
JATTACK: Java JIT Testing
using Template Programs

Zhiqiang Zang, Fu-Yao Yu, Nathan Wiatrek, Milos Gligoric, and August Shi
zhiqiang.zang@utexas.edu, fu.yao.yu@utexas.edu, nwiatrek@utexas.edu, gligoric@utexas.edu, august@utexas.edu

The University of Texas at Austin
Austin, TX, USA

Abstract—We present JATTACK, a framework that enables
compiler testing using templates. JATTACK allows compiler
developers to write a template program that describes a set of
concrete programs to be used to test compilers. Such a template-
based approach leverages developers’ intuition on testing com-
pilers, by allowing developers to write a template program in
the host programming language (Java), which contains a basic
program structure while provides an opportunity to express
variants of specific language constructs in holes. Each hole,
written in a domain-specific language embedded in the host
language, is used to construct an extended abstract syntax tree
(eAST), which defines the search space of a language construct,
e.g., a set of numbers, expressions, statements, etc. JATTACK
executes the template program to fill every hole by randomly
choosing a number, expression, or statement within the search
space defined by the hole, and it generates concrete programs
with all holes filled. We used JATTACK to test Java just-in-time
(JIT) compilers, and we have found seven critical bugs in Oracle
JDK JIT compiler. Oracle developers confirmed and fixed all
seven bugs, five of which were previously unknown, including
two CVEs (Common Vulnerabilities and Exposures). JATTACK
blends developers’ intuition via templates with random testing
to detect bugs in compilers. The demo video for JATTACK can
be found at https://www.youtube.com/watch?v=meCFPxucqk4.

Index Terms—Testing, test generation, program generation,
compiler, templates

I. INTRODUCTION

Compilers are the cornerstone of software development, and
their correctness is vital. Compiler developers have written
thousands of tests, i.e., programs in the compiler’s target
programming language, to check correctness of compilers [1].
Such hand-written tests nicely capture developers’ intuition of
what programs are more likely to trigger corner cases, but it
is time-consuming to write a large number of tests. On the
other hand, automated techniques [2]–[4] can generate a large
number of programs used as test inputs to compilers, but they
do not incorporate compiler developers’ domain knowledge
and insights into the testing process.

We present JATTACK [5], which blends developers’ insights
with automated testing. Using JATTACK, a developer writes
a template program (template for short) that is similar to
the tests they already write for compilers, but they express
variants of the test using the template. (Figure 1 shows an
example template, which is discussed in detail in Section II.)
The goal of writing a template is similar to parameterized
unit testing [6], where developers hand-write tests but use
parameters to provide their insights for deeper exploration.

JATTACK allows developers to specify exactly how to generate
variants of a test.

Every template contains holes that JATTACK will fill.
Each hole is written in a domain-specific language (DSL)
embedded in the host programming language (Java). Using
the DSL, developers can specify exactly how they want the
hole to be filled. JATTACK constructs an extended abstract
syntax tree (eAST) from the hole, which bounds the search
space for the hole. The DSL is implemented with a set of
APIs in JATTACK, e.g., relation(intVal(), intVal(), GT,

LT).eval() defines a hole that represents a logical relation
connecting two integer literals (each taking value between
Integer.MIN_VALUE and Integer.MAX_VALUE) using either >
(GT) or < (LT) operators. This hole evaluates to a boolean.

JATTACK repeatedly executes the given template to fill each
hole and as a result generates a concrete program. During
execution, when it reaches a hole for the first time, JATTACK
randomly chooses a number or expression available within
the search space defined by the hole to fill the hole in the
remaining execution. Next, since we focus on testing Java
JIT compilers, every generated program from the template is
executed a large number of times (so that JIT compilation is
triggered [7]) using different JIT compilers, detecting bugs via
differential testing [8].

We wrote 84 templates focusing on different Java language
features and learning from existing tests for Java JIT com-
pilers. As part of our evaluation on how well JATTACK can
be used for automated compiler testing, we also automatically
extracted 5,419 templates from 77 open-source Java projects
in a wide variety of domains involving different Java language
features. Using these templates, JATTACK detected seven bugs
in the Oracle JDK JIT compiler. Oracle developers confirmed
and fixed all seven bugs, five of which were previously
unknown including two CVEs (Common Vulnerabilities and
Exposures) that they acknowledged.

