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Abstract

Exceptional behavior tests (EBTs) are crucial in software develop-
ment for verifying that code correctly handles unwanted events and
throws appropriate exceptions. However, prior research has shown
that developers often prioritize testing “happy paths”, i.e., paths
without unwanted events, over exceptional scenarios. We present
exLong, a tool that automatically generates EBTs to address this gap.
exLong leverages a large language model (LLM) fine-tuned from
CodeLlama and incorporates reasoning about exception-throwing
traces, conditional expressions that guard throw statements, and
non-exceptional behavior tests that execute similar traces. Our
demonstration video illustrates how exLong can effectively as-
sist developers in creating comprehensive EBTs for their project
(available at https://youtu.be/Jro8kMgplZk).

CCS Concepts

• Software and its engineering→ Software testing and debug-

ging.
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1 Introduction

Many popular programming languages, including C#, Java, and
Python, support exceptions [15, 17, 37]. Exceptions are thrown
during program execution if an unwanted event happens, e.g., a
method is invoked with an illegal argument value. Software devel-
opers write exceptional behavior tests (EBTs) to check that their code
properly detects unwanted events and throws desired exceptions.
Prior research studies on EBTs [2, 8, 14, 21, 24] have shown the
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1 class Scheduler {

2 ...

3 public Job schedule(String nullableName,Runnable runnable,Schedule when){

4 ...

5 Job job = prepareJob(name, runnable, when);

6 ...

7 return job;}

8 private Job prepareJob(String name, Runnable runnable, Schedule when)

9 synchronized (indexedJobsByName) {

10 Job lastJob = findJob(name).orElse(null);

11 if(lastJob != null && lastJob.status() != JobStatus.DONE) {

12 throw new IllegalArgumentException("A job is already scheduled with

the name:" + name); }

13 ...

14 return job;}}}

(a) Method under test: schedule.

1 @Test(expected = IllegalArgumentException.class)

2 public void reject_scheduling_a_job_with_same_name_but_different_runnable()

{

3 Scheduler scheduler = new Scheduler();

4 Job j1 = scheduler.schedule("myJob", runnable1, now().plusSeconds(5));

5 scheduler.schedule("myJob", runnable2, now().plusSeconds(6));}

(b) EBT generated by exLong.

Figure 1: Developer-oriented use case example.

importance of EBTs and developers’ desire to improve the testing
of exceptional behaviors. However, in practice, developers tend to
focus on “happy paths” and have limited time to test exceptional
behaviors. This results in a lower number of EBTs compared to
non-EBTs in most projects.

Sadly, tool support for automatically generating EBTs is limited.
Most existing analysis-based test generation tools (e.g., Randoop [28,
31] and EvoSuite [12]) and learning-based test generation tools
(e.g., CAT-LM [30] and TeCo [26]) have no special settings for
targeting EBTs and are primarily evaluated on non-EBTs. Random
test generation tools can be guided by reinforcement learning to
target exceptional behaviors [1], but the generation works only on
the entire codebase, and not for a specific throw statement that a
developer might select. Additionally, tests produced by analysis-
based tools often lack readability [6, 7, 29].

We recently designed and developed exLong [44], a framework
that utilized an instruction fine-tuned large language model (LLM)
to automatically generate EBTs. Using CodeLlama [32] as its base,
exLong is fine-tuned [34, 39, 40] with a novel task instruction
dataset, designed specifically to embed the reasoning about the
context which includes: (a) stack traces that lead to target throw
statements, (b) guard expressions (i.e., conditional expressions that
guard those throw statements), and (c) non-EBTs that execute simi-
lar traces. This context is used as the input to generate an EBT that
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1 public Scheduler(SchedulerConfig config) {

2 if(config.getTimeProvider() == null) {

3 throw new NullPointerException("The timeProvider cannot be null"); }

4 ...

5 }

(a) Method under test: Scheduler.

1 @Test(expected = NullPointerException.class)

2 public void should_fail_if_timeProvider_is_null() {

3 new Scheduler(SchedulerConfig.builder().maxThreads(1).timeProvider(null)

.build());}

(b) EBT generated by exLong.

Figure 2: Machine-oriented use case example.

triggers the target throw statement. In figures 1 and 2, we show
examples of EBTs generated by exLong.

