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Abstract

Towards Automatic Migration of Sequential Kernels: Numba

to PyKokkos

Muhammad Hannan Naeem, MSE
The University of Texas at Austin, 2025

SUPERVISORS: Milos Gligoric, George Biros

High performance computing (HPC) frameworks have notably been useful for

scientific communities, however, for an average user, leveraging their power can prove

to be challenging. Using these highly performant frameworks requires knowledge

about computer architectures, familiarity with parallel programming, and getting

across a steep learning curve. Recent work on PyKokkos has bridged this gap con-

siderably by bringing HPC to Python. While PyKokkos provides remarkable perfor-

mance, switching to it is non-trivial as PyKokkos follows a programming model that

is different for an average Python user. It requires type annotations in kernels, and

has a rigid resemblance to its parent, Kokkos’s programming patterns. Numba, on

the other hand, is a well known just-in-time (JIT) compiler for Python that is widely

used. This work improves the usability and migration cost to PyKokkos by introduc-

ing a new tool – Caramba. Caramba enables automatic PyKokkos kernel generation

from Numba - instantly opening doors for hardware optimized parallel performance.

We also add type propagation for kernel arguments in PyKokkos to allow Caramba

to function statically. Finally, we evaluate the overhead and performance trade-off

with the aforementioned features and show that it is negligible.
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Chapter 1: Introduction

This document presents a tool called Caramba for translating Numba source

code to PyKokkos source code, and type propagation enhancements for PyKokkos.

Together they make PyKokkos easy to pickup and use, hence enabling users to easily

integrate a High Performance Computing framework.

We will first give a brief summary of the background work, motivation, and

familiarize the reader with relevant terminology. This will follow an in-depth ex-

planation of Caramba and the Type propagation enhancement. Each section will

discuss inner workings and examples. We will then evaluate our work with respect to

performance overheads and discuss the results, which will be followed by addressing

limitations of our contributions and the way forward. Finally, we will conclude with

a summary.

1.1 Background

Historically, High Performance Computing (HPC) frameworks have mostly

been used by the scientific and academic communities. The technical nature of par-

allel programming, computer architecture, micro architecture, and performance op-

timization has kept the barrier to entry fairly high in this space. On the contrary,

languages like Python have made programming more accessible. The simplicity of

Python allows both industry, and indirect academic spheres to benefit from compu-

tational power. This is supplemented by various powerful libraries for Python that

have simplified advance technologies. Similarly, advances in the hardware ecosystem

has landed highly performant systems in the hands of the ordinary consumer and in

turn libraries like NumPy, CuPy, and Numba [9] have made it significantly easy to

harness the available power. However, while generally faster, these libraries do not

completely leverage architecture based optimizations.
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Nader et al. [2] [3] solve this problem by introducing PyKokkos, a parallel

performance portable framework for Python, based on Kokkos [8] [14] that is tuned to

several hardware backends but abstracts away the inner workings from the user. The

result is easy to write, fast, and portable code that automatically leverages hardware

based optimizations. Snippet 1.1 shows a simple example on how to use PyKokkos.

PyKokkos is a sister project of Kokkos and hence inherits many programming patterns

from it. While it is considerably easy to learn, Kokkos programming patterns, can

be unconventional to a Python based novice user. Hence, there is room to make

PyKokkos even more user-friendly and Pythonic. At the time of this work PyKokkos

is still under development, while more improvements are expected, the solution we

present should stand in supplement to PyKokkos on its own (apart from the direct

contributions to PyKokkos).

1 import pykokkos as pk

2

3 @pk.workunit

4 def y_init(i, y_view):

5 y_view[i] = 1

6

7 def run(N):

8 y = pk.View([N], pk.double)

9 p = pk.RangePolicy (0, N)

10

11 pk.parallel_for(p, y_init , y_view=y)

Code Snippet 1.1: A simple example with PyKokkos that creates and initializes a
PyKokkos view.

1.2 Motivation

Numba [9] is a JIT compiler for Python. It is well-known for its simplicity

and familiarity to the Python flavor. Therefore, it is a good go-to choice for many

users who care about performance. We created Caramba to automate the migration

from Numba source code to PyKokkos source code. Not only does Caramba give

a one-to-one comparison for a novice learner, but also makes it a great utility to
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migrate larger code bases, without re-writing everything manually. It is important

to note that while Numba provides performance boost, it is not an HPC framework,

and mostly exploits compiler level analysis for optimizations.

Since PyKokkos works in tandem with Kokkos, which is written in C++, at

the time of this work it explicitly requires static type definition. This is achieved

by user provided type annotations. However, vanilla Python does not require type

annotations from the user. By introducing dynamic type propagation for kernel

arguments, we make PyKokkos more Pythonic, eliminating the need for the user

to provide type annotations. Furthermore, this feature enables Caramba to work

statically without ever running the kernels.

