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Abstract—Many popular programming languages, including
C#, Java, and Python, support exceptions. Exceptions are thrown
during program execution if an unwanted event happens, e.g.,
a method is invoked with an illegal argument value. Software
developers write exceptional behavior tests (EBTs) to check
that their code detects unwanted events and throws appropriate
exceptions. Prior research studies have shown the importance
of EBTs, but those studies also highlighted that developers put
most of their efforts on “happy paths”, e.g., paths without
unwanted events. To help developers fill the gap, we present the
first framework, dubbed EXLONG, that automatically generates
EBTs. EXLONG is a large language model instruction fine-tuned
from CodeLlama and embeds reasoning about traces that lead
to throw statements, conditional expressions that guard throw
statements, and non-exceptional behavior tests that execute simi-
lar traces. We compare EXLONG with the state-of-the-art models
for test generation (CAT-LM) and one of the strongest foundation
models (GPT-4o), as well as with analysis-based tools for test
generation (Randoop and EvoSuite). Our results show that
EXLONG outperforms existing models and tools. Furthermore,
we contributed several pull requests to open-source projects and
23 EBTs generated by EXLONG were already accepted.

Index Terms—test generation, large language models, program
analysis, exceptional behavior tests

I. INTRODUCTION

Many popular programming languages, including C#, Java,
and Python, support exceptions [14], [18], [58]. Exceptions
are thrown during program execution if an unwanted event
happens, e.g., a method is invoked with an illegal argument
value. To throw an exception, a developer writes a throw
statement in their code. These throw statements are commonly
guarded with conditional statements (e.g., if), as excep-
tions should be thrown only under exceptional circumstances.
Figure 1a shows a code snippet, in Java, that throws an
IllegalStateException (line 17) when the next character,
parsed from argument request, is identified as a special atom
(line 11) but is neither an opening (line 12) nor a closing
parenthesis (line 14).

Software developers write exceptional behavior tests (EBTs)
to check that their code properly detects unwanted events and
throws desired exceptions. Figure 1b shows an example EBT.
An EBT, similar to a non-exceptional behavior test (non-
EBT), first performs necessary setup of the system under test,
e.g., creates objects (lines 4-5), then invokes a method under

1 class SearchCommandParser extends CommandParser {
2 static final char CHR_SPACE = ’ ’;
3 static final char CHR_CR = ’\r’;
4
5 public SearchTerm searchTerm(ImapRequestLineReader

request) throws ProtocolException {
6 ...
7 char next;
8 while ((next = request.nextChar()) != ’\n’ &&
9 next != CHR_CR) {

10 next = request.consumeAll(CHR_SPACE);
11 if (isAtomSpecial(next)) {
12 if (next == ’(’) {
13 ...
14 } else if (next == ’)’) {
15 ...
16 } else {
17 throw new IllegalStateException("Unsupported atom

special char <" + next + ">");
18 }
19 }
20 ...
21 }
22 return handleOperators();
23 }
24 }

target throw statement

(a) Method under test: searchTerm.

1 public class SearchCommandParserTest {
2 private SearchTerm parse(String line)
3 throws ProtocolException {
4 final byte[] bytes = (line.endsWith("\n")?line:(line

+ ’\n’)).getBytes();
5 ByteArrayInputStream ins = new ByteArrayInputStream(

bytes);
6 return new SearchCommandParser().searchTerm(new

ImapRequestLineReader(ins, null));
7 }
8
9 @Test(expected = IllegalStateException.class)

10 public void testUnsupportedAtomSpecialChar()
11 throws ProtocolException {
12 parse("*");
13 }
14 }

method under test

exceptional behavior test

(b) Exceptional behavior test written using JUnit 4 that covers the
highlighted statement above.

Fig. 1: An EBT (‘testUnsupportedAtomSpecialChar’) from
greenmail-mail-test/greenmail and the target
throw statement.

test (line 6), and finally checks the expected behavior (line 9).
For an EBT, the expected behavior is that an exception was
thrown and the type of the exception matches the one specified
by a developer.



Prior research has studied EBTs in practice [2], [7], [13],
[24], [28] and observed that most projects already have some
EBTs, but that the number of EBTs is not as high as the
number of non-EBTs. Simply put, developers focus on “happy
paths” and have limited time to test exceptional behaviors.
Furthermore, through interviews and surveys [7], [28], prior
studies confirmed the importance of EBTs and developers’
desire to improve the testing of exceptional behaviors.

Sadly, tool support for automatically generating EBTs is
limited. Most existing analysis-based test generation tools
(e.g., Randoop [36], [42] and EvoSuite [11]) and learning-
based test generation tools (e.g., CAT-LM [40] and TeCo [32])
have no special settings for targeting EBTs and are primarily
evaluated on non-EBTs. Random test generation tools can
be guided by reinforcement learning to target exceptional
behaviors [1], but the generation works only on the entire
codebase, and not for a specific throw statement that a develop
might select. Additionally, tests produced by analysis-based
tools lack readability [5], [6], [37].

We present the first framework, dubbed EXLONG, an in-
struction fine-tuned large language model (LLM) that auto-
matically generates EBTs. LLMs are shown to be effective
in code generation, including test generation [22], [32], [40],
[56], [63]. Such strong prior provides a good foundation yet is
not enough. EBTs contribute to only a very small percentage
in existing codebases, i.e., they are not well-represented in
LLM training data. The special conditions that trigger an EBT
during execution are not included in the training phase of
standard code LLMs, thus they do not perform well on the
task of generating EBTs.

Using CodeLlama [43] as its base, EXLONG is fine-
tuned [45], [60], [62] with a novel task instruction and fine-
tuning data, designed specifically to embed the reasoning about
a context that includes: (a) traces that lead to target throw
statements, (b) guard expressions (i.e., conditional expressions
that guard those throw statements), and (c) non-EBTs that
execute similar traces. This context is used as the input to
generate an EBT that triggers the target throw statement. The
EBT that we already showed in Figure 1b was generated by
EXLONG.

We assess the power of EXLONG using two use cases. In
the first use case, which we call developer-oriented use case,
a developer selects a method under test and a target throw
statement, as well as a destination test file. EXLONG takes
these inputs and automatically generates an EBT that executes
the target throw statement.

In this use case, we compare EXLONG with the state-of-the-
art models for test generation (CAT-LM [40]) and strongest
foundation models (GPT3.5 [34] and GPT-4o [35]). We use
a number of standard metrics (BLEU [39], CodeBLEU [41],
edit similarity [49], [64] and exact match), as well as metrics
specific to code, including percentage of compilable tests,
executable tests, and executable tests that cover the target
throw statement. Our results show that EXLONG generates
83.8% and 9.9% more executable EBTs than CAT-LM and
GPT3.5, respectively.

