

1

Learning to Update Natural Language Comments Based on Code Changes

Sheena Panthaplackel, Pengyu Nie, Milos Gligoric, Junyi Jessy Li, Raymond J. Mooney The University of Texas at Austin

Source Code Comments

Developers communicate via comments:

- Usage
- Implementation
- Error cases

Source Code Comments

- Code is constantly evolving
- Failure to update comments upon code changes can lead to confusion and bugs

/**@return the highest value from the list of scores*/

public int getScore() {

return Collections.max(scores);

```
return Collections.min(scores);
```


/**@return double the roll euler angle.*/

public double getRotX() {

return mOrientation.getRotationX();

/**@return double the roll euler angle.*/

```
public double getRotX() {
```

return mOrientation.getRotationX();

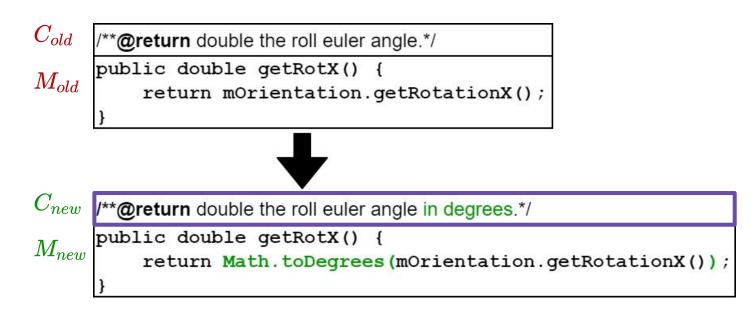

```
public double getRotX() {
```

return Math.toDegrees(mOrientation.getRotationX());

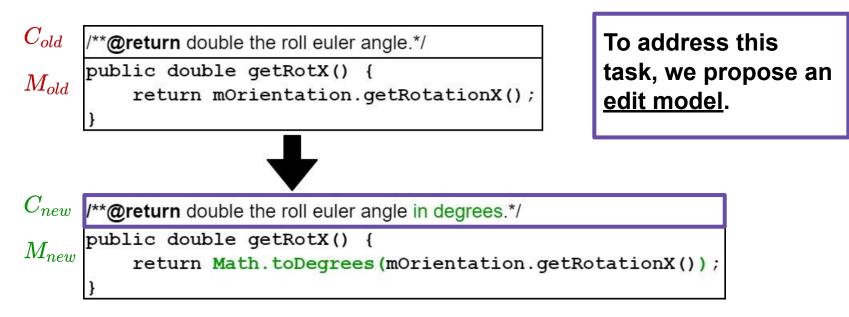
(**@return double the roll euler angle.*/

```
public double getRotX() {
```

return mOrientation.getRotationX();



/**@return double the roll euler angle in degrees.*/


```
public double getRotX() {
```

```
return Math.toDegrees(mOrientation.getRotationX());
```


Given (C_{old}, M_{old}) and M_{new} , produce C_{new} .

Given (C_{old}, M_{old}) and M_{new} , produce C_{new} .

Why Edits?

- When developers edit comments, they don't delete the existing comment and start from scratch
- They edit only parts of the comment that are relevant to the code changes

Why Edits?

- When developers edit comments, they don't delete the existing comment and start from scratch
- They edit only parts of the comment that are relevant to the code changes

Learn to <u>edit</u> $C_{old} \rightarrow C_{new}$ rather than <u>generate</u> C_{new}

Why Edits?

Comment edits

Implicitly learning these edits by directly generating C_{new} using C_{old} risks learning to copy, so we explicitly define NL edits.

Code edits

To better correlate code changes with NL edits and also prevent having the model implicitly learn these changes them from M_{old} and M_{new} , we explicitly define code edits.