JATTACK is open source and publicly available on GitHub
at https://github.com/EngineeringSoftware/jattack.

II. EXAMPLE

Figure 1a shows a template program we wrote using JAT-
TACK. Note that every template is a valid program, which
means it can be type-checked, compiled and executed the same
as any other Java program. This template involves different

1

https://www.youtube.com/watch?v=meCFPxucqk4
https://github.com/EngineeringSoftware/jattack

1 import static jattack.Boom.*;
2 public class T {
3 static int s1;
4 static int s2;
5 @Entry
6 public static int m() {

7 int[] arr1 = { s1++, s2, intVal().eval() ¶,

8 intVal().eval() ·, intVal().eval() ¸ };

9 for (int i = 0; i < arr1.length; ++i)

10 if (logic(relation(intId(), intId(), LE),

11 relation(intId(), intId(), LE),

12 AND, OR).eval() ¹)

13 arr1[i] &= arithmetic(intId(), intId(),

14 ADD, MUL).eval() º;

15 return 0; } }

(a) An example of a template.

1 import static jattack.Boom.*;
2 public class TGen {
3 static int s1;
4 static int s2;
5 @Entry
6 public static int m() {

7 int[] arr1 = { s1++, s2, 45350238 ¶,

8 681339300 ·, 125652422 ¸ };
9 for (int i = 0; i < arr1.length; ++i)

10 if (arr1[3] <= s2 || s2 <= arr1[2] ¹)

11 arr1[i] &= arr1[1] * s1 º;

12 return 0; } }

(b) An example of a generated program.

Fig. 1: An example of a template and a program generated
from the template.

Java language features, e.g., arrays, for loops, static variables,
etc., to exercise Java JIT optimizations.

There are five holes in the template, three between lines 7
and 8, one between lines 10 and 12, and one between line 13
and 14. Each hole represents a place that JATTACK should
fill in with a concrete number or expression. The first three
holes (lines 7-8), defined by the intVal call, should be
filled with integer literals between Integer.MIN_VALUE and
Integer.MAX_VALUE. The next hole (lines 10-12) is defined
by a logical relation expression (logic call) connecting two
relational expressions using either && (AND argument) or || (OR
argument). Each relational expression connects two available
integer variables (intId call) at this point, which can be s1, s2,
i or any element of arr1. The last hole (lines 13-14) represents
an arithmetic expression that adds (ADD argument) or multiplies
(MUL argument) two available integer variables.

JATTACK generates programs from the given template in
an execution-based model. Namely, JATTACK fills holes by
executing the template. (The execution-based model provides
unique advantages over static generation [5].) Every template
has to define an entry method, annotated with @Entry (line 5),
which is the starting point of execution. When JATTACK
reaches an unfilled hole during execution for the first time,
it randomly picks a valid expression within the search space
defined by the hole, to fill the hole. When all reachable holes
are filled, JATTACK outputs a concrete program with holes

replaced by corresponding expressions as a generated program.
Then, JATTACK repeats the entire generation procedure to gen-
erate the next program up to the specified maximum number
of programs. Figure 1b shows one of the generated programs;
each circled number corresponds to the same number in the
template shown in Figure 1a.

Finally, for every generated program, the same entry method
is executed a large number of times using different JIT
compilers, and results from different compilers are collected
for differential testing [8]. Note that Java JIT compilers opti-
mize code sections that are frequently executed, so repeated
execution of the entry method is necessary to trigger JIT com-
piler optimizations. The repeated execution of the generated
program shown in Figure 1b exposed a bug which crashed
the JVM due to an incorrect optimization for if nodes in the
Oracle JDK JIT compiler.

III. TECHNIQUE AND IMPLEMENTATION

In this section, we describe design and implementation
of JATTACK’s DSL in Java, and the workflow of the entire
JATTACK framework [5].

