 4: Related Work

This chapter presents prior work in the area of testing that are most related
to inline tests that are presented in this dissertation.

Testing and debugging. Karampatsis and Sutton [81], Kamienski et al. [80], and
Richter and Wehrheim [144] curated datasets of single-statement bugs (SStuBs) in
Java and Python. Also, Latendresse et al. [91] find that continuous integration rarely
detects SStuBs. These works show that many bugs are caused by faults in single
statements, and that unit tests miss such bugs. They further motivate the need for
direct support for checking individual statements, which inline tests provide.

The ManySStuBs4J [81] dataset contains single-statement bugs that are cu-
rated by statically analyzing open-source Java projects and their version histories. As
the ManySStuBs4J dataset evolves to capture more recent versions of those projects,
it can be a benchmark for evaluating the bug-detection capability of inline tests. We
do not use ManySStuBs4J because (1) the filtering process that was followed to cu-
rate the dataset resulted in many false positives during our initial search for target
statements; (2) the commits used in the dataset are from before 2019, so we had
trouble running the unit tests in some projects.

Michael et al. [118] found that regexes are hard to read, find, validate, and
document. Eghbali and Pradel [37] also found that string-related bugs are common
in JavaScript programs. Section 2.2 discussed how inline tests can mitigate these
problems and how I-Test helped find regex-related and string-manipulation bugs.

Doctest [166] in Python allows writing tests in function docstrings. Inline
tests are similar to doctests in helping with code comprehension. But, doctest only
supports function-level testing, while inline tests only support statement-level testing.

In-vivo testing [122] executes tests in the deployment environment to find
defects hidden by the clean test environment. In-vivo tests are method-level tests,
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while inline tests are statement-level tests, and I-Test targets the test environment.

“ppx inline tests” [162] and the inline tests in our paper [103] share a name and
the characteristic that they are co-located with code. But, “ppx inline tests” check
the correctness of functions instead of single statements. Xiong et al. [186] propose
inner oracles: assertions declared in unit tests to check internal states. Inline tests
allow specifying both oracles and test inputs to check single statements.

Fault localization [1, 2, 101, 136, 184, 185] helps find faulty statements that
cause a test failure. Inaccurate fault localization can occur for unit tests that cover
many statements [98, 160]. We expect fault localization for inline tests to be more
accurate since they check the immediately preceding statement.

Regression test selection (RTS) [39, 54–56, 66, 96, 97, 106, 159, 191, 194]
speeds up regression testing by only re-running tests that are affected by code changes.
Section 2.5 showed that each inline test runs very fast compared to unit tests, but
RTS for inline tests may become important as inline tests usage increases.

There have been many techniques for automatically generating assertions and
invariants, including those that (1) infer invariants from runtime information [18,
28, 40]; (2) generate assertions from comments and documentation [15, 57, 120];
and (3) learn assertions from code [36, 67, 126, 183, 190]. ExLi is most similar to
approaches in the first category, as it extracts inline tests from runtime information.
But, ExLi additionally (1) uses the collected information to construct inputs and
expected outputs for the generated inline tests; and (2) reduces the set of generated
inline tests.

Assertions, invariants and design by contract. The assert construct [5, 17,
58, 74, 147, 182] in many programming languages, e.g., [10, 128, 161, 164, 174],
allows checking that a condition holds on the current program state. Inline tests
are similar to assert statements [182]: both are co-located with program statements
and they can be turned off in production. Inline tests differ in at least three ways
from asserts. First, asserts do not allow providing arbitrary inputs and oracles
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for a statement. Second, asserts only run if they are in code covered by unit tests
or in production [147], but inline tests run in a different context even if the target
statement is not covered by unit tests in the testing environment. asserts can check
global program state at a code location, but inline tests are more local and test the
input-output behavior of one statement. Lastly, existing inline testing frameworks
provide features that are typically not supported in assert statements: parameterized
tests, repeating test runs (helpful to see if inline tests are flaky), grouping tests, and
running tests in parallel.

There is a lot of work on design-by-contract (DBC) [10, 94, 117, 119, 125, 147,
151, 171, 173] for specifying preconditions, postconditions, and invariants. DBC tools
include PyContracts [173], Crosshair [151], Icontract [171] for Python, and JML [94],
Jass [10], Squander [119], Deuterium [125] for Java. DBC helps check and compre-
hend hard-to-understand programs—goals that inline tests also target. DBC typically
requires developers to use a different programming language/paradigm, so there may
be a higher learning curve. In contrast, inline tests are written in the same lan-
guage/paradigm as the code. Also, DBC enables method-level checks (except for
loop invariants [42, 48, 73]), but inline tests check statements.

