
Copyright
by

Jiyang Zhang
2025

1

The Dissertation Committee for Jiyang Zhang
certifies that this is the approved version of the following dissertation:

Large Language Models for Code Editing

Committee:

Milos Gligoric, Supervisor

Junyi Jessy Li, Co-supervisor

Raymond J. Mooney

August Shi

Haris Vikalo

2

Large Language Models for Code Editing

by
Jiyang Zhang

Dissertation
Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin
August 2025

3

Acknowledgments

I will always remember this important period of my life, from 2019 to 2025,
during which I learned more about myself and the world around me, growing from an
academic freshman to a researcher. However, I could not have made it through on my
own without the incredible support of many wonderful people I met along the way. I
would like to take this opportunity to express my sincere gratitude to all those who
have been a meaningful part of this six-year journey.

First, I would like to express my gratitude to my supervisor, Milos Gligoric,
who guided me throughout my PhD. I cannot imagine working with anyone else for
such a long period of time. I still remember choosing to pursue my PhD with him
because I knew he genuinely cares about his students and is willing to advise them
and teaching great research and professional practices. From him, I learned to be
passionate about my work, to maintain high standards in research, and the intense
working style needed to meet deadlines. I will never forget the days when we worked
on paper submissions until the very last second before the 7 a.m. deadlines. These
lessons will be lifelong assets and will continue to benefit me in the years to come.

I would like to thank my co-supervisor, Junyi Jessy Li, who was involved in
nearly all of my research projects during my PhD. I am grateful for her guidance to
explore new machine learning techniques and research directions through relevant
readings and discussions. I took two of her research seminar courses and audited one.
Although I initially struggled to fully follow the discussions, these courses greatly
helped me learn how to read research papers and formulate meaningful research
problems.

I would also like to thank Raymond J. Mooney, August Shi, and Haris Vikalo
for serving on my committee and providing constructive feedback on my research. I
am especially thankful to Ray for demonstrating both passion and rigor in research
at the NLP+Programming seminar which has been inspiring. I am also grateful to

4

August for organizing the Software Engineering seminar and for playing an important
role in one of my first accepted research papers.

I am thankful to all of my collaborators: Apoorva Agrawal, Ram Bairi, Christian
Bird, Arie Deursen, Kim Herzig, Yamini Jhawar, Owolabi Legunsen, Xiaopeng Li, Yu
Liu, Chandra Maddila, Pengyu Nie, Sheena Panthaplackel, Schanely Phillip, Ujjwal
Raizada, Marko Ristin, Hans Venn, Shiqi Wang, Samuel Yuan, Yuhao Zhang and
Linghan Zhong. Among them, I am especially grateful to Pengyu Nie and Sheena
Panthaplackel. As senior students, they provided invaluable guidance and support
during the early stages of my PhD. Pengyu was involved in nearly all of my projects,
and I learned from him how to properly organize project repositories, use Git, write
in LATEX, write code, conduct research, and many other foundational skills essential
for doing research. I thank Sheena, who actively participated in the discussions of
my research projects while she was at UT Austin. I still remember that the first part
(Chapter 2) of this dissertation originated from an idea she proposed during one of
the NLP+Programming seminars. Some of her suggestions were also key to making
the model work. I especially remember the days when she helped me write the paper
from scratch in a short period of time—one of the most intense and memorable tasks
I have ever completed.

I would like to thank my lovely officemates: Nader Al Awar, Abdelrahman
Baz, Cheng Ding, Ivan Grigorik, Changyong Hu, Yang Hu, Jaeseong Lee, Chengpeng
Li, Tong-Nong Lin, Yu Liu, Pengyu Nie, Shanto Rahman, Aditya Thimmaiah, Wenxi
Wang, Zijian Yi, Zhiqiang Zang, Linghan Zhong and Chenguang Zhu. We shared
memories while working in the office in EER and attending conferences.

I would like to give special thanks to Zhiqiang Zang for being a wonderful
companion before he graduated and mentioning me in his acknowledgments in his
dissertation. We often chatted about fun topics in the office and supported each
other throughout our time together. He was my go-to person whenever I encountered
problems related to Java, Bash, or LATEX, as he was an expert in all three. I am also

5

grateful for the many times he invited me to dinners on weekends, as well as for a
washing machine and a TV he kindly gave me after he graduated. I also want to
thank Zijian Yi for being the “next” Zhiqiang, bringing laughter into the office. I
deeply appreciate his generosity in providing me with temporary housing when my
apartment was affected by the thunderstorm in May 2025.

I would like to thank all of my friends here in Austin: Yiyue Chen, Jiaxun Cui,
Jierui Li, Dawei Liang, Jiaxin Lin, Shaohui Liu, Ke Ma, Zhongjie Ren, Xinran Song,
Yipeng Wang, Chengyang Wu and Yuqi Zhou. And people who helped me during my
internships at Microsoft Research, Salesforce Research and Amazon Web Services. In
particular, I am deeply grateful to Yingchen Wang, one of the most important people
in my PhD journey. I am thankful for her unconditional support and for bringing me
so many unforgettable memories over the past years. Thanks to her, I was able to
overcome challenges and become a better person than I was before we met.

I want to thank my badminton buddies here in Austin: Ke Chen, Si Chen,
Coco, Yuefei Huang, Zunlong Ke, Karen, Kiran, Shi Li, Chang Liu, Chenxu Liu, Ziqi
Liu, Hengfa Lu, Jinhua Lü, Ze Ouyang, Chengjia Shao, Linlin Shen, Kathy Shuai,
Bijun Tang, Yingchen Wang, Yixian Wang, Ziyue Wang, Chenxu Yan, Chenxi Yang,
Xiao You, Weiwen Zeng, Hongming Zhang, Ruizhe Zhang, Ruixun Zhang and Weihan
Zhang. I cannot imagine what my PhD life would have been without you. The
improvement in my badminton skills and the countless happy moments would not
have been possible without your presence.

I would like to give a heartfelt shoutout to everyone in my badminton family
in Austin: Zunlong Ke, Hengfa Lu, Ze Ouyang, and Bijun Tang. Although we only
became close during the last half of the year, they truly made Austin feel like a second
home for me in the United States. I shared many memorable experiences with them
before leaving Austin. I am grateful for the times we played badminton together at
Bellmont Hall and the Austin Badminton Academy, joined Sunday training sessions,
did karaoke together and attended multiple gatherings at their apartments and house.

6

I appreciate them teaching me how to play Mahjong, organizing the trip to the water
park, taking me to the activation room, and encouraging me to wake up early and
work out at Gregory Gym. I thank them for helping me prepare for and attend
my PhD defense, and for giving me an unforgettable graduation celebration. Most
importantly, I want to thank them for showing me what true friendship means and
how to genuinely care for others.

I would like to thank the support staff at the Department of Electrical and
Computer Engineering—Thomas Atchity, Cayetana Garcia, Melanie Gulick, Barry
Levitch, and Melody Singleton—for their invaluable assistance.

Parts of this dissertation were published at ASE 2022 [122] (Chapter 2); and
FSE 2023 [125] (Chapter 3). I would like to thank the anonymous reviewers and
audience at the conferences of all my papers for their comments.

My research was funded by Cisco Research and the US National Science
Foundation under Grant Nos. CCF-1652517, CCF-2107291, CCF-2217696, CCF-
2313027 and CCF-2403036.

Last but not least, I would like to thank my mother Xi, my father Jianxin, and
my sister Jiqing for their unconditional love and support. They have always cheered
for me, celebrating even the smallest accomplishments throughout my PhD journey.

7

Abstract

Large Language Models for Code Editing

Jiyang Zhang, PhD
The University of Texas at Austin, 2025

SUPERVISORS: Milos Gligoric, Junyi Jessy Li

Software systems continuously evolve as new features are added, bugs are fixed,
or new platforms are supported. Software maintenance is a critical part of the software
lifecycle, ensuring that the software systems remain up-to-date, functional, and secure
after the initial development. However, software maintenance is often time-consuming
and tedious, making it a great target for automation.

Recently, Large Language Models (LLMs) have shown strong performance in
many software-related generation tasks, such as code and documentation generation,
significantly improving developers’ productivity. Nevertheless, these generative models
are not well-suited for the editing nature of the software maintenance tasks, as they
explicitly learn to generate by being trained on the generative autoregressive objectives
such as next-token prediction. The key insight of this dissertation is that we have to
design and develop evolution-aware LLMs to better assist software developers in their
day-to-day software maintenance work.

This dissertation presents the design and implementation of two evolution-
aware LLMs to assist software developers in maintaining software systems, including
tasks such as comment updating, bug fixing, automated code review, and software
co-evolution across programming languages.

8

First, this dissertation introduces CoditT5, an encoder-decoder transformer
model for software maintenance tasks. We design a novel edit-based output format
which explicitly models edits and use it as the pretraining objective to train CoditT5
on a large amount of source code and natural language comments. We fine-tuned
CoditT5 on three downstream software maintenance tasks, including comment up-
dating, bug fixing, and automated code review. By outperforming standard generation
models that are trained solely on generative objectives, our approach demonstrates
strong generalizability and effectiveness for editing tasks. We also show how a standard
generation model and our edit-based model can complement one another through
simple reranking strategies, with which we achieve state-of-the-art performance for the
three downstream tasks, outperforming both models before reranking by up to 19%.

Second, this dissertation introduces Codeditor, which assists software de-
velopers in co-evolving software projects that have the same set of requirements
implemented in two (or more) programming languages. For example, the widely
used parser generator ANTLR has implementations in Java, Python, and C#. To
address this problem, we formulate a novel task: automatically updating the code in a
target programming language, based on the changes made in the source programming
language. Codeditor is implemented to tackle this task by explicitly modeling code
changes as edit sequences and learning to correlate these changes across programming
languages. To evaluate Codeditor, we collect a corpus of 6,613 aligned code changes
from eight pairs of popular open-source software projects that implement similar
functionalities in two programming languages (Java and C#). Experimental results
show that Codeditor outperforms the generation models that fine-tuned on this
task by more than 25%.

9

Table of Contents

List of Tables . 12
List of Figures . 13
Chapter 1: Introduction . 15
Chapter 2: CoditT5: Pretraining for Source Code and Natural Language Editing 20

2.1 Introduction . 20
2.2 Background . 24

2.2.1 Generation with Transformer-Based Models 24
2.2.2 Large Pretrained Language Models 25
2.2.3 Large Pretrained Language Models for Software Engineering . . 26

2.3 CoditT5 . 27
2.3.1 Pretraining Objective . 27
2.3.2 Pretraining Data . 31
2.3.3 Pretraining Setup . 32

2.4 Experimental Design . 33
2.4.1 Downstream Tasks . 33
2.4.2 Data for Downstream Tasks . 34
2.4.3 Baselines . 35
2.4.4 Evaluation Metrics . 36

2.5 Evaluation . 37
2.5.1 Comparing CoditT5 to Baselines 37
2.5.2 Evaluating our Pretraining Objective 39
2.5.3 Integrating CoditT5 and CodeT5 43

2.6 Limitations . 46
2.7 Conclusion . 46

Chapter 3: Multilingual Code Co-evolution using Large Language Models . . 48
3.1 Introduction . 48
3.2 Task . 53
3.3 Model . 54

3.3.1 Edit Representations . 55
3.3.2 Model Input . 59
3.3.3 Model Output . 60

3.4 Dataset . 62

10

3.4.1 Data Collection . 62
3.4.2 Data Preprocessing and Splitting 64
3.4.3 Statistics . 65

3.5 Experiments . 66
3.5.1 Baselines . 66
3.5.2 Evaluation Metrics . 68
3.5.3 Experiment Setup . 69

3.6 Results . 69
3.6.1 Quantitative Analysis . 70
3.6.2 Qualitative Analysis . 75

3.7 Limitations . 77
3.8 Conclusion . 78

Chapter 4: Related Work . 79
4.1 Learning Edits . 79
4.2 Large Language Models for Code Edits 80
4.3 Rule-based Code Translation . 81
4.4 Learning-based Code Translation . 82
4.5 Software Evolution and Machine Learning 83

Chapter 5: Future Work . 84
5.1 Edit Representation . 84
5.2 Edit Localization . 85
5.3 Software Maintenance Agents . 85

Chapter 6: Conclusion . 87
References . 88

11

List of Tables

2.1 Percentage that model just copy the input. 28
2.2 Statistics collected from downstream tasks for creating pretraining

dataset. Avg. Number of Tokens represents the average number of
tokens in each edited span; Avg. Number of Spans represents the
average number of edited spans in each input sequence. 31

2.3 Statistics of the datasets used to pretrain CoditT5. First row: number
of programming language and natural language; second row: average
number of tokens in corrupted input sequences; third row: average
number of tokens in the output sequence (edit plan + target sequence). 33

2.4 Statistics for the datasets used for downstream tasks. 34
2.5 Results for comment updating on the clean test set. The results with

the same prefixes (e.g., β) are NOT statistically significantly different. 37
2.6 Results for comment updating on the full test set. The results with the

same prefixes (e.g., β) are NOT statistically significantly different. . . 38
2.7 Results on bug fixing dataset. The results with the same prefixes (e.g.,

β) are NOT statistically significantly different. 39
2.8 Results for automated code review. The results with the same prefixes

(e.g., β) are NOT statistically significantly different. 39
2.9 Percentages of target sequence generated by CoditT5 being consistent

with the edit plan. 41

3.1 The mappings between concise edit sequence and unambiguous edit
sequence. 56

3.2 Open-source projects used in our dataset and number of examples from
each project. 63

3.3 Statistics of our dataset. Number of examples of training, validation
and test data; average number of tokens in the old version of method
and new version of method; average number of edits for the code change;
average number of added and deleted tokens. 65

3.4 Results on the J2CS dataset. The results with the same suffixes (e.g.,
β) are NOT statistically significantly different. 70

3.5 Results on the CS2J dataset. The results with the same suffixes (e.g.,
β) are NOT statistically significantly different. 71

3.6 Results on the cross-project split using J2CS dataset. The results with
the same suffixes (e.g., β) are NOT statistically significantly different. 72

3.7 Results on the cross-project split using CS2J dataset. The results with
the same suffixes (e.g., β) are NOT statistically significantly different. 73

12

List of Figures

1.1 An example of the comment updating task. 16
1.2 Example output of CoditT5. 17

2.1 An example in automated code review task where PLBART merely
copies the input which does not match reviewer’s comment. 21

2.2 Overview of CoditT5. The corrupted text is encoded with a bidirec-
tional encoder, and the decoder is pretrained to generate sequences of
edit actions to recover the original text followed by a separation token
(<s>), and finally the target sequence. 27

2.3 Comparing the output of CodeT5 and CoditT5 for a automated code
review example. CodeT5 generates incorrect output that drastically
deviates from the input code while CoditT5 generates the correct
output, performing only relevant edits. 40

2.4 Examples for automated code review for which CoditT5 generated
ambiguous or erroneous edit plans but still managed to generate the
correct target sequences. 42

2.5 Examples from comment updating and bug fixing which demonstrate
the impact of reranking. 44

3.1 Example of using LLMs to help developers co-evolve code in two pro-
gramming languages. The top box shows developer-made changes in
a Java project itext/itext7, which needs to be propagated to the
corresponding C# project itext/itext7-dotnet. The middle box
shows the prediction by an existing generation-based large language
model, which incorrectly changes irrelevant parts of the code. The
bottom box shows the correct prediction by our model, Codeditor. 50

3.2 Workflow of Codeditor for multilingual co-evolution. Codeditor
leverages the context of code change histories of multiple programming
languages from three sources: code changes on the source programming
language (ES), the old version of code in the target programming lan-
guage (MT ;old), and the new version of code in the source programming
language (MS;new). Codeditor has two variants that both generate
the code changes in the target programming language (ET) but in
different formats: EditsTranslation directly generates the code changes;
MetaEdits generates the meta edit plan which edits ES to ET , followed
by the code changes. Finally, we apply the code changes (ET) on the
old version of code (MT ;old) to obtain the new version of code (MT ;new)
in the target programming language. 54

3.3 Comparison of model performance by input length (left) and distribution
of output token lengths (right). 74

13

3.4 Qualitative analysis of all the models on one example in the test data
of J2CS dataset. 76

14

Chapter 1: Introduction

Software plays a critical role in driving innovation, improving operational
efficiency by reducing manual effort, and supporting essential services in modern
society such as healthcare, transportation, education, and finance. With the emergence
of Large Language Models (LLMs), researchers have found that software engineering—
especially code generation—is a well-established application scenario for LLMs due to
the naturalness of programming languages [40, 52, 86] and the availability of clearly
defined evaluation metrics—test case pass rate [16, 17, 113]. A large number of
LLMs trained on code [17, 41, 62, 91, 110, 111] and LLM-based software engineering
agents [31, 109, 115] have been developed to assist humans in various aspects of software
development, ranging from code generation to software testing and verification [27,
59, 70, 72, 121, 123, 126, 127]. The LLMs acquire knowledge of software engineering
and programming languages through pretraining on large code corpora using the
generative objectives, such as next-token prediction [1, 83]. As a result, these generative
models demonstrate impressive performance on software-related generation tasks like
code completion [17, 61, 72, 97], code generation [2, 61, 73, 91, 110], and code
translation [20, 76, 119, 120, 130].

However, software development is not solely about writing new code. Software
is constantly evolving as new features are added and security vulnerabilities are
detected and patched on a near-daily basis. Software maintenance is one of the
essential responsibilities of software developers to ensure the reliability, efficiency, and
safety of software systems. Common tasks include fixing security issues, refactoring
the codebase to improve its performance or usability, updating libraries, SDKs, and
frameworks to supported versions, keeping documentation up to date, reviewing code
changes and addressing review comments. These tasks involve modifying existing code
rather than creating entirely new code or text from scratch.

Figure 1.1 shows an example of the comment updating task, which entails

15

/** @return double The yaw Euler angle. */
public double getRotY() {

- return mOrientation.getRotationY();
+ return Math.toDegrees(mOrientation.getRotationY());

}

Figure 1.1: An example of the comment updating task.

automatically updating an existing comment when the corresponding body of code
is modified [56, 60, 77]. The return statement of the Java method getRotY was
modified so that the return value of mOrientation.getRotationY() is passed to
Math.toDegrees() to be converted to degrees before being returned. To reflect this
code change and maintain consistency between the comment and the code, the @return

comment for this method should be updated to ‘@return double The yaw Euler angle
in degrees’.

The standard generation-based models are not well-suited for the editing
nature of software maintenance tasks because their training objectives are designed
for generation. Formally, given a sequence of tokens x = (x1, x2, . . . , xT), the goal of a
language model is to estimate the joint probability of the sequence as a product of
conditional probabilities: P (x) = ∏T

t=1 P (xt | x1, x2, . . . , xt−1). During training, the
model is optimized to maximize the likelihood of observed sequences. This objective
encourages the model to assign high probability to the correct next token at each time
step, given the preceding context. They lack the ability to reason about what should
be changed and what should be preserved when applied to software maintenance
tasks. For example, bug fixing involves modifying code to resolve issues that cause the
software to behave incorrectly, automated code review requires making changes based
on a reviewer’s feedback, and comment updating entails revising natural language
comments to align with code modifications. Prior work [67, 122] shows that existing
LLMs perform poorly on tasks that require code editing; they often copy the input
without making any meaningful modifications. Namely, these models are not aware of
software evolution and code editing.

16

CoditT5
@return

double The
yaw Euler angle.

<Insert> in degree <InsertEnd>

<s>
@param double The yaw
Euler angle in degree.

1

2

Figure 1.2: Example output of CoditT5.

The thesis statement of this dissertation is that we can design and develop
evolution-aware LLMs that can greatly help with software maintenance tasks. We
present two key insights in developing evolution-aware LLMs: 1) designing LLMs that
explicitly reason about and perform code edits by being trained to predict a specialized
edit format under a novel edit-based pretraining objective, and 2) utilizing the code
evolution data for both training the models on code history data and providing the
code evolution data as the model’s context. We built on these insights and proposed
the first pretrained LLM for general software-related editing tasks. The pretrained
edit-based model is further fine-tuned on task-specific software evolution data, allowing
it to capture common software editing patterns in different software maintenance
tasks.

As a first step, we propose CoditT5, the first LLM designed for software
maintenance tasks. As shown in Figure 1.2, CoditT5 is trained to generate a
structured output format, where an edit plan (1 in the Figure) specifying explicit
edit operations is generated first, followed by the target edited sequence (2). We
define three edit operations—insert, delete, and replace—to represent the edit
plan. The target edited sequence is the result of applying the edit plan to the original
input. In Figure 1.2, the input is an outdated comment. The output includes the
edit plan, which inserts ‘in degree’ to the comment, and the target edited sequence,
which reflects the updated @return comment. By pretraining CoditT5 to produce
this structured output format on the code corpus, we encourage the model to reason
about the required edits and how they should be applied to generate the final target

17

sequence. After pretraining, we fine-tune CoditT5 on various software maintenance
tasks, including comment updating, bug fixing, and automated code review. In our
evaluation, we show that CoditT5 outperforms the standard generation-based models
of similar size, which highlights that the models that are trained to explicitly perform
edits are better suited for editing tasks in the software domain than generation models.