A. Design and Implementation of DSL

We design the DSL of JATTACK so that (1) developers
decide where to place a hole and define the search space
for the hole, and (2) developers do not need to learn a new
programming language or change the compiler or runtime
of the host programming language (Java). We first briefly
describe the syntax and semantics of the DSL. The new
concept we introduced on top of Java is the hole. A hole
can represent any number, expression, or statement, and the
hole obeys the same grammar rules as the language construct
it represents. When a hole is evaluated, it generates a concrete
number, expression or statement, which is randomly chosen
from all possible candidates in the search space defined by
the hole, and the hole computes the result of the chosen
candidate. Any subsequent calls to the same hole during the
same run will always use the same candidate, because a hole
could be evaluated more than once, i.e., in a loop. However,
the actual result computed from the same hole could change
at subsequent calls, since even the same candidate could be
evaluated to different values at different times, i.e., an integer
variable as an iteration counter in a loop.

To support the concept of holes and to integrate it into Java
without changing the Java language itself, we introduce a set of
API methods that construct holes. Every API method returns
an eAST with a specific type that corresponds to a hole to
be filled, e.g., the intVal(int min, int max) method, which
represents a hole to be filled with an int number, creates an
IntVal node that evaluates to any integer between min and max.
The eAST contains a range of candidates to fill the hole. As
an example, consider the logical expression hole in Figure 1a
(line 10-12), which returns a root node of an eAST, illustrated
in Figure 2. Candidates for the hole are obtained by recursively
obtaining candidates for nodes in subtrees and combining
them together. RelExp nodes combine candidates for integer

2

variables and connect them with the specified operators (LE),
and the LogExp node again combines the candidates returned

LogExp

RelExp

IntId IntId

RelExp

IntId IntId

&&, ||

<= <=

Fig. 2: eAST corresponding to
logic hole from Figure 1a.

from RelExp nodes with
the specified operators
AND or OR, as the final
candidates. For our Java
implementation, creat-
ing an eAST does not
necessarily mean filling
the hole; only after call-
ing the eval method
does a candidate get

randomly generated to fill the hole. Once generated, the
candidate is memoized and subsequent calls to the same hole
will always compute the result using the candidate rather than
re-fill the hole.

B. Generation and JIT-Testing

The workflow of JATTACK framework can be divided into
two phases: generation and JIT-testing. In the generation
phase, JATTACK executes the given template to generate the
desired number of concrete programs. Next, in the JIT-testing
phase, JATTACK runs those generated programs over different
JIT compilers and detect bugs through differential testing [8].
Figure 3 shows a high level overview of the two phases.
Generation. Given a template T , JATTACK first captures the
initial global state of the template and finds the entry method
in the template. Next, JATTACK repeatedly executes the entry
method until it fills all the holes in the template or it reaches
the given maximum iterations N , whichever comes first. Then,
JATTACK replaces every hole with the corresponding concrete
generated code and outputs a concrete generated program.
This concludes the generation of one program. Next, JATTACK
resets the state of the template to be the same as the captured
initial global state and repeats all the previous steps to generate
more programs until it generates the specified number of
programs (M).
JIT-Testing. For each generated program from the given
template, JATTACK runs the program through executing the
entry method a large number of times (N) (so as to trigger JIT
compilation). JATTACK hashes the return value from the entry
method every time, and the final global state of the generated
program after all the iterations, into a final checksum value.
JATTACK repeats the execution on different JIT compilers and
compares the checksum values. Any difference between the
checksum values indicates a bug within some JIT compiler.
Also, JATTACK reports a bug if the execution crashes on any
JIT compiler.

IV. TOOL INSTALLATION AND USAGE

A. Installation

The first step is to clone the JATTACK repository and to
check out the tag for the demo.
$ git clone https://github.com/EngineeringSoftware/jattack
$ cd jattack
$ git checkout icse23-demo

JATTACK requires at least JDK 11 and a Python 3.8
environment with pip package installer [9]. We assume the
dependencies are available on the system. To install JATTACK:

$./tool/install.sh

This command calls a bash script to build Java jars, install
required Python packages, and create an executable. If the
command completes normally, an executable file jattack will
appear in tool directory, i.e, ./tool/jattack.

