
Regression Test Selection

Across JVM Boundaries
Ahmet Celik1, Marko Vasic1, Aleksandar Milicevic2 and Milos Gligoric1

November 21st , 2017

University of Texas at Austin, TX, USA

1 2

Supported by

1

Regression Testing

 Checks that recent changes do not break previously working functionality

 Is costly $$$ (time consuming and resource intensive)

 Google’s Test Automation Platform (TAP) system on an average day * :

 800K builds and 150 Million test runs

 Microsoft’s CloudBuild on an average day**:

 Used by more than 4K developers in Bing, Exchange, SQL, OneDrive, Azure and

Office, 20K builds

2

* Memon, Atif, et al. "Taming google-scale continuous testing." Proceedings of the 39th International

Conference on Software Engineering: Software Engineering in Practice Track. IEEE Press, 2017.

** Esfahani, Hamed, et al. "CloudBuild: Microsoft's distributed and caching build service." Proceedings

of the 38th International Conference on Software Engineering Companion. ACM, 2016.

Regression Test Selection (RTS)

 An optimization for regression testing

 Selects tests those are affected by the recent changes

 If it selects all tests affected by the change, then it is safe, otherwise unsafe

 Two important design choices for RTS

 What kind of dependencies to track?

 Below class level file dependencies are tracked

 How to track them (statically or dynamically)?

3

A BC

X Y

tests

classes

modify X
A BC

X Y

tests

classes

Motivation

 Existing dynamic RTS techniques are language specific

 Ekstazi is one of the many dynamic RTS tools, and it only supports Java

 Recent studies show that several open-source projects are written more than one

programming language, i.e. those projects are multilingual

 Existing RTS techniques are unsafe for multilingual projects, e.g. Java code that

invokes C/C++

 Existing static RTS techniques are imprecise

 Google’s TAP and Microsoft’s CloudBuild track dependencies between projects

 Over approximate the set of dependencies

4

An Example from Open Source
 JavaCPP

(github.com/bytedeco/javac
pp) is a popular open source
project:

 Provides efficient access to
native C++ inside Java

 Existing dynamic RTS
techniques will miss the
dependency on
AdapterTest.h:

 Since new spawned process
access that file

 Hence it affects safety of the
technique, i.e. a dependency
is not reported by the
technique

...
40: @Platform(compiler = "cpp11",
41: define = {"SHARED_PTR_NAMESPACE std",
42: "UNIQUE_PTR_NAMESPACE std"},
43: include = "AdapterTest.h")
44: public class AdapterTest {

...
54: static native IntPointer testIntString(IntPointer str);

...
88: @BeforeClass public static void setUpClass() throws Exception {
89: Class c = AdapterTest.class;
90: Builder builder = new Builder().classesOrPackages(c.getName());
91: File[] outputFiles = builder.build();
92: Loader.load(c);
93: }

...
148: @Test public void testIntString() {
149: String textStr = "This is a normal ASCII string.";
150: IntPointer textPtr1 = new IntPointer(textStr);

151: IntPointer textPtr2 = testIntString(textPtr1);
152: assertEquals(textStr, textPtr1.getString());
153: assertEquals(textStr, textPtr2.getString());
154: }

...
209: }

5

Our Solution: RTSLinux

 Collects dependencies at the file level granularity dynamically

 Traces file accesses with Linux support

 Not restricted to one programming language, i.e. language-agnostic

 Focus on capturing dependencies which escape Java Virtual Machine

(JVM):

 Files apart from .class files (such .xml, .txt etc)

 Files accessed by a newly spawned process

 Files accessed during the use of native API

6

Phases of RTSLinux

 RTSLinux includes three phases as a traditional RTS technique:

 Analysis: Checks if any dependency of a test is affected by the recent changes

 Execution: Runs the selected tests by analysis phase

 Collection: Collects dependencies for each test

 Our motivating example is used to demonstrate how RTSLinux performs

these phases

7

A : {X : 7, Y : 0}
B : {Y : 0}
C : {X : 7, Y : 0}

logs

tests

selected tests

Analysis Execution Collection

dependencies of tests
checksum of dependencies

new dependencies of tests
updated checksum of dependencies

A
B

C A
C

A : {X : 2, Y : 0}
B : {Y : 0}
C : {X : 2, Y : 0}

changes

Analysis Phase

 In analysis phase

 if for a test, there is no dependency has been found, it is selected

 If for a test, there are dependencies and if any of them is modified, then it is

selected. We use checksums to decide if a dependency is changed

 For running example, dependencies of AdapterTest is shown below.

Checksum is -1 for non-existing files

AdapterTest.h
file or directory checksum
/usr/bin/java 1694755281
...
classes/AdapterTest.h 3210793863
classes/AdapterTest.class 3556203470
classes/org/junit/Test.class -1
...
libs/ 4098231283
libs/junit-4.12.jar 2756529828
...
/usr/bin/g++ 3833323531
...

8

Execution
 During test execution, each system call available in Linux that manages the set

of running processes (e.g. fork) or accesses the file system (e.g. open) is
intercepted

 We save:

 Map of parent processes

 File accesses of each processes

 Below you can see logs for the execution of AdapterTest

pid program
1186 /usr/bin/mvn
1222 /usr/bin/java
1284 /usr/bin/g++

parentpid pid
1186 1222
1222 1223
1223 1224
1223 1225
1223 1284

pid file
1186 /usr/bin/mvn
1186 /usr/bin/java
...
1223 classes/AdapterTest.class
1223 classes/org/junit/Test.class
...
1223 libs/
1223 libs/junit-4.12.jar
...
1284 /usr/bin/g++
1284 classes/AdapterTest.h
...