This paper extends exLong by introducing a new command-line
interface that simplifies the process of extracting the necessary
context for EBTs generation and querying the fine-tuned LLM. We
describe two use cases supported by exLong: (1) developer-oriented
use case: developers select a method under test (e.g., schedule in
Figure 1a), a target throw statement (e.g., line 12 in Figure 1a) and a
destination test file. exLong then automatically generates an EBT
that executes the target throw statement. (2) machine-oriented use
case: developers employ exLong to automatically generate EBTs
for their entire codebase, covering each existing throw statement,
such as line 3 in Scheduler in Figure 2a. Additionally, to improve
exLong’s accessibility for typical users, we include an option to use
a quantized [9, 42] version of the fine-tuned LLM, which reduces
the memory usage by 75%. This optimization enables exLong to
operate on machines with limited computational resources.

Our experiments demonstrate exLong’s effectiveness in both
supported use cases. For the developer-oriented use case, we com-
pare our tool against a state-of-the-art test generation model (CAT-
LM [30]) and a leading foundation LLM (GPT3.5 [27]). Results show
that exLong generates 83.8% more executable EBTs than CAT-
LM and 9.9% more than GPT3.5. After quantization, exLong can
run on a local machine with a single GPU, with a relative small
performance reduction resulting in the generation of 13.1% fewer
executable EBTs. For the machine-oriented use case, we compare
our tool against two popular analysis-based test generation tools:
Randoop [28, 31] and EvoSuite [12]. While these tools complement
each other (i.e., each tool can generate EBTs for some target throw
statements that others cannot), our findings indicate that exLong
outperforms both Randoop and EvoSuite. exLong is available on
GitHub at https://github.com/EngineeringSoftware/exLong.

2 Technique and Implementation

Figure 3 [44] illustrates the workflow of exLong. Given a method
under test (MUT), a target throw statement, and a destination test
file, exLong collects stack trace, guard expression, and relevant
non-EBTs using both static and dynamic program analyses ( 3 ).
These components are then used to construct a prompt which
encompasses both the task inputs and the relevant context ( 4 ).
During training, a foundation LLM is fine-tuned to generate the
EBT conditioned on the input p. During inference, exLong first
prepares the necessary context to construct the prompt then the
fine-tuned LLM generates EBTs given the prompt. We detail the
design and implementation in the rest of this section.

2.1 Developer-oriented use case

Preparation. In this phase, exLong collects a set of stack traces
from the execution of existing non-EBTs, that can reach methods
that contain target throw statements in the repository.Using the
example in Figure 1, exLong first identifies and instruments the
throw statement in the method prepareJob to log the current stack
trace upon the invocation of prepareJob. Then exLong executes
the existing non-EBTs to log the stack traces and record themapping
between the non-EBTs and their invoked methods. Note that a
developer only need to run this phase once for the repository they
are working on.
Analysis. exLong constructs a prompt from the developer-provided
context and the information collected in the preparation phase. Tak-
ing Figure 1 as an example, exLong first searches the collected stack
traces for one that begins with schedule and ends in prepareJob.
An example of the resulting stack trace consisting of the schedule
and prepareJob methods is shown in Figure 4a. While stack trace
provides the sequence of method invocations that lead to the target
throw statement, knowing only the names of the methods is insuffi-
cient for generating EBTs. exLong then constructs a guard expres-
sion to further aid the LLM’s reasoning about system configurations
that would lead to exceptional behaviors. A guard expression is a
logical formula representing the constraints necessary to reach the
target throw statement. An example of guard expression is shown
in Figure 4b. Specifically, exLong collects guard-related AST nodes
along the stack trace, including conditional expressions (line 11 in
Figure 1) and assignments (line 10 in Figure 1). It then propagates
symbolic variables, performing substitutions where necessary. The
resulting formula is a conjunction of expressions guarding the tar-
get throw statement. Finally, exLong identifies relevant non-EBTs
from the same repository to encourage the LLM to reason about the
procedures to set up the object under test and to promote consis-
tency between the newly generated code and existing code in terms
of format and coding conventions. The non-EBT in figure 4c is
identified as relevant since it invokes the target MUT schedule. To
enhance the quality of the generated EBTs, exLong can optionally
create multiple prompts by including different relevant non-EBTs
and then select the best EBT based on its ability to compile, execute,
and cover the target throw statement.