To realize our second insight, we apply CoditT5 to a software maintenance
task and explore the potential of using code evolution data as context for the model.
Many software projects implement APIs and algorithms in multiple programming
languages. Co-evolving such projects is tiresome, as developers have to ensure that any
change (e.g., a bug fix or a new feature) is being propagated, timely and without errors,
to implementations in other programming languages. We introduce a novel task to
address this problem: automatically updating code snippets in a target programming
language based on the changes made in the source programming language. Building
upon CoditT5, we present Codeditor, a model that learns to align edits across
programming languages and explicitly applies these edits to the old version of the code
in the target language to tackle this task. By training the model to translate and apply
code changes, Codeditor achieves better performance than existing generation-based
code translation models in an extensive evaluation. This highlights that models trained
to explicitly perform edits and utilize code evolution data can better assist software
developers in software maintenance.

This dissertation makes the following key contributions:

⋆ We introduce CoditT5, a large language model for software maintenance tasks
that is pretrained on large amounts of source code and natural language. We
propose a novel pretraining objective that entails first generating a plan consisting
of edit operations to be applied to the input sequence followed by the resulting
target sequence. Upon pretraining and task-specific fine-tuning, we show that
CoditT5 achieves improved performance over existing models for three distinct
downstream editing tasks (comment updating, bug fixing, and automated code

18

review), demonstrating its effectiveness and generalizability.

⋆ We propose to address the multilingual software co-evolution problem using LLMs
by leveraging software change histories as input to the models. We formulate the
novel task of automatically updating code written in one programming language
based on the changes in the corresponding code in another programming language.
We design and implement Codeditor, the first LLM for this task which learns
to align the edits across programming languages and explicitly performs edits on
the old version of the code in target programming language. To fine-tune and
evaluate the model, we create the first dataset with aligned code changes for two
programming languages (Java and C#) from 8 open-source project pairs.

⋆ We conduct an extensive evaluation of CoditT5 and Codeditor on multiple tasks,
including comment updating, bug fixing, automated code review, and multilingual
code co-evolution. We compare the performance of CoditT5 and Codeditor
with existing generation-based models and rule-based methods. The results show
that the evolution-aware models outperform the existing models on all tasks,
demonstrating the effectiveness of our approach.

Both CoditT5 and Codeditor are open source, and they are publicly avail-
able at https://github.com/EngineeringSoftware/CoditT5 and https://github.

com/EngineeringSoftware/codeditor, respectively.

19

https://github.com/EngineeringSoftware/CoditT5
https://github.com/EngineeringSoftware/codeditor
https://github.com/EngineeringSoftware/codeditor

Chapter 2: CoditT5: Pretraining for Source Code
and Natural Language Editing

Pretrained language models have been shown to be effective in many software-
related generation tasks; however, they are not well-suited for editing tasks during
maintaining the software as they are not designed to reason about edits. To address
this, we propose a novel pretraining objective which explicitly models edits and use it
to build CoditT5, a Large Language Model (LLM) for software-related editing tasks
that is pretrained on large amounts of source code and natural language comments.
We fine-tune it on various downstream software maintenance tasks, including com-
ment updating, bug fixing, and automated code review. By outperforming standard
generation-based models, we demonstrate the generalizability of our approach and its
suitability for editing tasks. We also show how a standard generation model and our
edit-based model can complement one another through simple reranking strategies,
with which we achieve state-of-the-art performance for the three downstream tasks1.

2.1 Introduction

Large Language Models (LLMs) pretrained on massive amounts of data have led
to remarkable progress in recent years, with models like GPT [12, 83], BART [53], and
T5 [85] yielding huge improvements for a vast number of text generation tasks. Inspired
by this, a new research initiative has emerged around building LLMs that are pretrained
on source code and technical text to address software-related tasks. This includes
models like CodeGPT-2 [61], PLBART [2], and CodeT5 [110]. While these models
demonstrate impressive performance on generation tasks like code summarization,
code generation, and code translation, it is unclear if they are well-suited for the editing

1Parts of this chapter are published at ASE 2022 [122]. I led the design, implementation, and
evaluation of the model, and paper writing.

20

Before Editing
default List<Pattern> getExcludedResponseHeaderPatterns() {

return emptyList();
}
Reviewer’s Comment
Generally better to qualify than making static import
PLBART
default List<Pattern> getExcludedResponseHeaderPatterns() {

return emptyList();
}

Figure 2.1: An example in automated code review task where PLBART merely copies
the input which does not match reviewer’s comment.

nature of many software maintenance tasks. For instance, bug fixing [48, 66, 102]
entails editing source code to resolve bugs, automated code review [87, 103, 105, 124]
requires editing source code to incorporate feedback from review comments, and
comment updating [30, 56, 60, 77] pertains to updating outdated natural language
comments to reflect code changes.

In principle, such software maintenance tasks can be framed as standard
generation tasks in which an input sequence (e.g., buggy code snippet) is completely
re-written to form the output sequence (e.g., fixed code snippet). In this way, existing
pretrained conditional generation models can be fine-tuned to autoregressively generate
a sequence from scratch. However, this can be problematic in practice [67, 77]. When
applying large generation models like PLBART and CodeT5 to these tasks, we find
that they can generate output which merely copies the input without performing
any edits (up to 34.25%) or even deviates substantially from the input, introducing
irrelevant changes. We provide an example of automated code review in Figure 2.1,
where a reviewer prescribes edits that need to be made to a given code snippet:
“Generally better to qualify than making static import”. Conditioned on the code
snippet and this comment, PLBART generates an output sequence which copies the
original code, without applying any edits. While the output is valid and a likely
sequence according to PLBART’s language model, it makes no edits based on the

21

reviewer’s comments.

We attribute these weaknesses to the fact that such models rely on pretraining
objectives designed for generating code (or software-related natural language) in
sequence by exploiting patterns with respect to preceding tokens. Therefore, a model
has to learn to implicitly perform edits by generating tokens one by one in accordance
with the underlying probability that it has learned for which tokens belong alongside
one another, rather than being aware of where information should be retained or
modified.

Intuitively, edit-based generation requires a different approach that more
frequently refers back to the input sequence, and can often be characterized by
localized operations (e.g., insertion, deletion, substitution). To guide a model in
discerning edit locations in the input sequence and reason about the necessary edit
operations, we design a novel pretraining objective that explicitly models edits. Our
approach is inspired by content planning in natural language generation where a
skeleton of key elements are first generated and used to guide more accurate and
precise generation of full text [25, 64, 82, 88]. Additionally, training LLMs to first
generate intermediate reasoning steps before producing the final answer has been
shown to effectively elicit the models’ reasoning ability and further improve their
performance [36, 112]. Specifically, during decoding, a model first generates an edit
plan that explicitly details the edit operations. Then, it proceeds to autoregressively
generate the target edited sequence, during which it attends to the edit plan. Through
this, we effectively encourage the model to learn to better reason about edits and how
they should be applied to form the target sequence. Using this objective, we develop
CoditT5, an LLM for software-related edit tasks that is pretrained on more than
5.9 million open-source programming language code snippets and 1.6 million natural
language comments from the CodeSearchNet [42] training data.

For evaluation, we fine-tune CoditT5 on three downstream software mainte-
nance tasks: comment updating, bug fixing, and automated code review. For each of

22

these tasks, we show that CoditT5 outperforms state-of-the-art models, as well as
large pretrained standard generation-based models. Through this, we demonstrate
that our model and the proposed edit-based pretraining objective generalize across
tasks and are better suited for editing tasks in the software domain.

Furthermore, in our evaluation, we find that our edit-based model, CoditT5,
can be further improved if combined with a standard generation-based model. We
find that the edit-based and standard generation-based models are complementary to
one another. Namely, while the edit-based model provides better explicit modeling
of concrete edits, a standard generation-based model provides certain advantages in
terms of the contextual coherence of the generated target sequence. To exploit this
complementary nature of these models, we combine the two models through reranking
strategies which require no additional training. Our results show that the combined
approaches outperform the two models individually by up to 19%.

We summarize our main contributions as follows:

• We formulate a novel pretraining objective that entails first generating a plan
consisting of edit operations to be applied to the input sequence followed by the
resulting target sequence.

• We build and release CoditT5, a large language model for software-related editing
tasks that is pretrained on large amounts of source code and natural language with
the new pretraining objective.

• Upon task-specific fine-tuning, we show that CoditT5 achieves improved perfor-
mance over existing models for three distinct downstream software maintenance
tasks (comment updating, bug fixing and automated code review), demonstrating
its effectiveness and generalizability.

• We show that by combining our edit-based CoditT5 model with a standard
generation model through simple reranking strategies, we can beat each of the
individual models and achieve new state-of-the-art in all three tasks, demonstrating

23

the complementary nature of edit-based and standard generation models.

Our code and data is publicly available at https://github.com/EngineeringSoftware/

CoditT5.

2.2 Background

We first give a high-level overview of the building blocks that are necessary to
understand our approach.

2.2.1 Generation with Transformer-Based Models

Conditional Sequence Generation. Conditional sequence generation entails gen-
erating an output sequence given an input sequence. Many tasks are framed in this
manner, including machine translation (e.g., translating a sentence from French to
English) [6], text summarization (e.g., generating a brief summary for a given news
article) [92], and code generation (e.g., generating a code snippet for a given natural
language specification) [117].

Encoder-Decoder Framework. In recent years, conditional sequence generation
tasks are being addressed with encoder-decoder models. An encoder-decoder model
consists of two neural components: an encoder and a decoder. The input sequence is
fed into the encoder, which produces learned vector representations of the tokens in
that sequence. These learned vector representations are then passed into the decoder,
which generates the output sequence one token at a time. Specifically, the decoder
predicts the next token by reasoning over the input sequence and the tokens generated
at previous time steps.

Transformers. Transformers [106] are powerful neural models that are commonly
adopted as the encoder and decoder in the encoder-decoder framework. These models
rely on an attention mechanism to learn representations for tokens by relating them
to other tokens in the sequence. Namely, a transformer-based encoder will learn

24

https://github.com/EngineeringSoftware/CoditT5
https://github.com/EngineeringSoftware/CoditT5

representations for each token in the input sequence by “attending” to other input
tokens. For the decoder, when generating a token at timestep t, it will “attend” to
the representations of the output tokens generated from timestep 1 to t − 1 as well
as the representations of tokens from the input sequence. Transformer models can
become very large with huge numbers of attention heads, encoder and decoder layers.

2.2.2 Large Pretrained Language Models

Large pretrained language models generally refer to the class of large transformer-
based models that are trained on large amounts of unlabeled data (collected from
webpages, news articles, etc.) with unsupervised training objectives. This includes a
vast number of models like GPT [12, 83], BART [53], and T5 [85].

Denoising Autoencoder Pretraining. BART and T5 models are pretrained using
denoising autoencoding unsupervised training objectives. Namely, a noising function
is first applied to a given input sequence inp to form inp′. Common noising functions
include Token Masking: tokens in the input sequence are randomly masked; Token
Deletion: random tokens are deleted from the input sequence; Token Infilling: a
span of tokens are sampled and replaced with a mask token; Sentence Permutation:
sentences in the document are shuffled in a random order. Then, inp′ is fed into a
model’s encoder, and the encoder’s learned representation is passed into the decoder,
which generates an output sequence, out, that is expected to resemble the original
input sequence (inp). In other words, the model is trained to “denoise” inp′, using a
training objective that minimizes the error between out and the original input, inp.
Through this, the model learns to extract meaning from the input sequence and also
generate fluent and coherent output. Therefore, by pretraining on massive amounts of
data, the model develops an understanding of how things in the world relate to one
another as a strong language modeling capability.

Fine-tuning for Downstream Tasks. Since large pretrained language models are
trained using unsupervised training objectives on huge amounts of data, they cannot

25

generally be directly applied to downstream tasks (e.g., translation, summarization).
Fine-tuning is a common technique to transfer the knowledge learned during pretraining
to target downstream tasks. Specifically, the pretrained model is further trained for
the downstream task on some amount of supervised data.

2.2.3 Large Pretrained Language Models for Software Engineering

Inspired by the success of large pretrained models in Natural Language Pro-
cessing (NLP), a number of machine learning models pretrained on source code and
technical text have been proposed for solving various software-related problems.

For instance, inspired by BART, Ahmad et al. [2] developed PLBART, which
is a large pretrained language model that can be fine-tuned for a number of code
understanding (e.g., code summarization) and generation (e.g., code translation) tasks.
Similarly, inspired by T5, Wang et al. [110] built a larger model CodeT5, which is
pretrained on six programming languages together with their natural language com-
ments collected from open-source repositories. Specially, it is pretrained to incorporate
information from identifiers in the code. CodeT5 has shown promising results in code-
related generation tasks such as code summarization, code generation and code-related
understanding tasks such as clone detection and vulnerability identification. However,
aforementioned models are for generation and they are only implicitly aware of edit
operations if at all.

26

Encoder

@param [MASK] List of objects

@param users List of user objects

Decoder

<ReplaceOld> [MASK]
<ReplaceNew> users <ReplaceEnd> <Insert>
user <InsertEnd>

<s>
@param users List of user objects

1

2

noising function

Figure 2.2: Overview of CoditT5. The corrupted text is encoded with a bidirectional
encoder, and the decoder is pretrained to generate sequences of edit actions to recover
the original text followed by a separation token (<s>), and finally the target sequence.

2.3 CoditT5

CoditT5 is built upon the encoder-decoder framework with the same ar-
chitecture as CodeT5. As shown in Figure 2.2, the model is pretrained with our
proposed objective: generating the edit-based output sequence given the corrupted
input sequence. In this section, we first explain our proposed pretraining objective
(Section 2.3.1). We then discuss how we build CoditT5 by pretraining on this objec-
tive, including the data used for pretraining (Section 2.3.2), and additional details of
the pretraining setup (Section 2.3.3).

2.3.1 Pretraining Objective

We formulate a new pretraining objective that is designed to encourage a model
to explicitly reason about edits. At a high-level, this objective falls under the realm
of denoising autoencoding in which an input sequence is first corrupted with noising
functions and the model is trained to denoise the corrupted sequence by generating

27

Table 2.1: Percentage that model just copy the input.

Dataset PLBART CodeT5 CoditT5

B2Fs 6.48 7.97 0.55
B2Fm 10.92 10.08 0.78
Comment Updating (clean) 21.33 16.67 2.67
Comment Updating (full) 34.25 25.47 5.73
Automated Code Review 22.24 29.28 1.28

an output sequence that matches the original input sequence. While existing models
like PLBART and CodeT5 pretrained using this setup perform very well on various
generation tasks (e.g., code summarization/generation), we find that they do not
generalize well when fine-tuned on editing tasks. Namely, they are susceptible to
learning to copy the original input sequence instead of actually performing edits, up
to 34.25% of the time as shown in Table 2.1.

We propose the following edit-based output sequence representation (shown
in Figure 2.2): [Edit Plan] <s> [Target Sequence], where the model is trained to
generate an edit plan (1) consisting of explicit edit operations that must be applied
to the corrupted sequence to reconstruct the original input sequence, followed by a
separation token (<s>), and finally the target sequence (2) that matches the original
input sequence. This is inspired by the concept of content planning, originating from
natural language generation [88]. In content planning, a high-level plan is first outlined,
specifying the discourse structure of the content to be generated, and then lexical
realization is performed to generate the text. Additionally, inspired by the recent
work on LLM reasoning [36, 112], we aim to train the model to generate an edit plan,
encouraging it to reason about how to perform the edits before producing the final
edited output.

28

2.3.1.1 Edit Plan

The edit plan entails the specific edit operations that are needed to recover
the original input sequence. For example, in Figure 2.2, the input sequence: “@param

users List of user objects” is corrupted by masking “users” and removing the token
“user” before the word “objects”: “@param [MASK] List of objects”. With this, a model
must first reason about the fact that [MASK] in the corrupted input sequence needs to
be replaced with “users” and “user” should be inserted between “of” and “objects” to
reconstruct the given input. To construct the sequence of edit operations, we closely
follow the format proposed in [77]:

<Operation> [span of tokens] <OperationEnd>

Here, <Operation> is either Insert or Delete. We also include the Replace operation,
with a slightly different structure (since both the old content to be replaced as well as
the new content to replace it with must be specified):

<ReplaceOld> [span of old tokens]

<ReplaceNew> [span of new tokens] <ReplaceEnd>

To determine the specific edit operations for a given example, we use difflib2 to compute
the optimal set of edits needed to transform the corrupted input sequence into the
original input sequence. Multiple edit operations are placed in the same order as the
span of tokens under editing appears in the input sequence (for example, the edit plan
in Figure 2.2 consists of two edit operations).

2.3.1.2 Target Sequence

One might ask whether we could simply apply the sequence of edit operations
in the generated edit plan to the corrupted input sequence directly to recover the

2https://docs.python.org/3/library/difflib.html

29

https://docs.python.org/3/library/difflib.html

original input sequence heuristically. For example, if we align “<ReplaceOld> [MASK]

<ReplaceNew> users <ReplaceOld>” with a corrupted input sequence “@param [MASK]

List of user objects”, it is very clear that all we need to do is replace [MASK] with
“users” and no additional generation is needed. However, there are two main issues
with this. First, not all operations will be specified in a deterministic manner. For
example, if the edit plan is “<Insert> user <InsertEnd>”, it is not clear where
the new token “user” should be added to. Second, the generated edit plan does not
correspond to contiguous output tokens since it consists of fragmented information
(edit operations and token spans) rather than a complete sentence. As a result, neural
language models may fail to generate correct edit plans due to their lack of language
properties such as fluency and coherency [77].

Therefore, we need an additional step for learning to apply edits while simul-
taneously maintaining fluency and coherency. For this reason, once the edit plan is
outlined as a sequence of edit operations, the target sequence (which is expected to
recover the original input sequence) must also be generated: “@param users List of
user objects”. The decoder generates tokens in a left-to-right manner, meaning that
when generating a token at a given timestep, it is aware of all tokens generated in
previous timesteps. So, when generating the target sequence, the decoder can exploit
the sequence of edits that was generated in the edit plan earlier. In this way, the
model can reason about the edits and the generation simultaneously.

2.3.1.3 Noising Functions

To support learning across a diverse set of edit actions during pretraining, we
consider multiple noising functions for corrupting the input sequence: 1) randomly
masking spans with the special [MASK] token which requires the model to replace it
with the correct spans, 2) inserting [MASK] token at random positions which requires
the model to identify the useless spans, and delete them and 3) deleting spans of
tokens in the input sequence which requires the model to pinpoint the position and
add back the missing pieces.

30

Table 2.2: Statistics collected from downstream tasks for creating pretraining dataset.
Avg. Number of Tokens represents the average number of tokens in each edited span;
Avg. Number of Spans represents the average number of edited spans in each input
sequence.

PL NL

Probability of Delete edit 0.49 0.07
Probability of Insert edit 0.21 0.11
Probability of Replace edit 0.30 0.82
Avg. Number of Tokens 6.50 3.00
Avg. Number of Spans 1.90 1.40

2.3.2 Pretraining Data

We describe data collection, data preparation, and pretraining setup in this
section.

2.3.2.1 Data Collection

Following prior work, we pretrain CoditT5 on large amounts of source code
and natural language comments from the CodeSearchNet [42] dataset which consists
of functions of six programming languages (Java, Python, Ruby, PHP, Go and
JavaScript) together with the natural language comments. CodeSearchNet is widely
used to pretrain LLMs, such as CodeT5 [110] and UniXcoder [35]. We use the
training set of the processed CodeSearchNet dataset provided by Guo et al. [35]
which contains 6.1 million code snippets (functions/methods) and 1.9 million natural
language comments.

2.3.2.2 Data Preparation

To enable CoditT5 to capture common edit patterns, we want the pretraining
dataset to reflect the common activities conducted by software developers. Specifically,
in the pretraining dataset, the probability of each edit operations applied to the spans

31

in the input sequence and the length (number of tokens) of the corrupted span should
be consistent with the distributions and sizes of real-world edits in downstream editing
tasks.

To this end, we collect statistics for source code edits from the training sets of
the bug fixing and automated code review downstream tasks and statistics for natural
language edits from the comment updating’s training set. As shown in Table 2.2,
we collect the probability of each edit operation (insert, delete and replace) to be
performed on a span; the average number of tokens in each span that is edited; and
the average number of spans that are edited in each input sequence. For each example
in the pretraining dataset, we then uniformly sample the spans and the edit operations
that should be applied in accordance with the statistics collected from the downstream
datasets.

