
Regression Test 
Selection for TizenRT
AHMET CELIK1,  YOUNG CHUL LEE2,  AND MILOS GLIGORIC 1

1

1 2



Regression Testing

2

◦ Widely practiced in industry

◦ Checks that changes made to the project do not break the existing 
functionality

◦ Google, Facebook, Samsung, and many others uses Regression Testing 
extensively, since they have thousands of engineers making changes to the 
same project



Regression Testing for TizenRT
◦ TizenRT is an open-source lightweight RTOS-based 

platform implemented in C to support low-end Internet 
of Things (IoT) devices

◦ TizenRT includes a collection of test suites (Integration 
and Unit) that checks different functionalities

◦ A Samsung IoT platform is required to execute all tests

3

Test Suite Time [s] #Test

Arastorage I-Tests 2.02 54

Arastorage U-Tests 1.01 46

Drivers Tests 3.02 26

Filesystem Tests 23.21 76

System I/O U-Tests 4.04 90

Network Tests 2.02 180

Kernel Tests 136.26 405

Total 171.58 877

Results for ARTIK 053ARTIK 053



Regression Test Selection (RTS)

4

◦ Optimizes Regression Testing by analyzing the change

◦ Executes only tests that are affected by the change (and newly added tests)

◦ Is considered safe if it does not miss any test affected by changes



Using Existing RTS for TizenRT is Challenging

5

◦ Available RTS tools target managed languages, e.g. Java and C#

◦ Additional constraints for TizenRT:
◦ GNU Arm Embedded Toolchain does not support compiler plugins

◦ Limited memory, processing and storage space in IoT device used to execute tests

◦ Transfer between device and host



Our Solution: Selfection

6

◦ Targets projects written in C

◦ Analyzes Arm ELF binaries using readelf and objdump tools provided by GNU 
Arm Toolchain

◦ Analyzes code statically and thus does not require extra space and memory

◦ Works in three phases:
◦ Analysis Phase Select tests those are affected by the change

◦ Execution Phase Execute the selected tests

◦ Collection Phase Collect dependencies for all tests



Testing in TizenRT

7

.../le_tc/kernel/kernel_tc_main.c
int tc_kernel_main(int argc, char*argv[])
{ ...

mqueue_main();
...

}

.../le_tc/kernel/tc_mqueue.c
static void tc_mqueue_mq_timedsend_timedreceive(void)
{

int ret_chk = OK;

timedsend_check = timedreceive_check = 0;
ret_chk = timedsend_test();
TC_ASSERT_EQ("timedsend_test", ret_chk, OK);

ret_chk = timedreceive_test();
TC_ASSERT_EQ("timedreceive_test", ret_chk, OK);

mq_unlink("t_mqueue");
TC_SUCCESS_RESULT();

}

.../le_tc/kernel/tc_mqueue.c
int mqueue_main(void)
{  ...

tc_mqueue_mq_notify();
tc_mqueue_mq_timedsend_timedreceive();
...

return 0;
}

Code A

Code B

Code C



Arm ELF Binary Example

8

◦ Example, dissambled Arm ELF Binary

04110e0c <tc_wqueue_work_queue_cancel>:
4110e0c:       e92d41ff        push    {r0, r1, r2, r3, r4, r5, r6, r7, r8, lr}
4110e10:       e59f021c        ldr r0, [pc, #540]
4110e14:       ebff127f        bl 40d5818 <tc_skip_function>

...
4110e28:       e1a06000        mov r6, r0
4110e2c:       e3a00020        mov r0, #32
4110e30:       ebff0727        bl 40d2ad4 <malloc>

...
4110ffc:       ebfef111        bl 40cd448 <work_queue>

...
4111028:       e3a00001        mov r0, #1
411102c:       eb031a99        bl 41d7a98 <sleep>

...
411106c:       041f8499        .word   0x041f8499



Selfection Analysis Phase

9

-apps/examples/testcase/le_tc/kernel/kernel_tc_main.c
+apps/examples/testcase/le_tc/kernel/kernel_tc_main.c
int tc_kernel_main(int argc, char *argv[]) {

...
+   wqueue_main();