In the second use case, which we call machine-oriented
use case, a developer uses EXLONG to automatically generate
EBTs for the entire codebase with the goal to cover all existing
throw statements (with one EBT per statement). EXLONG
takes the entire codebase as input, finds throw statements that
are in public methods already covered by at least one non-
EBT and generates one EBT for each of the throw statements.
This use case is similar to the traditional test generation setup
targeted by analysis-based generation tools.

In this use case, we compare EXLONG with popular
analysis-based test generation tools: Randoop [36], [42] and
EvoSuite [11]. Although tools complement each other (i.e.,
each tool can generate EBTs for some target throw statements
that other tools cannot), our findings show that EXLONG
outperforms Randoop and EvoSuite.

Additionally, we built EXLONG on GPT-4o (a state-of-the-
art language model) without fine-tuning and evaluated it in
developer-oriented use case. Our results show that EXLONG–
GPT-4o outperforms GPT-4o by up to 16.6%. This emphasizes
that our technique is generalizable to the most advanced
proprietary LLMs.

Finally, we selected a subset of EBTs generated by EXLONG
and created pull requests for several open-source projects. By
the time of this writing, 23 tests generated by EXLONG have
already been accepted by developers of those projects.

The key contributions of this paper include:
• Task. We define a novel task for LLMs: generating excep-

tional behavior tests (EBTs).
• Model. We designed and implemented EXLONG, an instruc-

tion fine-tuned LLM built on CodeLlama, which reasons
about traces to methods that contain throw statements, guard
expressions, and non-EBTs that cover similar traces.

• Use cases. We recognized two use cases for EXLONG:
developer- and machine-oriented use cases.

• Evaluation. We assess the power of EXLONG in both
use cases. In developer-oriented use case, we compare
EXLONG with existing models for code and test generation.
In machine-oriented use case, we compare EXLONG with
analysis-based testing tools: Randoop and EvoSuite. We find
that EXLONG outperforms existing state-of-the-art models
and tools.

• Dataset. We developed a novel dataset for the presented
task and this dataset is publicly available.

EXLONG is available on GitHub at https://github.com/
EngineeringSoftware/exLong.

II. USE CASES

At a high level, EXLONG is designed to help software
developers write EBTs that cover the throw statements within
the given repository. We propose two use cases for EXLONG:
developer-oriented use case (Section II-A) and machine-
oriented use case (Section II-B). Note that in this work we
do not consider generating EBTs that cover throw statements
in the dependency libraries of the given repository, e.g.,
ArithmeticException thrown from the java.lang.Math, as

https://github.com/EngineeringSoftware/exLong
https://github.com/EngineeringSoftware/exLong


Fig. 2: Overview of EXLONG. Two use cases for EXLONG: (1) developer-oriented use case and (2) machine-oriented use case.
In the developer-oriented use case, a developer specify the method under test, a target throw statement and a destination test
file and ask EXLONG to generate an EBT that cover the target throw statement. In the machine-oriented use case, a developer
gives an entire repository to EXLONG.

we assume that those throw statements are already covered by
EBTs available in dependency libraries; developers can con-
figure EXLONG to include such throw statements if necessary.

A. Developer-oriented use case

In the developer-oriented use case (box 1 in Figure 2), a
developer will specify the method under test (MUT), a target
throw statement, and a destination test file, then ask EXLONG
to generate an EBT that invokes MUT and triggers the target
throw statement. When the developer specifies a target throw
statement that is not within the MUT, EXLONG will first
use a static program analysis technique to find all possible
throw statements reachable through a sequence of method calls
starting from the MUT, and then prompt the developer to select
the target statement from the list.

B. Machine-oriented use case

In the machine-oriented use case (box 2 in Figure 2), a
developer gives an entire repository to EXLONG. EXLONG will
first find all public methods and throw statements in those
methods. Furthermore, EXLONG will heuristically select a
destination test file. Then, EXLONG will create (public method,
throw statement, destination test file) triples. Finally, it will
generate one EBT to test each triple, without requiring any
developer intervention. EXLONG uses static+dynamic program
analyses to obtain necessary context such as traces leading to
throw statements and guard expressions.

III. EXLONG

Figure 2 shows the workflow of EXLONG. Given an MUT
(mut), a target throw statement (s), and a destination test file
(d), EXLONG reasons about the following context, collected
using static and dynamic program analyses ( 3 ):

• stack trace (r): the sequence of method invocations that
start from the MUT and lead to the target throw statement.

• guard expression (g): the logical formula representing the
constraints on the symbolic variables that must be true to
follow that particular trace.

• relevant non-EBTs (T̂neb): a subset of non-EBTs that
invoke the given MUT or are in the given destination test
file; their snippets and coding styles help with generating
desired EBTs.

The above constitutes the prompt p = (mut, s, d, r, g, T̂neb)
that encompasses the task inputs and the task context ( 4 ).
During training, EXLONG is instruction fine-tuned over a base
LLM to produce EBT (teb) conditioned on the input p. During
inference, EXLONG generates the EBT ( 6 ) given the prompt.

While the format of the LLM’s input (p) and output (teb)
is static, the steps for preparing the task inputs and reasoning
about the task context differ for training and inference, and
differ slightly between the developer- and machine-oriented
use cases. We describe the methodology for training EXLONG
in Section III-A and inference in Section III-B.

A. Training

To perform supervised fine-tuning (SFT) on EXLONG’s
foundation LLM, we collect a corpus (C) of SFT data c =
(p, teb) = (mut, s, d, r, g, T̂neb, teb) from a set of repositories
with developer-written EBTs and non-EBTs. Algorithm 1
shows the process of collecting the training corpus for EX-
LONG.