Similar to CodeT5 [110], we use the RoBERTa [58] tokenizer to tokenize all
sequences (input, edit plan, target). More concretely, the tokenizer splits words in the
sequence into tokens (subwords) that are used by the model. Moreover, we remove
input sequences that are shorter than 3 tokens and longer than 512 tokens after
tokenization which leave us with 5.9 million programming language code snippets and
1.6 million natural language comments. This is because too short inputs are usually
incomplete and CodeT5 is designed to only handle sequence of length 512. Table 2.3
presents the statistics of the pretraining dataset.

2.3.3 Pretraining Setup

Model Architecture. CoditT5 consists of 12 encoder and decoder layers, 12
attention heads, and a hidden dimension size of 768. The total number of parameters
is 223M. Model parameters are initialized from the CodeT5-base model, and we
further pretrain it on the CodeSearchNet pretraining dataset (Section 2.3.2) using our
proposed objective (Section 2.3.1).

Training. We implement CoditT5 using PyTorch 1.9.0 and use 16 NVidia 1080-TI

32

Table 2.3: Statistics of the datasets used to pretrain CoditT5. First row: number of
programming language and natural language; second row: average number of tokens
in corrupted input sequences; third row: average number of tokens in the output
sequence (edit plan + target sequence).

PL NL

Examples 5,956,069 1,675,277
Avg. Corrupted Input Tokens 102.01 15.42
Avg. Target Output Tokens 120.23 26.57

GPUs, Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz for pretraining for 4 days. For
fine-tuning, we run the experiments on 4 NVidia 1080-TI GPUs, Intel(R) Xeon(R)
CPU E5-2620 v4 @ 2.10GHz with the same hyper-parameters as CodeT5.

2.4 Experimental Design

To assess CoditT5 and our proposed pretraining objective, we fine-tune the
model on three software maintenance downstream tasks. Note that during fine-tuning,
the model is still trained to generate the edit-based output sequence. However, at test
time, we discard the edit plan and take the generated target sequence as the final
model output. Namely, we use the generated sequence after the separation token <s>

as model’s prediction.

2.4.1 Downstream Tasks

Comment Updating. The task of comment updating entails automatically updating
a natural language comment to reflect changes in the corresponding body of code [30,
56, 60, 77]. For instance, in Example 2 in Figure 2.5, the old @return comment needs
to be revised based on the changes in the method. Instead of directly returning the
yaw Euler angle measured in radians, the unit of the return value is changed to degrees
in the new version, with the method call Math.toDegrees().

33

Table 2.4: Statistics for the datasets used for downstream tasks.

Task Train Valid Test

Comment Updating
clean 16,494 1,878 150
full 16,494 1,878 1,971

Bug Fixing
B2Fs 46,628 5,828 5,831
B2Fm 52,324 6,542 6,538

Automated Code Review 13,753 1,719 1,718

Bug Fixing. Given a buggy code snippet, the task of bug fixing entails generating a
fixed code snippet, which no longer contains the bug [101].

Automated Code Review. Given a code snippet under review and a brief natu-
ral language sentence prescribing code edits, automated code review requires auto-
matically generating the revised code snippet, which captures the recommended
changes [103]. For example, in Figure 2.1, emptyList() should be changed to
Collections.emptyList() because the reviewer suggests not using static import.

2.4.2 Data for Downstream Tasks

We use datasets that have been established and previously used for each
of the three tasks. The statistics of the datasets is shown in Table 2.4. Unlike
pretraining where the goal is to recover the corrupted input sequences, during fine-
tuning, CoditT5 is trained to generate an edit plan for completing the downstream
editing task, that can be applied to a part of the input (e.g., old comment), followed
by the target sequence (e.g., new comment).

Comment Updating. For this task, Panthaplackel et al. [79] has released a corpus
of Java method changes paired with changes in the corresponding comments (spanning
@return, @param, and summary comments). This dataset also comes with a clean
subset of the test set which was manually curated. The input sequence used for

34

fine-tuning is formed by concatenating the old comment and code edits. The code
edits follow the representation described in Section 2.3.1.1, except that an additional
Keep operation is included to denote spans that are left unchanged.

Bug Fixing. We consider the Java BugFixPairs-Small (B2Fs) and BugFixPairs-
Medium (B2Fm) datasets, originally released by Tufano et al. [101]. Chakraborty
and Ray [14] supplemented these datasets with additional context, namely natural
language guidance from the developer, and the method where the patch should be
applied. B2Fs contains shorter methods with a maximum token length 50, and B2Fm

contains longer methods with up to 100 tokens in length. The input sequence used
for fine-tuning is formed with the buggy code, natural language guidance, and code
context.

Automated Code Review. We use the automated code review dataset released
by Tufano et al. [103], which consists of Java methods (before and after the review)
paired with pull request comments, derived from pull request reviews on GitHub
and Gerrit. To reduce the vocabulary size, they further abstracted Java methods by
replacing identifiers and literals with special tokens. In this work, we use the data
with concrete tokens. The input sequence used for fine-tuning is formed using the
code snippet before review and the pull request comment from reviewers.

2.4.3 Baselines

2.4.3.1 Generation Baselines

We consider two large standard generation language models of similar size
trained with denoising autoencoding pretraining objectives which are not edit-based:
PLBART and CodeT5. Both of these are fine-tuned to directly generate the target
output sequence. Furthermore, to better assess the value of actually pretraining
using the proposed objective instead of simply fine-tuning a model to generate an
edit-based output sequence, we also consider fine-tuning CodeT5 to generate the
specialized edit-based output sequence representation. We refer to this as CodeT5

35

(w/ edit-based output). We fine-tune each of these models using the same input
context as CoditT5.

2.4.3.2 Task-Specific Baselines

We additionally compare against the state-of-the-art models for each of the
downstream tasks.

For comment updating, the state-of-the-art model is Panthaplackel et al. [77],
which entails Recurrent Neural Network (RNN) based encoders for representing the
old comment and code edits, and an RNN-based decoder for decoding edits. These
edits are parsed at test time and reranked based on similarity to the old comment
and likelihood based on a comment generation model.

For bug fixing, the state-of-the-art model is essentially PLBART fine-tuned on
the B2Fs and B2Fm to generate the fixed code [14].

For automated code review, no baselines are available for the specific version
of the dataset we used with concrete identifiers and literals (rather than the one
with abstracted identifiers and literals). Therefore, we rely on those described in
Section 2.4.3.1 and establish new baselines for this version of the dataset.

2.4.4 Evaluation Metrics

For comment updating, we report performance on the same metrics that
have been used previously to benchmark models for this task [77]. This includes:
xMatch (whether the model prediction exactly matches the ground truth), common
metrics that measure lexical overlap for evaluating text generation (BLEU-4 3 [80]
and METEOR [7]), and common metrics for measuring text editing (GLEU [68] and
SARI [114]). For bug fixing, we use xMatch, as done in prior work [14]. For automated
code review, we report performance on xMatch and BLEU-4, which have been used

3We measure 1∼4-gram overlap and compute the average.

36

Table 2.5: Results for comment updating on the clean test set. The results with the
same prefixes (e.g., β) are NOT statistically significantly different.

Models xMatch BLEU-4 METEOR GLEU SARI

Panthaplackel et al. [77] 33.33 56.55 52.26 51.88 56.23
PLBART 35.33 62.04γ 56.79 54.75 52.83
CodeT5 38.00 65.20α 59.63 58.84β 58.80
CodeT5 (w/ edit-based output) 40.00 62.97γ 59.08 58.72β 61.11ϵη

CoditT5 43.33χ 64.56 60.75 59.53 61.41δϵ

CoditT5 (reranked with CodeT5) 45.33 66.80 63.33 61.60 61.48δη

CodeT5 (reranked with CoditT5) 44.00χ 65.58α 62.44 60.48 62.57

previously to benchmark models for this task [103].

2.5 Evaluation

We organize our evaluation around three main research questions:

RQ1: How does our edit-based model, CoditT5, compare to generation and task-
specific baselines for edit-related software maintenance tasks?

RQ2: Does our proposed pretraining objective help a model in better reasoning about
and performing edits?

RQ3: Can a standard generation model complement CoditT5 by integrating the
two models?

2.5.1 Comparing CoditT5 to Baselines

We present results in Tables 2.5-2.8. Note that the results shown in the last two
rows in each of the tables are explained later in Section 2.5.3. We perform statistical
significance testing using bootstrap tests [9] with confidence level 95%.

37

Table 2.6: Results for comment updating on the full test set. The results with the
same prefixes (e.g., β) are NOT statistically significantly different.

Models xMatch BLEU-4 METEOR GLEU SARI

Panthaplackel et al. [77] 24.81 48.89 44.58 45.69 47.93
PLBART 22.98 55.42ℏι 49.12 47.83 43.40
CodeT5 28.56 58.37α 53.13 51.90 49.23
CodeT5 (w/ edit-based output) 29.83δγ 54.83 50.71 50.67ϵ 52.01η

CoditT5 29.38δ 55.30βι 51.14χ 50.62ϵ 51.39

CoditT5 (reranked with CodeT5) 30.14γ 58.72α 53.60 52.81 50.47
CodeT5 (reranked with CoditT5) 27.80 55.54βℏ 51.44χ 50.02 52.24η

RQ1: How does our edit-based model, CoditT5, compare to generation and task-
specific baselines for edit-related tasks?

We find that CoditT5 (and most of the pretrained models) drastically outper-
forms Panthaplackel et al. [77] (a non-pretrained model) across metrics for comment
updating. This demonstrates the value of LLM pretrained on vast amounts of data
using unsupervised pretraining objectives.

Next, across all three tasks, CoditT5 achieves higher performance than the two
standard generation-based pretrained models, significantly outperforming PLBART
and CodeT5 for most of the metrics, highlighting the benefit of explicitly modeling
edits for these software maintenance tasks that require editing. In fact, CodeT5
(w/ edit-based output), which explicitly models edits only during fine-tuning rather
than pretraining, outperforms CodeT5 on edit-based metrics (xMatch, SARI). This
further underlines the utility of the edit-based output sequence representation that we
developed.

Nonetheless, across most metrics, CoditT5 still outperforms CodeT5 (w/ edit-
based output), which is not pretrained using the pretraining objective but uses the
same edit-based output sequence representation during fine-tuning. This demonstrates
the importance of actually pretraining with this representation rather than relying on

38

Table 2.7: Results on bug fixing dataset. The results with the same prefixes (e.g., β)
are NOT statistically significantly different.

Models xMatch
B2Fs B2Fm

PLBART 31.09 24.18
CodeT5 34.81 26.66
CodeT5 (w/ edit-based output) 36.37 29.28α

CoditT5 37.52 29.96α

CoditT5 (reranked with CodeT5) 40.22 32.06β

CodeT5 (reranked with CoditT5) 39.56 32.24β

Table 2.8: Results for automated code review. The results with the same prefixes
(e.g., β) are NOT statistically significantly different.

Models xMatch BLEU-4

PLBART 26.78 79.38
CodeT5 34.98 83.20
CodeT5 (w/ edit-based output) 36.38α 80.06β

CoditT5 37.19α 80.50β

CoditT5 (reranked with CodeT5) 40.98 84.12χ

CodeT5 (reranked with CoditT5) 43.42 83.92χ

fine-tuning alone.

2.5.2 Evaluating our Pretraining Objective

While we observe that CoditT5 tends to achieve slightly lower performance
than CodeT5 on generation-based metrics (BLEU-4, METEOR) for two of the tasks,
we find that it significantly outperforms other metrics which capture whether the cor-
rect edits are generated, such as xMatch and GLEU and SARI for comment updating.
This suggests that CoditT5 is indeed better at editing. By inspecting the outputs of

39

Before Editing:
public HashConfigurationBuilder capacityFactor (float capacityFactor) {

if (numSegments < 0)
throw new IllegalArgumentException ("capacityFactor must be positive");

this.capacityFactor = capacityFactor ;
return this;

}

Reviewer’s Comment:
typo: capacityFactor instead of numSegments
CodeT5:
public HashConfigurationBuilder capacityFactor(float capacityFactor) {

this.capacityFactor = capacityFactor;
return this;

}

CoditT5:
public HashConfigurationBuilder capacityFactor (float capacityFactor) {

if (capacityFactor < 0)
throw new IllegalArgumentException ("capacityFactor must be positive") ;

this.capacityFactor = capacityFactor;
return this;

}

Figure 2.3: Comparing the output of CodeT5 and CoditT5 for a automated code
review example. CodeT5 generates incorrect output that drastically deviates from the
input code while CoditT5 generates the correct output, performing only relevant
edits.

the two models, we find that CodeT5 tends to make drastic and unnecessary edits
while CoditT5 appears to be better at making more fine-grained edits. For example,
in Figure 2.3, CodeT5 generates output that completely discards critical statements
in the code, whereas CoditT5 is able to correctly localize the part of the input code
that needs to be changed and make edits properly. We attribute this to the fact that
CodeT5 is not designed to reason about edits while CoditT5 is. We further evaluate
the influence of our proposed pretraining objective on this editing capability.

RQ2: Does our proposed pretraining objective help a model in better reasoning about
and performing edits?

40

Table 2.9: Percentages of target sequence generated by CoditT5 being consistent
with the edit plan.

Datasets Is Consistent (%)

B2Fs 92%
B2Fm 88%
Comment Updating (clean) 87%
Comment Updating (full) 85%
Automated Code Review 74%

First, we compare how often CoditT5 naively copies the input content without
actually performing any edits, to two pretrained models which use generation-based
pretraining objectives. We report the percentages in Table 2.1. By copying substan-
tially less often than the PLBART and CodeT5, we find that CoditT5 learns to more
frequently perform edits with our proposed edit-based pretraining objective which
indicates it is suitable for editing tasks.

CoditT5’s decoder is encouraged to generate a target sequence that follows
the outlined edit plan; however, we do not constrain the decoder in any way to do this4.
Nonetheless, we find that in the majority of cases (74%-92%), the target sequence
is consistent with the edit plan, as shown in Table 2.9. More concretely, the target
sequence generally resembles what would be produced if the edit operations in the edit
plan were applied to the original content. This suggests that the pretraining objective
does in fact guide the model in reasoning about edits.

For cases in which there is ambiguity or errors in the edit plan, we find that
CoditT5 still often manages to generate the correct target sequence, by disregarding
unreasonable edits or disambiguating ambiguous edits. We show two examples in
automated code review in Figure 2.4 with the Java method before review, the generated
edit plan, and the generated target sequence. In Example 1, the edit plan is ambiguous

4We do not want potential errors in the edit plan to propagate to the target sequence.

41

Example 1
Before Editing:
protected boolean isProcessed(ChronicleLogOffsetTracker tracker, long offset) {

long last = tracker.readLastCommittedOffset();
return (last > 0) && (last >= offset);

}
Reviewer’s Comment:
No need for parentheses.
Edit plan
⟨Delete⟩ (⟨Delete_End⟩ ⟨Delete⟩) ⟨Delete_End⟩

Target sequence:
protected boolean isProcessed(ChronicleLogOffsetTracker tracker, long offset) {

long last = tracker.readLastCommittedOffset();
return last > 0 && last >= offset;

}

Example 2
Before Editing:
public Builder setDataSize(Estimate dataSize) {

this.dataSize = requireNonNull(dataSize, "dataSize can not be null");
return this;

}
Reviewer’s Comment
you don’t validate in other builders method (and you don’t have to)
Edit plan
⟨Delete⟩ requireNonNull(dataSize, "dataSize can not be null"); ⟨Delete_End⟩

Target sequence:
public Builder setDataSize(Estimate dataSize) {

this.dataSize = dataSize;
return this;

}

Figure 2.4: Examples for automated code review for which CoditT5 generated
ambiguous or erroneous edit plans but still managed to generate the correct target
sequences.

since there are multiple instances of “(” and it does not specify which one(s) should
be deleted. However, the generated target sequence is correct, as the model was able
to correctly reason about the most appropriate edit locations. In Example 2, the edit
plan is imprecise and blindly following this plan would result in syntactically incorrect
code, but the model still managed to perform the correct edits and produced valid
output by ignoring the fallacious edit. Overall, we find that both components of the
edit-based output sequence representation used in the pretraining objective—edit plan
and target sequence—are critical.

42

2.5.3 Integrating CoditT5 and CodeT5

CoditT5 is designed to complement a generation model by providing more
explicit guidance for edits. However, a model that is trained to generate edits can
struggle with coherence and fluency since it is not actually trained to generate consecu-
tive text [77]. By also including the generation of the target sequence in the pretraining
objective, we do mitigate this to some extent, even when there are ambiguities or errors
in the edit plan. However, there appears to be a trade-off between performing the
correct edits while maintaining performance with respect to generation metrics. More
specifically, in Tables 2.5-2.8, CoditT5 outperforms CodeT5 with respect to xMatch
(and SARI for comment updating), but underperforms with respect to BLEU-4. To
exploit the slight superiority of CodeT5 in this respect, we consider incorporating
CodeT5 into our approach.

RQ3: Can a pure generation model complement CoditT5 by integrating the two
models?

2.5.3.1 Experiment Setup

We combine the two models using simple likelihood-based reranking strategies
at test time (with no additional training). Namely, at test time, CoditT5 and CodeT5
each generate 20 candidates using beam search. While we have been only looking at
the top one prediction for all previous experiments, we will consider all 20 candidates
for reranking. We compute a reranking score for each of these to essentially re-score
them. The candidate which has the highest reranking score will be the final model
prediction. We investigate two different reranking strategies:

CoditT5 (reranked with CodeT5):. To exploit the language-specific norms learned
by CodeT5, we rerank the candidates generated by CoditT5 based on the probability
score CodeT5’s language model assigns to the corresponding target sequences (namely
after <s>).

43

Example 1
Buggy Code
public List<TagVFilter> getFilters() {

if ((filters) == null) {
filters = new ArrayList<TagVFilter>();

}
return filters;

}

CoditT5:
public List<TagVFilter> getFilters() {

if ((filters) == null) {
filters = new ArrayList<TagVFilter>();

}
return new ArrayList(filters);

}

CoditT5 (reranked with CodeT5):
public List<TagVFilter> getFilters() {

if ((filters) == null) {
filters = new ArrayList<TagVFilter>();

}
return new ArrayList<TagVFilter>(filters);

}

Example 2
/** @return double The yaw Euler angle. */
public double getRotY() {

return mOrientation.getRotationY();
}

/** @return ? */
public double getRotY() {

return Math.toDegrees(mOrientation.getRotationY());
}

CodeT5: @return double The yaw Euler angle.
Reranked CodeT5: @return double The yaw Euler angle in degrees.

Figure 2.5: Examples from comment updating and bug fixing which demonstrate the
impact of reranking.

We compute the length-normalized conditional log probability score of CodeT5
generating the target sequence, conditioned on the same input:

score = log(P (T |I) 1
N)

where T is the target sequence, I is the model’s input, N is the length of T . We also
length-normalize the log probability of the candidate, as scored by CoditT5, and
then add the two probability scores together to obtain the reranking score.

44

CodeT5 (reranked with CoditT5):. Conversely, we also rerank the output of
CodeT5 based on the likelihood of CoditT5, such that the generated sequence can
be assessed in terms of explicit edits. We first parse the output of CodeT5 into the
edit-based output sequence representation (as described in Section 2.3.1.1) and then
concatenate it with the model’s output using <s>. Then we compute the likelihood of
CoditT5 generating this sequence, conditioned on the same input. We then add the
length-normalized log probability score of CoditT5 with the score originally assigned
by CodeT5 (after length-normalizing and applying log).

2.5.3.2 Results

We provide results in the bottom two rows of Tables 2.5-2.8. By reranking
the output of CoditT5 using CodeT5, we are able to achieve improved performance
on all the metrics including BLEU-4 across tasks (and the other generation-based
metric, METEOR, for comment updating). To illustrate this, consider Example 1
in Figure 2.5, with a buggy code snippet and outputs corresponding to CoditT5
before and after reranking. We observe that CoditT5 correctly localizes the bug
and correctly identifies that the edit entails initializing an ArrayList in the return
statement. However, the generated target sequence is a defective code snippet which
does not properly initialize an ArrayList with the correct type TagVFilter. By
leveraging CodeT5’s likelihood score, we are able to effectively filter out the defective
prediction and obtain the correct output.

By reranking the output of CodeT5 using CoditT5, we see significant im-
provements with respect to CodeT5 on metrics that more directly evaluate whether
the correct edits were performed, including xMatch as well as GLEU and SARI for
comment updating. This suggests that the edit-based and generation-based models
are indeed complementary to one another. As a case study, consider Example 2
in Figure 2.5. CodeT5 produces a sequence which simply copies the old comment,
without capturing the code changes. While this may be a likely comment sequence,

45

according to CodeT5’s language model, copying without applying any edits is not a
likely edit plan to be generated for CoditT5.

By combining CoditT5 and CodeT5 through reranking, we can further boost
performance substantially across most metrics for all three tasks, outperforming the
two models individually, and achieving new state-of-the-art.