Domain specific languages. We provide I-Test as an API in both Python and
Java. However, the design of our API was inspired by prior work on domain specific
languages for writing executable comments [124] and contracts [125].

Automatic test generation. Automatic generation of tests is a popular research
topic and many test generation techniques have been proposed for Java [3, 6, 21,
32, 44, 50, 52, 125, 131, 153]. But, ExLi is the first automatic generation technique
for inline tests. Elbaum et al.’s technique [33, 38] extracts unit tests from system
tests. ExLi is similar in spirit—it also extracts lower granularity tests from higher
granularity tests—but differs in the granularity levels that it targets. Also, unlike
Elbaum et al.’s technique, ExLi further reduces generated inline tests.

Random testing [68], a black-box testing technique, generates unit tests by
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randomly selecting inputs from the input domain of the program under test. Ran-
doop [131] is a popular tool that uses a feedback-directed random approach to generate
unit tests in the form of method-call sequences. Search-based techniques, e.g., [6, 115],
are alternatives to random approaches; they are white-box techniques that generate
unit tests by searching for tests that satisfy a criterion. One notable search-based tool
is EvoSuite [44], which focuses on optimizing coverage [146] or mutation scores [46].
ExLi uses Randoop and EvoSuite as generators to obtain unit tests from which inline
tests are extracted. Beyond that usage, our work is orthogonal to all prior unit-test
generation approaches: we focus on inline-test generation.

Test suite reduction/minimization. Test-suite reduction techniques [25, 45, 77,
83, 112, 127, 148, 155, 156, 158, 189, 192] find a minimal subset of a test suite
that preserves some measure of test effectiveness, e.g., fault-detection capability or
coverage. Some of those test-suite reduction techniques use (1) greedy algorithms [24,
70, 163], (2) heuristics [23, 71], or (3) integer programming [72, 102]. ExLi supports
four reduction algorithms [154] (by default is Greedy algorithm) to reduce generated
inline tests, and aims to preserve mutation scores on the target statement.

Shi et al. [155] found that techniques based on statement coverage reduce test-
suite sizes by 62.9% but lose 20.5% in killed mutants. Conversely, techniques based
on killed mutants have no loss in killed mutants but have test-suites that are 10.9
percentage points larger than those produced by coverage-based minimization, on
average. Shi et al.’s study gives more confidence in preservation of fault-detection
capability in ExLi reduction based on killed mutants.

Noemmer and Haas [127] recently compare test suite minimization techniques
on open-source projects and find that, on average, test suites reduce by 70% while
losing 12.5% of the fault-detection capability. In ExLi, we use a combined change
of coverage rate of target statements and their enclosing program scope. Our results
show that traditional test suite minimization reduces generated inline tests by 32.1%
and ExLi preserves fault-detection capability.
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Mutation testing. Mutation testing is a technique for evaluating the effectiveness
of test suites [69, 132, 139]. Popular mutant generators for Java include universalmu-
tator [63], Major [170], PIT [172], and MuJava [110]. ExLi uses the first two tools
which perform mutation on the source code level, thus allowing filtering mutants for
the target statements. We evaluated universalmutator and Major, and found that
there is a small advantage of using the latter instead of the former during inline-test
generation. But, future work can explore integrating other mutation tools with ExLi.

Program synthesis. Program synthesis [64, 116] generates programs from specifi-
cations or input/output examples. LooPy [41, 82] allows developers to interactively
synthesize program blocks. Future work could develop IDE plugins to enable inter-
active synthesis of inline tests, e.g., based on recent work on automatic test comple-
tion [126]. Doing so could be a valuable way to bring developers into the inline-test
generation loop.
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Chapter 5: Future Work

We now present our plans for future work that can build upon our current
contributions and results as described in chapters 2 and 3.

Finding more target statements. Existing target statements found by ExLi
only include four types regular expressions, bit manipulation, string manipulation
and stream operations. However, there are many other types of statements that
may be worth testing. We could define a metric to rank statements based on their
complexity and testability. Also, we could develop an interactive tool like a VSCode
plugin for developers to select target statements.

