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Abstract—User perceived video quality depends on a variety
of only partially understood factors, e.g., the application domain,
content, compression, transport mechanism, and most impor-
tantly psycho-visual systems determining the ultimate Quality
of Experience (QoE) of users. This paper centers on two key
observations in addressing the problem of joint rate adaptation
for video streams sharing a congested resource. First, we note
that a user viewing a given video will experience temporal
variations in the dependence of perceived video quality to the
compression rate. Intuitively this is due to the possibly changing
nature of the content, e.g., from an action to a slower scene.
Thus, in allocating rates to users sharing a congested resource, in
particular a wireless system where additional temporal variability
in users’ capacity may be high, content dependent tradeoffs
can be realized to deliver a better overall average perceived
video quality. Second, we note that such adaptation of users’
rates, may result in temporal variations in video quality which
combined with perceptual hysteresis effects will degrade users’
QoE. We develop an asymptotically optimal online algorithm,
requiring minimal statistical information, for optimizing users’
QoE by realizing tradeoffs across mean, variance and fairness.
Simulations show that our approach achieves significant gains in
viewers’ QoE.

The novelty of this work lies not only in tackling the funda-
mental problem of achieving fair allocations of perceived video
quality across a user population with time varying sensitivities
and capacity, but, in addition, in integrating the deleterious
impact that variations in perceived quality has on their QoE.

I. INTRODUCTION

There has been tremendous growth in the number of users
viewing videos on mobile devices in the past decade. Current
trends (see [5]) suggest that mobile video traffic will more than
double each year between 2010-15, with two-thirds of mobile
data traffic being video by 2015. It is unlikely that wireless
infrastructure, e.g., base stations, access points, capacity etc.,
can keep up with such growth, and hence finding ways to
make the most of available resources to deliver the best
possible ‘Quality of Experience’ (QoE) to viewers is among
the important networking problems today.

For a user viewing a video stream, the QoE associated with
the session has a strong positive correlation to several metrics
that increase with the average Perceived Video Quality (PVQ)
across the sequence of scenes comprising the video – our
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convention will be that PVQ is a local measure associated
with a particular scene or a short period of time. PVQ, in
turn, depends on a variety of factors, including compression,
network transport, content, human perceptual system, etc. A
key observation, which is at center stage in this paper, is that
the overall QoE also depends on temporal variations of PVQ
across scenes, see e.g., [26], [13], [19]. Indeed [26] even points
out that variations in PVQ can result in a QoE that is worse
than that of a constant quality video with lower average PVQ.

There are several factors that can result in variations in
PVQ for wireless users. We will focus on two prominent ones.
The first, is the time varying nature of the wireless channel
capacity due to fast fading (on faster time scales, e.g., ms) and
slow fading due to shadowing, dynamic interference, mobility,
and changing loads (on slower time scales, e.g. secs). Indeed
4G broadband systems promise to further increase extent and
dynamic range of such variability [16]. The second, is the
time varying nature of video scenes PVQ dependence on the
(average) compression rate as well as other factors. Perhaps
the key contributor to such change is the video content itself,
e.g, the PVQ at a fixed compression rate might be smaller
for an action scene (where there is a lot of changing visual
content) than for a slower scene (where things stay the same).

Capturing the rich space of factors that impact PVQ for a
sequence of scenes is challenging and perhaps impractical. In
this paper we will abstract this as a (possibly) time varying
sequence of (increasing) functions mapping the source com-
pression rate to the PVQ for the current scene. Similar content-
dependent functions were used in [10], [12] to map parame-
ters like compression rate, compression scheme parameters,
physical layer parameters etc to a measure of PVQ. Here we
will abstract dependence of this large number of parameters,
assuming source coder has already been optimized to deliver
the best possible PVQ for a given compression rate or vice
versa. This is possible, due to the availability of efficient, easy
to use Video Quality Assessment algorithms (see [21] for a
survey) such as the ones based on SSIM based indices (see
[24], [25]) that can be used to efficiently evaluate how humans
are likely to perceive video compressed in different ways and
at different rates. For stored video these functions might be
obtained and optimized offline, e.g., several compressed or
layered (e.g., based on Scalable Video Coding [18]) versions
of a video might be optimized to deliver the best relationships
between PVQ and compressed rates. For video streaming of
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live events, live broadcast of TV channels etc, experience with
the content, or online use of computationally efficient Quality
Assessment algorithms might be used to optimize PVQ-rate
tradeoffs.