2.6 Limitations

Other Programming Languages. The downstream editing tasks we studied in
this work use Java. Since CoditT5’s pretraining is on the dataset consisting of six
programming languages, we expect it to also perform well on editing tasks in other
programming languages, but we leave empirically verifying this as future work.

Data Contamination. CoditT5 is pretrained on data collected from open-source
projects. It is possible that similar examples in pretraining data exist in downstream
tasks’ test set. While prior work [12] has shown that data contamination may have
little impact on the performance of pretrained models in natural language processing
tasks, future work can investigate this problem for pretrained models for software
engineering.

2.7 Conclusion

We present a novel edit-driven pretraining objective and use it to develop
CoditT5, a pretrained language model for software-related editing tasks. CoditT5 is
pretrained on large amounts of source code and natural language comments to perform
edits, and we evaluate this model by fine-tuning it on three distinct downstream
software maintenance tasks: comment updating, bug fixing, and automated code
review. By outperforming task-specific baselines and pure generation baselines across
tasks, we demonstrate the suitability of CoditT5 (and our pretraining objective) for
editing tasks and its generalizability. We additionally find that a pure generation-based

46

model and CoditT5 can complement one another through simple reranking strategies,
which outperform each of the models individually and also achieve new state-of-the-art
performance for the three software maintenance tasks that we consider.

47

Chapter 3: Multilingual Code Co-evolution using
Large Language Models

Many software projects implement APIs and algorithms in multiple program-
ming languages. Maintaining such projects is tiresome, as developers have to ensure
that any change (e.g., a bug fix or a new feature) is being propagated, timely and
without errors, to implementations in other programming languages. In the world of
ever-changing software, using rule-based translation tools (i.e., transpilers) or machine
learning models for translating code from one language to another provides limited
value. Translating each time the entire codebase from one language to another is not
the way developers work. In this chapter, we target a novel task: translating code
changes from one programming language to another using Large Language Models
(LLMs). We design and implement the first LLM, dubbed Codeditor, to tackle
this task. Codeditor explicitly models code changes as edit sequences and learns
to correlate changes across programming languages. To evaluate Codeditor, we
collect a corpus of 6,613 aligned code changes from 8 pairs of open-source software
projects implementing similar functionalities in two programming languages (Java
and C#). Results show that Codeditor outperforms the state-of-the-art approaches
by a large margin on all commonly used automatic metrics. Our work also reveals
that Codeditor is complementary to the existing generation-based models, and their
combination ensures even greater performance 1

3.1 Introduction

To ensure flexibility and a wide adoption of their software, companies provide
application programming interfaces (APIs) for their services in several programming

1Parts of this chapter are published at FSE 2023 [125]. I led the design, implementation, and
evaluation of the model, as well as writing the paper.

48

languages. Services, such as Google Cloud [32] and MongoDB [43], offer APIs written
in most popular programming languages, including C++, C#, Java, and Python.
Furthermore, popular software packages, like ANTLR [81] and Lucene [93], have
options to target different programming languages for the purpose of being used across
various platforms easily.

Maintaining software that offers the same functionality in multiple programming
languages is challenging. Any code change, due to a feature request or a bug fix, has
to be propagated timely to all programming languages. At present, developers have to
manually co-evolve code. This requires developers to manually find the correspondence
between code snippets and apply necessary edits.

There has been work that could, in theory, help with translation. Rule-
based migration tools [4, 29, 100] have been designed to translate between high-level
programming languages (e.g., Java and C#). However, rule-based systems require
developers who have expertise with both programming languages to manually write
rules to specify the translation mappings. And the rules need to be updated with the
evolution of programming languages themselves; they quickly become outdated [4, 13].
Recent work on automatic code translation [51, 61, 90, 99, 119, 120, 129] aim to
directly translate between a source and a target programming language with the help
of LLMs, which are pretrained on multiple programming languages. While these
techniques could be used to produce code snippets that look correct, they make
irrelevant changes that deviate substantially from the newly introduced features in
the source programming language, or they fail to precisely infer the project-specific
data types and class names.

Figure 3.1 illustrates the limitation of existing models. Developers changed
PdfException to LayoutExceptionMessageConstant in method docWithInvalid-

Mapping02 in the Java project itext/itext7 [45]. In a later commit in the corre-
sponding C# project itext/itext7-dotnet [44], developers revised method Doc-

WithInvalidMapping02 with exactly the same edits while keeping other parts of the

49

1 @Test
2 public void docWithInvalidMapping02() throws IOException {
3 ...
4 customRolePara.getAccessibilityProperties().setRole(HtmlRoles.p);
5 Exception e = Assert.assertThrows(PdfException.class,()->document.add(

customRolePara));
6 - Assert.assertEquals(MessageFormat.format(PdfException.

ROLE_IS_NOT_MAPPED_TO_ANY_STANDARD_ROLE, "p"), e.getMessage());
7 + Assert.assertEquals(MessageFormat.format(LayoutExceptionMessageConstant.

ROLE_IS_NOT_MAPPED_TO_ANY_STANDARD_ROLE, "p"), e.getMessage());
8 }

Java Change Made by Developers

1 [NUnit.Framework.Test]
2 public virtual void DocWithInvalidMapping02() {
3 ...
4 - customRolePara.GetAccessibilityProperties().SetRole(LayoutTaggingPdf2Test.

HtmlRoles.p);
5 + customRolePara.GetAccessibilityProperties().SetRole(HtmlRoles.p);
6 - Exception e = NUnit.Framework.Assert.Catch(typeof(PdfException),()=>

document.Add(customRolePara));
7 + Exception e = NUnit.Framework.Assert.IsThrows(PdfException.class,()=>

document.Add(customRolePara));
8 - NUnit.Framework.Assert.AreEqual(String.Format(PdfException.

ROLE_IS_NOT_MAPPED_TO_ANY_STANDARD_ROLE, "p"), e.Message);
9 + NUnit.Framework.Assert.AreEqual(String.Format(

LayoutExceptionMessageConstant.ROLE_IS_NOT_MAPPED_TO_ANY_STANDARD_ROLE, "
p"), e.Message);

10 }

C# Change Predicted by Existing Generation-based Model

1 [NUnit.Framework.Test]
2 public virtual void DocWithInvalidMapping02() {
3 ...
4 customRolePara.GetAccessibilityProperties().SetRole(
5 LayoutTaggingPdf2Test.HtmlRoles.p);
6 Exception e = NUnit.Framework.Assert.Catch(typeof(PdfException),()=>document.

Add(customRolePara));
7 - NUnit.Framework.Assert.AreEqual(String.Format(PdfException.

ROLE_IS_NOT_MAPPED_TO_ANY_STANDARD_ROLE, "p"), e.Message);
8 + NUnit.Framework.Assert.AreEqual(String.Format(

LayoutExceptionMessageConstant.ROLE_IS_NOT_MAPPED_TO_ANY_STANDARD_ROLE, "
p"), e.Message);

9 } C# Change Made by Developers and Predicted by Our Codeditor ✓

Figure 3.1: Example of using LLMs to help developers co-evolve code in two
programming languages. The top box shows developer-made changes in a Java
project itext/itext7, which needs to be propagated to the corresponding C#
project itext/itext7-dotnet. The middle box shows the prediction by an existing
generation-based large language model, which incorrectly changes irrelevant parts of
the code. The bottom box shows the correct prediction by our model, Codeditor.

50

method unchanged. We provide the Java code change, the prediction of an existing
large language model, CodeT5 [110], fine-tuned for code translation, and the correct
C# code change in Figure 3.1. The added lines of code are highlighted in green
and the removed ones are highlighted in red. Although the existing model is able to
correctly translate the updated exception type from Java to C#, it misses the class
name for the field HtmlRoles and incorrectly infers the function call Assert.Catch

as it does not use the prior version of C# code for reference.

To build more robust and accurate techniques that help software developers
co-evolve projects implemented in different languages, we propose to explicitly model
the changes that need to be made. We formulate a novel task: automatically updating
code snippets in a target programming language, based on the changes made in the
source programming language.

Most of the existing models implicitly tackle the code evolution tasks by
generating tokens one by one in accordance with the underlying learned probability
instead of focusing on how the code should be modified or retained. Prior work [14,
15, 22, 67, 77, 101, 116, 122] have shown that standard generation-based models
underperform models that explicitly model the edits on software-editing tasks.

To support code evolution across programming languages, we design an LLM,
dubbed Codeditor, which 1) learns to align the edits across programming languages
and 2) has access to the code evolution history to perform edits on the old version
of the code in a target programming language. Additionally, it is fine-tuned on the
real-world multilingual code evolution data. Following prior work [22, 77, 94, 122], we
enable the model to reason about necessary edits and learn to apply them by directly
generating an edit sequence.

For training and evaluation, we collect the first dataset with aligned Java and
C# code changes on the methods with similar functionality and implementations.
Specifically, we extract 6,613 pairs of code changes from 8 open-source Java projects
and the corresponding C# projects on GitHub by mining the commit histories. This

51

is the first dataset containing parallel code changes of two programming languages.
We conduct the evaluation in two directions, updating C# method based on the
Java changes (source language is Java and target language is C#) and updating Java
method based on the C# changes (source language is C# and target language is
Java).

Our results show that Codeditor outperforms all existing models across
all the chosen automatic metrics, including the large pretrained generative models:
Codex [17] under few-shot setting and gpt-3.5-turbo [74] under zero-shot setting.
Codeditor achieves 96 (out of 100) CodeBLEU score on the task of updating C#
code based on Java changes, which is more than 25% higher than the large pretrained
generation-based model fine-tuned on this task.

Further, we find that Codeditor and generation-based models are comple-
mentary to each other as Codeditor is better at updating longer code snippets
while generation model is better at handling the shorter ones. Thus, we combine the
two models by choosing either model’s prediction based on the size of the input code.
Our results show that the combination can further improve our Codeditor model’s
exact-match accuracy by 6%.

The main contributions of this chapter include:

• Task. To assist developers in multilingual code evolution, we formulate a novel
task of automatically updating code written in one programming language based
on the changes in the corresponding code in another programming language.

• Model. We design and implement Codeditor, the first LLM for this task which
learns to align the edits across programming languages and explicitly performs
edits on the old version of the code in target programming language.

• Dataset. We create the first dataset with aligned code changes for two programming
languages (Java and C#) from 8 open-source project pairs.

• Results. We show that Codeditor significantly outperforms the existing LLMs

52

fine-tuned for code translation on exact-match accuracy by 77%. We also show that
Codeditor is complementary to generation-based LLMs and the combination can
further improve Codeditor’s exact-match accuracy by 6%.

Codeditor and our corpus are publicly available on GitHub: https://github.com/

EngineeringSoftware/codeditor.

3.2 Task

At a high level, we work on a system that is triggered when a software developer,
who maintains projects written in multiple programming languages, makes changes to
one method in one of the languages, i.e., the “source” language. The system would
automatically suggest updates to the methods with identical functionality in other
language(s), i.e., the “target” language(s). To scope our work in this chapter, we focus
on Java as the source language, and C# as the target language. We leave evaluation
that targets other programming languages as future work.

In Figure 3.1, consider a method MS;old (docWithInvalidMapping02) written
in the source language S and a method MT ;old (DocWithInvalidMapping02) written
in the target language T with identical functionality (hence similar implementation).
Given the updated method MS;new in S, we define the task to generate the new
method MT ;new in T leveraging context provided by the code changes ES, such that its
functionality is consistent with MS;new. Namely, we model the conditional probability
distribution

P (MT ;new|MT ;old, MS;new, ES)

and generate MT ;new by sampling from the distribution.

53

https://github.com/EngineeringSoftware/codeditor
https://github.com/EngineeringSoftware/codeditor

<ReplaceOldKeepBefore>

format(PdfException

<ReplaceNewKeepBefore>

format(

LayoutExceptionMessageConstant

<ReplaceEnd>

ES

...

String.Format(PdfException...

MT ;old

...
MessageFormat.format(

LayoutExceptionMessageConstant

MS;new

EditsTranslation MetaEdits

<ReplaceOldKeepBefore>

Format(PdfException

<ReplaceNewKeepBefore>

Format(

LayoutExceptionMessageConstant

<ReplaceEnd>

ET

<ReplaceOld> format

<ReplaceNew> Format

<ReplaceEnd>

meta edit
sequence

<ReplaceOldKeepBefore>

Format(PdfException

<ReplaceNewKeepBefore> Format(

LayoutExceptionMessageConstant

<ReplaceEnd>

ET

...
String.Format(

LayoutExceptionMessageConstant..
MT ;new

Figure 3.2: Workflow of Codeditor for multilingual co-evolution. Codeditor
leverages the context of code change histories of multiple programming languages
from three sources: code changes on the source programming language (ES), the old
version of code in the target programming language (MT ;old), and the new version of
code in the source programming language (MS;new). Codeditor has two variants
that both generate the code changes in the target programming language (ET) but in
different formats: EditsTranslation directly generates the code changes; MetaEdits
generates the meta edit plan which edits ES to ET , followed by the code changes.
Finally, we apply the code changes (ET) on the old version of code (MT ;old) to obtain
the new version of code (MT ;new) in the target programming language.

3.3 Model

We present the overview of the proposed Codeditor model in Figure 3.2.
Codeditor is built upon the encoder-decoder framework which consists of a transformer-

54

based encoder and a transformer-based decoder [106]. Many conditional generation
tasks, including code summarization and translation, are being addressed with encoder-
decoder models [2, 35, 70, 110, 111].

We initialize Codeditor’s parameters with the pretrained language model
CoditT5 (Chapter 2). CoditT5 has shown promising results on various software-related
editing tasks in a single programming language, but nonetheless would provide us with
a “warm-start” that carries the necessary inductive biases towards modeling edits
across programming languages. To adapt to the multilingual co-evolution task, we
then fine-tune the Codeditor model exploring two key components: (i) the context
fed into the model; (ii) the output format of the model.

To encourage our Codeditor model to leverage the (synchronous) code change
histories of multiple programming languages in its training data, we provide the model
with context from three sources as shown in Figure 3.2: (i) code changes on source
programming language (ES); (ii) old version of the code written in target programming
language (MT ;old); (iii) new version of the code written in source programming language
(MS;new).

We explore two formats to represent the generated code changes: (i) the code
edits in the target programming language (ET); (ii) a meta edit sequence that translates
the code edits from the source programming language to the target programming
language, followed by the code edits in the target programming language (this is
similar to the output format of CoditT5). In both cases, we then apply the generated
code edits in the target programming language (ET) to the old version of the code
(MT ;old) to obtain the new version of the code (MT ;new).

3.3.1 Edit Representations

3.3.1.1 Concise Edit Sequence

We first represent edits using a sequence of edits identical to that used in
CoditT5 in Chapter 2, which we call concise edit sequence. Each edit is represented

55

Table 3.1: The mappings between concise edit sequence and unambiguous edit sequence.

Edit Concise Unambiguous

Insertion <Insert>
<ReplaceKeepBefore>
<ReplaceKeepAfter>

Deletion <Delete>
<Delete>
<ReplaceKeepBefore>
<ReplaceKeepAfter>

Replacement <Replace>
<Replace>
<ReplaceKeepBefore>
<ReplaceKeepAfter>

as:

<Operation> [token span] <OperationEnd>

Here, <Operation> is either Insert, Delete or Replace. Note that the Replace is
represented in a slightly different structure since we must specify both the old contents
to be replaced and the new contents to replace with:

<ReplaceOld> [old contents] <ReplaceNew>

[new contents] <ReplaceEnd>

For example, in Figure 3.1, the code change on the old Java method can be represented
by “<ReplaceOld> PdfException <ReplaceNew> LayoutExceptionMessageConstant

<ReplaceEnd>”. We use difflib [28] to compute the set of minimal edit sequence
from the old and new versions of code.

3.3.1.2 Unambiguous Edit Sequence

One drawback of the concise edit sequence specified above is that it can be
ambiguous due to the absence of positional information. For example, the Java

56

code change in Figure 3.1 can be represented using Replace as: “<ReplaceOld>

PdfException <ReplaceNew> LayoutExceptionMessageConstant

<ReplaceEnd>”. Without further specification, the edit does not contain any clues
regarding which PdfException should be replaced as there are two occurrences of
PdfException in the old code sequence. For similar reasons, Delete is ambiguous in
cases where multiple occurrences of token spans can be removed and Insert is always
ambiguous because of not indicating where to add the new contents.

To eliminate the potential ambiguity in the concise edit sequence, we design
the format of unambiguous edit sequence by adjusting the condensed edit sequence
proposed by Panthaplackel et al. [77], which uses anchor tokens to specify the location
to perform edits.

Insertion. We do not use Insert since it will always introduce ambiguity without
location information. To represent insertion, we first find unique anchor tokens that
are the shortest span of tokens that is either before or after the edit location and
is unique in the input sequence. Then we use ReplaceKeepBefore or ReplaceKeep-
After, which represents replacing the anchor tokens with the inserted contents and
the anchor tokens. For example, in Figure 3.1, suppose the Java code change entails
adding a blank return statement after the assertEquals statement on line 7. The
token span “getMessage());” will serve as the minimal span of anchor tokens because
it is unique among the old Java code sequence, and it occurs right before the edit to
be performed. We disambiguate the edit sequence:

<Insert> return; <InsertEnd>

with the unambiguous edit sequence:

<ReplaceOldKeepBefore> getMessage());

<ReplaceNewKeepBefore> getMessage()); return;

<ReplaceEnd>

57

This edit sequence indicates that “getMessage());” should be replaced with
“getMessage()); return;”. We introduce ReplaceKeepBefore operation where the
tokens that follows the <ReplaceOldKeepBefore> should be removed and the tokens
following <ReplaceNewKeepBefore> should be inserted. Different from Replace, there
is some overlap between the tokens to be removed and tokens to be inserted. If anchor
tokens do not exist before the edit location, we use ReplaceKeepAfter with the tokens
after the edit location instead.

Replacement. If the span of tokens to be replaced is unique in the old sequence,
regular Replace sequence is sufficient and deterministic; in that case we will keep
using it. Otherwise, it is unclear which occurrence of token span should be replaced.
As an example, in Figure 3.1, the Java code change is changing from PdfException to
LayoutExceptionMessageConstant in the assertEquals statement on line 6. The
replacement in the concise edit sequence is ambiguous because there are two usages of
PdfException (on lines 5 and 6) in the old Java code sequence after tokenization. To
address this, similar to the insertion case, we search for the minimal anchor tokens
before or after the edit location that can form a unique span in the old sequence. For
example, the concise edit sequence:

<ReplaceOld> PdfException <ReplaceNew>

LayoutExceptionMessageConstant <ReplaceEnd>

can be disambiguate into the following unambiguous edit sequence:

<ReplaceOldKeepBefore> format(PdfException

<ReplaceNewKeepBefore> format(

LayoutExceptionMessageConstant <ReplaceEnd>

Deletion. Similar to replacement, if the span of tokens to be deleted is unique across
the old sequence, we will keep using Delete because it is unambiguous. Otherwise,
it will be transformed to ReplaceKeepBefore or ReplaceKeepAfter. For example,

58

suppose “PdfException.” should be removed from the old Java method on line 6 in
Figure 3.1. The concise edit sequence:

<Delete> PdfException. <DeleteEnd>

will be transformed to:

<ReplaceOldKeepBefore> format(PdfException.

<ReplaceNewKeepBefore> format(<ReplaceEnd>

This edit sequence indicates that “format(PdfException.” should be replaced with
“format(”, unambiguously implying the deletion of “PdfException.”.

To summarize, the unambiguous edit sequence contains 4 types of edits:
<Replace>, <Delete>, <ReplaceKeepBefore> and <ReplaceKeepAfter>. The map-
pings between concise edit sequence and unambiguous edit sequence are summarized
in Table 3.1. The unambiguous edit sequence can be applied to the old code to derive
the new version of code deterministically.

3.3.2 Model Input

We aim to build performant machine learning models for the multilingual
co-evolution task by providing the model with code evolution information, namely the
revisions of code of both source and target programming languages. Instead of directly
translating the entire code snippet between programming languages, Codeditor
translates the code changes between programming languages.

3.3.2.1 Source Code Edits

To encourage the model to learn the alignment between developer-made changes
across programming languages, we provide Codeditor with code changes in the
source programming language (ES). To maintain both precision and conciseness of
the edits, we adopt the unambiguous edit sequence (Section 3.3.1.2) to represent the

59

code changes. As shown in Figure 3.2, the Java code changes (ES) of replacing the
PdfException with LayoutExceptionMessageConstant is structured in the form of

<ReplaceOldKeepBefore> format(PdfException

<ReplaceNewKeepBefore> format(

LayoutExceptionMessageConstant <ReplaceEnd>

3.3.2.2 History-Related Context

In addition to the edit representation of code changes in source programming
language (ES), we provide Codeditor with the old code in target programming
language (MT ;old) to better help the model to infer the correlated code changes in
the target programming language. The intuition is that the model will reason about
how to transfer and adjust the edits in source programming language grounding the
specific implementation of the method in target programming language.

