
Natural Language Processing and Program Analysis for Supporting Todo
Comments as Software Evolves

Pengyu Nie, Junyi Jessy Li, Sarfraz Khurshid, Raymond Mooney, and Milos Gligoric
The University of Texas at Austin

{pynie@, jessy@austin., khurshid@ece., mooney@cs., gligoric@}utexas.edu

Abstract
Natural language elements (e.g., API comments, todo com-
ments) form a substantial part of software repositories. While
developers routinely use many natural language elements
(e.g., todo comments) for communication, the semantic con-
tent of these elements is often neglected by software en-
gineering techniques and tools. Additionally, as software
evolves and development teams re-organize, these natural
language elements are frequently forgotten, or just become
outdated, imprecise and irrelevant.
We envision several techniques, which combine natural lan-
guage processing and program analysis, to help developers
maintain their todo comments. Specifically, we propose tech-
niques to synthesize code from comments, make comments
executable, answer questions in comments, improve com-
ment quality, and detect dangling comments.

Introduction
Natural language elements form a substantial part of soft-
ware repositories. These elements are used to communi-
cate between users and developers (e.g., API comments,
bug reports, and feature requests), and among developers
(e.g., todo comments). Todo comments contain invaluable
data that describe changes to code that can increase soft-
ware maintenance, reliability, and quality. Despite occurring
frequently in practice and containing valuable information,
these elements, because of their informal nature, are largely
not exploited by existing software engineering tools.

Research on combining program analysis and natural lan-
guage processing (NLP), which recently started to gain some
traction, is in its infancy (Ernst 2017; Arnaoudova et al.
2015; Hindle et al. 2012; Oda et al. 2015; Allamanis, Peng,
and Sutton 2016; Vasilescu, Casalnuovo, and Devanbu 2017;
Raychev, Vechev, and Krause 2015; Nguyen et al. 2012), and
the existing work, although novel, mostly neglected com-
ments that are used to communicate among the develop-
ers (Storey et al. 2008; Sridhara 2016).

In this position paper, we argue about the importance of
content in todo comments and envision several techniques to
automatically maintain and resolve those comments.

This position paper is to a large extent inspired by our ex-
tensive analysis of a large corpus of open-source projects.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Specifically, we analyzed over 30k open-source projects,
which are available on GitHub, totaling 585 million lines of
code (not counting comments). We found that these projects
include over 297 million lines of comments (∼30% of the
total lines). Our analysis also uncovered more than 700k
todo comments in the used corpus. We manually inspected
(and discussed) hundreds of comments, code and comment
changes, and commit messages. In the following subsec-
tions, we will frequently refer to this dataset and our findings
related to this dataset. All examples of code and comments
that we provide in this paper are taken from one of the ana-
lyzed open-source projects.

This paper mostly focuses on todo comments that contain
valuable information on increasing software quality, perfor-
mance, maintenance, and reliability. We consider the follow-
ing three categories of todo comments. First, task comments
explain what features are currently not supported or what op-
timizations need to be implemented (e.g., from the Google
Guava project: “For optimal performance, use a binary
search when targets.size() < size()/log(size())”).
Second, trigger-action comments talk about changes to
the code repository that would be necessary if something
else is modified by developers (e.g., from Guava: “check
more preconditions (as bufferSize >= chunkSize) if
this is ever public”). Finally, question comments are con-
cerned with alternative implementations, potential optimiza-
tions, and testing, which may be explored by developers
only if time permits (e.g., from Guava: “Is this faster than
System.arraycopy() for small arrays?”).

Regardless of the category of todo comments, as software
evolves and development teams re-organize, these com-
ments may be dangling, i.e., resolved but forgotten (Storey
et al. 2008; Sridhara 2016). For example, a trigger may hold
(e.g., “if this is ever public”) but the action may not be
executed by developers (for very long time or ever), and de-
velopers may never have enough time to consider alternative
algorithms and fine tune their existing implementations.