1) Identifying EBTs and non-EBTs: For each repository in
the training set, we first parse the source code in the repository
to identify test methods and categorize them into EBTs and
non-EBTs. A test method is categorized as an EBT if it
conforms to one of the four patterns that are widely used by
developers [28]: Test(expected), assertThrow, expectedRule,
tryFailCatch. All the other test methods are categorized as
non-EBTs. The set of EBTs and non-EBTs are used as the



Algorithm 1 Collecting training corpus.
1: inputs: Teb, Tneb - existing EBTs and non-EBTs
2: SUT - the system under test
3: outputs: C - the training corpus of {(mut, s, d, r, g, T̂neb, teb)}
4: procedure COLLECTTRAININGCORPUS(Teb, Tneb, SUT)
5: C ← ∅
6: for teb ∈ Teb do
7: d ← GetFile(teb)
8: r ← Execute(InstrumentPrintException(teb))
9: ▷ instrumenting and executing EBT to get stack trace

10: r ← ExcludeTestAndUtilMethods(r, d)
11: mut ← r[0].method ▷ MUT comes first in stack trace
12: s ← GetSourceCode(r[-1])
13: ▷ last stack trace item points to target throw statement
14: g ← ComputeGuardExp(r)
15: T̂neb ← ∅ ▷ initialize set of relevant non-EBTs
16: C ← C ∪ {(mut, s, d, r, g, T̂neb, teb)}
17: SUT ← InstrumentPrintMethod(SUT)
18: ▷ instrumentation for getting methods covered by non-EBTs
19: for tneb ∈ Tneb do
20: mut

′ ← Execute(tneb)[0]
21: ▷ get MUT directly invoked by non-EBT
22: for c ∈ C do
23: if c.mut == mut

′∨ c.d == GetFile(tneb) then
24: c.T̂neb ← c.T̂neb ∪ {tneb}
25: return C

inputs to the training corpus collection algorithm (line 1 in
Algorithm 1).

2) Executing EBT and collecting stack trace: Each EBT
will be expanded to one SFT example (c) in the training
corpus (C). Naturally, the file that contains the EBT is the
destination test file (line 7 in Algorithm 1). To avoid data
leakage problems, we remove all test methods in the test file
(d) and only keep the test class structure and utility methods.

For training, stack trace is the sequence of method in-
vocations from EBT (non inclusive) that lead to the target
throw statement under test (inclusive). Line 8 in Algorithm 1
shows how to collect the stack trace: first, instrument the
EBT by adding “print(exception.getCause())” to the code
location after the exception is thrown and caught by the EBT;
then, execute the instrumented EBT to get the printed stack
trace. To avoid duplicate information, we exclude EBT itself
and any utility methods in the destination test file from the
stack trace (line 10 in Algorithm 1).

The first method invoked in the stack trace is the MUT by
definition (line 11 in Algorithm 1). The last method invocation
and line number in the stack trace point to the target throw
statement (line 12 in Algorithm 1).

3) Computing the guard expression: Stack trace provides
the sequence of method invocations that lead to the target
throw statement, but knowing only the names of the methods
is insufficient for generating EBTs. To aid the reasoning about
the setup of the system under test, which lead to exceptional
behaviors, we propose guard expression: a logical formula
representing the constraints on the symbolic variables that
must be true to follow the particular code trace. Specifically,
we use conjunctions of expressions extracted from the invoked
methods in the stack trace to form the guard expressions.

Algorithm 2 Collect AST nodes along the stack trace.
1: inputs: r - the stack trace for a target throw statement
2: outputs: N - the collected nodes
3: procedure COLLECTNODES(r)
4: N ← ∅
5: for (m, lineno) ∈ Reversed(r) do
6: current ← GETSOURCECODE(m, lineno)
7: parent← current
8: N ← N ∪ {current}
9: while current ̸= m do

10: if parent is ForStmt then
11: N ← N ∪ {parent.CompareExpression}
12: if parent is IfStmt then
13: if parent.ThenStmt == current then
14: N ← N ∪ {parent.ConditionExpression}
15: if parent.ElseStmt == current then
16: N ← N ∪ {¬ parent.ConditionExpression}
17: ▷ Other cases (while, switch, block and assignment

statements) are in supplementary material.
18: current = parent
19: parent = parent.getParent()
20: return N

Algorithm 3 Compute guard expression based on stack trace.
1: inputs: r - the stack trace for a target throw statement
2: outputs: g - the guard expression for the target throw statement
3: procedure COMPUTEGUARDEXP(r)
4: N ← COLLECTNODES(r)
5: ▷ collect all condition (if, while, etc.) and assignment

(assign, method call) nodes along the stack trace
6: E ← ∅ ▷ the set of conditions in the guard expression
7: for n ∈ N do
8: if n is ConditionalExpr then
9: E ← E ∪ {n}

10: if n is AssignStmt then
11: E ← MERGE(E , {n.lhs 7→ n.rhs})
12: if n is MethodDeclaration then
13: n′ ← n ▷ process with next node (method call)
14: if n is MethodCallExpr then
15: argmap ← ∅
16: for arg, argname ∈ n.getArgs(), n′.getParams() do
17: argmap ← argmap ∪{argname 7→ arg}
18: E ← MERGE(E , argmap)
19: return

∧
E

20:
21: procedure MERGE(E , argmap)
22: E’ ← ∅
23: for e ∈ E do
24: for name 7→ expr ∈ argmap do
25: if e.contains(name) then
26: e ← e.replace(name, expr)
27: E’ ← E’ ∪ {e}
28: return E’

For instance, the guard expression for the throw statement
highlighted in Figure 1a is present in the Figure 2 (box 3 ).

The first step in the computation is to collect the list
of guard-related AST nodes along the stack trace starting
from the target throw statement to the MUT, as described in
Algorithm 2. We traverse each method in the stack trace in



reversed order (line 5). Inside each method, we start from the
AST node specified by the line number in the stack trace. We
always include this node into the list of collected nodes (line 8)
because the variable names in that statement may be used by
the next step for replacing method call arguments. Starting
from the statement, we traverse the AST by maintaining
the pointer current that constantly moves from the child
AST node to its parent node. AST nodes entailing condition
expressions within the ‘for’ loop (lines 10 to 11), ‘if’ statement
(lines 12 to 16), ‘while’ loop and ‘switch’ statement will be
added to N. We also collect the assignment statements, method
call expressions, and method declarations. Some of these are
omitted from Algorithm 2 to keep it simple.

The second step of computing guard expressions is to pro-
cess the collected nodes by propagating the symbolic variables
through the stack trace, as described in Algorithm 3. The
nodes are visited in the order being collected, and conditional
expressions are directly added to the guard expression (line 9).
Assignment statements, method declaration, and method call
expressions will trigger a Merge operation (line 21). The
goal of the Merge operation is to review the current guard
expression and replace the symbolic variables (e.g., variables
appearing in the target throw statement) with their corre-
sponding values (e.g., constant values or MUT’s arguments).
Therefore, the guard expression reflects the MUT’s arguments
and public fields that are usable by EBT, rather than local
variables that EBT may not have access to. For assignment
statement (line 11), we replace the left hand side variable in
E with the right hand side expression. For method declaration
and method call expression (lines 15 to 18; these two nodes
always appear in pairs in the collected nodes), we replace
the method declaration’s argument names in E with the actual
arguments in the method call expression.