1.3 Terminology

PyKokkos defines two kinds of function bodies: a PyKokkos workunit or ker-

nel, and a PyKokkos function. In this work we use the terms kernel and workunit

interchangeably. A PyKokkos function, is like a PyKokkos workunit, but only differs

in the decoration, that is, while a kernel is decorated with PyKokkos.workunit, a

function is decorated with PyKokkos.function. This distinction plays an important

role under the hood, but for our purposes this becomes relevant when calling a kernel

from within a kernel.

Functions decorated with Numba properties are also referred to as kernels

in this work, but we always make the distinction between the parent framework,

PyKokkos or Numba. However, the term workunit is exclusive to PyKokkos.
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Chapter 2: Caramba

Caramba serves as a stand-alone tool for Numba to PyKokkos migration while

also exposing useful API to enable programmatic integration. Caramba offers an AST

to AST solution that is entirely based on static analysis and heavily uses the AST

module for Python and its visitor design patterns. It can also unparse the translated

AST to produce PyKokkos source code. Figure 2.1 shows the general input, output,

and flow for Caramba.

1 if __name__ == "__main__":

2 # Invoke this script to begin translating

3 path= sys.argv [1]

4 caramba_parser: Parser = Parser(path)

5 caramba_parser.translate ()

6 caramba_parser.unparse("translated.py")

Code Snippet 2.1: Caramba migration steps.

The main entry point for the tool is its stand-alone script 2.1. This script

also demonstrates simple calls to parse, translate, and unparse. The script accepts a

source file and calls the three methods in the aforementioned order, generating a new

source file that contains the translated PyKokkos code. Caramba currently assumes

that kernels are within a single file.

2.1 Parser

Caramba’s internal methods are also exposed as API, which can be used pro-

grammatically. The aforementioned methods can be used at a programmer’s disposal

along with various other helpful methods and variables. Illustration 2.2 shows how

the internal components of Caramba work in tandem for translation. The Parser
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Figure 2.1: The input, operation, and output of Caramba.

constructs the AST of the source code and then marks all the valid kernel nodes that

are to be translated. These kernels then become the primary input to the rest of

the pipeline. At this stage, validation is simply checking if the kernel is decorated

with Numba. Data wise the Parser exposes the AST for the user to fetch, and apply

translation on. For translation the Parser houses a Translator object.

2.2 Translator

The Translator class manages the calls and data provided by the different

visitors. Since the visitors work in tandem and share data, this class makes sure that

dependent calls are wrapped in the right order. For example, the ArrayTransformer

visitor can collect and provide information about different array variable identi-

fiers that can then be used by the SemanticTransformer visitor to make neces-

sary changes. Breaking the transformers into different visitors allows scalability,

faster development, and it also allows the programmer to directly use a visitor

if need be. In the intended flow of complete translation, the Translator is in-

voked by the Parser with the translate_tree method. Provided a list of ker-

nels, from the Parser, translate_tree will first modify import nodes to insert

PyKokkos import statement and remove the Numba import statement. Following this
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Figure 2.2: The Parser invokes its Translator which in turn manages all the visitors
necessary to achieve translation.

translate_kernel is invoked for each of the kernels in the list provided by Parser.

Here, an initial validation check is made for which we provide a separate visitor called

UnsupportedDetector. UnsupportedDetector will rule out any kernels that use ex-

ternal libraries that PyKokkos cannot support (e.g., time, pandas, matplotlib, etc.),

and will also detect if NumPy is being used in the kernel bodies. PyKokkos does

not support NumPy within its kernel body, but provides a substitution for NumPy

ufuncs. We follow the same theme with Caramba.

The Translator also provides some degree of inference - by collecting infor-

mation about array variables, variables used for indexing, and external calls in kernels

it can provide useful information to other visitors and conclude data types for views

on function interfaces. For example, if an internal call to kernelB from kernelA

accepts cluster[i] as an argument, which corresponds to item in kernelB, but

kernelB performs an indexing on item, e.g, x: int = item[0], then cluster must
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be a 2D view. This information can then be passed to SubviewTransformer to re-

write cluster[i] as cluster[i, :] in kernelA. The snippet 2.2 shows this example

written out. In snippet 2.2 kernelB indexes its parameter, item, which is passed as

cluster[i]. In essence kernelB performs cluster[i][0] However by looking at

kernelA body only it would have been impossible to know that cluster is a 2D

view.

1 import pykokkos as pk

2

3 @pk.workunit

4 def kernelA(cluster):

5 ..

6 kernelB(cluster[i])

7

8 @pk.function

9 def kernelB(item)

10 ..

11 x: int = item [0]

Code Snippet 2.2: Infering view dimensions on function interfaces.

2.3 Visitors

Each visitor handles a different aspect of the translation. Broadly, these in-

clude PyKokkos specific semantics, views, subviews, and special cases like NumPy

usage. Some visitors also provide utilities to existing visitors, e.g., validation. In this

section we will discuss the main four visitors that work together.