When multiple users share a ‘congested’ wireless resource
and are subject to slow (e.g., secs) wireless capacity and PVQ-
rate tradeoff variability, joint source rate adaptation will be
key to determining users’ QoE. As mentioned earlier such a
scheme should attempt to fairly maximize users’ (mean) PVQ
while controlling its temporal variability. This is the focus of
our paper. Note that fairness here is an additional system-
level requirement to avoid excessively compromising the QoE
of users that are either seeing poor channels, e.g., at the cell
edge, and/or are currently resource (rate) intensive to achieve
a reasonable PVQ.

A. Related Work

Several works have considered how to best deliver video
to multiple users in a wireless setting, see e.g., [12], [23],
[10], [27], [8]. In [12], the authors consider periodically and
greedily maximizing the sum of the users’ PVQ – peak signal-
to-noise ratio is used as a crude measure for PVQ. The
work of [23] focuses on a WLAN setting and proposes a
scheme that greedily maximizes the minimum quality among
users – perhaps an extreme fairness objective. This is done
by determining the optimal encoding rate and physical layer
parameters so as to minimize the sum of the distortion caused
by source compression and the expected distortion resulting
from packet loss during transmission. In [10] a distributed
solution to the problem of minimizing the sum distortion
is given– incurring increasing communication overhead. The
works of [27] and [8] pose the problem in a dynamic pro-
gramming framework which requires detailed knowledge of
the statistics of the system. To remedy this, [8] proposes a
learning algorithm to solve the associated Markov decision
problem. In addition to complexity, and perhaps unreasonably
detailed model assumptions, a major weakpoint of the above
works is that none accounts for the impact of the variability
of users’ PVQ on their QoE.

There are several works, for e.g., [6], that propose schemes
to reduce variability in coding rates to reduce the variability in
PVQ. But, these approaches ignore the (time varying nature of
the) dependence of PVQ on rates, and hence are suboptimal.
The problem of reducing the variability in quality for SVC
coded video over the Internet was considered in [13]. However,
they restrict their attention to a single video stream, and they
only focus on the reduction of switching rate of quality which
is a crude metric for variability of PVQ.

B. Our Approach and Contributions

In this paper, we develop an approach for joint rate adapta-
tion to maximize users’ QoE by fairly increasing users’ PVQ
over time while controlling its variability. We first consider
the optimal solution of an offline convex optimization problem
(i.e., one where all time-varying quantities are assumed known)
which essentially optimizes a time average of the sum of

concave functions of PVQ of the users, minus its variance
subject to the capacity constraints imposed by a wireless sys-
tem. This is, in part, motivated by the QoE metric proposed in
[26]. The main contribution of this paper is an asymptotically
optimal online algorithm, AVQ, requiring almost no statistical
information about the system, i.e., with sufficient time, the
reward achieved by AVQ is arbitrarily close to that of the
optimal offline solution. This is established under a general
setting where temporal variations are stationary ergodic, but
the algorithm could also be enabled to adapt to changing
statistics. We then modify AVQ to obtain a practical low
complexity algorithm PAVQ, recognizing the discrete nature
of available compressed video content, e.g., SVC layers.
Through simulation we show that PAVQ provides significant
performance gains over a collection of known QoE metrics vs
several baseline joint rate adaptation schemes.

C. Organization of the paper

In Section II, we discuss the system model. In Section III,
we obtain and study the optimal offline finite horizon policy.
In Section IV, we present AVQ and prove its optimality. In
Section V, we present PAVQ. In Section VI, we evaluate the
performance of PAVQ through simulations, and compare it
against some other schemes. We conclude the paper in Section
VII. The sketch of a proof of an intermediate result is given
in Appendix B.

II. SYSTEM MODEL

We consider a wireless system serving video to a fixed set
of users N where |N | = N. We consider a slotted system
where slots are indexed by t ∈ {0, 1, 2...}. We envisage the
duration of a slot being longer than that of a Group of Pictures
(roughly about a second) so that the evaluation of PVQ-rate
tradeoffs for a slot make sense.

Throughout the paper, we distinguish between random
variables (and random functions) and their realizations by
using upper case letters for the former and lower case for
the latter. We use bold letters to denote vectors, e.g., a =
(ai : i ∈ N ). We let (a)1:T denote the finite length sequence
(a(t) : 1 ≤ t ≤ T ).