4) Connecting EBTs to relevant non-EBTs: We add the
relevant non-EBTs to the prompt (lines 17 to 24 in Algo-
rithm 1), to encourage the LLM to reason about the procedures
to set up the object under test and the condition under which
the exception will be triggered grounding the existing non-
EBTs. Additionally, we believe the non-EBTs in the same
repository will promote the consistency between the generated
code and the existing code in terms of the both format and
coding conventions. Given an MUT, we use two approaches to
retrieve the relevant non-EBTs: non-EBTs that directly invoke
the same MUT (used first when the context window of the
LLM cannot fit all relevant non-EBTs) and non-EBTs that
are already present in the destination test file (line 23 in
Algorithm 1). If there is no relevant non-EBT retrieved, this
part of the prompt is left empty.

5) Instruction fine-tuning: We use CodeLlama-Instruct-
7B [43], an open-source foundation model designed for code
generation and instruction following, as the foundation model
of EXLONG. CodeLlama is pretrained on auto-regressive and
infilling objectives, enabling tasks like code completion and
document generation. We fine-tune CodeLlama on our col-
lected training corpus of SFT data C = {(p, teb)}, with
the novel instructions shown in Figure 2 ( 4 ). Given the

Algorithm 4 Prepare the pool stack traces from non-EBTs
and assemble the prompt for evaluating EXLONG.

1: inputs: Tneb - existing non-EBTs
2: SUT - the system under test
3: outputs: Q - stack traces to reach target throw statements
4: procedure COLLECTSTACKTRACESET(Tneb, SUT)
5: SUT ← InstrumentPrintTrace(SUT)
6: Q ← ∅
7: for tneb ∈ Tneb do
8: for r ∈ Execute(tneb) do
9: r ← ExcludeTestAndUtilMethods(r, GetFile(tneb))

10: for s ∈ GetThrowStmts(r) do
11: Q ← Q ∪ (r, tneb, s)
12: return Q
13:
14: global var: Q = COLLECTSTACKTRACESET(Tneb, SUT)
15: inputs: mut, s, d - task inputs selected by developers or inferred
16: Tneb - existing non-EBTs
17: outputs: p - the prompt to give to the LLM
18: procedure ASSEMBLEPROMPT(mut, s, d)
19: R← ∅
20: T̂neb ← ∅
21: for q ∈ Q do
22: if mut ∈ q.r ∧ q.s == s then
23: R← R ∪ {q.r}
24: if mut == q.r[0].method then
25: T̂neb ← T̂neb ∪ {q.tneb}
26: if R ̸= ∅ then
27: r ← RandomSelect(R)
28: g = EXTRACTGUARDEXP(r)
29: T̂neb ← T̂neb ∪ {tneb|GetFile(tneb)==d}
30: return (mut, s, d, r, g, T̂neb)

instruction that includes the collected context, the model is
expected to produce the EBT: LLM(p) = teb.

We fine-tune the CodeLlama model using the parameter-
efficient Low-Rank Adaptation (LoRA) technique [20]. Rather
than updating the entire set of parameters in the LLM, LoRA
injects trainable low-rank matrices into each layer of the
model. This approach dramatically reduces the number of
trainable parameters and the amount of required computational
resources.

B. Inference

The inference workflow of EXLONG is different from its
training workflow in that we cannot rely on executing EBTs to
collect the context (e.g., stack trace), as our goal is to generate
those EBTs. Instead, EXLONG reasons about the context based
on task inputs (MUT, target throw statement, and destination
test file) and leveraging existing non-EBTs for the system
under test. Algorithm 4 describes the key steps in preparing
the inference prompt of EXLONG.

1) Collecting non-EBTs’ stack traces to reach poten-
tial target throw statements: We first prepare a set of
stack traces, from the execution of non-EBTs, that can
reach potential target throw statements in the repository
(lines 4 to 12). This only needs to be done once per
repository. Specifically, we first instrument all methods that
have throw statements to log the current stack trace (using



TABLE I: Statistics of the collected dataset. #MUTs is the
number of unique method under test; #Exception Types is the
number of unique exception types tested by the EBTs.

#Projects #Tests #EBTs #MUTs #Exception
Types

All 562 111,230 12,574 6,250 821
Train 501 100,030 11,182 5,508 725
Valid 29 5,298 550 279 66
Eval 32 5,902 842 - -

Thread.currentThread().getStackTrace();) upon invok-
ing those methods (line 5). Then, we execute all non-EBTs and
collect the logged stack traces (lines 7 to 11). The execution
of each non-EBT may generate multiple stack traces, as it may
cover multiple methods with throw statements.

2) Selecting task inputs: Next, we select the task inputs
(MUT, target throw statement, and destination test file), which
can be specified by the developer or inferred by heuristics
depending on the use case that EXLONG is targeting:

• Developer-oriented use case: developer specify the MUT
and target throw statement to generate the EBT for, and
the destination test file where the EBT should be placed.

• Machine-oriented use case: given a repository, EXLONG
locates all throw statements and generates one EBT for
each of them. For a target throw statement, the MUT
is the method containing the throw statement, and the
destination test file is selected based on (a) file name
matching, and (b) test coverage analysis. Specifically,
similar to prior work [40], given a code file named FNM,
we search for test file named FNMTest or TestFNM. If
there is no result based on file name matching, we run
the existing non-EBTs to find any existing test class that
cover the MUT or the class of MUT. If there is again no
result based on test coverage analysis, EXLONG will not
generate an EBT for this target throw statement (and it
will move to the next one).

The selected task inputs are then used to assemble the prompt
for EXLONG (line 15).

3) Assembling the prompt: We first need to find stack
traces from the set of non-EBTs’ stack traces that match the
given MUT and target throw statement (line 22). If multiple
matching stack traces are found, we randomly select one
(line 27). Given the stack trace, we use the same algorithm in
Section III-A3 to compute the corresponding guard expression
(line 28). The relevant non-EBTs are selected using the similar
criteria as Section III-A4, i.e., having the same MUT (line 25)
or in the same destination test file (line 29). However, if no
matching stack trace is found, EXLONG will not generate an
EBT for the given inputs.

IV. DATASET

In this section, we describe details on collecting the dataset
(Section IV-A), as well as the statistics of our dataset used for
training and evaluation (Section IV-B).