Representing Edits

M_{old}

```
public double getRotX() {
return mOrientation.getRotationX();
```

M_{new}

```
public double getRotX() {
```

return Math.toDegrees(mOrientation.getRotationX());

M_{edit}

<Keep> public double getRotX() <KeepEnd> <Insert> Math.toDegrees(<InsertEnd> <Keep> mOrientation.getRotationX() <KeepEnd> <Insert>) <InsertEnd> <Keep> ;} <KeepEnd>

Unifying M_{old} and M_{new} into a single diff sequence that explicitly identifies <u>code</u> edits, M_{edit}

Representing Edits

M_{old}

```
public double getRotX() {
return mOrientation.getRotationX();
```

M_{new}

```
public double getRotX() {
```

return Math.toDegrees(mOrientation.getRotationX());

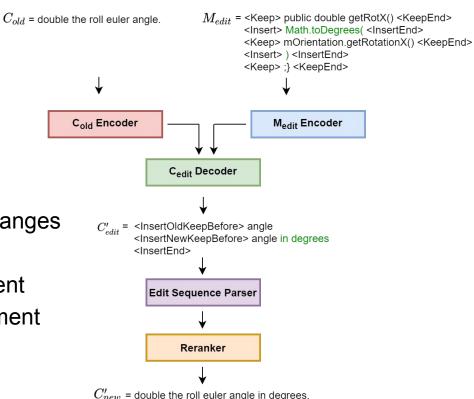
M_{edit}

 C_{edit}

<Keep> public double getRotX() <KeepEnd> <Insert> Math.toDegrees(<InsertEnd> <Keep> mOrientation.getRotationX() <KeepEnd> <Insert>) <InsertEnd> <Keep> ;} <KeepEnd>

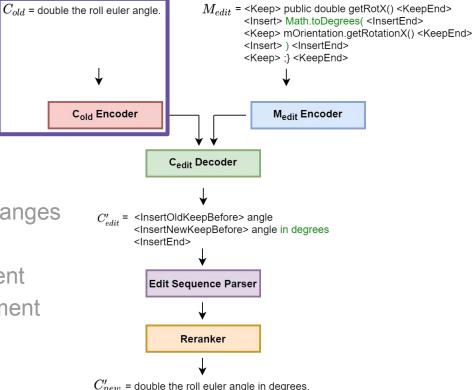
Unifying M_{old} and M_{new} into a single diff sequence that explicitly identifies <u>code</u> edits, M_{edit}

C_{old}	
double the roll euler angle.	
C_{new}	_
double the roll euler angle in degrees.]


<InsertOldKeepBefore> angle <InsertNewKeepBefore> angle in degrees <InsertEnd>

Unifying C_{old} and C_{new} into a single diff sequence that explicitly identifies <u>comment</u> edits, C_{edit}

- Step 2: Learn representation for code changes
- Step 3: Predict NL edits
- Step 4: Apply NL edits to existing comment
- Step 5: Rerank + produce updated comment