B. Usage

After installation, users can interact with JATTACK through
the executable file ./tool/jattack, e.g.,

$./tool/jattack -h

We provide a sample template ./T.java in the repository.
To run JATTACK with the template, users need to provide JAT-
TACK with at least two required arguments: (1) --clz, the fully
qualified class name of the given template, and (2) --n_gen,
the total number of generated programs, and several optional
arguments (with default values if not provided), e.g., --seed
(the random seed used during generation), --java_envs (the
Java environments to be differentially tested, each including
the path to Java home and a list of Java options), etc. (See
more arguments in a help message via -h.)
$./tool/jattack --clz T --n_gen 3 --seed 42 \

--java_envs "[\
[.downloads/jdk-11.0.8+10,[-XX:TieredStopAtLevel=4]],\
[.downloads/jdk-11.0.8+10,[-XX:TieredStopAtLevel=1]]]"

This command generates 3 programs from the provided
template T.java and uses these generated programs to
test specified Java JIT compilers, i.e., level 4 and level
1 [10] of JIT compilers from the JDK installed at
.downloads/jdk-11.0.8+10. Figure 4 shows a screenshot of
running the command. As a result, the first generated program
crashes level 4 of the JIT compiler and reports a JIT bug.
JATTACK creates a hidden directory .jattack to save the
generated programs and outputs (i.e., checksum values) of the
programs’ execution.

V. EVALUATION

We wrote 84 templates focusing on different Java language
features, e.g., arrays, loops, conditions, etc., and learning from
existing tests for Java JIT compilers. We let JATTACK generate
1,000 programs for each template. Using these templates we
found two bugs in the Oracle JDK JIT compiler. We also
evaluated the efficiency of JATTACK at generating programs
and executing those generated programs, using 23 of these
hand-written templates. It took around 20 minutes to generate
all 23,000 programs, and the total execution time across all
generated programs is around two hours on level 4 and around
two and a half hours on level 1.

We also used JATTACK for automated compiler testing via
extracted templates from a large number of existing Java
programs and compared its effectiveness with an existing
automated compiler testing tool, Java* Fuzzer [2], which is
a fuzzer tool that has been successful at detecting bugs in the

3

Yes

No No

Yes

Hotspot Level 1

Hotspot Level 4

Graal

OpenJ9

Different

Crash

Template, T

Number of
programs to
generate, M

Number of
iterations to

trigger JIT, N
Reset global

state of
template T

Report a
potential bug

Execute entry
method in T

Compare
outputs

M programs
generated?

Run each
generated
program N

times

All holes
filled, OR
N iterations
reached?

Generation
Phase

JIT-Testing
Phase

Fig. 3: Overview of JATTACK framework.

Fig. 4: Screenshot of using JATTACK from command-line.

TABLE I: Detected JIT Bugs.

Bug ID Type Priority Affected JDK Versions Status

JDK-8239244 Diff CVE 8, 11, 13 Fixed
JDK-8258981 Crash P3 9, 10, 11, 15, 16 Fixed
JDK-8271130 Crash CVE 8, 11, 16, 17 Fixed
JDK-8271276 Crash P2 16, 17, 18 Fixed
JDK-8271459 Diff P2 8, 11, 16, 17, 18 Fixed
JDK-8271926 Crash P3 11, 16 Fixed
JDK-8297730 Diff P3 9, 11, 17, 18, 19, 20, 21 Fixed

Oracle JDK. We automatically extracted 5,419 templates from
77 open-source Java projects via replacing concrete numbers
and expressions in existing programs with holes, e.g., replacing
a + 1 with arithmetic(intId(), intVal()).eval(). Using
these templates, JATTACK detected 137 failures, while Java*
Fuzzer did not detect any bug during the same time frame of
one week. JATTACK also achieved a higher coverage of C1
and C2 compilers [11] compared with Java* Fuzzer.

During our experiments, JATTACK in total detected seven
bugs in the Oracle JDK JIT compiler, as shown in Table I.
The Oracle developers confirmed and fixed all seven bugs.
They labeled all the bugs we reported with priority P3 (major
loss of function) or higher, including two CVEs: JDK-8239244
showed mismatching outputs on different tiers because C2’s
range-check elimination led to incorrect loop executions, and
JDK-8239244 crashed C1 because an array store in C1-
compiled code wrote to an arbitrary location due to index
overflow. Both CVEs [12], [13] were fixed in recent Oracle
Critical Patch Updates [14], [15].