2.3.1 Numpy Transformer

If the kernel is indeed using NumPy, then it is reverted to a normal Python

function (by removing the decorators) and NumPy ufuncs are substituted by PyKokkos

ufuncs. This is carried out by the NumpyTransformer which also validates that

an equivalent ufunc exists in PyKokkos, or the translation cannot proceed. Oth-

erwise, decorators are replaced with PyKokkos’ own and ArrayTransformer and

SemanticTransformer work in tandem to translate the kernel. Snippet 2.3 shows
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the before and after in this case – the decorator is removed and NumPy ufuncs are

replaced by PyKokkos ufuncs. Note that although Caramba can support NumPy in

this manner, it comes at a great performance cost: most code will be executed in

Python and only ufuncs will be optimized. Removing compilation to Kokkos and any

possibility for optimizations is detrimental to kernel performance, but this is an area

for future work. For now, we lay the stepping stones to build on.

1

2 # original numba kernel

3 @numba.njit(parallel=True)

4 def logistic_regression(Y, X, w, iterations):

5 for i in range(iterations):

6 w -= np.dot (((1.0 /

7 (1.0 + np.exp(-Y * np.dot(X, w)))

8 - 1.0) * Y), X)

9 return w

10 ...

11

12 # translated with Caramba

13 def logistic_regression(Y, X, w, iterations):

14 for i in range(iterations):

15 w = w - pk.dot ((1.0 /

16 (1.0 + pk.exp(-1 * Y * pk.dot(X, w)))

17 - 1.0) * Y, X)

18 return w

Code Snippet 2.3: NumPy translation example. Note that in this case only ufuncs
calls will use PyKokkos.

2.3.2 Array and Subview Transformers

While PyKokkos does provide a wrapper for NumPy arrays, one of the most

contrasting difference between NumPy arrays and PyKokkos views is the indexing

syntax and subviews. Slices of views are their own data type called subviews. At

this point, while views are indexed in a nested fashion, much like Python lists, e.g.,

A[i][j], subviews, like NumPy arrays are indexed by comma separated indices,

e.g, A[i:n-1, j]. The only difference between views and subviews, syntactically,

within PyKokkos is the presence of slice operator ’:’. Furthermore, in its cur-
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rent state, PyKokkos requires all subviews to be declared in separate assignment

statements and cannot otherwise exist in expressions. For example, given a view A,

call_function(A[i:n-1, j]) is invalid. Instead, A_subview = A[i:n-1, j] and

then call_function(A_subview) is valid. These transformations are handled by

the ArrayTransformer and SubviewTransformer. Both of these work in tandem

with the SemanticTransformer. The SubviewTransformer, in particular, needs

additional information from semantic and array transformers - view variable iden-

tifiers, and calls to other kernels. The Translator uses this information to infer

if any passed arguments were subviews. The SubviewTransformer can then insert

assignment statements for each subview, replace all references with the new subview

declarations, and collect information about dimensions of each view. This informa-

tion in turn can be used to generate pk.function annotations, which are explained

in detail in towards the end of the next section. Finally, any array specific proper-

ties or functions, e.g., shape, are also substituted to their corresponding PyKokkos

counterpart.

2.3.3 Semantic Transformer

Since PyKokkos has a lot of unique semantic properties, this particular visitor

is the most complex. To begin with PyKokkos kernels are invoked with distinct paral-

lel dispatch types. Most popular of these are parallel_for, parallel_reduce, and

parallel_scan. Caramba currently supports parallel_for and parallel_reduce

since both of these dispatches cover majority of supported use-cases. Snippet 2.4

shows how a PyKokkos kernel is invoked. While executing the chosen parallel dispatch

type, kernel arguments and execution policy are passed along. Each parallel dispatch

also expects some proprietary arguments for the kernel, namely thread ID and an

accumulator variable (for parallel_reduce only). These are also taken care of by

the SemanticTransformer. In PyKokkos the accumulator variable is automatically

returned at the end of kernel execution, but this behavior must be explicitly present in

Numba kernels. Therefore, PatternAnalyzer, a utility visitor to detect the parallel
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dispatch type, can look for return statements and determine if the kernel is performing

reduction, or in-place iterations, later of which correspond to parallel_for.

1 import pykokkos as pk

2

3 @pk.workunit # used with parallel_for

4 def y_init(tid , y_view):

5 y_view[tid] = 1

6

7 @pk.workunit # used with parallel_reduce

8 def yAx(tid , acc , cols , y_view , x_view , A_view):

9 temp2: float = 0

10 for i in range(cols):

11 temp2 += A_view[tid * cols + i] * x_view[i]

12

13 acc += y_view[tid] * temp2

14

15 def run(N):

16 y = pk.View([N], pk.double)

17 p = pk.RangePolicy (0, N)

18 pk.parallel_for(p, y_init , y_view=y)

19

20 ..

21

22 for i in range(nrepeat):

23 result = pk.parallel_reduce(p, yAx ,

24 cols=M, y_view=y, x_view=x, A_view=A)

Code Snippet 2.4: An example of a PyKokkos kernel invocation.