TABLE II: Statistics of the evaluation dataset for developer-
oriented use case. #MUT is the number of unique method un-
der test; #Exception Types is the number of unique exception
types tested by the EBTs; #Throw Statements is the number
of unique throw statements covered by the EBTs.

#EBTs #MUT #Exception
Types

#Throw
Statements

Developer-Oriented 434 267 41 278

TABLE III: Statistics of the evaluation dataset for machine-
oriented use case. #Throw Statements is the number of target
throw statements we extracted from the repository according
to Section III-B2. #Exception Types is the number of unique
exception types thrown by the target throw statements.

#Throw
Statements

#Exception
Types

Machine-Oriented 649 81

A. Dataset Collection

Following prior work [32], we collect data from Java
projects from CodeSearchNet [21], which are available on
GitHub and satisfy the following: (1) use the Maven build
system; (2) compile successfully; (3) do not have test failures;
(4) have at least one EBT that follows one of the four
patterns [28] (Section III-A1), and (5) have a license that
permits the use of its data. Requirements 1-4 simplify the
automation steps and ensure that we can run existing tests to
collect dynamic data (e.g., stack traces), as well as run EBTs
that we generate.

B. Dataset Statistics

The statistics for the collected dataset are presented in
Table I. In total, we collected 111,230 tests from 562
projects, where 12,574 of these tests are EBTs. Collected
EBTs cover a range of 821 unique exception types (e.g.,
RuntimeException, IllegalArgumentException).

The dataset is randomly split by projects into training
(Train), validation (Valid), and evaluation (Eval) sets, where
the training set is the SFT data used to instruction fine-tune
EXLONG, the validation set is used for early-stopping the
training process and guiding our design decision of EXLONG,
and the evaluation set is used for evaluating the performance
of EXLONG and baselines.

Table II presents the statistics of the evaluation data for
developer-oriented use case. Note that this is a subset of the
last row from Table I. Under developer-oriented use case, we
benchmark EXLONG on the subset of 434 examples for which
we are able to extract stack traces. In this paper, we focus on
cases where accurate stack traces can be extracted by executing
existing non-EBTs. When such non-EBTs are not available,
namely the stack traces cannot be obtained, developers can
first write or generate non-EBTs for the MUT with the help of
other test generation tools, and then use EXLONG to generate
EBTs.



Table III presents the statistics of the evaluation data for
machine-oriented use case. Note that this is a subset of the last
row from Table I. For machine-oriented use case, we evaluate
on 649 examples as we filter the data for which we were
not able to locate the destination test file with our designed
heuristics (Section III-B2).

V. EVALUATION DESIGN

We assess the performance of EXLONG by answering the
following research questions:
RQ1: How does EXLONG perform under the developer-
oriented use case compared with the state-of-the-art models?
RQ2: How much do stack traces and guard expressions help
EXLONG in generating EBTs?
RQ3: How much does the selection of non-EBTs help EX-
LONG in generating EBTs?
RQ4: How does EXLONG perform with different underlying
LLM model?
RQ5: How does EXLONG perform under the machine-oriented
use case compared with analysis-based test generation tools?

We next describe metrics used to compare models and tools
(Section V-A) and then describe the baselines used in our
comparison (Section V-B). We answer all research questions
in Section VI.

A. Evaluation Metrics

1) Developer-oriented use case: For developer-oriented use
case, we compare (using data shown in Table II) the generated
EBTs against the developer-written EBTs by benchmarking on
similarity-based and functional-correctness metrics.

Following prior work on learning-based test generation [32],
[40], [56], we use the following similarity-based metrics to
compare generated EBTs and ground-truth (i.e., developer-
written ones):
Exact-match accuracy (xMatch): the percentage of the pre-
dictions that are exactly the same as the ground-truth.
BLEU [39]: the number of n-grams in the prediction that also
appear in the ground-truth.
CodeBLEU [41]: adapted version of BLEU score for code. In
addition to n-grams overlapping, it also computes the overlap
of AST nodes, nodes in the data-flow graph between the
prediction and ground-truth.
Edit similarity [49], [64]: calculates 1-Levenshtein distance
which is the minimum number of character-level edits (in-
sertions, deletions, or substitutions) required to change the
prediction into the ground-truth.

The similarity metrics only capture the surface-level simi-
larity between the prediction against an existing EBT; among
them, xMatch is the most strict one as it requires perfect
matches, while the others account for partial matches. How-
ever, such surface metrics do not adequately capture the func-
tional validity of the generated EBT (e.g., whether the code
can be compiled or executed), especially since the developer-
written EBTs may not be the only correct implementation to

cover a specific target throw statement. Thus, we additionally
include the following functional-correctness metrics:
Compilable%: percentage of the generated EBTs that can be
compiled. Being compilable is a basic functional requirement
for the generated tests.
Matched-E%: percentage of EBTs that check the specified
exception type. Namely, whether the exception class following
‘@Test(expected =’ is the same as user specified one. This
metric checks if the model hallucinates the exception type.
Runnable%: percentage of EBTs that check the specified
exception type, and can be compiled and executed without
any error. This metric, unlike others, requires the generated
EBTs to be semantically valid.
ThrowCov%: out of all developer-specified target throw state-
ments (Table II), the percentage of target throw statements with
successfully generated EBTs, i.e., compilable, runnable, and
checking the specified exception type. This is the strictest met-
ric, ensuring that the generated EBTs are semantically valid
and are targeting the throw statement specified by developers.

2) Machine-oriented use case: For machine-oriented use
case, we benchmark tools ability to cover the throw statements
within a given repository:
ThrowCov%: out of all target throw statements selected in
repositories (Table III), the percentage of the target throw
statements with successfully generated EBTs, i.e., compilable,
runnable, and checking the correct exception type.

B. Baselines

1) Learning-based tools: We compare EXLONG with one
of the strongest foundation models and one LLM that is
specifically pretrained to generate tests.
GPT3.5: We instruct GPT3.5 [34] to write EBTs by first
providing one random example from the training data. Namely,
one prompt and the corresponding ground-truth EBT. The
prompt we use to query GPT3.5 includes the MUT, the target
exception type to test, the method containing the target throw
statement, one relevant non-EBT, and the destination test file.
We sample a single EBT from the output.
CAT-LM: CAT-LM [40] is an LLM pretrained on Java and
Python repositories. It is pretrained with a novel objective
that considers the mapping between source code and the
corresponding test files. CAT-LM is pretrained to generate
the remaining test methods given a code under test and the
beginning of the test file. It has shown strong performance
on several test generation tasks. To be consistent with its
pretraining objective and intended use case, we prompt CAT-
LM with the MUT followed by the destination test file, one
randomly-selected relevant non-EBT, and the test annotation
(‘@Test(expected =’), encouraging the model to complete
the EBT. Just like in other cases, we sample a single EBT.