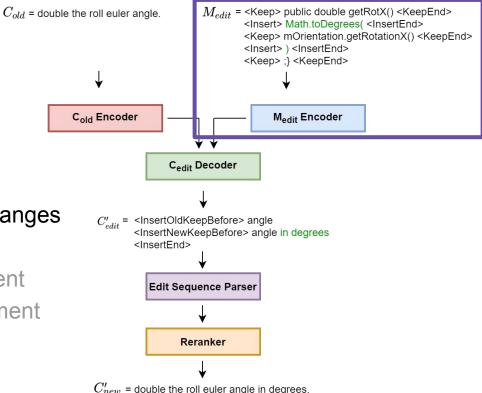

Step 1: Learn representation for C_{old}

Step 2: Learn representation for code changes

Step 3: Predict NL edits

Step 4: Apply NL edits to existing comment

Step 5: Rerank + produce updated comment

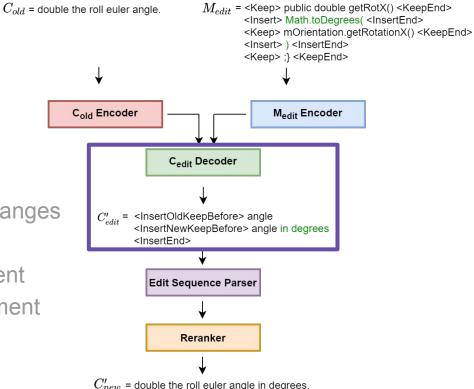

Step 1: Learn representation for Cold

Step 2: Learn representation for code changes

Step 3: Predict NL edits

Step 4: Apply NL edits to existing comment

Step 5: Rerank + produce updated comment

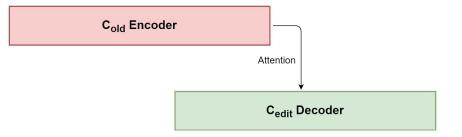


Step 1: Learn representation for *C*_{old}

Step 2: Learn representation for code changes

Step 3: Predict NL edits

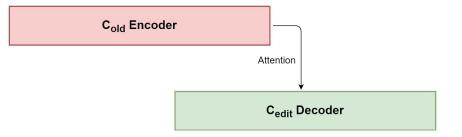
Step 4: Apply NL edits to existing commentStep 5: Rerank + produce updated comment



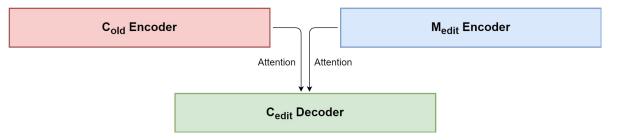
C_{edit} Decoder

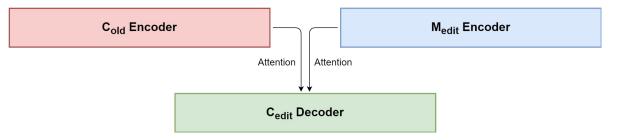
Generating C_{edib} a sequence of NL edits, using a GRU decoder **At each decoding step:**

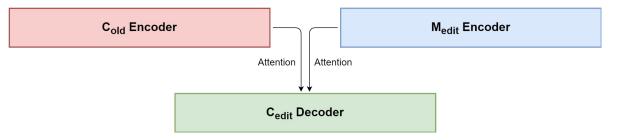
(1) Identify edit locations in C_{old}

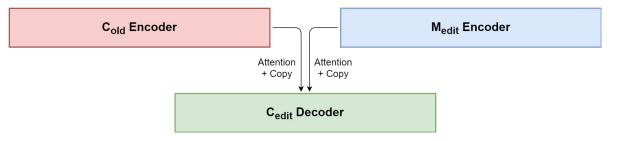


Generating C_{edib} a sequence of NL edits, using a GRU decoder **At each decoding step:**


(1) Identify edit locations in C_{old} Attend to C_{old} encoder hidden states

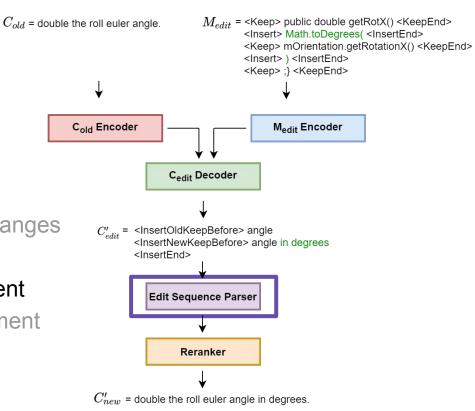

- (1) Identify edit locations in C_{old} Attend to C_{old} encoder hidden states
- (2) Determine parts of M_{edit} that pertain to making edits


- (1) Identify edit locations in C_{old} Attend to C_{old} encoder hidden states
- (2) Determine parts of M_{edit} that pertain to making edits Attend to M_{edit} encoder hidden states


- (1) Identify edit locations in C_{old} Attend to C_{old} encoder hidden states
- (2) Determine parts of M_{edit} that pertain to making edits Attend to M_{edit} encoder hidden states
- (3) Apply updates at edit locations based on the relevant code edits:

- (1) Identify edit locations in C_{old} Attend to C_{old} encoder hidden states
- (2) Determine parts of M_{edit} that pertain to making edits Attend to M_{edit} encoder hidden states
- (3) Apply updates at edit locations based on the relevant code edits: start/end action or continue by generating/copying comment token