Furthermore, we append the new code in source programming language (MS;new)
as one of the contexts. We believe this will give the model more context to understand
the edits in source programming language and promote the consistency of the updated
methods in two programming languages.

To sum up, we combine history-related context from three sources: code changes
in the source programming language (ES), old code in the target programming language
(MT ;old), and new code in the source programming language (MS;new). We concatenate
them into a sequence separated by a special SEP token as the model input.

3.3.3 Model Output

We propose two formats as the model’s target output which lead to two modes
of Codeditor: EditsTranslation and MetaEdits. Both modes use the same input
and both modes’ target outputs entail a sequence of edits on the target programming
language.

60

EditsTranslation. The output of EditsTranslation mode is the unambiguous edit
sequence in target programming language which suggests how the code in target
programming language should be changed. Note that the model-generated unambigu-
ous edit sequence can be parsed and applied to old version of code deterministically.
EditsTranslation essentially learns to translate the code edits from the source pro-
gramming language (ES) to the target programming language (ET) grounding the
provided code history context. EditsTranslation mode’s target output for the C#
example in Figure 3.1 is:

<ReplaceOldKeepBefore> Format(PdfException

<ReplaceNewKeepBefore> Format(

LayoutExceptionMessageConstant <ReplaceEnd>

MetaEdits. In this mode, we adopt the output format of CoditT5 for multilingual
co-evolution since our model is built upon CoditT5, and it had showed promising
performance on software-related editing tasks. CoditT5 is pretrained to generate the
following output format: “[Edit Plan] <s> [Target Sequence]”. The edit plan is a
concise edit sequence that represents the steps to edit the input sequence; the target
sequence is the edited sequence after applying the proceeding edit plan. We tailored
this format to the multilingual co-evolution task; the edit plan represents the edits
between the code edits on source programming language (ES) and target programming
language (ET) which we call the meta edit sequence. And the final target sequence
should be the unambiguous edit sequence on the target programming language (ET).
For the example in Figure 3.1, the expected meta edit sequence that converts Java
edit to C# edit is the following:

<ReplaceOld> format <ReplaceNew> Format <ReplaceEnd>

The target sequence after applying the meta edit sequence is:

61

<ReplaceOldKeepBefore> Format(PdfException

<ReplaceNewKeepBefore> Format(

LayoutExceptionMessageConstant <ReplaceEnd>

Note that during inference, we only use the target unambiguous edit sequence to get
the updated code in target programming language as MetaEdits mode’s prediction.

3.4 Dataset

This is the first work to consider the evolution of software projects in the
multilingual setting; hence, we also created a new dataset that includes aligned code
changes between programming languages. As the first step, we build the dataset
by mining histories of the open-source Java and C# projects. We first collect the
changed methods from the commits of the Java and C# projects. We then design
heuristics to pair (i.e., align) those changes on methods with similar implementations
and functionalities. We consider two directions on our dataset: J2CS (updating
C# method based on Java changes) and CS2J (updating Java method based on
C# changes). In this section, we describe the approach we use to collect the data
(Section 3.4.1), split and preprocess data (Section 3.4.2), and finally present the
statistics of our dataset (Section 3.4.3).

3.4.1 Data Collection

To build the dataset, we extract aligned Java and C# code changes at the
method level as tuples (Java old method; Java new method, C# old method; C# new
method).

The code changes are mined from the git commits. We consider 8 open-source
projects as listed in Table 3.2 which have both Java and C# implementations and are
used in prior work [18, 61, 69]. All the projects were first developed in Java and then
ported to C#.

62

Table 3.2: Open-source projects used in our dataset and number of examples from
each project.

Java Project C# Project Count

antlr/antlr4 tunnelvisionlabs/antlr4cs 12
apache/lucene apache/lucenenet 40
apache/poi nissl-lab/npoi 5
eclipse/jgit mono/ngit 808
formicary/fpml-toolkit-java formicary/fpml-toolkit-csharp 20
itext/itext7 itext/itext7-dotnet 5,121
quartz-scheduler/quartz quartznet/quartznet 17
terabyte/jgit mono/ngit 590

SUM 6,613

To collect the paired changes, we first assign a unique identifier to each method
in the projects (for both Java and C# projects) based on the method signature, class
name and path to the file where the method is defined. Similar to the strategy used
by Lu et al. [61], we then pair the Java methods and C# methods according to the
similarity of their unique identifiers. This strategy is effective because the ported C#
project has very similar structure and naming rules for classes and methods to the
corresponding Java project.

We use the following rules to extract the aligned code changes:

1. For each Java method change, we extract the code changes in the paired C# method
that happen no later than 90 days of the Java change as the possible matched code
change. We use the commit date as the time of the change.

2. To filter unrelated code changes, we compute the Jaccard similarity [47] between C#
and Java added and deleted lines. We further refine the filtering by sub-tokenizing
these lines based on camelCase conventions (e.g., lastModified to last modified)
and compute Jaccard similarity only for the added and deleted tokens. We only
keep possible matched code changes that have the token-level Jaccard similarity
higher than 0.4 and the line-level Jaccard similarity higher than 0.5.

63

3. For each Java code change and C# code change, we only select the most similar
corresponding code change if there are multiple possible matched code changes.

3.4.2 Data Preprocessing and Splitting

For both Java and C# methods, we remove the inline natural language com-
ments and tokenize the method into tokens using the language-specific lexers generated
by ANTLR [81].

We envision the following use case for the machine learning model: whenever a
developer makes a change in the project written in the source programming language,
the developer will use the model trained on the existing historical aligned code changes
to migrate that change to projects written in other target programming languages.
To evaluate the models under this use case, following the recommendations from
prior work [71], we split the dataset into training, validation and test sets using the
time-segmented approach. Namely, the changes in the training data took place before
the changes in the validation set, which in turn took place before the changes in
the test data for evaluation. More specific, for each Java and C# code change pair,
we first collect the time of the C# commit and then sort the code change pairs in
chronological order. We then select the oldest 70% of the code change pairs from each
project as training data, next oldest 10% as validation data, the remaining as test
data.

To more rigorously assess the generalization capabilities of the models, we also
evaluated them when splitting the dataset using the cross-project approach [71], which
is frequently used in prior work on machine learning models for code. Specifically, the
aligned code changes in the training set are from different projects compared to those
in the validation and test sets.

64

Table 3.3: Statistics of our dataset. Number of examples of training, validation and
test data; average number of tokens in the old version of method and new version of
method; average number of edits for the code change; average number of added and
deleted tokens.

Training Validation Test
Count 4,391 623 1,599

Java

Avg. len(Mold) 193.05 192.88 159.06
Avg. len(Mnew) 195.99 192.36 159.37
Avg. # edits 2.71 2.68 2.43
Avg. # add. tokens 19.57 16.64 10.90
Avg. # del. tokens 16.62 17.16 10.59

C#

Avg. len(Mold) 200.37 199.71 168.60
Avg. len(Mnew) 203.49 199.47 169.22
Avg. # edits 2.73 2.75 2.47
Avg. # add. tokens 20.30 17.69 11.86
Avg. # del. tokens 17.18 17.92 11.25

3.4.3 Statistics

The statistics of the collected dataset are shown in Table 3.3. We present the
number of examples in the training, validation, and test dataset using time-segmented
split approach. We show the average number of tokens in the old methods (Avg.
len(Mold)) and new methods (Avg. len(Mnew)) after tokenization by the lexers. To
measure the size of the code changes, we calculate the average number of added tokens
(Avg. # add. tks) and deleted tokens (Avg. # del. tks) in the changed Java and
C# methods as well as the average number of edits (Avg. # edits) needed for those
changes. For computing these edit-related statistics, we represent the code changes
using concise edit sequences (Section 3.3.1.1).

For both Java and C# code changes, the difference between average number of
added tokens and deleted tokens is usually small, fewer than 4 tokens. Similarly, we
find that the average number of edits needed is fewer than 3 and the edits happened
in the newer commits are generally smaller than prior ones. This is expected as the

65

software projects are becoming more stable as they evolve, and thus there will be
smaller code changes to be made. For evaluation, we run all the models and baselines
on this dataset in two directions: (1) updating C# method based on Java changes,
and (2) updating Java method based on C# changes. We denote the former one as
J2CS and the latter one as CS2J.

3.5 Experiments

In this section, we describe the baselines we compare to with our Codedi-
tor model (Section 3.5.1), the evaluation metrics (Section 3.5.2) and the detailed
experiment setup (Section 3.5.3).

3.5.1 Baselines

We evaluate our approach against rule-based models, pretrained encoder-
decoder models, the state-of-the-art code-editing model (which targets a single pro-
gramming language), and large generative models pretrained on billions of lines of
code.

Copy. This is a rule-based model which copies the old code in target programming
language (MT ;old) as the prediction. This is not a trivial baseline since there are quite
a few examples in the dataset that entail small edits between two versions. We include
this to benchmark the models that actually update the code.

CopyEdits. Based on our observations, there are cases where the code change
in source programming language (ES) is exactly the same as the change in target
programming language (ET) , such as changing the variable name or updating the log
message. This rule-based model copies the ES and directly applies it to the old code
in target programming language (MT ;old).

CodeT5-Translation. We consider a state-of-the-art model that does not have access
to the code change history. Namely, a code translation model that translates code

66

between the programming languages (from MS;new to MT ;new). We use CodeT5 [110],
an LLM pretrained on large amount of developer-written code from GitHub, which
we fine-tune on our constructed dataset.

CodeT5-Update. This model has the same architecture as CodeT5-Translation
except that we supply it with code change history. The model input is the same
as for our Codeditor models, i.e., with extra context of the old code in target
programming language (MT ;old) and the code change in source programming language
(ES). Different from Codeditor model, it is trained to directly generate the new
code in target programming language (MT ;new).

CoditT5. This is the state-of-the-art model for software editing tasks. It has the
same model architecture and input as Codeditor, while the output consists of the
edit plan to represent the edits on the target programming language and the target
sequence which represents the updated code (MT ;new) after applying the edit plan.

Codex-few-shot [17]. Large pretrained generative models such as GPT-3 [12] have
shown impressive results under the context of few-shot learning or even zero-shot
learning on various generation tasks. They are able to generalize to new tasks they
have not seen during pretraining with only a few or even no labeled examples. To
compare the fine-tuned Codeditor model with generative models, we include Codex,
a large generative model built on GPT-3 and is further pretrained on billions of GitHub
data. Following prior work [3, 50], for each example in test data, we randomly select
several labeled examples in the training data as the context. Note that the labeled
examples are selected from the same project as the test data. For J2CS dataset, each
labeled example is formed as: “Java: MS;old ⇒ MS;new C#: MT ;old ⇒ MT ;new” to
inform the model the aligned updates between two programming languages. The
designed prompt for inference is “Java: MS;old ⇒ MS;new C#: MT ;old ⇒ ”. The model
output is the prediction for the new code in target programming language (MT ;new).
To conform to the required input length limit, we include 2 labeled examples in the
prompt.

67

gpt-3.5-turbo-zero-shot [74]. gpt-3.5-turbo is an upgraded version of GPT-3 model
and is further fine-tuned for conversation generation following human instructions
with the help of supervised and reinforcement learning methods. It has showed strong
performance on code completion benchmarks like HumanEval and MBPP [1, 5, 17]. For
each example in test data, we provide instructions including both the previous and the
updated versions of the code written in the source programming language, subsequently
prompting gpt-3.5-turbo to update the old code in the target programming language
accordingly. For J2CS dataset, the prompt is formed as: “The developer updates the
Java method from: MS;old to: MS;new. Please update the C# method accordingly.
This is the old C# method: MT ;old.”

3.5.2 Evaluation Metrics

Following prior work [2, 77, 110], as well as our work presented in Chapter 2, we
use metrics for evaluating the quality of code generation: BLEU [80], CodeBLEU [89],
xMatch, and metrics for evaluating the quality of software editing: SARI [114] and
GLEU [68]. Note that for all the metrics we report in this chapter, they range from 0
to 100 and higher scores are better.

xMatch. When the generated code matches exactly with the expected code in target
programming language, this metric is 100; otherwise, this metric is 0. This metric
reflects the percentage of exact matches among the models’ predictions on test data.

BLEU. It is a widely used metric originally proposed for evaluating the quality of
machine translation. It measures the n-gram overlap between the generated sequence
and the expected one. Concretely, we report the 1∼4-grams overlap between the
tokens in the predictions and tokens in the ground truth.

CodeBLEU. The metric is proposed for evaluating the quality of code generation.
In addition to measuring the n-gram overlap, it considers the overlap of the Abstract
Syntax Tree (AST) and data-flow graph between generated code and the expected
code.

68

SARI. It measures quality of the systems that are designed to make edits. Specifically,
it is computed as the average of the F1 score for kept and inserted spans of tokens,
and the precision of deleted spans of tokens.

GLEU. It is a variant of BLEU. It was originally proposed for grammatical error
correction and designed for rewarding the correct edits while penalizing the incorrect
ones.

3.5.3 Experiment Setup

We run all experiments on machines with 4 NVidia 1080-TI GPUs, Intel(R)
Xeon(R) CPU E5-2620 v4 @ 2.10GHz for training. We implement our models using
PyTorch 1.9.0. All the hyper-parameters of the CodeT5 and CoditT5 baselines are set
to the same values as in prior work [110, 122]. For Codeditor, CodeT5-Translation,
CodeT5-Update, and CoditT5, we early stop the training when the BLEU score on
the validation set does not improve for 5 epochs, and use beam search with beam size
20 during inference. For Codex and gpt-3.5-turbo, we set temperature to 0.2 during
inference.

Note that Codex and gpt-3.5-turbo are closed-source and may be updat-
ed/deprecated over time. We use gpt-3.5-turbo-0613 2 in this chapter. We used the
code-davinci-002 version of Codex when performing experiments in the time-segmented
split; however, OpenAI deprecated Codex in March 2023 before we could complete
our experiments in the cross-project split, as such we did not include Codex in this
part of results.

3.6 Results

We organize our evaluation around three main research questions:

RQ1: What is the benefit of using code change history in multilingual co-evolution?

2https://platform.openai.com/docs/models/gpt-3.5-turbo

69

Table 3.4: Results on the J2CS dataset. The results with the same suffixes (e.g., β)
are NOT statistically significantly different.

Models xMatch BLEU-4 CodeBLEU SARI GLEU

Copy 0.00 83.11 90.42 30.68 74.58
CopyEdits 38.21β 90.29αχ 91.34 76.92 87.93

CodeT5-Translation 38.02β 87.45 77.15 83.77 85.59
CodeT5-Update 60.41ϵ 90.00χη 76.63 80.11 88.72
CoditT5 60.29ϵ 89.84αη 75.20 80.99 89.29
Codex-few-shot 48.84 80.71 59.63 72.80 79.74
gpt-3.5-turbo-zero-shot 29.52 85.60 73.00 68.44 84.74

Codeditor (MetaEdits) 63.48 94.55 94.78 85.63 93.20
Codeditor (EditsTranslation) 67.23 95.44 96.02 87.23δ 94.21

Hybrid 71.79 96.12 96.09 87.08δ 95.07

RQ2: How does our edit-based model, Codeditor, compare to generation-based
models for the multilingual co-evolution?

RQ3: How can a generation-based model complement Codeditor model to further
improve the performance?

3.6.1 Quantitative Analysis

In tables 3.4-3.7, we present results for baselines and our proposed Codeditor
models on J2CS, CS2J for both time-segmented and cross-project splits. We conducted
statistical significance testing through bootstrap tests [9] under confidence level 95%.

RQ1: Contribution of code change histories. We divide models into two
categories with respect to whether a model has access to the information on code
change histories: Copy and CodeT5-Translation are history-agnostic models, and the
remaining are history-aware models. Overall, the history-aware models outperform
the history-agnostic ones. The rule-based model CopyEdits, which directly applies
the code change in source programming language (ES) to the old code in target
programming language without any adaptation, has comparable performance to the

70

Table 3.5: Results on the CS2J dataset. The results with the same suffixes (e.g., β)
are NOT statistically significantly different.

Models xMatch BLEU-4 CodeBLEU SARI GLEU

Copy 0.00 83.06 89.82 30.66 74.55
CopyEdits 38.15 89.36α 90.31β 75.86 87.02χ

CodeT5-Translation 40.21 89.10α 77.99β 83.99 87.21χ

CodeT5-Update 55.97 90.62 76.38γ 79.65 89.72
CoditT5 60.98 90.88 75.87γ 81.41 90.15
Codex-few-shot 55.53 82.54 60.35 76.23 82.13
gpt-3.5-turbo-zero-shot 32.52 86.95 76.01 69.05 86.33

Codeditor (MetaEdits) 68.61ϵη 93.98 94.43 85.74 92.61
Codeditor (EditsTranslation) 67.92δϵ 95.29 94.83 86.24 94.23

Hybrid 67.67δη 96.44 95.36 84.46 95.75

machine learning history-agnostic model CodeT5-Translation. This emphasizes the
importance of contextual information provided by code change histories in multilingual
co-evolution. Interestingly, we find that Codex-few-shot, which is used under the
few-shot learning setting without fine-tuning, performs better than fine-tuned CodeT5-
Translation on xMatch, while worse than other history-aware fine-tuned machine
learning models. This again underlines the value of code change histories and suggests
that fine-tuning will give better performance by leveraging more code history contexts
in the training data.

RQ2: Codeditor vs. generation-based models. Among all the history-aware
models, machine learning models, such as CodeT5-Update and CoditT5, achieve much
higher performance than the rule-based CopyEdits, which demonstrates that the
machine learning models effectively learn to reason about the correlated code changes
and adjust them to the target programming language. We observe that Codeditor
(in both EditsTranslation and MetaEdits modes), which is trained to first translate
code changes on source programming language to target programming language and
then apply the edits to the old code in target programming language, achieves even
higher performance across all the metrics than the large pretrained generation-based

71

Table 3.6: Results on the cross-project split using J2CS dataset. The results with the
same suffixes (e.g., β) are NOT statistically significantly different.

Models xMatch BLEU-4 CodeBLEU SARI GLEU

Copy 0.00 79.96α 89.08 30.53 71.89
CopyEdits 14.19 87.95 89.73 67.58 85.55

CodeT5-Translation 10.64 77.34 64.35 71.73 74.16
CodeT5-Update 29.38 80.56α 66.15 64.70 79.65
CoditT5 34.59 81.59 65.17 83.29 80.91
gpt-3.5-turbo-zero-shot 39.58 86.97 74.90 70.15 86.14

Codeditor (MetaEdits) 38.36 90.79β 91.60 73.45 88.94χ

Codeditor (EditsTranslation) 41.91 90.86β 91.35 74.59 88.94χ

Hybrid 43.35 92.51 91.70 89.13 91.18

model (CodeT5-Update) which directly generates the new code in target programming
language from scratch. This highlights that the models that are trained to explicitly
perform edits by predicting the edit sequence are better suited for editing tasks in the
software domain than generation-based models.

To further investigate the advantages of Codeditor over the best generation-
based model (CodeT5-Update), we break down the performance of EditsTranslation
and CodeT5-Update on each example in the test data of J2CS. In Figure 3.3a, we
show the average percentage of Codeditor (EditsTranslation) and CodeT5-Update’s
predictions that exactly match the ground truth with respect to the number of
subtokens in the input old code (MT ;old). Note that the code are subtokenized using
the Roberta tokenizer [58], which is used by both models. We exclude the examples
that have more than 500 subtokens from being shown in this figure as those outliers
only account for less than 5% of the test data. We can see that the performance of
CodeT5-Update drastically drops with the increase of number of subtokens in the
code to be edited (MT ;old), but EditsTranslation’s performance is rather stable. This
illustrates another benefit of Codeditor in accurately handling longer input, because
of focusing on transforming the edits instead of generating the entire new code like

72

Table 3.7: Results on the cross-project split using CS2J dataset. The results with the
same suffixes (e.g., β) are NOT statistically significantly different.

Models xMatch BLEU-4 CodeBLEU SARI GLEU

Copy 0.00 80.02 88.60 30.51 71.94
CopyEdits 13.86 86.99 88.70 66.50 84.14

CodeT5-Translation 6.21 76.84 62.27 67.37 69.81
CodeT5-Update 31.60 81.98 65.82 65.49 81.07
CoditT5 35.81 82.89 65.20 83.27 81.67
gpt-3.5-turbo-zero-shot 39.80 89.35 76.69 72.36 88.62

Codeditor (MetaEdits) 41.91 91.54α 91.21 73.46 89.36β

Codeditor (EditsTranslation) 40.35 91.63α 90.99 74.15 89.58β

Hybrid 46.34 93.17 91.32 89.62 91.24

CodeT5-Update.