Since these semantics are PyKokkos specific and may not be intuitive to pick

up, Caramba generates a caller function for each kernel translated. Each of which

automatically infers the policy and sets up the invocation for the programmer. As

of now, Caramba chooses serial (single threaded) execution policy by default which

behaves much like Numba’s JIT. If parallelism is enabled in Numba decorated kernel,

the Range execution policy is chosen and relevant for loops are eliminated. Snippet

2.5 highlights the execution policy selection by the SemanticTransformer. The gen-

erated caller function is identical to the protocol of the Numba source kernel, with the

exception of the name, of course. Hence, it becomes a drop-in replacement instead for

Numba kernel invocation. The caller also wraps any NumPy arrays into PyKokkos
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views. Snippet 2.5 also shows how a caller function is intuitive to interface with as

only a single parameter is required.

1

2 # original kernel

3 @numba.njit(parallel=True)

4 def potential_numba_scalar_prange(cluster):

5 energy = 0.0

6

7 for i in numba.prange(len(cluster) -1):

8 for j in range(i + 1, len(cluster)):

9 ..

10 energy += e

11

12 return energy

13

14 # translated by Caramba

15 @pk.workunit

16 def potential_numba_scalar_prange(tid , acc , cluster):

17 acc = 0.0

18 for j in range(tid + 1, cluster.extent (0)):

19 ..

20 acc += e

21

22 # caller function for PyKokkos kernel

23 def call_potential_numba_scalar_prange(cluster):

24 sample_exec_space = pk.ExecutionSpace.OpenMP

25 space = pk.ExecutionSpace(sample_exec_space)

26 cluster_view = pk.array(cluster)

27 policy = pk.RangePolicy(space , 0, len(cluster) - 1)

28 reduced = pk.parallel_reduce(policy , ..)

29 return reduced

30

31

Code Snippet 2.5: Parallel kernels and caller functions.

Within the kernel body there are more semantics that need to be modified. For

example, while type annotations are not required for arguments, they must be present

for any declarations in the kernel body. The SemanticTransformer can infer the

type from constant definitions, however, if the declaration stems from arguments, the

static nature of Caramba may become a limitation. Furthermore, PyKokkos requires
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different kinds of nested execution policies to support nested calls to other kernels,

which are parallel in nature and complex to understand for a programmer unfamiliar

with parallel programming. Fortunately, PyKokkos also has a function decorator,

Pyk.function, which allows the decorated function to be invoked from within the

kernel. The compiler automatically inlines the code decorated by PyKokkos.function

within the caller kernel, appearing as it there was no external call. Therefore, to

support nested calls, Caramba first needs to generate a PyKokkos function copy

for the translated kernel and invoke it instead of the original kernel. The result is

duplicated code, but PyKokkos, as of now, does not allow the same kernel definition

to be decorated as both a kernel and function. PyKokkos function arguments must

also be type annotated. The SemanticTransformer draws these annotations from

the information collected by ArrayTransformer and the SubviewTransformer.

2.4 Discussion

It is important to note that both PyKokkos and Caramba are under active

development. While we provide a solid stepping stone to build the translation infras-

tructure, it is easy to see that certain properties if updated within PyKokkos can no-

tably simplify the translation pipeline. For example, making the subviews consistent

with views in terms of syntax and getting rid of the assignment statement require-

ment for subviews, completely negates the need for a separate SubviewTransformer.

Similarly, supporting multiple decorations for PyKokkos kernels will also help get

rid of duplicate code generated as a result of nested calls. However, as of now, our

objective is to support the current version of PyKokkos.

Python’s AST module makes working with visitor design pattern straight for-

ward, easy to understand, and scalable. We chose to perform the translation statically

as it is not resource intensive, meaning that complex and intensive kernels do not have

to run to achieve translation. Static translation for our purposes also keeps Caramba

simple, especially by sticking with the AST module. We also avoid any possible per-
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formance overheads in runtime. However, we note that static analysis has limitations,

and acknowledge plans to include dynamic analysis in Caramba, particularly for type

inference. At the same time, we show that Caramba is still functional with only static

analysis.
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Chapter 3: Type Propagation

Originally PyKokkos followed the statically typed nature of Kokkos in C++,

which goes against Python’s dynamic typing. As discussed earlier, this is one of the

biggest reason for Python’s appeal to a novice programmer. To bring PyKokkos on

the same page, we partially remove the statically typed requirement by starting with

kernel arguments and decorator arguments. Like the kernel body, PyKokkos requires

all variable types to be annotated by the user, which is merely an option in Python

and not a requirement. Moreover, workunit decorators require memory layout and

space definition for all the corresponding views. Not only is this information readily

available at compile time, but it creates superfluous annotations greatly hampering

usability. In this part of our work we present an approach to automatically propagate

the aforementioned type information without any input from the user.

3.1 Workunit Decorators

Snippet 3.1 shows an example of how a PyKokkos kernel is decorated. The

decorator broadly serves two purposes: first, to allow the workunit to be identified as

a PyKokkos kernel. Second, it provides memory space, layout, and trait configuration

for every view that is an argument to the decorated workunit. This information is

critical at compile time as different backends require different specifications of data.

The view object being passed as an argument already has all this information, hence,

the decorator can be abstracted away from the user and quietly injected into the AST.