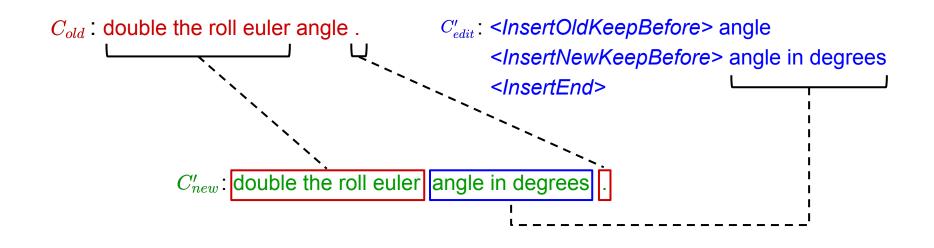
- (1) Identify edit locations in C_{old} Attend to C_{old} encoder hidden states
- (2) Determine parts of M_{edit} that pertain to making edits Attend to M_{edit} encoder hidden states
- (3) Apply updates at edit locations based on the relevant code edits: start/end action or continue by generating/copying comment token Pointer network over C_{old} and M_{edit} encoder hidden states

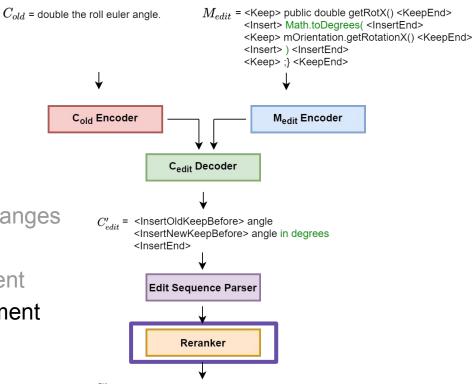


Step 1: Learn representation for *C*_{old} **Step 2:** Learn representation for code changes

Step 3: Predict NL edits

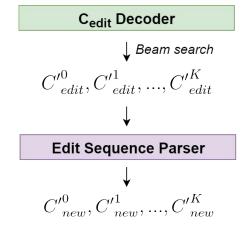
Step 4: Apply NL edits to existing comment


Step 5: Rerank + produce updated comment


Step 4: Parsing Edit Sequence

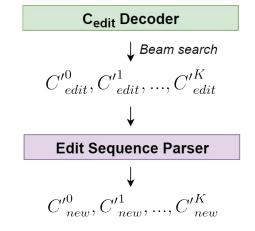
Aligning predicted edit sequence, C'_{edit} , with C_{old} and copying unchanged tokens to form predicted C'_{new}

Step 1: Learn representation for C_{old} Step 2: Learn representation for code changesStep 3: Predict NL editsStep 4: Apply NL edits to existing commentStep 5: Rerank + produce updated comment



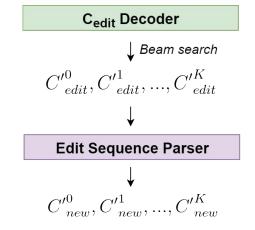
 C'_{new} = double the roll euler angle in degrees.

Reranking candidate predictions


- (1) Accurately update C_{old} with minimal modifications
- (2) Be suitable for M_{new}
- (3) Conform to comment style conventions

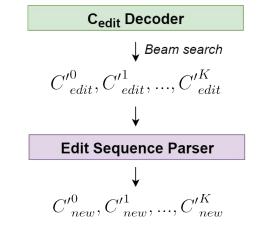
Reranking candidate predictions

- (1) Accurately update C_{old} with minimal modifications
- (2) Be suitable for M_{new}
- (3) Conform to comment style conventions

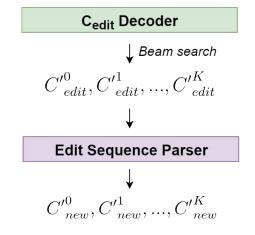


Decoder trained to generate edits, and so has no notion of these global characteristics