Let Ci(t) be a random variable denoting the average rate
at which user i ∈ N can be served in slot t. We assume
that C(t) = (Ci(t) : i ∈ N ) is known at the beginning of
slot t. Knowledge of C(t) can be based on averaging short
term estimates based on channel quality information or the
achieved transmission rates over the wireless channel. These
estimates are intended to capture slowly changing aspects of
the channel like shadowing, interference, mobility etc. Further,
we assume that there exist constants cmin > 0 and cmax <∞,
such that Ci(t) ∈ [cmin, cmax] for all slots t and i ∈ N over
all sample paths. Consider any sample path. Then, any rate
adaptation scheme, while choosing the rates, r(t), at which
users are served in slot t, should satisfy

ri(t) ≥ 0, ∀i ∈ N , and
∑
i∈N

ri(t)

ci(t)
≤ 1, ∀ t. (1)
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Hence ri(t)/ci(t) corresponds to the fraction of time the
wireless system would have to serve user i in slot t to deliver
ri(t) to user i. Thus the above constraint ensures that, in slot t
the wireless system could deliver r(t) to the respective users.

For user i, let FQt,i(.) denote the (random) function, and
fQt,i(.), its realization, that maps the user’s source compression
rate ri(t) to the user’s PVQ qi(t) in slot t, i.e., qi(t) =
fQt,i(ri(t)). This function depends on the video content being
sent to user i in slot t. We assume that these functions are
picked from a finite (but potentially large) set Fqual where
each function is a twice-differentiable increasing concave
function that maps a video compression rate to a finite number
representing the PVQ at that rate. As discussed in the introduc-
tion we envisage several scenarios (stored video and even live
streaming) where PVQ-rate tradeoff functions can be known a
priori or estimated each slot. Note since ri(t) ≤ ci(t) ≤ cmax

for each i ∈ N and t, and Fqual is finite, there exists qmax

such that qi(t) ≤ qmax for all i ∈ N and in each slot t.
Similarly we assume that there exists some qmin ≥ 0 such that
for any realization of the channel c, there exists r satisfying∑
i∈N ri/ci < 1 and mini∈N f

Q
t,i(ri) ≥ qmin. Since cmin > 0,

this condition can be satisfied by choosing arbitrarily small
qmin. We let Q = [qmin, qmax].

We assume a centralized coordinator, possibly the basesta-
tion, or colocated video optimizing server (see e.g., [16]) that
has access to S(t) =

(
C(t),FQt

)
∈ S , where S denotes

the set of values S(t) can take. The coordinator’s role is
to choose source rates (e.g., in practice this may translate
to dropping SVC layers) so as to meet the current wireless
capacity constraints. When this is the case, we assume that
the associated PVQs are realized. Thus implicitly we assume
negligible packet losses as would be achieved by a modern
broadband wireless system through physical layer adaptation
of modulation and coding and hybrid ARQ, with negligible
delays, e.g., 200 ms (see [11]) which are deemed acceptable
relative to video playback buffers for the applications men-
tioned in Section I.

III. OPTIMAL VARIANCE-SENSITIVE OFFLINE POLICY

In this section, we consider an offline formulation for
optimal joint rate adaptation roughly maximizing video QoE
subject to the wireless capacity constraints over a finite time
horizon. In the offline setting we assume

(
c, fQ

)
1:T

, i.e.,
the realization of the process (S)1:T , is known. We consider
maximizing the following objective function

φT ((q)1:T ) =

T∑
t=1

∑
i∈N

U (qi(t))−
∑
i∈N

(
λiT

2

)
Var ((qi)1:T ) ,

where

Var ((qi)1:T ) =
1

T

T∑
t=1

(
qi(t)−

1

T

T∑
τ=1

qi(τ)

)2

.

The first term in φT increases in users’ PVQ (q)1:T which in
turn depends on the allocated rates (r)1:T , while the second

term penalizes variability of the PVQ. The objective function
is closely related to the QoE metric proposed in [26] except
that we have substituted the standard deviation of PVQ by the
variance. Additionally, U : Q → R+ is a strictly increasing
concave function which serves to enforce some fairness in the
allocation of quality amongst users in each slot. For instance,
we can choose U from the following class of strictly concave
increasing functions parametrized by α ∈ (0,∞) ([15])

Uα(q) =

{
log q if α = 1,

(1− α)
−1
q1−α otherwise.