However, any user given configuration takes precedence over automatically inferred

values.
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1 # Before type propagation

2 @pk.workunit(

3 y_view = pk.ViewTypeInfo(layout=pk.LayoutLeft ,

4 space=pk.CudaSpace)

5 )

6 def yAx(j :int , acc :pk.double ,

7 y_view: pk.View1D[pk.double ]):

8 ...

9

10 # After Type propagation

11 @pk.workunit

12 def yAx(j, acc , y_view):

13 ...

14

15

Code Snippet 3.1: Automatic type annotation and decorator generation.

3.2 Workunit Arguments

Similarly, the arguments to the kernel themselves are Python objects or vari-

ables with pre-inferred data types. Necessary information is already present within

the variable object. For data types custom to PyKokkos, most prominently views,

the information regarding dimension, size, and type of elements can also be extracted.

This information can be collected when a parallel dispatch call is made at runtime.

At this point, PyKokkos views, and the rest of arguments are already defined and

are only being passed as arguments. Recall, that PyKokkos kernels also have some

proprietary arguments, like thread ID, accumulator variable for reduction operations,

and a boolean to indicate if parallel_scan has achieved completion. These argu-

ments are always fixed in their types but the exact required combination depends

directly on the execution policy and parallel dispatch type.

In case of primitive data types and views, a few additional steps are nec-

essary. PyKokkos does not support strings or characters, so that mainly leaves

us with integers and floats. Typically, these values are NumPy primitives, e.g.,

NumPy.float64, but either way the only transformation needed here is to infer these

values as PyKokkos.double or verb—float— or int, depending on the actual value.
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For views the element datatype is already stored in the object itself and only needs

to be extracted. Once all annotations are collected, we abstract these away from the

user, and inject them into PyKokkos AST before the compilation step eliminating

the need for user to provide any explicitly. However, should a user choose to provide

annotations, they will always take precedence over collected annotations.

3.3 Managing Compilation

While the aforementioned features are a great quality of life improvements,

they do however present direct implications on compilation that must be addressed.

Consider the case of invoking the same workunit with different type of arguments as

shown in snippet 3.2. Under the hood PyKokkos generates C++ Kokkos code and

compiles it into a shared object file. The compiled object file is indeed different for

each differently annotated kernel. Therefore, we have this problem where PyKokkos

will successfully compile a workunit based on the first set of arguments, but if the

type of arguments change in the second call, the invocation will fail as type casting

may not work for corresponding changes. This is because PyKokkos identifies a

compilation with the kernel name only. Recall that we only abstract the annotations

away, and behind the scenes they are present and part of the kernel definition, and

by extension part of the C++ generated code. Hence, to fix this issue we need to

make sure PyKokkos includes the collected annotations as a part of identification

for the compilation. We do exactly that. By hashing the workunit name, view

configurations, and annotation for each argument in order, PyKokkos can uniquely

label each compilation. Next time the same kernel is invoked with different argument

types, PyKokkos will check if the same hash exists, if not, a new compilation will

be triggered and stored under the new hash. Cached compilations are reused in the

same manner.
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1

2 @pk.workunit

3 def yAx(j, acc , cols , y_view , x_view , A_view):

4

5 ...

6

7 def invoke1 ():

8 pk.set_default_space(pk.ExecutionSpace.OpenMP)

9 ...

10 # double datatype with Cuda as memory space

11 y: pk.View1D = pk.View([N], pk.double)

12 x: pk.View1D = pk.View([M], pk.double)

13 A: pk.View2D = pk.View([N, M], pk.double)

14 for i in range(nrepeat):

15 result = pk.parallel_reduce(p, yAx , cols=M, y_view=y,

16 x_view=x, A_view=A)

17

18 def invoke2 ():

19 pk.set_default_space(pk.ExecutionSpace.Cuda)

20 ...

21 # float views with Cuda as memory space

22 y: pk.View1D = pk.View([N], pk.float)

23 x: pk.View1D = pk.View([M], pk.float)

24 A: pk.View2D = pk.View([N, M], pk.float)

25 for i in range(nrepeat):

26 result = pk.parallel_reduce(p, yAx , cols=M, y_view=y,

27 x_view=x, A_view=A)

28

Code Snippet 3.2: Invoking PyKokkos kernel with different data types.
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Chapter 4: Performance Evaluation

4.1 Caramba

There are mainly two aspects of Caramba that need to be evaluated. Correct-

ness and performance. Correctness because we want to ensure integrity of the original

Numba source code, and performance because we want to make sure that the cost of

translation does not out-weigh the utility Caramba offers. We use differential testing

and check correctness by comparing the outputs of original and translated code. This

testing also drove the development of Caramba.

Performance wise there are two more branches that need to be considered.