Meanwhile, most of the existing transformer-based models have a length limit
for the input sequence because the naive self-attention has quadratic complexity
with regard to the input length. In Figure 3.3b, we present the distribution of the
number of subtokens in the models’ target outputs for Codeditor (EditsTranslation)
and CodeT5-Update on the test data of J2CS. We only show the distribution of
target outputs with fewer than 500 subtokens for the same reason described in
the previous paragraph. Most of Codeditor’s target outputs (the sequence of edit
operations) are shorter than CodeT5-Update’s output (new code in target programming
language). This might explain why Codeditor achieves better performance than
generation-based models on longer code as generating longer sequence are generally
more challenging to machine learning models. Recent studies [8, 10, 21] have focused
on exploring approaches to address the limitation of the model’s input context window
size. Future research should examine the performance difference between translating
edit sequences and generating entirely new code using models capable of handling
longer context.

RQ3: Combining generation-based model with Codeditor . To exploit

73

0 125 250 375 500
subtokens

0.0

0.2

0.4

0.6

0.8

1.0
xM

at
ch

CodeT5-Update
CODEDITOR(EditsTranslation)

(a) Average percentage of model’s predic-
tions that exactly match the ground truth
on examples that have different number of
subtokens. The bands represent the 95%
confidence interval.

0 50 100 150 200 250 300 350 400 450 500
subtokens

0

50

100

150

200

250

300

350

400

Co
un

t

Model
CodeT5-Update
CODEDITOR(EditsTranslation)

(b) Distribution of number of sub tokens in
models’ target outputs.

Figure 3.3: Comparison of model performance by input length (left) and distribution
of output token lengths (right).

the superiority of generation-based model on short code snippets, we combine our
strongest generation model, CodeT5-Update, with the strongest Codeditor model,
EditsTranslation, based on the size of the code snippet. Specifically, we use CodeT5-
Update if the code to be updated has fewer subtokens than a threshold and use
Codeditor (EditsTranslation) otherwise. To pick the threshold for combining two
models, we performed a grid-search on the validation set and selected the one that
gives optimal xMatch score.

We refer to the combined model as the Hybrid model and provide its results
on the bottom row of Table 3.4 to Table 3.7. By combining generation-based model
with Codeditor, we can achieve improved performance on most of the reported
automatic metrics.

74

3.6.2 Qualitative Analysis

Figure 3.4 shows an example in J2CS dataset and the models’ predictions. We
show the code changes from Java project itext/itext7 in the method (parseBodyFragment).
The newly added code is highlighted in green and removed code is highlighted in
red. We also present the old version of the corresponding C# method (ParseBody-
Fragment) from itext/itext7-dotnet, and the predicted code changes from three
models: Codeditor (EditsTranslation), CodeT5-Update, CodeT5-Translation. Note
that CodeT5-Translation only has access to the new version of Java method.

75

1 public static Document parseBodyFragment(String bodyHtml, String baseUri) {
2 ...
3 List <Node> nodeList = parseFragment(bodyHtml, body, baseUri);
4 Node[] nodes = nodeList.toArray(new Node[0]);
5 - for (int i = nodes.length - 1; i > nodeList.size(); i--) {
6 + for (int i = nodes.length - 1; i > 0; i--) {
7 nodes[i].remove();
8 }
9 ...

10 } Java Change

1 public static Document ParseBodyFragment(String bodyHtml, String baseUri) {
2 ...
3 IList <iText.StyledXmlParser.Jsoup.Nodes.Node> nodeList = ParseFragment(

bodyHtml, body, baseUri);
4 iText.StyledXmlParser.Jsoup.Nodes.Node[] nodes = nodeList.ToArray(new iText.

StyledXmlParser.Jsoup.Nodes.Node[nodeList.Count]);
5 for (int i = nodes.Length - 1; i > nodeList.Count; i--) {
6 nodes[i].Remove();
7 }
8 ...
9 }

1 ...
2 - for (int i = nodes.Length - 1; i > nodeList.Count; i--) {
3 + for (int i = nodes.Length - 1; i > 0; i--) {
4 ...

1 ...
2 - iText.StyledXmlParser.Jsoup.Nodes.Node[] nodes =
3 nodeList.ToArray(new iText.StyledXmlParser.Jsoup.Nodes.Node[nodeList.Count]);
4 + iText.StyledXmlParser.Jsoup.Nodes.Node[] nodes =
5 nodeList.ToArray(new iText.StyledXmlParser.Jsoup.Nodes.Node[0]);
6 - for (int i = nodes.Length - 1; i > nodeList.Count; i--) {
7 + for (int i = nodes.Length - 1; i > 0; i--) {
8 ...

1 ...
2 - iText.StyledXmlParser.Jsoup.Nodes.Node[] nodes =
3 nodeList.ToArray(new iText.StyledXmlParser.Jsoup.Nodes.Node[nodeList.Count]);
4 + Node[] nodes = nodeList.ToArray(new Node[0]);
5 - for (int i = nodes.Length - 1; i > nodeList.Count; i--) {
6 + for (int i = nodes.Length - 1; i > 0; i--) {
7 ...

C# Old Method

Codeditor (EditsTranslation) Prediction

CodeT5-Update Prediction

CodeT5-Translation Prediction

Figure 3.4: Qualitative analysis of all the models on one example in the test data of
J2CS dataset.

Although CodeT5-Translation is able to correctly translate the code change
in Java, it fails to infer the full name of the type Node and makes an irrelevant edit,

76

because it does not have the context of the old version of C# code. CodeT5-Update
correctly captures the Java change while making an extra irrelevant edit on the C#
code. Our proposed model, Codeditor (EditsTranslation) accurately identifies the
position in the C# method to make edits and correctly adjusts the Java edits.

3.7 Limitations

Studied programming languages. We study the translation of code changes
between two programming languages. In this Chapter, we focus on open-source Java
and C# projects due to the ease of locating corresponding changes using heuristics.
Nevertheless, it is important to note that our approach can be applied to other
programming language pairs as well, and we leave the investigation of such pairs for
future research.

Correspondence between programming languages. Our model, Codeditor, is
intended for developers to migrate code changes from a project written in a source
programming language to projects written in target programming languages, leveraging
known correspondences (e.g., methods with similar functionalities) between the source
and target programming languages. In this work, we adopt a similar strategy used
in [61] to match Java and C# methods. In practice, a code retrieval system can
be used as a first step to identify the locations where the code changes should be
propagated. We leave the combination of code retrieval tool and Codeditor as
future work.

Empirical evaluation. This chapter presents the empirical study results for internal
metrics that are of interest to researchers. However, the external measurements
of the impact on software engineering effort are not included in this study. These
measurements could be addressed by conducting user studies.

77

3.8 Conclusion

We formulated a new task: translating code changes across programming
languages with the goal to synchronize projects that provide the same APIs or
implementations in multiple programming languages. We proposed Codeditor, a
model which uses code change history as contextual information and learns to make
edits on the existing version of code written in the target programming language to
help with the multilingual code co-evolution. We showed that our model outperforms
existing code translation models and is better than the generation-based models even
if they use historical context. Codeditor is a significant advancement in supporting
developers with the maintenance of their projects that incrementally provide identical
functionalities in multiple programming languages.

78

Chapter 4: Related Work

In this chapter, we describe work most closely related to this dissertation. First,
we review the research on modeling edits with machine learning techniques (Section 4.1).
Next, we describe research on pretrained LLMs for code-editing tasks (Section 4.2).
Then, we discuss rule-based code translation tools (Section 4.3), existing machine
learning models designed for code translation (Section 4.4), and machine learning
models proposed to reduce software evolution (Section 4.5).

4.1 Learning Edits

Prior work has studied learning edits in both natural and programming lan-
guages. We followed the approach of explicitly representing edits as sequences with
edit actions. Our edit representation is inspired by Panthaplackel et al. [77, 79], who
studied learning comment editing based on code edits. Brody et al [11], Tarlow et
al [95], Chen et al [19], and Yao et al [116] represented code as ASTs (abstract syntax
trees) and the code edits as edit actions over the AST nodes rather than tokens. We
do not focus on editing structured data (AST) as it can not be easily combined with
large pretrained models which are primarily based on sequence of tokens. To model
code edits, instead of generating entirely new code, different LLMs adopt different
edit formats [96]. For example, after the publication of the results in this dissertation,
Gemini family of models [98] use “diff-fenced” format where LLMs should specify the
series of search and replace blocks with the path to the file. The GPT-4 Turbo family
of models [75] use the widely used unified diff format similar to the git diff format
because of its efficiency.

Alternatively, edits can be encoded into vector representations (or embeddings).
Guu et al. [37] studied learning edit embeddings for natural language generation in a
prototype-then-edit style. Yin et al. [118] studied learning code edits as embeddings and

79

then applying them to natural language editing tasks and code bug fixing. Hashimoto
et al. [39] developed a retrieve-and-edit framework for text-to-code generation, where
the edits are learned as parameters of a seq2seq model. Similarly, Li et al. [54]
proposed a retrieve-and-edit framework for code summarization task where the model
first learns an edit vector and then generates the revised summary conditioned on it.
Although learning edits as embeddings can be effective for individual tasks, it is not
suitable to be used in the pretraining and fine-tuning paradigm, because there is a
large domain gap between the edit embeddings learned on different tasks. Moreover,
edit embeddings are less explainable compared to the explicit edit representations we
use.

Another line of work that carries out the idea of learning edits is copying
mechanism, including copying individual tokens [33, 107] and spans [78, 128], which
helps the model to “keep” unchanged tokens and focus on generating the edited part.
Iv et al. [46] built a T5-based model to update the existing articles based on the given
new evidence. The model is trained to output a copy token instead of the copied
sentence and a special reference token before the updated text which identifies the
evidence to support the update. Ding et al. [22] trained the model to emit pointers
that indicate the positions for editions and new tokens to be inserted at the same time.
Similarly, Tarlow et al. [95] and Chen et al. [19] augmented the transformer-based
decoder with pointers to the input graph representation of the code which specify the
input locations to edit. Although related, it is orthogonal to our work on learning
edits with pretraining.

4.2 Large Language Models for Code Edits

Motivated by the success of large pretrained models for many NLP tasks,
domain-specific models that are pretrained on source code and technical text have
emerged, including CodeBERT [26], GraphCodeBERT [34], CodeT5 [110], PLBART [2],
PyMT5 [20], SynCoBERT [108], Codex [17], UniXcoder [35], CodeLlama [91], etc.

80

Similar to our approach, GraphCodeBERT, CodeT5, SynCoBERT, and UniXcoder
also designed specialized pretraining objectives driven by their targeted tasks.

Prior work already explored applying pretrained models, despite not well-suited,
on editing tasks. Chakraborty and Ray [14] used PLBART for code bug fixing, which
we compared to in our work. Similarly, Drain et al. [23] further pretrained BART
model on 67K Java repositories mined from GitHub and fine-tuned specifically on the
bug fixing dataset [102]. Wang et al. [110] and Mastropaolo et al. [65] both pretrained
T5 model on CodeSerchNet and used it for bug fixing, which we included as a baseline
(CodeT5). Codex [17] showed promising performance on editing tasks by specifying the
existing code as a prompt and providing an edit instruction to the model. Tufano et al.
[104] and Li et al. [55] both proposed a transformer-based encoder-decoder models
pretrained on large code reviewer specific data for code review related tasks including
code change quality estimation, review comment generation, and code refinement.
While they demonstrate impressive performance on various tasks, none of them are
fundamentally well-suited for editing tasks.

4.3 Rule-based Code Translation

Researchers and practitioners have designed rule-based tools for translating the
source code between programming languages. Such tools, usually called transpilers,
were built for pairs like Java and C# [4], C and Rust [29], C and Go [24]. Nguyen
et al. [69] proposed PBSMT, a phrase-based statistical machine translation models
for source code translation. Gyori et al. [38] proposed LambdaFicator to translate
imperative Java code to using the functional Stream APIs. Radoi et al. [84] presented
the rule-based model to translate sequential Java code to MapReduce framework.
Prior work [63] has shown that existing rule-based code refactoring tools can only deal
with stylized code snippets over common code patterns.

81

4.4 Learning-based Code Translation

Researchers have proposed various machine learning models for the code
translation task. Chen et al. [18] proposed a tree-to-tree neural network with a tree-
RNN encoder and a tree-RNN decoder. Motivated by the success of large pretrained
LLMs for many Natural Language Processing tasks, domain-specific models that are
pretrained on source code and technical text have emerged. Researchers have applied
them to the code translation task. Lu et al. [61] proposed CodeXGLUE, a benchmark
including the code translation dataset consisting of Java and C# methods with
equivalent functionality. They fine-tuned and evaluated CodeBERT on the translation
dataset. Results showed that it produced the best results among all the existing
baselines. LLMs that are built on the encoder-decoder paradigm and pretrained with
general unsupervised denoising auto-encoding objectives showed promising results
on wide range of code generation tasks including code translation. Such models
include CodeT5 [110], PLBART [2], and UniXcoder [35]. For the comparison of
Codeditor with state-of-the-art code translation models, we include two variants
of the CodeT5-based translation models (with history context and without) in our
evaluation.

Researchers designed LLMs that are pretrained with the objective tailored
for code translation. Tipirneni et al. [99] introduced tasks on predicting AST paths
and data flows during pretraining. Lachaux et al. [51] proposed TransCoder which
is pretrained to do code translation with back-translation objective. To improve the
quality of pretraining data, Roziere et al. [90] leveraged an automated unit-testing
system to filter out invalid generated programs during back-translation. Zhu et
al. [129] proposed MuST, which is a multilingual code snippet translation pretraining
objective. None of the above work leverages the code change history, which is the main
contribution of this dissertation. We leave improving Codeditor with pretraining
objectives tailored for code translation as future work.

82

4.5 Software Evolution and Machine Learning

New research initiatives have emerged around building and evaluating models
that aid the process of software evolution. Prior work [30, 56, 57, 60, 77] proposed to
update the comment given the changes in the associated method, e.g., Panthaplackel
et al. [77] built a model that takes the code change as context to make edits on the
outdated comment. Nie et al. [71] presented different approaches to split dataset into
training, validation, and test sets and studied how different approaches affect the
evaluation of machine learning models. Kamezawa et al. [49] presented a dataset,
RNSum, which consists of release notes and the associated commit messages collected
from GitHub repositories and designed models to generate release notes based on the
commit messages. Li et al. [55], Tufano et al. [104], Zhang et al. [124] proposed models
that targeted various tasks through the code review process. The models are trained
on the historical data and evaluated on the new data pull requests submitted for code
review. Our Codeditor model incorporates the context from the code changes in
source programming language and the old version of method in target programming
languages to improve its performance on the multilingual co-evolution task, which helps
developers co-evolve the projects implemented in different programming languages.

83

Chapter 5: Future Work

We now present our visions for future work and research questions that can be
explored upon our contributions as described in chapters 2 and 3.

5.1 Edit Representation

In this dissertation, we propose a novel edit output format that includes both
the edit operations and the final edited sequence. Training models to generate this
format improves performance across multiple software maintenance tasks compared to
standard generation models. Exploring alternative edit representations may further
enhance model performance.

The current edit plan uses token-level edit sequences, which can be difficult to
interpret when changes span multiple lines or files. A more interpretable alternative
is line-level edits, such as the unified diff format, which represents code changes
at the line level. This format clearly shows both deletions and additions, along
with the surrounding context. Another limitation of token-level edits is the lack of
code structure, which makes them prone to producing syntactically incorrect edits.
For example, an edited span might cut through the middle of a statement, such
as “<Delete> Math.abs(<DeleteEnd>“. A possible solution is to use code blocks
as the unit of change, leveraging the fact that LLMs perform well at function-level
code generation. A code block could be a function, a basic block, or a node in
the AST. Natural language descriptions of the intended edits could also be used as
edit operations and included in the output. This format may better align with the
capabilities of instruction-tuned and reasoning-augmented LLMs.

84

5.2 Edit Localization

Both CoditT5 and Codeditor are applied to tasks where the code or
comment to be edited is already specified. However, accurately localizing the edit is
essential in most software maintenance tasks and is not a trivial task. For example, in
the codebase co-evolution task, functionally similar code snippets may not be readily
available or easy to identify. Similarly, fault localization is a critical and challenging
step in program repair before generating the patch. Future work can design LLMs that
can first localize or suggest the next place to edit, and then generate the corresponding
edit. This capability is important for advancing toward the goal of automating software
maintenance using artificial intelligence.

Another important problem is how to suggest the next edit based on previous
edits. Models can be built through being trained on the developers’ editing activities.
Within the same file, edits can be collected and paired as relevant edits. Cross-file
relevant edits could be grouped using heuristics that identify related changes from
version control commits made within a short time window.

5.3 Software Maintenance Agents

Software maintenance requires the collaboration between multiple experienced
developers. Using artificial intelligence to fully automate this process, the collaboration
of multiple software engineering AI agents just like humans is necessary and promising.
To achieve this, AI agents need to have the reasoning capability to solve real-world
software maintenance tasks in addition to having the basic knowledge of coding. Then,
they should learn to collaborate and communicate like a team of software developers
to accomplish the complicated task.

Learning from developer activities. Different development teams use different
tools and follow different practices for maintaining software. To effectively mimic
human behavior, an AI agent should be trained on the daily activities of software
developers. One promising approach is to train models on commit histories from

85

version control systems. Specifically, models should be able to predict future commits
based on previous ones. This helps equip the models with the ability to infer developer’s
intent, enabling them to make decisions and take actions similar to human developers.

Multi-agent collaboration. A single action is often not sufficient to complete a
software maintenance task. Therefore, a team of LLMs should collaborate to automate
different subtasks of one complicated task. For example, in bug fixing, one agent may
localize the buggy file, another may propose a patch, and a third may run regression
tests. These agents should be able to communicate effectively and iterate together
through the entire bug fixing process. Similarly, for code review, a code editing agent
can apply changes to the codebase, while a reviewer agent provides feedback on each
proposed modification. As the capabilities of foundation LLMs improve, task-specific
agents will also become more effective especially after fine-tuned on the task-specific
developer activity data.

86

Chapter 6: Conclusion

Software maintenance is essential for keeping software systems functional, secure,
and up-to-date, but it often requires significant human effort. Existing generative
models perform well on generation tasks, but fall short on editing tasks, which are
common in software maintenance. This dissertation proposes designing software
evolution-aware LLMs to better assist developers with software maintenance tasks.

First, we presented a novel edit-driven pretraining objective and used it to
develop CoditT5, a pretrained language model for software maintenance tasks.
CoditT5 is pretrained on large amounts of source code and natural language com-
ments to perform edits, and we evaluated this model by fine-tuning it on three
distinct downstream tasks: comment updating, bug fixing, and automated code review.
By outperforming task-specific baselines and generation baselines across tasks, we
demonstrate the suitability of CoditT5 (and our pretraining objective) for software
maintenance tasks and its generalizability.

Second, we presented a new task: translating code changes across programming
languages with the goal to synchronize projects that provide the same APIs or
implementations in multiple programming languages. We proposed Codeditor, a
model which uses code change history as contextual information and learns to make
edits on the existing version of code written in the target programming language. We
showed that our model outperforms existing code translation models and is better
than the generation-based models even if they use historical context.

We envision that with the rapid development of LLMs, software maintenance
tasks will be partially automated through the use of LLMs and AI agents. We argue
that designing software evolution-aware LLMs and training them on software evolution
data, like demonstrated in this document, is key to achieving human-level intelligence
in maintaining software systems.

87

References

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Flo-
rencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shya-
mal Anadkat, et al. GPT-4 technical report. arXiv preprint arXiv:2303.08774,
2023. https://doi.org/10.48550/arXiv.2303.08774.

[2] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Unified
pre-training for program understanding and generation. In Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 2655–2668, 2021. https://doi.org/10.

18653/v1/2021.naacl-main.211.

[3] Toufique Ahmed and Premkumar Devanbu. Few-shot training LLMs for project-
specific code-summarization. In Automated Software Engineering, pages 1–5,
2022. https://doi.org/10.1145/3551349.3559555.

[4] Christian Mauceri Alexandre FAU. Java2csharp, 2013. http://sourceforge.

net/projects/j2cstranslator/.

[5] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc
Le, et al. Program synthesis with large language models. arXiv preprint
arXiv:2108.07732, 2021. https://doi.org/10.48550/arXiv.2108.07732.

[6] Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. In International Conference
on Learning Representations, 2015. https://arxiv.org/abs/1409.0473.

[7] Satanjeev Banerjee and Alon Lavie. METEOR: An automatic metric for MT
evaluation with improved correlation with human judgments. In ACL Workshop

88

https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.1145/3551349.3559555
http://sourceforge.net/projects/j2cstranslator/
http://sourceforge.net/projects/j2cstranslator/
https://doi.org/10.48550/arXiv.2108.07732
https://arxiv.org/abs/1409.0473

on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or
Summarization, pages 65–72, 2005. https://aclanthology.org/W05-0909/.