2) Automatic test generation tools: In machine-oriented use
case, we compare EXLONG with two widely-used analysis-
based test generation tools.
Randoop: Randoop [36], [42] is a random test generation tool
that creates tests by randomly generating inputs and recording
the sequences of method calls. We run Randoop with a time



limit of 100 seconds per class to generate unit tests for each
project (per the Randoop user manual [54]), we set seed to
42, usethreads to true, and other options to their default
values.
EvoSuite: EvoSuite [11] is a search based test generation
tool that randomly generates inputs and employs a genetic
algorithm to evolve these inputs, aiming to maximize code
coverage. We run EvoSuite for 120 seconds per class (as
suggested in a recent SBST competition [47]). We also set
the seed to 42. Unlike Randoop, which generates tests for
the entire project, to generate more EBTs for the target throw
statements within the time limit, we generate tests on a subset
of classes when running EvoSuite. Starting from classes that
contain throw statements, we use jdeps [53] to retrieve all
classes that transitively depend on these initial classes, thereby
creating a targeted subset for evaluation.

C. Hardware

We run EXLONG’s program analyses part, Randoop, and
EvoSuite on a machine with Intel Core i7-11700K @ 3.60GHz
(8 cores, 16 threads) CPU, 64 GB RAM, Ubuntu 20.04, Java
8, and Maven 3.8.6. We perform EXLONG’s LLM fine-tuning
and generation, as well as CAT-LM on a server with 4 Nvidia
A100 GPUs, 2 AMD Milan 7413 @ 2.65 GHz. We run fine-
tuning and generation, for EXLONG and baselines, three times
with different random seeds and report the average numbers
across three runs.

VI. RESULTS

In this section, we present the evaluation results and answer
each research question.

A. RQ1: Developer-Oriented Use Case

To answer RQ1, we compare the EBTs generated by EX-
LONG with developer-written tests. The results of EXLONG
and baselines are shown in tables IV and V. Table IV presents
the results when we inform LLMs the method name of the
target EBT while in Table V we do not. (We describe the last
row in these tables in a later subsection.)

EXLONG outperforms all the baselines on both similarity-
based metrics (left side in tables) and functional-correctness
metrics (right side in tables). EXLONG achieves higher per-
formance than baselines for both generating executable EBTs
(Runnable%) and EBTs that cover the target throw statements
(ThrowCov%). This highlights that EXLONG can generate
more EBTs that can be directly adopted by developers. In
Table IV, we can see that EXLONG outperforms GPT3.5 by
9.9% and 22.8% on Runnable% and ThrowCov%, respectively.
Similarly, we can see that EXLONG outperforms CAT-LM by
83.8% and 97.5% on Runnable% and ThrowCov%, respec-
tively. This further underlines the benefit of the stack traces
and guard expressions extracted via program analysis, and
EXLONG’s capability of reasoning about them.

To further understand the performance difference, we in-
spect the EBTs generated by GPT3.5 and EXLONG. Although
GPT3.5 generates comparable number of compilable EBTs

public static FileWriter createFileWriter(String className,
LogFilePath logFilePath, CompressionCodec codec,
SecorConfig config)

throws Exception {
return createFileReaderWriterFactory(className, config).

BuildFileWriter(logFilePath, codec);
}

(a) The MUT to be tested.

!FileReaderWriterFactory.class.isAssignableFrom(Class.
forName(className))

(b) The guard expression for the target throw statement.

@Test(expected = IllegalArgumentException.class)
public void testFileWriterConstructorMissing() throws

Exception {
ReflectionUtil.createFileWriter("MissingClass",

mLogFilePath, null, mSecorConfig);
}

(c) Compilable but failing EBT generated by GPT3.5

@Test(expected = IllegalArgumentException.class)
public void testFileWriterConstructorMissing() throws

Exception {
ReflectionUtil.createFileWriter("java.lang.String",

mLogFilePath, null, mSecorConfig);
}

(d) Compilable and runnable EBT generated by EXLONG

Fig. 3: EBT (testFileWriterConstructorMissing) gen-
erated by GPT3.5 and EXLONG. The EBT generated by
EXLONG covers the target throw statement satisfying the
correct condition.

as EXLONG, it struggles to cover the correct target throw
statements especially when they are not in the MUT (but
could be reached through a sequence of method calls). For
example, in Figure 3b, we show the guard expression ex-
tracted by EXLONG to trigger the IllegalAccessException
with regard to the first argument (className) of the
MUT (createFileWriter) in Figure 3a. The EBT gen-
erated by GPT3.5 can be compiled but fails to check the
IllegalAccessException (Figure 3c). EXLONG uses the
correct class “java.lang.String” that satisfies the condition
and successfully covers the target throw statement (Figure 3d).

Comparing functional-correctness metrics in Table IV
and Table V, performance of both GPT3.5 and CAT-
LM declines significantly when the EBT method name
is omitted. This result aligns with expectations, as the
method name frequently implies the conditions under
which the exception is supposed to be thrown, e.g.,
“should fail if time provider is null”. In contrast,
EXLONG demonstrates robustness regarding the inclusion or
exclusion of the test method name, maintaining consistent
performance on functional-correctness metrics. This further
emphasizes the reasoning ability of EXLONG on the stack
traces and guard expressions.

B. RQ2: Ablation Study of Stack Traces and Conditions

To evaluate the contribution of the components in EXLONG,
we perform an ablation study. In Table VI, we show the
results while including EBT’s name in the prompt. We find
that ablating each component deteriorates performance espe-



TABLE IV: Results on developer-oriented use case with ground-truth EBT’s name in the prompt.

Models BLEU CodeBLEU EditSim xMatch Compilable% Matched-E% Runnable% ThrowCov%

GPT3.5-few-shot 56.61 64.28 82.30 14.98 75.12 100.00 61.29 48.39
CAT-LM 53.49 59.79 78.91 9.83 71.83 100.00 36.64 30.03
CodeLlama zero-shot 38.23 48.63 66.96 5.53 57.30 96.02 40.17 33.87
EXLONG 63.13 67.49 85.32 19.05 82.10 100.00 67.36 59.45

EXLONG-sample 70.01 74.08 90.09 15.28 93.54 100.00 81.29 71.28

TABLE V: Results on developer-oriented use case without ground-truth EBT’s name in the prompt.