VI. RELATED WORK

There is a large body of work on compiler testing, system-
atically reviewed in recent surveys [16], [17]. Grammar-based
generation [2], [18]–[20] and mutation-based fuzzing [3],
[4], [21]–[26] are two common approaches to obtaining pro-
grams as test inputs to compilers. Unlike them, JATTACK
was primarily developed to complement hand-written tests.
Developers can embed their knowledge into program gen-
eration by specifying holes for exploration, enabling better
testing of JIT compilers that require complex structures and
execution to reveal bugs. There is also work on synthesizing
programs given initial templates using SAT/SMT solvers [27],
combinatorial techniques focusing on variables [28], or code
executions [29], [30]. In contrast, JATTACK generates concrete
programs for testing a JIT compiler by executing templates and
allows richer expressions to be generated for holes.

VII. CONCLUSION

We presented JATTACK, a framework that enables compiler
testing using templates. Using JATTACK, compiler developers
use their domain knowledge to write templates in the same
language (Java). A template contains a basic program structure
and allows specific language constructs represented by holes,
e.g., numbers, expressions, etc., to be explored randomly. JAT-
TACK executes templates to randomly fill holes with possible
numbers or expressions and generates programs to be used
as test inputs to compilers. Using 84 templates created on
our own and 5,419 templates extracted from existing Java
programs, JATTACK found seven critical (P3 or higher) bugs in
the Oracle JDK JIT compiler. Oracle developers confirmed and
fixed all seven bugs, five of which were previously unknown,
including two unknown CVEs. JATTACK blends developers’
intuition via templates with automated testing to detect bugs
in compilers.

ACKNOWLEDGEMENT

We thank Nader Al Awar, Kush Jain, Sandeep Konchady,
Owolabi Legunsen, Yu Liu, Pengyu Nie, Aditya Thimmaiah,
Jiyang Zhang, and the anonymous reviewers for their com-
ments and feedback. This work is partially supported by a
Google Faculty Research Award and the US National Science
Foundation under Grant Nos. CCF-1652517, CCF-2107291,
CCF-2145774, and CCF-2217696.

4

REFERENCES

[1] Oracle Corporation and/or its affiliates. (2022) Regression test harness
for the JDK: jtreg. https://openjdk.java.net/jtreg.

[2] Azul Systems, Inc. (2018) Azulsystems/JavaFuzzer: Java* Fuzzer for
Android*. https://github.com/AzulSystems/JavaFuzzer.

[3] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao, “Coverage-directed
differential testing of JVM implementations,” in Programming Language
Design and Implementation. ACM, 2016, pp. 85–99.

[4] Y. Zhao, Z. Wang, J. Chen, M. Liu, M. Wu, Y. Zhang, and L. Zhang,
“History-driven test program synthesis for JVM testing,” in International
Conference on Software Engineering. ACM, 2022, pp. 1133–1144.

[5] Z. Zang, N. Wiatrek, M. Gligoric, and A. Shi, “Compiler testing using
template Java programs,” in International Conference on Automated
Software Engineering, 2022, pp. 23:1–23:13.

[6] N. Tillmann and W. Schulte, “Parameterized unit tests,” in Joint Meeting
of the European Software Engineering Conference and the Symposium
on the Foundations of Software Engineering. ACM, 2005, pp. 253–262.

[7] J. Aycock, “A brief history of just-in-time,” ACM Computing Surveys,
vol. 35, no. 2, pp. 97–113, 2003.

[8] W. M. McKeeman, “Differential testing for software,” Digital Technical
Journal, vol. 10, no. 1, pp. 100–107, 1998.

[9] Python Software Foundation. (2022) pip . pypi. https://pypi.org/project/
pip/.

[10] Oracle Corporation and/or its affiliates. (2022) jdk-updates/jdk11u:
405102e26a62 src/hotspot/share/runtime/tieredthresholdpolicy.hpp.
https://hg.openjdk.java.net/jdk-updates/jdk11u/file/405102e26a62/src/
hotspot/share/runtime/tieredThresholdPolicy.hpp.

[11] ——. (2021) The Java HotSpot performance engine architecture. https:
//www.oracle.com/java/technologies/whitepaper.html.

[12] The MITRE Corporation. (2022) CVE - CVE-2020-14792. https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14792.

[13] ——. (2022) CVE - CVE-2022-21305. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2022-21305.

[14] Oracle. (2022) Oracle critical patch update advisory - October 2020.
https://www.oracle.com/security-alerts/cpuoct2020.html.

[15] ——. (2022) Oracle critical patch update advisory - January 2022.
https://www.oracle.com/security-alerts/cpujan2022.html.