Reranking candidate predictions


- (1) Accurately update C_{old} with minimal modifications Similarity to C_{old} : $METEOR(C_{old}, C_{new}')$
- (2) Be suitable for M_{new}
- (3) Conform to comment style conventions

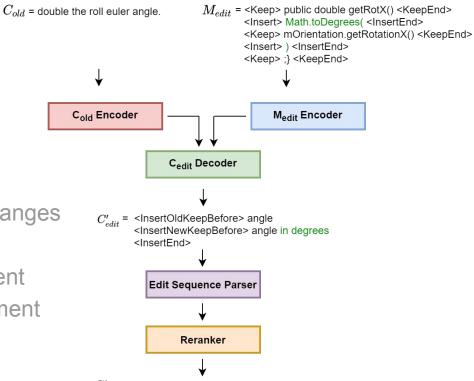
Reranking candidate predictions


- (1) Accurately update C_{old} with minimal modifications Similarity to C_{old} : $METEOR(C_{old}, C'^i_{new})$
- (2) Be suitable for M_{new}
- (3) Conform to comment style conventions Generation likelihood: $P(C_{new}^{\prime i}|M_{new})$

Reranking candidate predictions

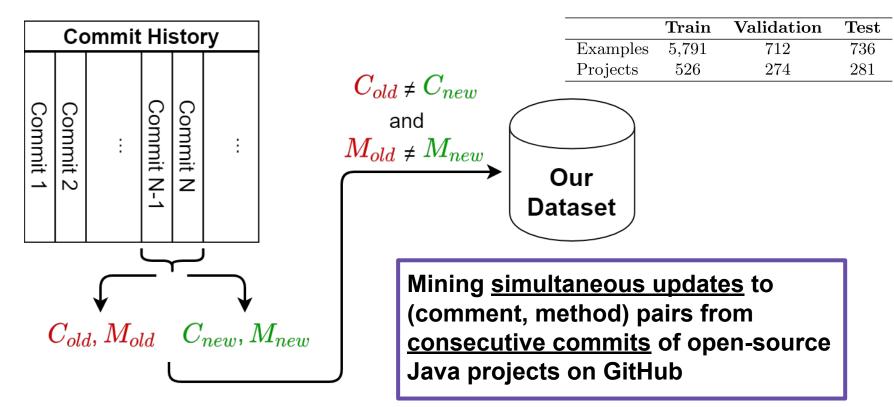
- (1) Accurately update C_{old} with minimal modifications Similarity to C_{old} : $METEOR(C_{old}, C'^i_{new})$
- (2) Be suitable for M_{new}
- (3) Conform to comment style conventions Generation likelihood: $P(C_{new}^{\prime i}|M_{new})$

Rerank(i) = 0.5Beam(i) + 0.2Sim(i) + 0.3GenLikelihood(i)


Step 1: Learn representation for C_{old}

Step 2: Learn representation for code changes

Step 3: Predict NL edits


Step 4: Apply NL edits to existing comment

Step 5: Rerank + produce updated comment

 C'_{new} = double the roll euler angle in degrees.

Data Collection

Baselines

• Copy

 $C'_{new} = C_{old}$

• Generation w/ reranking

Given M_{new} , generate C'_{new} and rerank

• Rule-based

```
C'_{new} = \begin{cases} C_{old} \text{.replace}(\textit{RetType}(M_{old}), \textit{RetType}(M_{new})) + \text{``or null if null''} & \text{if null added to return statement or} \\ C_{old} \text{.replace}(\textit{RetType}(M_{old}), \textit{RetType}(M_{new})) & \text{otherwise} \end{cases}
```


	Copy	Gen w/ reranking	Rule-based	Edit
xMatch (%)	0.000	2.083	13.723	18.433
Generation METEOR (Banerjee and Lavie, 2005)	34.611	18.170	43.359	44.698
Generation { METEOR (Banerjee and Lavie, 2005) BLEU-4 (Papineni et al., 2002)	46.218	18.891	51.160	50.717
Editing $\begin{cases} SARI (Xu et al., 2016) \\ GLEU (Napoles et al., 2015) \end{cases}$	19.282	25.641	32.109	45.486
$\mathbf{\subseteq GLEU} \text{ (Napoles et al., 2015)}$	35.400	22.685	42.627	46.118