With the goal to help developers increase the reliability
of their software, we propose several techniques to (1) syn-
thesize code described in task comments, (2) make trigger-
action comments executable, (3) answer question comments,
(4) improve the quality of all todo comments, and (5) auto-
matically detect dangling comments.

protected AbstractStreamingHasher(int chunkSize, int bufferSize) {
// TODO(kevinb): check more preconditions (as bufferSize >= chunkSize)
// if this is ever public
if (TRIGIT.isPublic(TRIGIT.THIS METHOD))
checkArgument(bufferSize >= chunkSize);

checkArgument(bufferSize \% chunkSize == 0); ... }

(a) Example from Google Guava (AbstractStreamingHasher)
public void testDynamicAttributesSupport() throws Exception { ...
dispatcher.serviceAction(request, response, mapping);
// TODO : remove expectedJDK15 and if() after switching to Java 1.6

if (TRIGIT.getJavaVersion() >5,
TRIGIT.DELETE NEXT, TRIGIT.VAR DECL);

String expectedJDK15 = ”<input type=\”text\” ...;
String expectedJDK16 = ”<input type=\”text\” ...; ... }

(b) Example from Apache Struts (FreemarkerResultMockedTest)

Figure 1: Examples of trigger-action comments from open-
source projects; we show how the existing comments
(crossed out) can be encoded as executable statements in our
TRIGIT framework (highlighted code)

Techniques
This section describes the basic idea behind each technique
and the way we will approach the implementation.

Synthesizing Error-Reporting Code
We plan to develop lightweight synthesis techniques to gen-
erate error-reporting code for unsupported cases that are
documented by developers in the task comments (e.g., from
Guava: “support array types”). First, we will identify com-
ments that document unsupported cases. To this end, we
will explore possible supervision signals from resolved com-
ments and their corresponding code changes, crowdsourc-
ing annotation and semantic parsing of the comments. Sec-
ond, we will synthesize error-reporting code that follows the
style used in the codebase (e.g., throw an exception or re-
turn a special value from a function). Note that our goal is
not to work on full-blown program synthesis, which would
be interesting but challenging (e.g., Polikarpova, Kuraj, and
Solar-Lezama (2016)), but rather to focus on a specific do-
main of error-reporting. Basically, our goal is to make the
existing comments observable during program execution by
reporting an appropriate message for unsupported cases.

Extracting Executable Comments
We will develop techniques to help software engineers to en-
code their trigger-action comments as executable code state-
ments. This will help with repository maintenance, because
developers will not need to manually check their todo com-
ments; instead, the executable statements will be automati-
cally triggered when appropriate.

We show several examples of trigger-action comments
in Table 1 (the top half). We found that ∼10% of all todo
comments (in our corpus) belong to this comment category.
While it would be infeasible to support every comment writ-
ten in the trigger-action style, we plan to focus on those tasks
that update the codebase (e.g., transformations of abstract
syntax trees) when triggers are satisfied.

Our initial step is to develop a domain specific language
embedded in Java to be used to: (1) query the static features
of the codebase, e.g., required Java version, and (2) specify
code transformations, e.g., remove a method from a class.
Figure 1 shows two examples of trigger-action comments
encoded in our framework (named TRIGIT); the original
todo comments are crossed out and the statements for our
framework are highlighted.

In the first example, we use our framework to check
a modifier of the current method; if the method becomes
public, the code guarded by the trigger should become a
part of the compiled class. In the second example, we spec-
ify that a variable should be removed if the required Java ver-
sion is higher than 1.5; the required Java version can be ob-
tained from a build script. (Note that the statements/expres-
sions that use the variables need to be annotated too, but we
do not show this due to space limitations.) The evaluation of
the triggers will be done statically (once code is compiled),
as the queries should not depend on the dynamic behavior of
the program. Our tool, which can be implemented as a com-
piler plugin, will automatically remove the triggers and per-
form program transformations. Note that the user would still
be able to inspect/approve the changes (e.g., by executing git
diff). As the transformation engine we will use the existing
open-source platforms, e.g., Eclipse, or program transforma-
tion systems, e.g., Cordy et al. (2004). The language design
will be guided by examples, and we will evolve the language
to support cases that we encounter in the future.

Our second step is to automatically discover trigger-
action comments present in a codebase and recover the cor-
responding triggers and actions via mining explicit condi-
tion relations within the content of the todo comments; ex-
plicit discourse relations can be classified with adequate ac-
curacy (Pitler et al. 2008).