First, we measure the time cost for the actual translation – which is the primary cost

at this stage of our project that we are concerned about. Second, we want to analyze

that the performance of kernels themselves against their original Numba counterparts

so that we can directly compare any differences in reported times. To evaluate these

aspects we collected different Numba based kernels from across several repositories

with a focus the official Numba documents and the examples within. We then invoked

Caramba on these source files and recorded the translation times, followed the by the

runtimes of the translated code. The kernels are arranged as follows in the source

files:

• simple1.py: sum2d

• simple2.py: sum3d

• lennard jones prange.py: lennard_jones_prange

• stencil numba.py: star and star2
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4.1.1 Translation

As discussed earlier, Caramba primarily has two phases, parsing and transla-

tion. The parsing phase is primarily dominated by AST construction and organizing

information for the Translator to start the second phase. In the translation phase,

the actual transformations of the AST take place – nodes are replaced, modified,

added or removed by the various visitors described earlier in this document. Table

4.1 shows the reported time in milliseconds it takes Caramba to fully translate a

source file. We distinguish between the two phases, and table 4.1 clearly shows that

the translation phase dominates the total reported time. This result is as expected –

the parsing phase is mostly just the AST module constructing the AST and depends

on the number of lexical tokens in the Python source code. Translation visitors on the

other hand make multiple passes and perform multiple transformations depending on

the size of the tree and the type of its nodes. For example, stencil_numba.py has

many subview nodes, which as previously noted, require a lot of work in conjunc-

tion with views, hence, as expected the translation phase of stencil_numba.py is

expensive.

However, we note that compared to the compile time and run time, time taken

by Caramba is a one time occurrence. The user will only ever use Caramba once on

their source code. Moreover, as we will see in the succeeding sections, the time taken

to translate a kernel is comparable but significantly less than the run time for sizable

inputs. Hence, we deem time taken by Caramba to be insignificant versus the run

times of the kernels.
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Table 4.1: Time taken by Caramba to translate a source file.

Source #Kernels Parse Translation Total
time (ms) time (ms) time (ms)

simple1.py 1 0.69 2.12 2.81
simple2.py 1 0.41 2.95 3.36
lennard jones prange.py 3 0.83 6.31 7.15
stencil numba.py 3 3.44 14.07 17.51

4.1.2 Kernel Performance

In this section the goal is to see how Caramba translated PyKokkos kernels

perform against their Numba based counterparts. We expect the performance to be

on-par if not better. Table 4.2 shows the reported times for each kernel from the

source files mentioned in Table 4.1. For each kernel, the table reports an average

time for different problem sizes. The average is taken from 13 total runs. PyKokkos

wall time denotes the total time including the overhead that PyKokkos introduces

over Kokkos, while the kernel time represents the actual time spent executing the

kernel. We follow the official Numba documents to time the performance of Numba

kernels. The suggested method is exactly the same as measuring the PyKokkos wall

time, i.e., start_time subtracted from end_time. Authors of PyKokkos, on the

other hand, report both the times noted here [2] but relate performance to the actual

kernel time. Both frameworks cache compilations, hence, we provide a warm-up run

to both, and only then start recording time. Currently, Caramba will set CPU to

be the default execution space when translating. While future Caramba versions

will support automatic selection between the CPU and GPU, the user can still easily

switch the execution space in the generated code by making a simple edit. We provide

more explanation and an example in the following section and snippet 4.1. However,

not all kernels can benefit from running on GPU.

We find the reported kernel times in Table 4.2 to be similar to their Numba

counterparts in all but one case. lennard_jones_prange uses a partially parallel
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iterative solution, and it appears that Numba is able to optimize the iterations much

better. To achieve better times in PyKokkos we use the portability of PyKokkos

and run the kernel on GPU. By default, Caramba generated code uses OpenMP for

parallel pranges. Since GPUs are much better at handling such parallel workloads,

switching to GPU as shown in snippet 4.1 yields Table 4.3. We immediately see a sig-

nificant improvement as the problem size increases. It is important to note that while

PyKokkos does offer the same compilation utility to increase speedup, it is inherently

a parallel programming framework, and hence designed around this paradigm. As it

is, running serial workloads with parallel dispatches is unconventional. We discuss,

in section 5.1 that in future versions of Caramba we plan to automatically introduce

parallelism. Specifically, iterations appear to be much better optimized by Numba.

Hence, it is clear that PyKokkos is superior in parallel workloads, but Numba, for

now, can outperform it in serial workloads. sum2d and sum3d also rely on nested it-

erations to solve for an accumulated value in a serial fashion. We can also clearly see

Numba getting a slight advantage in both of these cases confirming our suspicions.

However, as expected, even without necessary parallel optimizations, PyKokkos is

on-par with Numba. PyKokkos beats Numba in star2 which updates slices of an

array iteratively, in PyKokkos this is achieved by updating smaller subviews within

a larger view. It appears that this scenario regarding data updates favors PyKokkos.

1 import pykokkos as pk

2

3 def call_potential_numba_scalar_prange_gpu(cluster):

4 # Manually changed from pk.ExecutionSpace.OpenMP

5 sample_exec_space = pk.ExecutionSpace.Cuda

6 ...

7 reduced = pk.parallel_reduce(policy ,

potential_numba_scalar_prange_gpu , cluster=cluster_view)

8 return reduced

9

10

Code Snippet 4.1: Running translated parallel code on GPU.