[8] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-
document transformer. arXiv preprint arXiv:2004.05150, 2020. https://doi.

org/10.48550/arXiv.2004.05150.

[9] Taylor Berg-Kirkpatrick, David Burkett, and Dan Klein. An empirical investiga-
tion of statistical significance in NLP. In Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning,
pages 995–1005, 2012. https://www.aclweb.org/anthology/D12-1091/.

[10] Amanda Bertsch, Uri Alon, Graham Neubig, and Matthew Gormley. Un-
limiformer: Long-range transformers with unlimited length input. In
Advances in Neural Information Processing Systems, pages 35522–35543,
2023. https://proceedings.neurips.cc/paper_files/paper/2023/file/

6f9806a5adc72b5b834b27e4c7c0df9b-Paper-Conference.pdf.

[11] Shaked Brody, Uri Alon, and Eran Yahav. A structural model for contextual
code changes. International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 1–28, 2020. https://doi.org/

10.1145/3428283.

[12] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learn-
ers. In Advances in Neural Information Processing Systems, pages 1877–
1901, 2020. https://papers.nips.cc/paper_files/paper/2020/file/

1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

[13] Nghi DQ Bui and Lingxiao Jiang. Hierarchical learning of cross-language
mappings through distributed vector representations for code. In International

89

https://aclanthology.org/W05-0909/
https://doi.org/10.48550/arXiv.2004.05150
https://doi.org/10.48550/arXiv.2004.05150
https://www.aclweb.org/anthology/D12-1091/
https://proceedings.neurips.cc/paper_files/paper/2023/file/6f9806a5adc72b5b834b27e4c7c0df9b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6f9806a5adc72b5b834b27e4c7c0df9b-Paper-Conference.pdf
https://doi.org/10.1145/3428283
https://doi.org/10.1145/3428283
https://papers.nips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://papers.nips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Conference on Software Engineering, New Ideas and Emerging Results, pages
33–36, 2018. https://doi.org/10.1145/3183399.3183427.

[14] Saikat Chakraborty and Baishakhi Ray. On multi-modal learning of editing
source code. In Automated Software Engineering, pages 443–455, 2021. https:

//doi.org/10.1109/ASE51524.2021.9678559.

[15] Saikat Chakraborty, Yangruibo Ding, Miltiadis Allamanis, and Baishakhi Ray.
Codit: Code editing with tree-based neural models. Transactions on Software
Engineering, pages 1385–1399, 2020. https://doi.org/10.1109/TSE.2020.

3020502.

[16] Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou,
and Weizhu Chen. CodeT: Code generation with generated tests. arXiv preprint
arXiv:2207.10397, 2022. https://doi.org/10.48550/arXiv.2207.10397.

[17] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. Evaluating large language models trained on code. arXiv
preprint arXiv:2107.03374, 2021. https://doi.org/10.48550/arXiv.2107.

03374.

[18] Xinyun Chen, Chang Liu, and Dawn Song. Tree-to-tree neural networks for
program translation. In Advances in Neural Information Processing Systems,
volume 31, 2018. https://proceedings.neurips.cc/paper_files/paper/

2018/file/d759175de8ea5b1d9a2660e45554894f-Paper.pdf.

[19] Zimin Chen, Vincent J Hellendoorn, Pascal Lamblin, Petros Maniatis, Pierre-
Antoine Manzagol, Daniel Tarlow, and Subhodeep Moitra. PLUR: A uni-
fying, graph-based view of program learning, understanding, and repair.
In Advances in Neural Information Processing Systems, pages 23089–23101,
2021. https://proceedings.neurips.cc/paper_files/paper/2021/file/

c2937f3a1b3a177d2408574da0245a19-Paper.pdf.

90

https://doi.org/10.1145/3183399.3183427
https://doi.org/10.1109/ASE51524.2021.9678559
https://doi.org/10.1109/ASE51524.2021.9678559
https://doi.org/10.1109/TSE.2020.3020502
https://doi.org/10.1109/TSE.2020.3020502
https://doi.org/10.48550/arXiv.2207.10397
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.48550/arXiv.2107.03374
https://proceedings.neurips.cc/paper_files/paper/2018/file/d759175de8ea5b1d9a2660e45554894f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/d759175de8ea5b1d9a2660e45554894f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/c2937f3a1b3a177d2408574da0245a19-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/c2937f3a1b3a177d2408574da0245a19-Paper.pdf

[20] Colin Clement, Dawn Drain, Jonathan Timcheck, Alexey Svyatkovskiy, and Neel
Sundaresan. PyMT5: multi-mode translation of natural language and python
code with transformers. In Empirical Methods in Natural Language Processing,
pages 9052–9065, 2020. https://doi.org/10.18653/v1/2020.emnlp-main.

728.

[21] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré.
FlashAttention: Fast and memory-efficient exact attention with io-
awareness. Advances in Neural Information Processing Systems, 35:16344–
16359, 2022. https://papers.nips.cc/paper_files/paper/2022/file/

67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf.

[22] Yangruibo Ding, Baishakhi Ray, Premkumar Devanbu, and Vincent J Hellen-
doorn. Patching as translation: the data and the metaphor. In Automated Soft-
ware Engineering, pages 275–286, 2020. https://doi.org/10.1145/3324884.

3416587.

[23] Dawn Drain, Chen Wu, Alexey Svyatkovskiy, and Neel Sundaresan. Generating
bug-fixes using pretrained transformers. In International Symposium on Machine
Programming, pages 1–8, 2021. https://doi.org/10.1145/3460945.3464951.

[24] Elliot Chance et al. A tool for transpiling c to go, 2021. https://github.com/

elliotchance/c2go.

[25] Angela Fan, Mike Lewis, and Yann Dauphin. Strategies for structuring story
generation. In Annual Meeting of the Association for Computational Linguistics,
pages 2650–2660, 2019. https://doi.org/10.18653/v1/P19-1254.

[26] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming
Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. CodeBERT:
A pre-trained model for programming and natural languages. In Empirical
Methods in Natural Language Processing: Findings, pages 1536–1547, 2020.
https://doi.org/10.18653/v1/2020.findings-emnlp.139.

91

https://doi.org/10.18653/v1/2020.emnlp-main.728
https://doi.org/10.18653/v1/2020.emnlp-main.728
https://papers.nips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf
https://papers.nips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf
https://doi.org/10.1145/3324884.3416587
https://doi.org/10.1145/3324884.3416587
https://doi.org/10.1145/3460945.3464951
https://github.com/elliotchance/c2go
https://github.com/elliotchance/c2go
https://doi.org/10.18653/v1/P19-1254
https://doi.org/10.18653/v1/2020.findings-emnlp.139

[27] Christopher Foster, Abhishek Gulati, Mark Harman, Inna Harper, Ke Mao,
Jillian Ritchey, Hervé Robert, and Shubho Sengupta. Mutation-guided LLM-
based test generation at meta. arXiv preprint arXiv:2501.12862, 2025. https:

//doi.org/10.48550/arXiv.2501.12862.

[28] Python Software Foundation. difflib — helpers for computing deltas, 2023.
https://docs.python.org/3/library/difflib.html.

[29] Galois and Immunant. C2rust, 2023. https://github.com/immunant/

c2rust.

[30] Zhipeng Gao, Xin Xia, David Lo, John Grundy, and Thomas Zimmermann. Au-
tomating the removal of obsolete TODO comments. In Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering, pages 218–229, 2021. https://doi.org/10.1145/3468264.3468553.

[31] Paul Gauthier. Aider is ai pair programming in your terminal, 2024. https:

//aider.chat/.

[32] Google. Google cloud, 2023. https://cloud.google.com/.

[33] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK Li. Incorporating
copying mechanism in sequence-to-sequence learning. In Annual Meeting
of the Association for Computational Linguistics, pages 1631–1640, 2016.
https://doi.org/10.18653/v1/P16-1154.

[34] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Liu Shujie, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. GraphCodeBERT:
Pre-training code representations with data flow. In International Confer-
ence on Learning Representations, 2020. https://openreview.net/pdf?id=

jLoC4ez43PZ.

92

https://doi.org/10.48550/arXiv.2501.12862
https://doi.org/10.48550/arXiv.2501.12862
https://docs.python.org/3/library/difflib.html
https://github.com/immunant/c2rust
https://github.com/immunant/c2rust
https://doi.org/10.1145/3468264.3468553
https://aider.chat/
https://aider.chat/
https://cloud.google.com/
https://doi.org/10.18653/v1/P16-1154
https://openreview.net/pdf?id=jLoC4ez43PZ
https://openreview.net/pdf?id=jLoC4ez43PZ

[35] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin.
UniXcoder: Unified cross-modal pre-training for code representation. In Annual
Meeting of the Association for Computational Linguistics, pages 7212–7225, 2022.
https://doi.org/10.18653/v1/2022.acl-long.499.

[36] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-R1: Incen-
tivizing reasoning capability in llms via reinforcement learning. arXiv preprint
arXiv:2501.12948, 2025. https://doi.org/10.48550/arXiv.2501.12948.

[37] Kelvin Guu, Tatsunori B Hashimoto, Yonatan Oren, and Percy Liang. Gen-
erating sentences by editing prototypes. Transactions of the Association for
Computational Linguistics, 6:437–450, 2018. https://doi.org/10.1162/tacl_

a_00030.

[38] Alex Gyori, Lyle Franklin, Danny Dig, and Jan Lahoda. Crossing the gap from
imperative to functional programming through refactoring. In International
Symposium on the Foundations of Software Engineering, pages 543–553, 2013.
https://doi.org/10.1145/2491411.2491461.

[39] Tatsunori B Hashimoto, Kelvin Guu, Yonatan Oren, and Percy Liang.
A retrieve-and-edit framework for predicting structured outputs. In
Advances in Neural Information Processing Systems, pages 10073–10083,
2018. https://proceedings.neurips.cc/paper_files/paper/2018/file/

cd17d3ce3b64f227987cd92cd701cc58-Paper.pdf.

[40] Abram Hindle, Earl T. Barr, Mark Gabel, Zhendong Su, and Premkumar
Devanbu. On the naturalness of software. In International Conference on
Software Engineering, pages 837–847, 2012. https://dl.acm.org/doi/10.

5555/2337223.2337322.

93

https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.48550/arXiv.2501.12948
https://doi.org/10.1162/tacl_a_00030
https://doi.org/10.1162/tacl_a_00030
https://doi.org/10.1145/2491411.2491461
https://proceedings.neurips.cc/paper_files/paper/2018/file/cd17d3ce3b64f227987cd92cd701cc58-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/cd17d3ce3b64f227987cd92cd701cc58-Paper.pdf
https://dl.acm.org/doi/10.5555/2337223.2337322
https://dl.acm.org/doi/10.5555/2337223.2337322

[41] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu
Liu, Jiajun Zhang, Bowen Yu, Keming Lu, et al. Qwen2.5-Coder technical
report. arXiv preprint arXiv:2409.12186, 2024. https://doi.org/10.48550/

arXiv.2409.12186.

[42] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. CodeSearchNet challenge: Evaluating the state of semantic code
search. arXiv preprint arXiv:1909.09436, 2019. https://doi.org/10.48550/

arXiv.1909.09436.

[43] MongoDB Inc. Mongodb, 2023. https://www.mongodb.com/.

[44] itext Software. itext-dotnet, 2025. https://github.com/itext/

itext-dotnet.

[45] itext Software. itext-java, 2025. https://github.com/itext/itext-java.

[46] Robert Iv, Alexandre Passos, Sameer Singh, and Ming-Wei Chang. FRUIT:
Faithfully reflecting updated information in text. In Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 3670–3686, 2022. https://doi.org/10.18653/

v1/2022.naacl-main.269.

[47] Paul Jaccard. The distribution of the flora in the alpine zone. New phytologist,
pages 37–50, 1912. https://nph.onlinelibrary.wiley.com/doi/abs/10.

1111/j.1469-8137.1912.tb05611.x.

[48] Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundare-
san, and Alexey Svyatkovskiy. Inferfix: End-to-end program repair with LLMs.
In International Symposium on the Foundations of Software Engineering, pages
1646–1656, 2023. https://doi.org/10.1145/3611643.3613892.

94

https://doi.org/10.48550/arXiv.2409.12186
https://doi.org/10.48550/arXiv.2409.12186
https://doi.org/10.48550/arXiv.1909.09436
https://doi.org/10.48550/arXiv.1909.09436
https://www.mongodb.com/
https://github.com/itext/itext-dotnet
https://github.com/itext/itext-dotnet
https://github.com/itext/itext-java
https://doi.org/10.18653/v1/2022.naacl-main.269
https://doi.org/10.18653/v1/2022.naacl-main.269
https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1912.tb05611.x
https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1145/3611643.3613892

[49] Hisashi Kamezawa, Noriki Nishida, Nobuyuki Shimizu, Takashi Miyazaki, and
Hideki Nakayama. RNSum: A large-scale dataset for automatic release note
generation via commit logs summarization. In Annual Meeting of the Association
for Computational Linguistics, pages 8718–8735, 2022. https://doi.org/10.

18653/v1/2022.acl-long.597.

[50] Junaed Younus Khan and Gias Uddin. Automatic code documentation gen-
eration using GPT-3. In Automated Software Engineering, pages 1–6, 2022.
https://doi.org/10.1145/3551349.3559548.

[51] Marie-Anne Lachaux, Baptiste Roziere, Lowik Chanussot, and Guil-
laume Lample. Unsupervised translation of programming languages.
In Advances in Neural Information Processing Systems, pages 20601–
20611, 2020. https://proceedings.neurips.cc/paper/2020/file/

ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf.

[52] Jaeseong Lee, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric. On the naturalness
of hardware descriptions. In Symposium on the Foundations of Software Engi-
neering, pages 530–542, 2020. https://doi.org/10.1145/3368089.3409692.

[53] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART:
Denoising sequence-to-sequence pre-training for natural language generation,
translation, and comprehension. In Annual Meeting of the Association for Com-
putational Linguistics, pages 7871–7880, 2020. https://doi.org/10.18653/

v1/2020.acl-main.703.

[54] Jia Li, Yongmin Li, Ge Li, Xing Hu, Xin Xia, and Zhi Jin. EditSum: A
retrieve-and-edit framework for source code summarization. In Automated Soft-
ware Engineering, pages 155–166, 2021. https://doi.org/10.1109/ASE51524.

2021.9678724.

95

https://doi.org/10.18653/v1/2022.acl-long.597
https://doi.org/10.18653/v1/2022.acl-long.597
https://doi.org/10.1145/3551349.3559548
https://proceedings.neurips.cc/paper/2020/file/ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf
https://doi.org/10.1145/3368089.3409692
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.1109/ASE51524.2021.9678724
https://doi.org/10.1109/ASE51524.2021.9678724

[55] Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh Jannu, Grant Jenks, Deep
Majumder, Jared Green, Alexey Svyatkovskiy, Shengyu Fu, and Neel Sundaresan.
Automating code review activities by large-scale pre-training. In International
Symposium on the Foundations of Software Engineering, 2022. https://doi.

org/10.1145/3540250.3549081.

[56] Bo Lin, Shangwen Wang, Kui Liu, Xiaoguang Mao, and Tegawendé F Bissyandé.
Automated comment update: How far are we? In International Conference
on Program Comprehension, pages 36–46, 2021. https://doi.org/10.1109/

ICPC52881.2021.00013.

[57] Bo Lin, Shangwen Wang, Zhongxin Liu, Xin Xia, and Xiaoguang Mao. Predic-
tive comment updating with heuristics and AST-path-based neural learning: A
two-phase approach. Transactions on Software Engineering, 49(4):1640–1660,
2022. https://doi.org/10.1109/TSE.2022.3185458.

[58] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692,
2019. https://doi.org/10.48550/arXiv.1907.11692.

[59] Yu Liu, Jiyang Zhang, Pengyu Nie, Milos Gligoric, and Owolabi Legunsen.
More precise regression test selection via reasoning about semantics-modifying
changes. In International Symposium on Software Testing and Analysis, pages
664–676, 2023. https://doi.org/10.1145/3597926.3598086.

[60] Zhongxin Liu, Xin Xia, David Lo, Meng Yan, and Shanping Li. Just-In-Time
obsolete comment detection and update. Transactions on Software Engineering,
2021. https://doi.org/10.1109/TSE.2021.3138909.

[61] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Am-
brosio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al.

96

https://doi.org/10.1145/3540250.3549081
https://doi.org/10.1145/3540250.3549081
https://doi.org/10.1109/ICPC52881.2021.00013
https://doi.org/10.1109/ICPC52881.2021.00013
https://doi.org/10.1109/TSE.2022.3185458
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.1145/3597926.3598086
https://doi.org/10.1109/TSE.2021.3138909

CodeXGLUE: A machine learning benchmark dataset for code understanding
and generation. arXiv preprint arXiv:2102.04664, 2021. https://doi.org/10.

48550/arXiv.2102.04664.

[62] Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu,
Chongyang Tao, Jing Ma, Qingwei Lin, and Daxin Jiang. WizardCoder:
Empowering code large language models with evol-instruct. In International
Conference on Learning Representations, 2024. https://openreview.net/

pdf?id=UnUwSIgK5W.

[63] Benjamin Mariano, Yanju Chen, Yu Feng, Greg Durrett, and Isil Dillig. Au-
tomated transpilation of imperative to functional code using neural-guided
program synthesis. In International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, pages 1–27, 2022. https:

//doi.org/10.1145/3527315.

[64] Lara Martin, Prithviraj Ammanabrolu, Xinyu Wang, William Hancock, Shruti
Singh, Brent Harrison, and Mark Riedl. Event representations for automated
story generation with deep neural nets. In AAAI Conference on Artificial
Intelligence, pages 868–875, 2018. https://dl.acm.org/doi/pdf/10.5555/

3504035.3504141.

[65] Antonio Mastropaolo, Simone Scalabrino, Nathan Cooper, David Nader Palacio,
Denys Poshyvanyk, Rocco Oliveto, and Gabriele Bavota. Studying the usage of
text-to-text transfer transformer to support code-related tasks. In International
Conference on Software Engineering, pages 336–347, 2021. https://doi.org/

10.1109/ICSE43902.2021.00041.

[66] Xiangxin Meng, Zexiong Ma, Pengfei Gao, and Chao Peng. An empiri-
cal study on LLM-based agents for automated bug fixing. arXiv preprint
arXiv:2411.10213, 2024. https://doi.org/10.48550/arXiv.2411.10213.

97

https://doi.org/10.48550/arXiv.2102.04664
https://doi.org/10.48550/arXiv.2102.04664
https://openreview.net/pdf?id=UnUwSIgK5W
https://openreview.net/pdf?id=UnUwSIgK5W
https://doi.org/10.1145/3527315
https://doi.org/10.1145/3527315
https://dl.acm.org/doi/pdf/10.5555/3504035.3504141
https://dl.acm.org/doi/pdf/10.5555/3504035.3504141
https://doi.org/10.1109/ICSE43902.2021.00041
https://doi.org/10.1109/ICSE43902.2021.00041
https://doi.org/10.48550/arXiv.2411.10213

[67] Niklas Muennighoff, Qian Liu, Armel Randy Zebaze, Qinkai Zheng, Binyuan
Hui, Terry Yue Zhuo, Swayam Singh, Xiangru Tang, Leandro Von Werra,
and Shayne Longpre. OctoPack: Instruction tuning code large language
models. In International Conference on Learning Representations, 2024. https:

//openreview.net/pdf?id=mw1PWNSWZP.

[68] Courtney Napoles, Keisuke Sakaguchi, Matt Post, and Joel Tetreault. Ground
truth for grammatical error correction metrics. In Annual Meeting of the
Association for Computational Linguistics, pages 588–593, 2015. https://doi.

org/10.3115/v1/P15-2097.

[69] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. Divide-and-
conquer approach for multi-phase statistical migration for source code. In
Automated Software Engineering, pages 585–596, 2015. https://doi.org/10.

1109/ASE.2015.74.

[70] Pengyu Nie. Machine Learning for Executable Code in Software Testing and
Verification. PhD thesis, The University of Texas at Austin, 2023. https:

//hdl.handle.net/2152/123170.

[71] Pengyu Nie, Jiyang Zhang, Junyi Jessy Li, Raymond J. Mooney, and Milos
Gligoric. Impact of evaluation methodologies on code summarization. In Annual
Meeting of the Association for Computational Linguistics, pages 4936–4960, 2022.
https://doi.org/10.18653/v1/2022.acl-long.339.

[72] Pengyu Nie, Rahul Banerjee, Junyi Jessy Li, Raymond J. Mooney, and Milos
Gligoric. Learning deep semantics for test completion. In International Confer-
ence on Software Engineering, 2023. https://doi.org/10.1109/ICSE48619.

2023.00178.