9

Executions Map of Parents File accesses of each process

Collection

 Create process tree from these logs. Root of the tree is the java command

which is used to run tests

 Compute and save checksum of each file which is accessed by a process

in the tree

 As we shown before in analysis, output of this phase for AdapterTest is

below:

10

AdapterTest.h
file or directory checksum
/usr/bin/java 1694755281
...
classes/AdapterTest.h 3210793863
classes/AdapterTest.class 3556203470
classes/org/junit/Test.class -1
...
libs/ 4098231283
libs/junit-4.12.jar 2756529828
...
/usr/bin/g++ 3833323531
...

java

g++

System Integration

 We implemented the proposed technique in two different ways:

 Using an existing build system Fabricate in user space, dubbed RTSFab

 Loadable Linux kernel module in kernel space, dubbed RTSLinux

 There are many other ways to implement

 IsTestAffected (Analysis), SystemExecute (Execution), and StoreDeps
(Collection) are implementations of the three phases

 A developer of a build system can use these primitives to select tests

 We integrated with Maven

 Instead of running mvn test the user should run rtslinux mvn test

11

Loadable Kernel Module

Architecture Dependent Kernel Code

Kernel

System Call Interface

RTSLinux

Hardware Platform

GNU C Library (glibc)

User Applications User

Space

Kernel

Space

GNU/

Linux

12

Evaluation

 RQ1: How effective is RTSLinux , i.e. what is the reduction in testing time and

the number of executed tests?

 RQ2: What are the benefits/drawbacks of dependency detection across

JVM boundaries (as implemented in RTSLinux) compared to a single-JVM

RTS (as implemented in Ekstazi):

 RQ2.1 (Effectiveness): Does RTSLinux achieve as much reduction in total testing

time and number of executed tests?

 RQ2.2 (Safety): How many more dependencies are discovered by RTSLinux?

 RQ3: What is the overhead of RTSFab (recall: an implementation of our

technique running in user space) compared to RTSLinux?

13

Study Setup

 Used 21 projects, and 20 revisions for each project

 Escape Method is that how a project escapes from JVM

Project LOC # Files # Test Classes Test Time [s] Escape Method

la4j 13390 147 22.85 14.68 N/A

ScribeJava 7613 219 20 14.85 N/A

Bukkit 32555 762 38 21.66 N/A

ZT-Exec 2938 104 18.45 25.04 Processes

Crypto 5079 140 24 27.94 Native Calls

Retrofit 12331 202 30.75 28.74 Files

Codec 17625 299 48 31.72 Files

Vectorz 52096 414 70.5 38.98 N/A

Lang 69014 381 133.5 41.21 Files

Net 26928 315 42 65.13 Files

Config 64341 642 162.3 66.05 Files

IO 27186 302 91 89.1 Files

OkHttp 48783 344 59.4 101.72 Files

ClosureC 284131 1548 309.3 190.41 Native Calls

Dropwizard 37914 969 232 328.84 Processes

CloudStack 572503 7585 292 335.42 Processes

Tika 96220 1936 227.65 370.08 Processes

Math 174832 1501 431 376.46 Files

Guava 244083 1737 401 424.66 Files

Metron 57720 1507 145 462.28 Processes

Activiti 203509 5523 312.35 879.99 Processes

14

Experiment Procedure

git clone project

git checkout 20 revisions earlier

RTSLinux

RetestAll

m
e
a
s
u
r
e

t
e
s
t

t
i
m
e

15

Test time for RTSLinux = Analysis Time + Test Execution Time + Collection Time

Test time for RetestAll = Test Execution Time

RQ1: How effective is RTSLinux?

 Our results show that RTSLinux reduces test time for all projects

 For each revision 100 * RTSLinux / RetestAll, averages of 20 revisions

are shown on chart

 On average, across all projects, test time is decreased to 47.17%

0

10

20

30

40

50

60

70

80

90
P

e
rc

e
n

ta
g

e

16

RQ2.1:Does RTSLinux achieve as much reduction

in total testing time and number of executed
tests (as Ekstazi)?

0

10

20

30

40

50

60

70

P
e

rc
e

n
ta

g
e

Percentage of Selected Tests

RTSLinux Ekstazi

0

10

20

30

40

50

60

70

80

90

P
e

rc
e

n
ta

g
e

Percentage of Test Time

RTSLinux Ekstazi

47.17% vs 42.53% 25.83% vs 24.56%

17

 Averages of 20 revisions are shown

 Test time, 100 * X / RetestAll where X = {RTSLinux, Ekstazi}

 # selected tests, 100 * X / RetestAll where X = {RTSLinux, Ekstazi}

RQ2.2: How many more dependencies are
discovered by RTSLinux?
 Averages of 20 revisions are shown

 # dependencies discovered, 100 * Ekstazi / RTSLinux

0

5

10

15

20

25

30

35

40

45
P

e
rc

e
n

ta
g

e

18

RQ3: Overhead of RTSFab, RTSLinux and

Ekstazi compared to RetestAll?

 RTSFab is an implementation of our technique running in user space

 Here we show overhead during execution phase for projects with single

Maven module for the first revision

 Test time, 100 * X / RetestAll - 100 where X is one of {RTSLinux,
Ekstazi, RTSFab}

0

20

40

60

80

100

120

140

160

P
e

rc
e

n
ta

g
e

RTSLinux Ekstazi RTSFab

19

Conclusion

 A novel regression test selection technique, dubbed RTSLinux

 RTSLinux supports tests that escape JVM

 RTSLinux saves 52.83% of test time compared to RetestAll

 In future, we are considering

 To evaluate and extend to other languages

 Try different implementations using different tracing options

Ahmet Celik <ahmetcelik@utexas.edu>

Marko Vasic <vasic@utexas.edu>

Aleksandar Milicevic <almili@microsoft.com>
Milos Gligoric <gligoric@utexas.edu>

20