Models BLEU CodeBLEU EditSim xMatch Compilable% Matched-E% Runnable% ThrowCov%

GPT3.5-few-shot 38.67 49.33 69.32 0.00 82.83 100.00 57.58 32.32
CAT-LM 37.25 48.47 68.18 1.23 70.83 100.00 23.96 16.44
CodeLlama zero-shot 26.93 37.38 61.88 0.15 57.22 96.91 41.32 33.49
EXLONG 46.66 55.36 79.76 2.07 82.26 100.00 69.89 59.83

EXLONG-sample 50.73 59.38 82.83 1.92 89.40 100.00 78.80 67.67

cially across functional correctness metrics. Removing stack
traces slightly hurts the performance of EXLONG in terms
of functional correctness which is expected, because a guard
expression is, in a way, the summary of a stack trace.

We observe a small drop in Compilable% but a rather larger
drop in ThrowCov% if removing both stack trace and guard
expression from the context. This underlines the importance
of the condition information present by these two components
on which EXLONG reasons about when generating EBTs that
cover the target throw statements. Relevant non-EBTs mostly
contribute to the Compilable% because the relevant non-EBT
covers the same MUT which gives model a starting point
to construct the EBTs. The ablation study underscores the
importance of each component in EXLONG.

C. RQ3: Selection of non-EBTs

In addition to randomly choosing one relevant non-EBT to
add to the prompt for EXLONG, we try running the inference
of EXLONG for no more than 5 times, each time with a dif-
ferent relevant non-EBT, and reporting the best performance,
dubbed EXLONG-sample in tables IV and V. We see that that
performance differences can be substantial.

To study how the diversity of non-EBTs used in the prompt
affect the EXLONG performance, our ablation study on the
number of different relevant non-EBTs is shown in Table VII.
We present results for 1) EXLONG generating only one EBT
for each target throw statement; 2) EXLONG-sample but using
the same non-EBT as 1) in multiple inference runs; 3) EX-
LONG-sample using different non-EBTs in multiple inference
runs. For a fair comparison, we keep the number of generated
EBTs for 2) and 3) same and we report the best-of-k metrics
on a subset of 253 examples on which we extracted more than
one relevant non-EBT.

We find that increasing the number of sampled EBTs im-
proves the performance when compared to only generating one
EBT, which can be attributed to the randomness. Moreover,
sampling with a diverse set of non-EBTs further boost the
performance across most of the metrics under the same sample
size. This motivates a new research question on how to choose
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Fig. 4: Venn diagram that shows target throw statements
coverage by EXLONG, Randoop, and EvoSuite.

better non-EBTs to the prompt for EBT generation, which we
leave for future work.

D. RQ4: EXLONG Built with GPT-4o

Our technique, which assists LLMs in generating EBTs
can be transferred to other LLMs with significant benefits. In
addition to results with open-sourced LLMs in prior sections,
we further present the results of EXLONG built on GPT-
4o [35], currently one of the most powerful proprietary LLMs.
Table VIII compares the performance of EXLONG–GPT-4o
with baseline GPT-4o under the developer-oriented use case.
The inputs to GPT-4o includes the MUT, the target exception
type, the method containing the target throw statement, one
relevant non-EBT, and the destination test file. We instruct
EXLONG–GPT-4o with the prompt containing MUT, stack
trace, guard expression, relevant non-EBTs and the destination
test file. One example pair of input and ground-truth EBT is
provided for both models. Results show that EXLONG–GPT-
4o outperforms GPT-4o across both similarity metrics and
functional-correctness metrics.

E. RQ5: Machine-Oriented Use Case

In Table IX, we present the throw statement coverage rate of
EXLONG-sample and two analysis-based test generation tools.
EvoSuite could generate tests for all projects, while Randoop



TABLE VI: Ablations on different context of EXLONG.

Models BLEU CodeBLEU EditSim xMatch Compilable% Matched-E% Runnable% ThrowCov%

EXLONG 63.13 67.49 85.32 19.05 82.10 100.00 67.36 59.45

No stack trace 62.61 67.36 85.43 17.74 81.41 100.00 67.05 58.14
No stack trace, guard expression 62.53 67.42 84.85 17.74 81.41 100.00 61.98 52.00
No stack trace, guard expression, non-EBT 54.84 60.62 80.70 12.06 61.52 100.00 46.70 38.25

TABLE VII: Comparison between using different non-EBTs to sample and using the same non-EBT but sampling multiple
times. Note that we add the target EBT’s name to the prompt and we only report results on examples that have more than one
candidate non-EBT.

Models BLEU CodeBLEU EditSim xMatch Compilable% Matched-E% Runnable% ThrowCov%

EXLONG 61.44 66.21 85.34 13.44 83.40 100.00 66.14 56.79
EXLONG-sample w/ same non-EBT 63.64 68.28 86.70 13.18 87.35 100.00 72.46 61.53
EXLONG-sample w/ different non-EBT 71.66 75.18 90.62 17.79 95.65 100.00 83.00 71.94

TABLE VIII: Comparison between GPT-4o-few-shot and EXLONG–GPT-4o.

Models BLEU CodeBLEU EditSim xMatch Compilable% Matched-E% Runnable% ThrowCov%

GPT-4o-few-shot 60.07 65.56 84.00 16.82 81.87 99.73 71.52 55.53
EXLONG–GPT-4o 60.48 66.77 84.77 17.74 82.49 100.00 75.35 64.75

TABLE IX: Throw statements coverage rate for EXLONG,
Randoop and EvoSuite.

Tools ThrowCov%
Subset Projects All Projects

EXLONG 29.72 28.81
EvoSuite 20.37 20.95
Randoop 21.87 18.95

could not generate tests for three projects. We inspected the is-
sues and found that: (1) Randoop crashed on OpenNMS/newts
because this project kept throwing runtime exceptions (all
related to com.codahale.metrics.ScheduledReporter);
(2) Randoop crashed on pinterest/secor because this
project requires the configuration of Kafka; (3) Randoop could
not load a class and crashed on OpenHFT/Chronicle-Map.

We report results on the subset of 27 projects where all
the tools can be run successfully (Subset Projects) and results
on all 30 projects (All Projects). Among the given target
throw statements, EXLONG achieves higher throw statement
coverage rate than analysis-based tools. Figure 4 illustrates
the overlap and difference among the sets of target throw
statements covered by EXLONG, EvoSuite, and Randoop. All
three tools cover different sets of throw statements. EXLONG
covers the most target throw statements that other two cannot.