(2)

If we set U = Uα, a larger α corresponds to a more fair
allocation of quality. In the sequel, we also assume that U
is twice differentiable. Here, λ = (λi : i ∈ N ) are positive
parameters that are chosen to roughly reflect the importance
given to the reduction of temporal variability of PVQ. Let
λmax = maxi∈N λi.

We consider the optimization problem OPT(T ) given below:

max
(q)1:T

φT ((q)1:T ) (3)

subject to
∑
i∈N

fRt,i(qi(t))

ci(t)
≤ 1 ∀ t ∈ {1, ..., T} , (4)

qi(t) ≥ qmin∀ t ∈ {1, ..., T} ,∀ i ∈ N , (5)

where fRt,i(.) is the inverse function of fQt,i(.). The constraints
(4) and (5) ensure that (1) is not violated. We choose qmin as
described in Section II.

Lemma 1 below asserts that OPT(T ) is a strictly convex
optimization problem satisfying Slater’s condition (Section
5.2.3, [4]), and thus has a unique solution. Proving this is
straightforward once one establishes that Var((q)1:T ) is a
convex function and is ‘almost’ a strictly convex function of
(q)1:T .

Lemma 1. OPT(T ) is a convex optimization problem satisfy-
ing Slater’s condition with a unique solution.

Proof: The inverse of an increasing concave function is
a convex function, and hence (4) is a convex constraint. Now
consider the objective function, φT (). The first term in φT ()
is clearly a concave function. Now, consider the second term.
For two quality vectors

(
q1
)
1:T

and
(
q2
)
1:T

, any i ∈ N ,
α ∈ (0, 1) and ᾱ = 1− α, we have that

Var
(
α
(
q1i
)
1:T

+ ᾱ
(
q2i
)
1:T

)
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= Var
((
αq1i + ᾱq2i

)
1:T

)
=

1

T

T∑
t=1

((
αq1i (t) + ᾱq2i (t)

)
− 1

T

T∑
τ=1

(
αq1i (τ) + ᾱq2i (τ)

))2

=
1

T

T∑
t=1

(
α

(
q1i (t)− 1

T

T∑
τ=1

q1i (τ)

)

+ᾱ

(
q2i (t)− 1

T

T∑
τ=1

q2i (τ)

))2

≤ 1

T

T∑
t=1

α(q1i (t)− 1

T

T∑
τ=1

q1i (τ)

)2

+ᾱ

(
q2i (t)− 1

T

T∑
τ=1

q2i (τ)

)2


= αVar
((
q1i
)
1:T

)
+ ᾱVar

((
q2i
)
1:T

)
.

The inequality in the penultimate line follows from the convex-
ity of f(x) = x2. We conclude that Var() is a convex function.
Further, since f(x) = x2 is a strictly convex function, the
inequality is a strict one unless

q1i (t) = q2i (t) +
1

T

T∑
τ=1

q1i (τ)− 1

T

T∑
τ=1

q2i (τ) ∀ 1 ≤ t ≤ T.

Thus, for the inequality not to be a strict one, we require that
Var
((
q1i
)
1:T

)
= Var

((
q2i
)
1:T

)
.

Using the above arguments and concavity of U , we conclude
that OPT(T ) is a convex optimization problem.

To establish uniqueness of the optimal solution, let
(
q1
)
1:T

and
(
q2
)
1:T

be two optimal solutions to OPT(T ). Then, from
the concavity of the objective,

(
α
(
q1i
)
1:T

+ ᾱ
(
q2i
)
1:T

)
is also

an optimal solution for any α ∈ (0, 1) and ᾱ = 1−α. Due to
concavity of U and convexity of Var(), this is only possible
if for each i ∈ N and 1 ≤ t ≤ T , U

(
αq1i (t) + ᾱq2i (t)

)
=

αU
(
q1i (t)

)
+ ᾱU

(
q2i (t)