[73] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Sil-
vio Savarese, and Caiming Xiong. CodeGen: An open large language model for

98

https://openreview.net/pdf?id=mw1PWNSWZP
https://openreview.net/pdf?id=mw1PWNSWZP
https://doi.org/10.3115/v1/P15-2097
https://doi.org/10.3115/v1/P15-2097
https://doi.org/10.1109/ASE.2015.74
https://doi.org/10.1109/ASE.2015.74
https://hdl.handle.net/2152/123170
https://hdl.handle.net/2152/123170
https://doi.org/10.18653/v1/2022.acl-long.339
https://doi.org/10.1109/ICSE48619.2023.00178
https://doi.org/10.1109/ICSE48619.2023.00178

code with multi-turn program synthesis. In International Conference on Learn-
ing Representations, 2023. https://openreview.net/pdf?id=iaYcJKpY2B_.

[74] OpenAI. Introducing ChatGPT, 2023. https://openai.com/blog/chatgpt.

[75] OpenAI. Introducing ChatGPT-4, 2024. https://platform.openai.com/

docs/models.

[76] Jialing Pan, Adrien Sadé, Jin Kim, Eric Soriano, Guillem Sole, and Sylvain
Flamant. SteloCoder: a decoder-only LLM for multi-language to python code
translation. arXiv preprint arXiv:2310.15539, 2023. https://doi.org/10.

48550/arXiv.2310.15539.

[77] Sheena Panthaplackel, Pengyu Nie, Milos Gligoric, Junyi Jessy Li, and Raymond
Mooney. Learning to update natural language comments based on code changes.
In Annual Meeting of the Association for Computational Linguistics, pages
1853–1868, 2020. https://doi.org/10.18653/v1/2020.acl-main.168.

[78] Sheena Panthaplackel, Miltiadis Allamanis, and Marc Brockschmidt. Copy
that! editing sequences by copying spans. In AAAI Conference on Artificial
Intelligence, pages 13622–13630, 2021. https://cdn.aaai.org/ojs/17606/

17606-13-21100-1-2-20210518.pdf.

[79] Sheena Panthaplackel, Junyi Jessy Li, Milos Gligoric, and Raymond J Mooney.
Deep just-in-time inconsistency detection between comments and source code.
In AAAI Conference on Artificial Intelligence, pages 427–435, 2021. https:

//cdn.aaai.org/ojs/16119/16119-13-19613-1-2-20210518.pdf.

[80] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a
method for automatic evaluation of machine translation. In Annual Meeting
of the Association for Computational Linguistics, pages 311–318, 2002. https:

//doi.org/10.3115/1073083.1073135.

99

https://openreview.net/pdf?id=iaYcJKpY2B_
https://openai.com/blog/chatgpt
https://platform.openai.com/docs/models
https://platform.openai.com/docs/models
https://doi.org/10.48550/arXiv.2310.15539
https://doi.org/10.48550/arXiv.2310.15539
https://doi.org/10.18653/v1/2020.acl-main.168
https://cdn.aaai.org/ojs/17606/17606-13-21100-1-2-20210518.pdf
https://cdn.aaai.org/ojs/17606/17606-13-21100-1-2-20210518.pdf
https://cdn.aaai.org/ojs/16119/16119-13-19613-1-2-20210518.pdf
https://cdn.aaai.org/ojs/16119/16119-13-19613-1-2-20210518.pdf
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135

[81] Terence J. Parr and Russell W. Quong. ANTLR: A predicated-ll (k) parser
generator. Software: Practice and Experience, 25(7):789–810, 1995. https:

//www.antlr2.org/article/1055550346383/antlr.pdf.

[82] Karl Pichotta and Raymond Mooney. Learning statistical scripts with LSTM
recurrent neural networks. In AAAI Conference on Artificial Intelligence, pages
2800–2806, 2016. https://doi.org/10.1609/aaai.v30i1.10347.

[83] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. Language models are unsupervised multitask learners. Ope-
nAI blog, 1:9, 2019. https://cdn.openai.com/better-language-models/

language_models_are_unsupervised_multitask_learners.pdf.

[84] Cosmin Radoi, Stephen J Fink, Rodric Rabbah, and Manu Sridharan. Trans-
lating imperative code to MapReduce. In International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pages 909–927,
2014. https://doi.org/10.1145/2714064.2660228.

[85] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of
transfer learning with a unified text-to-text transformer. Journal of Machine
Learning Research, 21:1–67, 2020. https://dl.acm.org/doi/pdf/10.5555/

3455716.3455856.

[86] Musfiqur Rahman, Dharani Palani, and Peter C. Rigby. Natural software
revisited. In International Conference on Software Engineering, pages 37–48,
2019. https://doi.org/10.1109/ICSE.2019.00022.

[87] Zeeshan Rasheed, Malik Abdul Sami, Muhammad Waseem, Kai-Kristian Kemell,
Xiaofeng Wang, Anh Nguyen, Kari Systä, and Pekka Abrahamsson. AI-powered
code review with LLMs: Early results. arXiv preprint arXiv:2404.18496, 2024.
https://doi.org/10.48550/arXiv.2404.18496.

100

https://www.antlr2.org/article/1055550346383/antlr.pdf
https://www.antlr2.org/article/1055550346383/antlr.pdf
https://doi.org/10.1609/aaai.v30i1.10347
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://doi.org/10.1145/2714064.2660228
https://dl.acm.org/doi/pdf/10.5555/3455716.3455856
https://dl.acm.org/doi/pdf/10.5555/3455716.3455856
https://doi.org/10.1109/ICSE.2019.00022
https://doi.org/10.48550/arXiv.2404.18496

[88] Ehud Reiter and Robert Dale. Building applied natural language generation
systems. Natural Language Engineering, 3:57–87, 1997. https://doi.org/10.

1017/S1351324997001502.

[89] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel
Sundaresan, Ming Zhou, Ambrosio Blanco, and Shuai Ma. CodeBLEU: a method
for automatic evaluation of code synthesis. arXiv preprint arXiv:2009.10297,
2020. https://doi.org/10.48550/arXiv.2009.10297.

[90] Baptiste Roziere, Jie M Zhang, Francois Charton, Mark Harman, Gabriel
Synnaeve, and Guillaume Lample. Leveraging automated unit tests for un-
supervised code translation. arXiv preprint arXiv:2110.06773, 2021. https:

//doi.org/10.48550/arXiv.2110.06773.

[91] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code
Llama: Open foundation models for code. arXiv preprint arXiv:2308.12950,
2023. https://doi.org/10.48550/arXiv.2308.12950.

[92] Alexander M Rush, Sumit Chopra, and Jason Weston. A neural attention
model for abstractive sentence summarization. In Empirical Methods in Natural
Language Processing, pages 379–389, 2015. https://doi.org/10.18653/v1/

D15-1044.

[93] Apache Software. Apache Lucene, 2022. https://lucene.apache.org/.

[94] Felix Stahlberg and Shankar Kumar. Seq2edits: Sequence transduction using
span-level edit operations. In Empirical Methods in Natural Language Processing,
pages 5147–5159, 2020. https://doi.org/10.18653/v1/2020.emnlp-main.

418.

[95] Daniel Tarlow, Subhodeep Moitra, Andrew Rice, Zimin Chen, Pierre-Antoine
Manzagol, Charles Sutton, and Edward Aftandilian. Learning to fix build errors

101

https://doi.org/10.1017/S1351324997001502
https://doi.org/10.1017/S1351324997001502
https://doi.org/10.48550/arXiv.2009.10297
https://doi.org/10.48550/arXiv.2110.06773
https://doi.org/10.48550/arXiv.2110.06773
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.18653/v1/D15-1044
https://doi.org/10.18653/v1/D15-1044
https://lucene.apache.org/
https://doi.org/10.18653/v1/2020.emnlp-main.418
https://doi.org/10.18653/v1/2020.emnlp-main.418

with graph2diff neural networks. In International Conference on Software Engi-
neering Workshops, pages 19–20, 2020. https://doi.org/10.1145/3387940.

3392181.

[96] Aider Team. Edit formats, 2023. https://aider.chat/docs/more/

edit-formats.html.

[97] Cursor Team. The ai code editor, 2024. https://cursor.com/.

[98] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui
Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican,
et al. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 2023. https://doi.org/10.48550/arXiv.2312.11805.

[99] Sindhu Tipirneni, Ming Zhu, and Chandan K. Reddy. Structcoder: Structure-
aware transformer for code generation. ACM Trans. Knowl. Discov. Data, 18
(3), 2024. https://doi.org/10.1145/3636430.

[100] Marco Trudel, Manuel Oriol, Carlo A Furia, and Martin Nordio. Automated
translation of Java source code to Eiffel. In International Conference on Objects,
Models, Components, Patterns, pages 20–35, 2011. https://dl.acm.org/doi/

10.5555/2025896.2025900.

[101] Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota, and
Denys Poshyvanyk. On learning meaningful code changes via neural machine
translation. In International Conference on Software Engineering, pages 25–36,
2019. https://doi.org/10.1109/ICSE.2019.00021.

[102] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. An empirical study on learning bug-fixing
patches in the wild via neural machine translation. Transactions on Software
Engineering, 28:1–29, 2019. https://doi.org/10.1145/3340544.

102

https://doi.org/10.1145/3387940.3392181
https://doi.org/10.1145/3387940.3392181
https://aider.chat/docs/more/edit-formats.html
https://aider.chat/docs/more/edit-formats.html
https://cursor.com/
https://doi.org/10.48550/arXiv.2312.11805
https://doi.org/10.1145/3636430
https://dl.acm.org/doi/10.5555/2025896.2025900
https://dl.acm.org/doi/10.5555/2025896.2025900
https://doi.org/10.1109/ICSE.2019.00021
https://doi.org/10.1145/3340544

[103] Rosalia Tufano, Luca Pascarella, Michele Tufanoy, Denys Poshyvanykz, and
Gabriele Bavota. Towards automating code review activities. In International
Conference on Software Engineering, pages 163–174, 2021. https://doi.org/

10.1109/ICSE43902.2021.00027.

[104] Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella, Denys
Poshyvanyk, and Gabriele Bavota. Using pre-trained models to boost code
review automation. In International Conference on Software Engineering, pages
2291–2302, 2022. https://doi.org/10.1145/3510003.3510621.

[105] Rosalia Tufano, Alberto Martin-Lopez, Ahmad Tayeb, Sonia Haiduc, Gabriele
Bavota, et al. Deep learning-based code reviews: A paradigm shift or a double-
edged sword? In International Conference on Software Engineering, 2025.
https://doi.org/10.1109/ICSE55347.2025.00060.

[106] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in Neural Information Processing Systems, pages 5998–6008,
2017. https://proceedings.neurips.cc/paper_files/paper/2017/file/

3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[107] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer net-
works. In Advances in Neural Information Processing Systems,
2015. https://proceedings.neurips.cc/paper_files/paper/2015/file/

29921001f2f04bd3baee84a12e98098f-Paper.pdf.

[108] Xin Wang, Yasheng Wang, Fei Mi, Pingyi Zhou, Yao Wan, Xiao Liu, Li Li, Hao
Wu, Jin Liu, and Xin Jiang. SynCoBERT: Syntax-guided multi-modal con-
trastive pre-training for code representation. arXiv preprint arXiv:2108.04556,
2021. https://doi.org/10.48550/arXiv.2108.04556.

103

https://doi.org/10.1109/ICSE43902.2021.00027
https://doi.org/10.1109/ICSE43902.2021.00027
https://doi.org/10.1145/3510003.3510621
https://doi.org/10.1109/ICSE55347.2025.00060
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://doi.org/10.48550/arXiv.2108.04556

[109] Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen
Zhuge, Jiayi Pan, Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang
Li, Ren Ma, Mingzhang Zheng, Bill Qian, Yanjun Shao, Niklas Muennighoff,
Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert Brennan, Hao Peng, Heng Ji,
and Graham Neubig. OpenHands: An open platform for AI software developers
as generalist agents. In International Conference on Learning Representations,
2025. https://openreview.net/pdf?id=OJd3ayDDoF.

[110] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. CodeT5: Identifier-
aware unified pre-trained encoder-decoder models for code understanding and
generation. In Empirical Methods in Natural Language Processing, pages 8696–
8708, 2021. https://doi.org/10.18653/v1/2021.emnlp-main.685.

[111] Yue Wang, Hung Le, Akhilesh Gotmare, Nghi Bui, Junnan Li, and Steven
Hoi. Codet5+: Open code large language models for code understanding
and generation. In Empirical Methods in Natural Language Processing, pages
1069–1088, 2023. https://doi.org/10.18653/v1/2023.emnlp-main.68.

[112] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. Chain-of-Thought prompting elicits reasoning in
large language models. In Advances in Neural Information Processing Systems,
pages 24824–24837, 2022. https://papers.nips.cc/paper_files/paper/

2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf.

[113] Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming
Zhang, Daniel Fried, Gabriel Synnaeve, Rishabh Singh, and Sida I Wang.
SWE-RL: Advancing llm reasoning via reinforcement learning on open software
evolution. arXiv preprint arXiv:2502.18449, 2025. https://doi.org/10.

48550/arXiv.2502.18449.

[114] Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen, and Chris Callison-
Burch. Optimizing statistical machine translation for text simplification.

104

https://openreview.net/pdf?id=OJd3ayDDoF
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://papers.nips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://papers.nips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://doi.org/10.48550/arXiv.2502.18449
https://doi.org/10.48550/arXiv.2502.18449

Transactions of the Association for Computational Linguistics, 4:401–415, 2016.
https://doi.org/10.1162/tacl_a_00107.

[115] John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu
Yao, Karthik Narasimhan, and Ofir Press. SWE-agent: Agent-
computer interfaces enable automated software engineering. In Ad-
vances in Neural Information Processing Systems, pages 50528–50652,
2024. https://papers.nips.cc/paper_files/paper/2024/file/

5a7c947568c1b1328ccc5230172e1e7c-Paper-Conference.pdf.

[116] Ziyu Yao, Frank F. Xu, Pengcheng Yin, Huan Sun, and Graham Neubig. Learn-
ing structural edits via incremental tree transformations. In International
Conference on Learning Representations, 2021. https://openreview.net/

pdf?id=v9hAX77--cZ.

[117] Pengcheng Yin and Graham Neubig. A syntactic neural model for general-
purpose code generation. In Annual Meeting of the Association for Compu-
tational Linguistics, pages 440–450, 2017. https://doi.org/10.18653/v1/

P17-1041.

[118] Pengcheng Yin, Graham Neubig, Miltiadis Allamanis, Marc Brockschmidt, and
Alexander L Gaunt. Learning to represent edits. In International Confer-
ence on Learning Representations, 2018. https://openreview.net/pdf?id=

BJl6AjC5F7.

[119] Xin Yin, Chao Ni, Tien N Nguyen, Shaohua Wang, and Xiaohu Yang. Rectifier:
Code translation with corrector via LLMs. arXiv preprint arXiv:2407.07472,
2024. https://doi.org/10.48550/arXiv.2407.07472.

[120] Zhiqiang Yuan, Weitong Chen, Hanlin Wang, Kai Yu, Xin Peng, and Yiling Lou.
Transagent: An LLM-based multi-agent system for code translation. arXiv
preprint arXiv:2409.19894, 2024. https://doi.org/10.48550/arXiv.2409.

19894.

105

https://doi.org/10.1162/tacl_a_00107
https://papers.nips.cc/paper_files/paper/2024/file/5a7c947568c1b1328ccc5230172e1e7c-Paper-Conference.pdf
https://papers.nips.cc/paper_files/paper/2024/file/5a7c947568c1b1328ccc5230172e1e7c-Paper-Conference.pdf
https://openreview.net/pdf?id=v9hAX77--cZ
https://openreview.net/pdf?id=v9hAX77--cZ
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
https://openreview.net/pdf?id=BJl6AjC5F7
https://openreview.net/pdf?id=BJl6AjC5F7
https://doi.org/10.48550/arXiv.2407.07472
https://doi.org/10.48550/arXiv.2409.19894
https://doi.org/10.48550/arXiv.2409.19894

[121] Jiyang Zhang, Yu Liu, Milos Gligoric, Owolabi Legunsen, and August Shi.
Comparing and combining analysis-based and learning-based regression test
selection. In International Conference on Automation of Software Test, pages
17–28, 2022. https://doi.org/10.1145/3524481.3527230.

[122] Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie, Junyi Jessy Li, and Milos
Gligoric. CoditT5: Pretraining for source code and natural language editing.
In International Conference on Automated Software Engineering, 2022. https:

//doi.org/10.1145/3551349.3556955.

[123] Jiyang Zhang, Marko Ristin, Phillip Schanely, Hans Wernher Van De Venn,
and Milos Gligoric. Python-by-contract dataset. In International Symposium
on the Foundations of Software Engineering, pages 1652–1656, 2022. https:

//doi.org/10.1145/3540250.3558917.

[124] Jiyang Zhang, Chandra Maddila, Ram Bairi, Christian Bird, Ujjwal Raizada,
Apoorva Agrawal, Yamini Jhawar, Kim Herzig, and Arie van Deursen. Using
large-scale heterogeneous graph representation learning for code review recom-
mendations at Microsoft. International Conference on Software Engineering,
2023. https://doi.org/10.1109/ICSE-SEIP58684.2023.00020.

[125] Jiyang Zhang, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric. Multilingual
code co-evolution using large language models. In Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
2023. https://doi.org/10.1145/3611643.3616350.

[126] Jiyang Zhang, Yu Liu, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric.
exLong: Generating exceptional behavior tests with large language mod-
els. In International Conference on Software Engineering, 2025. https:

//doi.org/10.1109/ICSE55347.2025.00176.

106

https://doi.org/10.1145/3524481.3527230
https://doi.org/10.1145/3551349.3556955
https://doi.org/10.1145/3551349.3556955
https://doi.org/10.1145/3540250.3558917
https://doi.org/10.1145/3540250.3558917
https://doi.org/10.1109/ICSE-SEIP58684.2023.00020
https://doi.org/10.1145/3611643.3616350
https://doi.org/10.1109/ICSE55347.2025.00176
https://doi.org/10.1109/ICSE55347.2025.00176

[127] Linghan Zhong, Samuel Yuan, Jiyang Zhang, Yu Liu, Pengyu Nie, Junyi Jessy
Li, and Milos Gligoric. A tool for generating exceptional behavior tests with
large language models. In International Symposium on the Foundations of Soft-
ware Engineering, Demo Track, 2025. https://doi.org/10.1145/3696630.

3728608.

[128] Qingyu Zhou, Nan Yang, Furu Wei, and Ming Zhou. Sequential copying
networks. In AAAI Conference on Artificial Intelligence, pages 4987–4994, 2018.
https://cdn.aaai.org/ojs/11915/11915-13-15443-1-2-20201228.pdf.

[129] Ming Zhu, Karthik Suresh, and Chandan K Reddy. Multilingual code snippets
training for program translation. In AAAI Conference on Artificial Intelligence,
pages 11783–11790, 2022. https://doi.org/10.1609/aaai.v36i10.21434.

[130] Yifan Zong, Yuntian Deng, and Pengyu Nie. Mix-of-language-experts ar-
chitecture for multilingual programming. In International Workshop on
Large Language Models for Code (LLM4Code), pages 200–208, 2025. https:

//doi.org/10.1109/LLM4Code66737.2025.00030.

107

https://doi.org/10.1145/3696630.3728608
https://doi.org/10.1145/3696630.3728608
https://cdn.aaai.org/ojs/11915/11915-13-15443-1-2-20201228.pdf
https://doi.org/10.1609/aaai.v36i10.21434
https://doi.org/10.1109/LLM4Code66737.2025.00030
https://doi.org/10.1109/LLM4Code66737.2025.00030

	List of Tables
	List of Figures
	Chapter 1: Introduction
	Chapter 2: CoditT5: Pretraining for Source Code and Natural Language Editing
	Introduction
	Background
	Generation with Transformer-Based Models
	Large Pretrained Language Models
	Large Pretrained Language Models for Software Engineering

	CoditT5
	Pretraining Objective
	Pretraining Data
	Pretraining Setup

	Experimental Design
	Downstream Tasks
	Data for Downstream Tasks
	Baselines
	Evaluation Metrics

	Evaluation
	Comparing CoditT5 to Baselines
	Evaluating our Pretraining Objective
	Integrating CoditT5 and CodeT5

	Limitations
	Conclusion

	Chapter 3: Multilingual Code Co-evolution using Large Language Models
	Introduction
	Task
	Model
	Edit Representations
	Model Input
	Model Output

	Dataset
	Data Collection
	Data Preprocessing and Splitting
	Statistics

	Experiments
	Baselines
	Evaluation Metrics
	Experiment Setup

	Results
	Quantitative Analysis
	Qualitative Analysis

	Limitations
	Conclusion

	Chapter 4: Related Work
	Learning Edits
	Large Language Models for Code Edits
	Rule-based Code Translation
	Learning-based Code Translation
	Software Evolution and Machine Learning

	Chapter 5: Future Work
	Edit Representation
	Edit Localization
	Software Maintenance Agents

	Chapter 6: Conclusion
	References