Looking at PyKokkos wall time, as noted by the authors [2] [4] originally, the
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compilation overhead introduced by PyKokkos becomes more and more negligible as

the input size increases. Between the kernel and the wall time, following the authors,

we primarily looked at the kernel times when comparing against Numba, however we

do note that difference between wall time and kernel time decreases with increasing

problem sizes. With sizable inputs we do not observe a stark difference, but for

smaller cases, as expected, the overhead appears to be significant.
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Table 4.2: Kernels from aforementioned source files in table 4.1 profiled with different
problem sizes.

PyKokkos PyKokkos Numba
Kernel Size wall time (ms) kernel time (ms) time (ms)
lennard jones prange 102 1.62 0.22 0.08
lennard jones prange 103 5.03 3.46 2.23
lennard jones prange 104 80.34 79.00 60.83
lennard jones prange 105 7068.38 7067.12 4668.79
sum2d 102 1.42 0.01 0.02
sum2d 103 1.41 0.01 0.02
sum2d 104 1.40 0.06 0.07
sum2d 105 1.91 0.53 0.50
sum2d 106 6.39 5.00 4.96
sum2d 107 37.38 36.04 36.23
sum2d 108 139.30 137.98 136.88
sum3d 102 1.45 0.01 0.02
sum3d 103 1.48 0.01 0.02
sum3d 104 1.41 0.06 0.07
sum3d 105 1.88 0.48 0.52
sum3d 106 6.21 4.78 4.92
sum3d 107 33.48 32.16 36.30
sum3d 108 141.13 139.76 136.44
star 102 2.77 0.01 0.03
star 103 2.71 0.01 0.03
star 104 1.89 0.01 0.03
star 105 2.66 0.02 0.03
star 106 2.02 0.05 0.03
star 107 2.77 0.14 0.04
star 108 3.00 0.40 0.06
star2 102 1.97 0.01 0.03
star2 103 2.70 0.02 0.06
star2 104 1.96 0.06 0.50
star2 105 3.34 0.53 4.47
star2 106 7.71 5.03 35.16
star2 107 66.25 63.49 160.44
star2 108 346.54 343.95 1322.59
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4.1.3 Possible Improvements

Table 4.2 reveals that kernels are on par with Numba is most cases, however,

we note that to fully take advantage of the performance PyKokkos offers, most ker-

nels will need to be restructured. Which implies that the next version of Caramba

could include transformations based on performance optimizations. For example,

PyKokkos would greatly benefit if lennard and sum kernels had all their iterations

in parallel. However, a better semantic analysis is required to make this a general

solution, as serial operations may sometime depend on their order. Furthermore, we

need to investigate the issue with nested kernel calls with PyKokkos functions.

Table 4.3: PyKokkos kernels with parallelism benefits greatly by executing on GPU
for larger problem sizes.

PyKokkos GPU Numba
Kernel Size kernel time (ms) time (ms)
lennard jones prange 102 0.76 0.08

103 10.98 2.71
104 104.90 86.12
105 2178.50 5468.85

4.2 Type Propagation

For type propagation the overhead introduced is purely during compile time.

This is when PyKokkos will inject the collected annotations into the AST, which is

then translated into C++. It is important to note that compilation only occurs in the

very first invocation of a kernel for a give set of argument types. The compilation is

then cached, and at every subsequent run we only check the argument data types at

run time and then proceed to call the correct compilation. Hence, a small overhead

is also introduced at every subsequent run by checking the argument data types.
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Table 4.4 shows the reported time of the first run versus subsequent run for

each of the PyKokkos source file. The noted times are an average of 5 runs. To get

these times take two measurements within PyKokkos: the start time when a parallel

dispatch is invoked, and the end time just before the actual execution of translated

call happens. These sources were collected from the PyKokkos repository examples.

We can clearly see, that the compilation overhead times do not change by

much. We attribute this to that fact that type propagation is insignificant compared

to PyKokkos’ own compilation machinery. The most overhead by introducing Type

Propagation is observed in bytes_and_flops where team policy is used, and the

main kernel has a total of six arguments three of which are views. gather on the

other hand uses the range policy and also has three views. Hence, we note the slight

overhead comes from resolving team policy arguments. All in all, the times are very

comparable and even within margin of error.

Table 4.4: We measure the total PyKokkos overhead before and after introducing
type propagation. W/ Types heading indicates that user provided all the type anno-
tations., while W/O Types indicates that the types were inferred and propagated.

Compilation run Pre-compiled run
Source W/ Types W/O Types W/ Types W/O Types

(s) (s) (ms) (ms)
01 10.19 10.15 0.33 0.85
bytes and flops 11.23 12.09 1.61 2.29
gather 11.68 11.57 1.56 2.61
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Chapter 5: Limitations and Future Work

In this chapter we will discuss the limitations of Caramba’s current version,

address the shortcomings that we have noted previously in this document, and finally

discuss related future updates for Caramba.

5.1 Caramba

In its current form Caramba shows great promise and utility, but as its parent

project, PyKokkos, develops there are several potential improvements on the table.