In the third step, we will develop automated migration
from comments to the TRIGIT specifications, which will fol-
low our recent work on language to code for if-this-then-that
(IFTTT) recipes (Quirk, Mooney, and Galley 2015). Specif-
ically, we will train a semantic parser to map trigger-action
comments into executable code using supervision automat-
ically extracted from the code changes made when a todo
comment is resolved. This supervision may be noisy, since
not all code changes may be directly related to resolving
the todo comment, but our previous work on IFTTT shows
that noisy, automatically extracted supervision from pairing
comments and code can be tolerated reasonably well.

Answering Questions From Comments
We will develop techniques to help software engineers to
make informed decisions about questions that are asked
in todo comments. In our preliminary studies, we discov-
ered that developers ask questions in todo comments more
than 10% of the time; we obtained this number by count-
ing todo comments that contain “?”. Some of these ques-
tions are shown in Table 1 (the bottom half). Many of the
questions are related to code optimization, program trans-
formation, or testing. Our plan is to focus on techniques that
will address these three types of questions. First, to answer
questions related to optimizations, we will extract suggested

Table 1: Example todo comments in open-source projects

Project (on GitHub) File (.java) Todo Comments
tr

ig
ge

r-
ac

tio
n

co
m

m
en

ts

Apache/Incubator-wave Pretty Remove this when HtmlViewImpl implements getAttributes
Apache/Struts FreemarkerResultMockedTest Remove expectedJDK15 and if() after switching to Java 1.6
Apache/Poi TextXSSBugs Delete this test case when MROUND and VAR are implemented
Google/Guava Types Once we are on Java 8, delete this abstraction
Google/Guava AbstractStreamingHasher Check preconditions (as bufferSize>= chunkSize) if this is ever public
Google/Guava MapTest Replace with Ascii.caseInsensitiveEquivalence() when it exists
KangProject/Frameworks base SslCertificate If deprecated constructors are removed, this should always be available
Morristech/Gwt DefaultFilters This class needs to be revisited, when Gwt’s Ant is upgraded
Morristech/Gwt Simplifier If the AST were normalized, we wouldn’t need this

qu
es

tio
n

co
m

m
en

ts

Andyglick/Hk2-fork AbstractRepositoryImpl Is it allowed to call the initialize method multiple times?
Apache/Net IMAPReply Would lookingAt() be more efficient? If so, then drop trailing .* from patterns
Google/Guava ArrayTable Add getters returning rowKeyToIndex and columnKeyToIndex?
Google/Guava EvictingQueue Do we want to checkNotNull each element in containsAll and retainAll?
Eclipse/CDT LlvmEnvironmentVariableSupplier Is this actually called anywhere?
Eclipse/CDT EvalBinary What if the composite being accessed is not an array but a structure?
Eclipse/Mwe PluginExtensionManager Test: what happens when a handler is not there? Exception?
JetBrains/Jdk8u jaxp NodeSet What happens if index is out of range?
Square/OKhttp Http2Reader Test case for empty continuation header?

code modifications from comments, apply those modifica-
tions and profile the code (by executing existing test suites)
and evaluate the performance with profiles (on various ma-
chines). Second, to answer questions related to tests, we will
develop techniques that extract test inputs from a question
and generate new tests with those inputs; these new tests
will be obtained by adjusting an automated test generation
tool (e.g., Randoop (Pacheco et al. 2007)) or by extending
existing (manually written) tests. Third, to answer questions
related to code structure, we will extract suggested changes
(from Guava: “Add getters returning rowKeyToIndex and
columnKeyToIndex?”), perform the changes, and measure
quality of code in terms of naturalness (Hindle et al. 2012).

Our question classification system will also learn from
how todo comments are answered as software evolves (e.g.,
files and functions that are modified and language artifacts
that are added or edited); we can also learn from actions
taken by developers. As some of the questions may be
open-ended, we plan to develop an interactive dialog inter-
face, which we recently used for language to code transla-
tion (Chaurasia and Mooney 2017). We plan to use dialog
systems to clarify user intent and gather information—in our
case, when a question is initially asked.