Improving the readability of generated tests. Current inline tests use XML
files to store the serialized objects that are not primitive types or String. However,
these XML files are not readable. In the future, we could develop a tool to convert
the XML files into code that directly constructs the objects. This would involve
analyzing the constructors of the objects represented in the XML files and generating
code to construct these objects. For constructors that require non-primitive object
arguments, we could use mocking frameworks.

Improving the user study. We conducted an initial user study of I-Test with
nine participants, who completed four tasks in Python. In the future, we plan to
conduct a larger, more comprehensive user study of I-Test for Java and other pro-
gramming languages. This user study will involve a diverse group of participants,
including both novice and experienced developers, to gather insights into the usabil-
ity and overall user experience of I-Test across different programming environments.
Additionally, we will consider more factors that may affect the learning of I-Test
API, such as the order of tasks and the difficulty of tasks.
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Exploring usage modes. The inline tests that ExLi generates can help find re-
gressions in future versions of the code. There is need for future work on co-evolving
inline tests with code. Such future work could involve developing a technique to au-
tomatically update the inline tests when the code changes. That technique could be
done by analyzing the diff between the two versions of the code and updating the
inline tests accordingly.
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Chapter 6: Conclusion

We proposed a new category of tests, named inline tests, to test individual
statements, meeting the need for statement-level testing. We implemented I-Test,
the first inline testing framework to help developers write and execute inline tests and
meet language-agnostic requirements that we define. Our evaluation of I-Test via a
user study and performance measurements showed that inline testing is promising—
participants find it easy to learn and use inline testing and the additional cost of
running inline tests is negligible.

We also presented ExLi, a technique for automatically generating inline tests
with coverage-then-mutants based test reduction. The coverage-based reduction is
based on context-aware coverage feedback, while the mutation-based reduction is
based on killed mutants. We evaluate ExLi on 31 Java projects and find that ExLi
generates 905 (when using universalmutator to reduce tests) and 930 (when using
Major to reduce tests) inline tests for 718 target statements. ExLi reduces initially
generated inline tests by more than 94%. ExLi enables developers to enhance the
fault-detection capability of their test suites by obtaining and adding inline tests.
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mutation testing improve testing practices? In International Conference on
Software Engineering, pages 910–921, 2021. https://doi.org/https://doi.

org/10.1109/icse43902.2021.00087.

[140] Jan Ploski, Matthias Rohr, Peter Schwenkenberg, and Wilhelm Hasselbring.
Research issues in software fault categorization. Software Engineering Notes,
32(6):6–es, 2007. https://doi.org/https://doi.org/10.1145/1317471.

1317478.

[141] pytest-dev team. pytest. https://docs.pytest.org, 2022.

[142] pytest-html Team. pytest-html plugin. https://github.com/pytest-dev/

pytest-html, 2022.

[143] Pytest-xdist. Pytest-xdist. https://github.com/pytest-dev/

pytest-xdist, 2022.

[144] Cedric Richter and Heike Wehrheim. TSSB-3M: Mining single statement bugs
at massive scale. In International Working Conference on Mining Software
Repositories, pages 418–422, 2022. https://doi.org/https://doi.org/10.

1145/3524842.3528505.

[145] Brian Robinson, Michael D Ernst, Jeff H Perkins, Vinay Augustine, and Nuo
Li. Scaling up automated test generation: Automatically generating maintain-
able regression unit tests for programs. In Automated Software Engineering,
pages 23–32, 2011. https://doi.org/https://doi.org/10.1109/ase.2011.

6100059.

108

https://doi.org/https://doi.org/10.1109/tse.2021.3107634
https://doi.org/https://doi.org/10.1109/tse.2021.3107634
https://doi.org/https://doi.org/10.1109/icse43902.2021.00087
https://doi.org/https://doi.org/10.1109/icse43902.2021.00087
https://doi.org/https://doi.org/10.1145/1317471.1317478
https://doi.org/https://doi.org/10.1145/1317471.1317478
https://docs.pytest.org
https://github.com/pytest-dev/pytest-html
https://github.com/pytest-dev/pytest-html
https://github.com/pytest-dev/pytest-xdist
https://github.com/pytest-dev/pytest-xdist
https://doi.org/https://doi.org/10.1145/3524842.3528505
https://doi.org/https://doi.org/10.1145/3524842.3528505
https://doi.org/https://doi.org/10.1109/ase.2011.6100059
https://doi.org/https://doi.org/10.1109/ase.2011.6100059
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