PyKokkos is an HPC framework, designed to be used to write highly performant

parallel code. Numba on the other hand is not necessarily for parallel computing,

but to provide faster compilation and runtimes. This difference ultimately raises

conflicts in semantics that prove difficult to resolve. For example, Numba has operator

overloading for element-wise operations on NumPy arrays, e.g., Array1 * Array2.

While PyKokkos might support this in the future, when writing parallel kernels in

PyKokkos, the programmer would typically be expected to take control of each thread

working on each element in parallel, e.g, View1[thread_id] * View2[thread_id],

rather than letting the framework decide how to complete this operation on the entire

views. PyKokkos does provide ufuncs, utility kernels for common operations, to

invoke in such cases. However, as we noted while discussing SemanticTransformer,

to avoid complex execution policies we can only invoke a PyKokkos function from a

PyKokkos workunit, and not another workunit. This implies that to invoke multiply

ufuncs, we must create a PyKokkos function copy for it, as internally it only exists as

a workunit. While a plausible strategy, this would greatly increase the length of the

translated source code causing confusion for the novice programmer. Which brings

us to another limitation.

The different nature of both frameworks also brings about some performance
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implications for the current version of Caramba. Numba, focuses on compiler based

optimizations, while PyKokkos does constitute the same principle, the broader theme

is parallelism. The current version of Caramba does not introduce parallelism auto-

matically, but only converts the code to run serially. This is the most interesting

area of work for the next Caramba versions, where we introduce semantic analyses to

exploit possible parallelism. This change will eliminate the shortcomings of always

running serial workloads.

Currently, Caramba produces substantial amount of auxiliary and critical

code. This includes caller functions for each kernel, assignment statements for each

subview used, annotations for new declarations, and PyKokkos function body for

each kernel invoked in a nested manner. Together these supplements can compound

to produce larger than expected source code. Currently, Caramba needs usability

improvements in PyKokkos to address these shortcomings. Allowing the same kernel

body to be decorated as a function, directly gets rid of any need to create a function

duplicate. Similarly, allowing subview instantiations in line within expressions would

completely disregard the SubviewTransformer, making PyKokkos and Caramba sim-

pler. Lastly, with regard to type inference there are two points: first, type inference

within the kernel bodies is expected in future PyKokkos versions, this would take

away the need to handle this problem in Caramba altogether. Second, during the

while type annotations are required by PyKokkos functions, a dynamic approach to

read the arguments values and generate their type annotations is also a noteworthy

improvement.

Finally, NumPy, CuPy, and external libraries have limited support in PyKokkos.

While PyKokkos supports NumPy and CuPy arrays, their methods and properties

may not be supported at all. Complete NumPy support is an integral part of Numba,

and one of its biggest strengths. Unfortunately, PyKokkos is yet to mature in this

category. Similarly, PyKokkos currently does not support calls to external libraries,

except math functions.
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5.2 Type Propagation

While the aforementioned improvements make a sizable improvement towards

PyKokkos’ usability, it is important to note that it is partial in nature. Currently,

annotations are required in the kernel bodies themselves. The PyKokkos team plans

to change this in the future updates. The primary purpose of this feature was to

allow Caramba to work statically.
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Chapter 6: Related Work

There are existing frameworks that follow the theme of bringing performance

to Python because of its de facto status. Cython [5] adds static typing and translates

the source to C or C++ natively. However, Cython like Numba [9], is not inherently

designed as an HPC and does not offer hardware tuned parallel performance. Porta-

bility wise there are two notable works, PyTorch [13] and TensorFlow [1]. Both these

frameworks are geared towards building machine learning applications and pipelines

in Python. They support both CPU and GPU backends but are not a good choice

for writing general purpose kernels. PyKokkos by contrast is much more general,

promising performance for any kind of workload, including machine learning. IrGL

[12] introduces an intermediate representation enabling parallel graph algorithms to

be compiled to CUDA.

For migrating between code, Opdyke [10] [11] defines general operations to

help refactor and incorporate changes automatically. Stratego/XT is a toolset [6]

that takes in user defined transformation rule and can then transform programming

languages. On the other hand, TXL [7] exists as a programming language itself, that

is specifically designed to help in source transformation with rule definitions.
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Chapter 7: Conclusion

In this work we introduced two improvements to usability for PyKokkos. Our

main contribution is a framework called Caramba that offers migration from Numba

to PyKokkos. Caramba is an AST to AST solution and therefore heavily uses the

visitor design pattern to achieve translation. This pattern makes it modular and

scalable. However, since PyKokkos and Caramba are both heavily in development,

there are still some improvements to be made, both in terms of performance and

user-friendliness. In most of the cases, however, we do show that the performance of

Caramba translated code is on par with Numba source code. To enable Caramba to

work statically, we also introduced Type Propagation, a feature that abstracts away

user typed annotations from PyKokkos workunit arguments. This feature greatly

reduces superfluous annotations allowing the code to look cleaner and more under-

standable. Our evaluation shows that the addition of Type Propagation does not add

any significant overhead to PyKokkos compile time.
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