Improving Todo Comments
We will develop techniques to help software engineers to
write meaningful todo comments. While manually analyz-
ing hundreds of todo comments, we found a number of com-
ments that were hard to understand even if we read the code
near those comments. We were also in disagreement about
their meaning in several cases, and although we could un-
derstand a comment (e.g., from the Square Retrofit project:
“TODO non-suck message”), it was clear that any technique
would have a hard time to extract any useful data.

Our initial task will be to detect todo comments that are
not specific enough, as well as those comments that do not

follow the conventions already used in the same project. The
techniques that we will develop will build on our work on
text specificity (Li and Nenkova 2015) and program analy-
sis. When we detect an unspecific comment, we will either
notify a developer to provide additional clarification, high-
light a part of the comment that does not follow the style
(in a similar way that spellcheckers highlight typos in com-
ments inside IDEs), or automatically reformat the comment
to be consistent with other comments in the same reposi-
tory. We will also provide automated comment style check-
ers, where the rules can be expressed by developers; this is
similar to code style checkers, which are used in practice.
Having specific comments that follow the same style will
enable techniques from prior sections.

Detecting Dangling Todo Comments
Prior work has shown that developers may resolve todo com-
ments but forget to remove these comments from source
code (Storey et al. 2008; Sridhara 2016); these dangling
comments can waste developers’ time during program com-
prehension and maintenance.

We are working on a technique, based on machine learn-
ing, to automatically detect dangling todo comments. Our
detection technique learns from existing software reposito-
ries. As mentioned earlier, we have already collected more
than 700k todo comments. This large dataset provides ex-
amples for todo comments that were removed by develop-
ers (over 20k). We are using these examples as distant su-
pervision signals, where we are exploring automatic label-
ing of examples (e.g., todo comments that are in the same
file with removed todo comments). Our models are exploit-
ing commit messages and static code analysis of changes.
In the future, we plan to also utilize software histories to
extract necessary context when todo comments were intro-
duced. We will also reason about co-evolution of code and
comments from when a todo comment was introduced until

it was resolved by a developer. Specifically, for each code
change, we will compute its distance from todo comments,
word similarity with each comment, and code structure that
may be described in a comment. These sources of informa-
tion provide complementary views to feature development
and complementary models, so we plan to build on our prior
work in co-training and ensemble models.

Related Work
Li et al. (2006) used text classification to validate the rep-
resentativeness of their study of bug characteristics. Fluri,
Wursch, and Gall (2007) empirically showed that code
and comments frequently co-evolve. Padioleau, Tan, and
Zhou (2009) manually studied over one thousand comments,
and found that 50% of comments can be leveraged by var-
ious techniques. Haouari, Sahraoui, and Langlais (2011)
introduced a taxonomy of comments and found that todo
comments are the second most common type of comments.
Movshovitz-Attias and Cohen (2013) used topic model-
ing and language models to generate comments from Java
source files. Several work tackled automated generation of
commit messages and mining relation from commit mes-
sages (Linares-Vásquez et al. 2015; Jiang and McMillan
2017; Andersson, Ericsson, and Wingkvist 2014; Loyola,
Marrese-Taylor, and Matsuo 2017).

Tan et al. (2007) detected inconsistencies between code
and comments and proposed a technique to test Javadoc
comments. Zhong et al. (2011) developed a technique to in-
fer specification from natural language API documentation
and used it to detect issues in client code.

Conclusion
We argued that comments used to communicate among de-
velopers (todo comments) contain invaluable content that
is currently neglected. We described several techniques –
synthesizing code from comments, making comments exe-
cutable, answering questions in comments, improving com-
ment quality, and detecting dangling comments. These tech-
niques, based on natural language processing and program
analysis, have potential to substantially simplify software
maintenance and increase software reliability.

Acknowledgments
We thank Rishabh Rai for the initial discussion on this work.
This work was partially supported by the US National Sci-
ence Foundation under Grant No. CCF-1704790.