[16] J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, and L. Zhang,
“A survey of compiler testing,” ACM Computing Surveys, vol. 53, no. 1,
pp. 4:1–4:36, 2020.

[17] Y. Tang, Z. Ren, W. Kong, and H. Jiang, “Compiler testing: a systematic
literature analysis,” Frontiers of Computer Science, vol. 14, no. 1, p.
1:20, 2020.

[18] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” in Programming Language Design and Implemen-
tation. ACM, 2011, pp. 283–294.

[19] T. Yoshikawa, K. Shimura, and T. Ozawa, “Random program generator
for Java JIT compiler test system,” in International Conference on
Quality Software. IEEE, 2003, pp. 20–23.

[20] V. Livinskii, D. Babokin, and J. Regehr, “Random testing for C and
C++ compilers with YARPGen,” in International Conference on Object-
Oriented Programming, Systems, Languages, and Applications. ACM,
2020, pp. 196:1–196:25.

[21] J. Chen, W. Hu, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and B. Xie, “An
empirical comparison of compiler testing techniques,” in International
Conference on Software Engineering. ACM, 2016, pp. 180–190.

[22] Y. Chen, T. Su, and Z. Su, “Deep differential testing of JVM implemen-
tations,” in International Conference on Software Engineering. IEEE,
2019, pp. 1257–1268.

[23] Code Intelligence GmbH. (2021) CodeIntelligenceTesting/-
jazzer: Coverage-guided, in-process fuzzing for the JVM.
https://github.com/CodeIntelligenceTesting/jazzer.

[24] S. Chaliasos, T. Sotiropoulos, D. Spinellis, A. Gervais, B. Livshits,
and D. Mitropoulos, “Finding typing compiler bugs,” in Programming
Language Design and Implementation. ACM, 2022, pp. 183–198.

[25] L. Bernhard, T. Scharnowski, M. Schloegel, T. Blazytko, and T. Holz,
“JIT-picking: Differential fuzzing of JavaScript engines,” in Conference
on Computer and Communications Security. ACM, 2022, pp. 351–364.

[26] J. Wang, Z. Zhang, S. Liu, X. Du, and J. Chen, “FuzzJIT: Oracle-
enhanced fuzzing for JavaScript engine JIT compiler,” in USENIX
Security Symposium. USENIX, 2023, p. to appear.

[27] A. Solar-Lezama, “Program sketching,” International Journal on Soft-
ware Tools for Technology Transfer, vol. 15, no. 5–6, pp. 475–495, 2013.

[28] Q. Zhang, C. Sun, and Z. Su, “Skeletal program enumeration for rigorous
compiler testing,” in Programming Language Design and Implementa-
tion. ACM, 2017, pp. 347–361.

[29] J. Hua and S. Khurshid, “EdSketch: Execution-driven sketching for
Java,” in International SPIN Symposium on Model Checking of Software.
ACM, 2017, pp. 162–171.

[30] J. Galenson, P. Reames, R. Bodik, B. Hartmann, and K. Sen, “CodeHint:
Dynamic and interactive synthesis of code snippets,” in International
Conference on Software Engineering. ACM, 2014, pp. 653–663.

5

https://openjdk.java.net/jtreg
https://github.com/AzulSystems/JavaFuzzer
https://pypi.org/project/pip/
https://pypi.org/project/pip/
https://hg.openjdk.java.net/jdk-updates/jdk11u/file/405102e26a62/src/hotspot/share/runtime/tieredThresholdPolicy.hpp
https://hg.openjdk.java.net/jdk-updates/jdk11u/file/405102e26a62/src/hotspot/share/runtime/tieredThresholdPolicy.hpp
https://www.oracle.com/java/technologies/whitepaper.html
https://www.oracle.com/java/technologies/whitepaper.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14792
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14792
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21305
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21305
https://www.oracle.com/security-alerts/cpuoct2020.html
https://www.oracle.com/security-alerts/cpujan2022.html
https://github.com/CodeIntelligenceTesting/jazzer

	Introduction
	Example
	Technique and Implementation
	Design and Implementation of DSL
	Generation and JIT-Testing

	Tool Installation and Usage
	Installation
	Usage

	Evaluation
	Related Work
	Conclusion
	References