VII. CASE STUDY

We performed a case study where we submitted the EBTs
generated by EXLONG to the open-source projects (where
the data was extracted from) to collect developers’ feedback.
Among the evaluation set for machine-oriented use case,
EXLONG generated 187 EBTs across 30 projects that are
runnable and cover the correct throw statements. We selected a
subset of 9 projects that are actively maintained, i.e., they had
at least one commit, accepted pull request (PR) or responded
issue within the past six months (at the time of the paper

submission). We found that the generated EBTs of 2 projects
were the same as those added by developers on later commits
(commits after the ones we used during evaluation), thus
refrained from submitting PRs to them. In total, we submitted
7 PRs which include 35 EBTs (one PR per project). Among
them, 4 PRs (23 EBTs) have been accepted, and 3 PRs (12
EBTs) are still pending. No PR was rejected. In one instance,
a developer responded and merged our PR only 30 minutes
after we create the PR. This was encouraging, and future tool
development should integrate EXLONG into an IDE, such that
EXLONG continuously provide EBTs for code that a developer
is editing.

VIII. LIMITATIONS

We discuss several limitations and potential future work.
Programming language. In this work, we focused on support-
ing the Java programming language, which is among the most
popular languages nowadays. We expect no substantial dif-
ferences in our approach for similar programming languages,
e.g., C#. Future work could evaluate and tune our model for
dynamically typed languages, e.g., Python.
Project boundaries. In our evaluation, we generate EBTs for
throw statements within a single project, and we ignore throw
statements that are in libraries used by the project. We could
not come up with a use case that targets throw statements
in libraries, so we left it out of our work. If we were to
target such a case, we would need to collect context (throw
statement and conditions) from those libraries. One could take
several directions, e.g., finding code of those libraries, building
a model on bytecode level, or decompiling code and then
extracting the context.
Destination test file. Not every MUT has a destination test
file. We leave the problem on finding or generating destination
test file for any given method under test as future work.



LLMs. We built EXLONG around CodeLlama [43], a recent
open-source model. We believe that building on CodeLlama
provides reproducibility guarantees that will help us and others
to build on this work. Our contributions are the task, definition
of a context for the task, tools for extracting the context,
instruction fine-tuned model, and extensive evaluation. We
expect that building EXLONG on other open-source LLMs
would lead to similar results.

IX. RELATED WORK

There has been significant work on test generation [10],
[11], [36], [40], [48], [59] and code generation [23], [27], [30],
[33], [38], [67], [68]. We cover related work on (1) LLM-based
test generation, (2) generating tests for exceptional behavior,
and (3) other test generation techniques.
LLM-based test generation. Transformer models have been
used to generate tests [9], [22], [31], [32], [40], [46], [56],
[59], [63] and test oracles [8], [57], [61]. CAT-LM [40] is a
2.7B model that is pretrained on a large dataset of Java and
Python projects. It outperforms existing test generation tools
StarCoder [23] and CodeGen 16B [33] in terms of the number
of valid tests and test completion tool TeCo [31], [32]. So we
compared our work with CAT-LM in this paper.

Conditions are useful for guiding the generation of tests and
finding bugs [3], [4], [44]. SymPrompt [44] introduced path
constraint prompting to guide LLMs to generate high-coverage
tests without additional training. They collect constraints from
each possible execution path in the target method and prompt
the LLM to generate tests that cover those paths. We extract
guard expressions by analyzing multiple methods along the
stack trace starting from the throw statement to the target
method for generating EBTs.

Existing test cases (including the setup and teardown meth-
ods) serve as a useful context to guide the generation [32],
[40], [56]. Haji et al. [9] empirically studies the effectiveness
of generating tests using GitHub Copilot and discovers that
using existing test cases as context can increase the passing
rate of generated tests by 37.73%. Our work uses existing non-
EBTs as context and collects stack traces from those tests to
guide the generation of EBTs.
Generating tests for exceptional behavior. Exception han-
dling [28], [65], [66], [69] is an important aspect of software
development. There are several techniques [1], [2], [13], [55]
to generate EBTs. However, they either generate EBTs from
specifications or use random-based or search-based strategies
to generate EBTs. Our work is the first to use LLMs to
generate EBTs. Also, prior work generates tests for the whole
program, while our EXLONG allows users to specify which
throw statements to cover.

Guo et al. [15] introduces boundary coverage distance
(BCD) to evaluate the quality of test inputs, which can be used
to guide the random generation of test inputs by minimizing
BCD. Goffi [13] proposed throw statement coverage to mea-
sure the effectiveness of test inputs in triggering exceptions.
We also use throw statement coverage in our evaluation.

Other test generation techniques. Other techniques incor-
porate random-based [36], [42], search-based [11], [17], [25],
[26] and constraint-based [10], [12], [19] strategies to auto-
matically generate tests. Tests can be derived from multiple
sources, including the code under test, error messages [16],
and specifications [29] like comments [50]–[52].

Randoop [36], [42] generates tests by randomly generating
inputs and saving the sequences of method calls. EvoSuite [11]
is a search based test generation tool that randomly generates
inputs and uses a genetic algorithm to evolve the inputs to
maximize code coverage. During the test generation process,
both Randoop and EvoSuite create tests that cover normal as
well as exceptional behaviors. However, since they generate
inputs randomly, they do not guarantee to generate tests with
high coverage or meaningful and readable inputs. Moreover,
there is no assurance that these inputs will successfully trig-
ger certain exceptional behaviors. EvoSuiteFIT [1] adapted
EvoSuite’s search algorithm with reinforcement learning to
generate exceptional tests. Unfortunately, we cannot directly
use EvoSuiteFIT (has error “Invalid or corrupt jarfile”).

X. CONCLUSION

We presented the first work on generating tests for ex-
ceptional behavior (EBTs) using large language models. We
introduced EXLONG that builds on top of CodeLlama to embed
reasoning about traces that lead to throw statements, condi-
tional expressions along those traces, and non-exceptional tests
that cover similar traces. We evaluated EXLONG in two use
cases: developer-oriented use case (i.e., generate EBT for a
given method under test and a target throw statement) and
machine-oriented use case (i.e., automatically generate tests
for all throw statements available in a repository). Our results
show that EXLONG outperforms existing test generation mod-
els and analysis-based test generation tools. We contributed a
number of tests generated by EXLONG to open-source projects,
and 23 EBTs are already accepted. We believe that EXLONG
targets an important task, has good performance, and helps
developers increase code quality assurance by automatically
providing high quality EBTs.
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