References
Allamanis, M.; Peng, H.; and Sutton, C. A. 2016. A convolutional
attention network for extreme summarization of source code. In
ICML.
Andersson, R.; Ericsson, M.; and Wingkvist, A. 2014. Mining re-
lations from Git commit messages: An experience report. In SLTC.
Arnaoudova, V.; Haiduc, S.; Marcus, A.; and Antoniol, G. 2015.
The use of text retrieval and natural language processing in soft-
ware engineering. In ICSE.
Chaurasia, S., and Mooney, R. 2017. Dialog for language to code.
In IJCNLP.

Cordy, J. R. 2004. TXL - a language for programming language
tools and applications. ENTCS 110.
Ernst, M. D. 2017. Natural language is a programming language:
Applying natural language processing to software development. In
SNAPL, volume 71.
Fluri, B.; Wursch, M.; and Gall, H. C. 2007. Do code and com-
ments co-evolve? On the relation between source code and com-
ment changes. In WCRE.
Haouari, D.; Sahraoui, H.; and Langlais, P. 2011. How good is
your comment? A study of comments in Java programs. In ESEM.
Hindle, A.; Barr, E. T.; Su, Z.; Gabel, M.; and Devanbu, P. 2012.
On the naturalness of software. In ICSE.
Jiang, S., and McMillan, C. 2017. Towards automatic generation
of short summaries of commits. In ICPC.
Li, J. J., and Nenkova, A. 2015. Fast and accurate prediction of
sentence specificity. In AAAI.
Li, Z.; Tan, L.; Wang, X.; Lu, S.; Zhou, Y.; and Zhai, C. 2006. Have
things changed now?: An empirical study of bug characteristics in
modern open source software. In ASID.
Linares-Vásquez, M.; Cortés-Coy, F.; Aponte, J.; and Poshyvanyk,
D. 2015. ChangeScribe: A tool for automatically generating com-
mit messages. In ICSE.
Loyola, P.; Marrese-Taylor, E.; and Matsuo, Y. 2017. A neural ar-
chitecture for generating natural language descriptions from source
code changes. In ACL.
Movshovitz-Attias, D., and Cohen, W. W. 2013. Natural language
models for predicting programming comments. In ACL.
Nguyen, A. T.; Nguyen, T. T.; Nguyen, T. N.; Lo, D.; and Sun,
C. 2012. Duplicate bug report detection with a combination of
information retrieval and topic modeling. In ASE.
Oda, Y.; Fudaba, H.; Neubig, G.; Hata, H.; Sakti, S.; Toda, T.; and
Nakamura, S. 2015. Learning to generate pseudo-code from source
code using statistical machine translation. In ASE.
Pacheco, C.; Lahiri, S. K.; Ernst, M. D.; and Ball, T. 2007.
Feedback-directed random test generation. In ICSE.
Padioleau, Y.; Tan, L.; and Zhou, Y. 2009. Listening to program-
mers taxonomies and characteristics of comments in operating sys-
tem code. In ICSE.
Pitler, E.; Raghupathy, M.; Mehta, H.; Nenkova, A.; Lee, A.; and
Joshi, A. 2008. Easily identifiable discourse relations. In COLING.
Polikarpova, N.; Kuraj, I.; and Solar-Lezama, A. 2016. Program
synthesis from polymorphic refinement types. In PLDI.
Quirk, C.; Mooney, R.; and Galley, M. 2015. Language to code:
Learning semantic parsers for if-this-then-that recipes. In ACL.
Raychev, V.; Vechev, M.; and Krause, A. 2015. Predicting program
properties from ”Big Code”. In POPL.
Sridhara, G. 2016. Automatically detecting the up-to-date status
of ToDo comments in Java programs. In ISEC.
Storey, M.-A.; Ryall, J.; Bull, R. I.; Myers, D.; and Singer, J. 2008.
TODO or to bug. In ICSE.
Tan, L.; Yuan, D.; Krishna, G.; and Zhou, Y. 2007. /*iComment:
Bugs or bad comments?*/. In SOSP.
Vasilescu, B.; Casalnuovo, C.; and Devanbu, P. T. 2017. Recover-
ing clear, natural identifiers from obfuscated JS names. In FSE.
Zhong, H.; Zhang, L.; Xie, T.; and Mei, H. 2011. Inferring spec-
ifications for resources from natural language API documentation.
ASE Journal 18(3).