...
}

+apps/examples/testcase/le_tc/kernel/tc_wqueue.c
+int wqueue_main(void)
+{
+   ...
+   tc_wqueue_work_queue_cancel();
+   ...
+   return 0;
+}

◦ Find the tests to run

◦ Get executable code of the functions from 
the binary

◦ Checksum the code in a smart way by using 
symbol names instead of symbol addresses

◦ Compute transitive closure of affected 
functions using the dependency graph 
obtained in Collection Phase and check if 
any test is in this set, and find newly added 
tests

◦ Example: The change with SHA aa7f5149
on the left side is from TizenRT, a new test 
is added to kernel test suite



Selfection Execution Phase

10

◦ Testing framework of TizenRT does not support test filtering

◦ We added support for test filtering to TizenRT by including 
functions and macros statically

◦ Selfection sends the selected tests to device before 
execution started using serial console, and only those tests 
will not be skipped

.../le_tc/kernel/tc_wqueue.c
static void __attribute__((noclone)) 
__attribute__((noinline)) 
tc_wqueue_work_queue_cancel(void) {

if(tc_skip_function(__func__))return;
...

}
.../tash_main.c
#ifdef SELFECTION
...
while(strcmp(line_buff,">>start")!=0){ ... }
...
for(;;){ ...
if(strcmp(line_buff,"stop<<")!=0){ tc_skip_function_set(line_buff); ... } else { ... }
};
#endif



Selfection Collection Phase

11

◦ Selfection statically analyzes binaries to build 
function call graph

◦ Example: On the right side, function call 
instructions are shown as bold

◦ tc_wqueue_work_queue_cancel depends on 
tc_skip_function, malloc, work_queue and 
sleep functions, and any function they depend on 
transitively

04110e0c <tc_wqueue_work_queue_cancel>:
4110e0c:       e92d41ff        push    {r0, r1, r2, r3, r4, 

r5, r6, r7, r8, lr}
4110e10:       e59f021c        ldr r0, [pc, #540]
4110e14:       ebff127f        bl 40d5818 

<tc_skip_function>
...

4110e28:       e1a06000        mov r6, r0
4110e2c:       e3a00020        mov r0, #32
4110e30:       ebff0727        bl 40d2ad4 <malloc>

...
4110ffc:       ebfef111        bl 40cd448 <work_queue>

...
4111028:       e3a00001        mov r0, #1
411102c:       eb031a99        bl 41d7a98 <sleep>

...
411106c:       041f8499        .word   0x041f8499



Evaluation

12

◦ We asked three Research Questions (RQs):

◦ RQ1: How many tests does Selfection skip on average across a large number of 
revisions?

◦ RQ2: What is the reduction, on average, in end-to-end test execution time 
across a large number of revisions?

◦ RQ3: How does time for Analysis, Execution, and Collection phases compare to 
other build steps?



Experiment Setup

13

◦ 150 revisions used in the experiment is 
annotated to support test selection in an 
automated manner

◦ ARTIK 053 IoT device by Samsung is used to 
execute all tests

◦ QEMU emulator is also used, however only 
kernel test can be executed without hardware

◦ For each revision repeat:

◦ Checkout the revision

◦ Execute all tests (RetestAll) and collect the 
number of executed tests and time to 
execute them

◦ Apply three phases of Selfection, and collect 
the number of selected tests and time to 
execute them



RQ1: How many tests does Selfection skip on 
average across a large number of revisions?

14

6% of tests are selected in ARTIK 053 5% of tests are selected in QEMU



RQ2: What is the reduction, on average, in end-to-end 
test execution time across a large number of revisions?

15

Execution time reduced to 27% of RetestAll in ARTIK 053 Execution time reduced to 7% of RetestAll in QEMU



RQ3: How does time for Analysis, Execution, and 
Collection phases compare to other build steps?

16

ARTIK 053 QEMU



Conclusion

17

Ahmet Celik <ahmetcelik@utexas.edu>
Young Chul Lee <yc207.lee@samsung.com>

Milos Gligoric <gligoric@utexas.edu>

◦ Selfection
◦ RTS tool for projects in C that compiles to Arm ELF binary

◦ Statically analyzes binaries to collect call-graph dependencies and find affected tests

◦ Substantial savings in testing time and number of executed tests

◦ Only the execution phase is specific to TizenRT