2.2 Machine-oriented use case

Preparation. exLong parses the repository to identify all target
throw statements within public methods (line 3 in Figure 2). Similar
to developer-oriented use case, it executes the existing non-EBTs
to extract the coverage data. This is used to determine both the
relevant non-EBTs and the destination test file.
Analysis. As shown in Figure 2a, for each target throw statement,
the MUT is defined as the method containing the target throw
statement (Scheduler). In this case, the stack trace only includes
the MUT. The guard expression and relevant non-EBTs are ex-
tracted using the same approach as developer-oriented use case.
The destination test file is selected using two heuristics similar
to prior works [30]: (1) file name matching where given a code
file named Scheduler.java, exLong searches for test file named
TestScheduler.java or SchedulerTest.java, and (2) test cover-
age analysis in which if name matching fails, exLong searches for
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Figure 3: Overview of exLong.

1 schedule(Scheduler.java:186)

2 ...

3 Job job = prepareJob(name, runnable, when);

4 ...

5 prepareJob(Scheduler.java:340)

6 ...

7 throw new IllegalArgumentException("A job is already scheduled with the

name:" + name);

8 ...

(a) Stack trace from MUT to target throw statement.

1 findJob(nullableName == null ? runnable.toString() : nullableName).orElse(

null) != null && findJob(nullableName == null ? runnable.toString() :

nullableName).orElse(null).status() != JobStatus.DONE

(b) Guard expression.

1 @Test

2 public void should_run_a_single_job() throws InterruptedException {

3 Scheduler scheduler = new Scheduler();

4 SingleJob singleJob = new SingleJob();

5 scheduler.schedule("test", singleJob, Schedules.executeOnce(Schedules.

fixedDelaySchedule(Duration.ofMillis(1))));

6 waitOn(singleJob, () -> singleJob.countExecuted.get() > 0, 10000);

7 scheduler.gracefullyShutdown();

8 assertThat(singleJob.countExecuted.get()).isEqualTo(1);}

(c) non-EBT.

Figure 4: Context for exLong.

the test class covering the MUT or the class of the MUT. Finally, ex-
Long constructs the prompt with all the available context. exLong
can optionally create multiple prompts from different non-EBTs,
generating and evaluating multiple EBTs then select the best one
based on runtime evaluation.

3 Tool Installation

exLong generates EBTs for Java projects built using Maven. We
require Maven 3.8.3+ and Java 8+. For quantized LLM inference,
exLong leverages ollama [41], which can be installed following the
instructions from ollama’s official GitHub repository.

To get started with exLong, begin by cloning the repository:
$ git clone https :// github.com/EngineeringSoftware/exLong.git

exLong is implemented in Python and requires version 3.10 or
higher. For a smooth installation process, we recommend using
Conda [5] to manage dependencies. Users can execute our provided
script to set up exLong and its required components:

$ ./ scripts/prepare_conda_env.sh

We also offer Docker-based installation options. The Docker image
can be built and run with:

$ docker build -t exlong .

$ docker exec -it exlong /bin/bash

Furthermore, for integration with the ollama Docker image, the
users can use our Docker Compose setup:

$ docker compose up -d

$ docker exec -it exlong -tool -1 /bin/bash

4 Tool Usage

In this section, we introduce how to use exLong for developer-
oriented use case and machine-oriented use case.

4.1 Developer-oriented use case

For the developer-oriented use case, where exLong generates an
EBT for a user-specified target throw statement, our tool’s CLI
requires the following parameters: the local path or remote link
to the git repository, the path to the file containing the MUT, the
line number of the beginning of MUT’s definition, the path to the
file containing the target throw statement, the line number of the
target throw statement, and the path to the destination test file.

Additionally, exLong’s CLI accepts the following optional param-
eters: a commit SHA (default: latest commit on the main branch),
name of the test method to be written by exLong (default: none),
whether exLong should used quantized LLM (default: true), whether
exLong should sample multiple candidate EBTs and select the best
test based on runtime evaluation (default: false), and the output file
path for the generated EBT (default: ./output.java).

An example command to invoke developer-oriented use case of
exLong is as follows:

$ python -m etestgen.cli user_view \

--repo_path =./ Wisp \

--mut_file_path=Scheduler.java \

--mut_line =180 \

--quant=true \

--throw_file_path=Scheduler.java \

--throw_line =340 \

--test_context_path=SchedulerTest.java

--sha="ce1d9f3cb1944115ad98b4428ea24b24ab3faf56" \

--test_name=testSchedulerError \

--pick_best=True \

--output_file =./ ExlongTest.java
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Table 1: Results on developer-oriented use case with ground-

truth EBT’s name in the prompt.