	Сору	Gen w/ reranking	Rule-based	Edit
xMatch (%)	0.000	2.083	13.723	18.433
Concretion METEOR (Banerjee and Lavie, 2005)	34.611	18.170	43.359	44.698
Generation { METEOR (Banerjee and Lavie, 2005) BLEU-4 (Papineni et al., 2002)	46.218	18.891	51.160	50.717
Editing $\begin{cases} SARI (Xu et al., 2016) \\ GLEU (Napoles et al., 2015) \end{cases}$	19.282	25.641	32.109	45.486
County \mathcal{L} GLEU (Napoles et al., 2015)	35.400	22.685	42.627	46.118
	An a construction of the Add State		ann canain ann a bhliadh (1998) 199	

Despite being trained on more more data, the generation baseline substantially underperforms the edit model.

en w/ reranking	Rule-based	Edit
2.083	13.723	18.433
18.170	43.359	44.698
18.891	51.160	50.717
25.641	32.109	45.486
22.685	42.627	46.118
	2.083 18.170 18.891 25.641	2.083 13.723 18.170 43.359 18.891 51.160 25.641 32.109

Rule-based baseline achieves a slightly higher BLEU-4 score; however the difference is NOT statistically significant.

	Copy	Gen w/ reranking	Rule-based	Edit
xMatch (%)	0.000	2.083	13.723	18.433
Generation METEOR (Banerjee and Lavie, 2005)	34.611	18.170	43.359	44.698
Generation { METEOR (Banerjee and Lavie, 2005) BLEU-4 (Papineni et al., 2002)	46.218	18.891	51.160	50.717
Edition $\int SARI$ (Xu et al., 2016)	19.282	25.641	32.109	45.486
Editing $\begin{cases} SARI (Xu et al., 2016) \\ GLEU (Napoles et al., 2015) \end{cases}$	35.400	22.685	42.627	46.118

Based on edit-specific metrics, our model appears to be better at <u>editing</u> comments.

Human Evaluation

- Given C_{old} and the diff of M_{old} and M_{new} :
 - Select the most suitable C'_{new} from **up to 3 suggestions**:
 - Generation model w/ reranking
 - Rule-based baseline
 - Edit model
 - Select **None** if all options are bad or if C_{old} does not need to be updated
- 10 participants w/ 2+ years Java experience
- Each participant annotated 50 examples
- Each example was annotated by 2 participants

500 evaluations across 250 distinct examples

Human Evaluation Results

Percentage of annotations for which users selected comment suggestions produced by each model

Gen w/ reranking	Rule-based	Edit	None
12.4%	18.4%	30.2%	55.0%

Inter-annotator agreement: 0.64 (Krippendorff's α with MASI distance)

Human Evaluation Results

Percentage of annotations for which users selected comment suggestions produced by each model

Gen w/ reranking	Rule-based	Edit	None
12.4%	18.4%	30.2%	55.0%

Inter-annotator agreement: 0.64 (Krippendorff's α with MASI distance)

The edit model outperforms the generation and rule-based baselines.

Human Evaluation Results

Percentage of annotations for which users selected comment suggestions produced by each model

Gen w/ reranking	Rule-based	Edit	None
12.4%	18.4%	30.2%	55.0%

Inter-annotator agreement: 0.64 (Krippendorff's α with MASI distance)

We found many cases in which the comment did not need to be updated.

Summary

- Formulated task of automatically updating comments based on code changes
- Introduced architecture for this task:
 - (1) Generates a sequence of NL edits based on learned representations of the existing comment and code edits
 - (2) Transforms this edit sequence into an updated comment by parsing and reranking based on global heuristics
- Evaluated approach against rule-based and generation baselines with automated metrics and a user study

Code and data available: <u>https://github.com/panthap2/LearningToUpdateNLComments</u> Contact: Sheena Panthaplackel <spantha@cs.utexas.edu>