Models Compilable% Runnable% ThrowCov%

GPT3.5-few-shot 75.12 61.29 48.39
CAT-LM 71.83 36.64 30.03
exLong 82.10 67.36 59.45

4.2 Machine-oriented use case

In the machine-oriented use case, where exLong generates EBTs for
the entire codebase. The only required parameter for exLong’s CLI
is the path or link to the git repository. The CLI also accepts commit
SHA, option to sample multiple EBTs, option to use quantized LLM,
time budget for exLong to finish, and path to output file as optional
parameters.

An example command to invoke developer-oriented use case of
exLong is as follows:

$ python -m etestgen.cli machine_view \

--repo_link= \

"https :// github.com/Coreoz/Wisp.git" \

--sha="ce1d9f3cb1944115ad98b4428ea24b24ab3faf56" \

--timeout =1000

5 Evaluation

Following prior work [26], we collect our dataset from Java projects
in CodeSearchNet [19], which are available on GitHub. We eval-
uate exLong’s performance with full precision LLM under both
developer-oriented use case and machine-oriented use case. For
developer-oriented use case, we benchmark exLong on a subset
of 434 examples from which we are able to extract stack traces.
For machine-oriented use case, we evaluate exLong on 649 exam-
ples, filtering out data for which our heuristic failed to locate the
corresponding destination test file.

We evaluate EBTs generated by exLong using the percentage
of generated EBTs that can be compiled (Compilable%), can be
executed (Runnable%), and those that are semantically valid and
are targeting the throw statement specified by developers (Throw-
Cov%). We compare exLong against a widely used foundation
model, GPT3.5, and a specialized test-generating LLM, CAT-LM.
Our results are shown in Table 1. We observe that exLong out-
performs all the baselines on all metrics. exLong achieves higher
performance for both generating executable EBTs (Runnable%) and
EBTs that cover the target throw statements (ThrowCov%). Specifi-
cally, exLong outperforms GPT3.5 by 9.9% and 22.8% on Runnable%
and ThrowCov%, respectively. Similarly, exLong outperforms CAT-
LM by 83.8% and 98.0% on Runnable% and ThrowCov%, respectively.

For machine-oriented use case, we evaluate the tool’s ability to
cover throw statements within a given repository with ThrowCov%,
which measures the percentage of target throw statements covered
by the generated EBTs. We benchmark exLong against two widely-
used analysis-based test generation tools: Randoop [28, 31] and
EvoSuite [12]. Our results, illustrated in Figure 5, indicates that
exLong covers the most target throw statements. For more details
of our evaluation, refer to the full paper [44].

61

38

44

17

46

18

36

Randoop
EvoSuite
EXLóNG

Figure 5: Venn diagram of target throw statements coverage

by exLong, Randoop, and EvoSuite on all 30 projects.

6 Related Work

Recent studies have leveraged transformer models for test gen-
eration [10, 20, 25, 26, 30, 35, 36, 38, 43]. Some approaches use
conditions to guide the generation process [3, 4, 33], while oth-
ers utilize existing test cases as context [10, 26, 30, 36]. Our work
uniquely combines non-exceptional tests with stack traces and
guard expression to guide exceptional test generation.

Non-LLM test generation approaches include random-based [28,
31], search-based [12, 16, 22, 23], and constraint-based [11, 13, 18]
strategies. While tools like Randoop and EvoSuite can generate
tests for exceptional behaviors, they neither guarantee coverage of
specific exceptional paths nor consistently produce readable test
cases due to their random nature.

7 Conclusion

We presented exLong, a novel command-line tool that leverages
large languagemodels to generate exceptional behavior tests (EBTs).
exLong offers two practical use cases: developer-oriented use case,
which generates an EBT for a specific method and target throw
statement, and machine-oriented use case, which automatically
creates tests for all target throw statements in a repository. To make
exLong accessible to general users, we provide an option which
uses a quantized fine-tuned LLM to reduce the computational cost
of running inference. We believe that exLong targets an important
task in software testing and demonstrated strong performance.
By simplifying the process of generating tests, exLong enables
developers to more easily create comprehensive test suites that
cover exceptional behaviors.
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