)
, and Var

(
α
(
q1i
)
1:T

+ ᾱ
(
q2i
)
1:T

)
=

αVar
((
q1i
)
1:T

)
+ ᾱVar

((
q2i
)
1:T

)
. From above discus-

sion, Var
(
α
(
q1i
)
1:T

+ ᾱ
(
q2i
)
1:T

)
= αVar

((
q1i
)
1:T

)
+

ᾱVar
((
q2i
)
1:T

)
for each i ∈ N is only possible if

Var
((
q1i
)
1:T

)
= Var

((
q2i
)
1:T

)
for each i ∈ N , and q1i (t) =

q2i (t) + 1
T

∑T
τ=1 q

1
i (τ) − 1

T

∑T
τ=1 q

2
i (τ) for each i ∈ N

and 1 ≤ t ≤ T . Since for each i ∈ N , Var
((
q1i
)
1:T

)
=

Var
((
q2i
)
1:T

)
, due to optimality of

(
q1
)
1:T

and
(
q2
)
1:T

, we
have that∑
1≤t≤T

∑
i∈N

U
(
q2i (t)

)
=

∑
1≤t≤T

∑
i∈N

U
(
q1i (t)

)
=

∑
1≤t≤T

∑
i∈N

U

(
q2i (t) +

1

T

T∑
τ=1

q1i (τ)− 1

T

T∑
τ=1

q2i (τ)

)
.

Since U is a strictly increasing function, the above equation

implies that

1

T

T∑
τ=1

q1i (τ) =
1

T

T∑
τ=1

q2i (τ),

and thus,

q1i (t) = q2i (t) ∀ 1 ≤ t ≤ T, ∀ i ∈ N .

From the above discussion, we can conclude that OPT(T ) has
a unique solution.

Slater’s condition is satisfied due to the careful choice of
qmin.

We let
(
qT
)
1:T

denote the optimal solution to OPT(T ),
and note that once optimal quality allocations are given, the
associated optimal rate allocations, denoted by

(
rT
)
1:T

, are
given by rTi (t) = fRt,i(q

T
i (t)).

Since OPT(T ) is a convex optimization problem satisfying
Slater’s condition (Lemma 1), Karush-Kuhn-Tucker (KKT)
conditions ([4]) are necessary and sufficient for optimality.
Specifically, we have that

(
qT
)
1:T

is an optimal solution to
OPT(T ) if and only if it is feasible, and there exist non-
negative constants

(
µT
)
1:T

and
(
γTi : i ∈ N

)
1:T

such that for
all i ∈ N and t ∈ {1, ..., T}

U
′ (
qTi (t)

)
− λi

(
qTi (t)− qTi

)
−µT (t)

(
fRt,i
)′

(qTi (t))

ci(t)
+ γTi (t) = 0, (6)

µT (t)

(∑
i∈N

fRt,i(q
T
i (t))

ci(t)
− 1

)
= 0, (7)

γTi (t)
(
qTi (t)− qmin

)
= 0, (8)

and

qTi =
1

T

T∑
t=1

qTi (t).

Here we have used the fact that for any i ∈ N and τ
′ ∈

{1, ..., T}

∂

∂qi(τ
′)

(TVar ((qi)1:T )) = 2

(
qi(τ

′
)− 1

T

T∑
τ=1

qi(τ)

)
.

From (6), for all i ∈ N and t ∈ {1, 2, ..., T}

µT (t) =
λi
(
qTi − qTi (t)

)
+ U

′ (
qTi (t)

)
+ γTi (t)((

fRt,i
)′

(qTi (t))/ci(t)
) . (9)

Thus, for optimality, in each slot t one must ensure that the
RHS of the above equation is equal for all users i ∈ N .
A key observation here is that, for t1 6= t2, qT (t1) and
qT (t2) are only related through qT . So, if a genie revealed
qT , the optimal quality allocation qT (t) for each slot t, can
be determined by solving an optimization depending only on
the information about the current slot, i.e., S(t). The online
algorithm proposed in next section exploits this idea.
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IV. ADAPTIVE VARIANCE AWARE QUALITY ALLOCATION

In this section, we present our algorithm, AVQ, and establish
its asymptotic optimality.
AVQ consists of three steps, AVQ.0-AVQ.2, given next:

AVQ.0: Initialize: Let q̂∗i (0) ∈ Q for each i ∈ N .

In each slot t, carry out the following steps:
AVQ.1: The quality allocation in slot t is the optimal solution
to the optimization problem OPTAVQ(λ, q̂∗(t−1), s(t)) given
below:

max
q

∑
i∈N

U (qi)−
∑
i∈N

(
λi
2

)
(qi − q̂∗i (t− 1))

2 (10)

subject to
∑
i∈N

fRt,i(qi)

ci(t)
≤ 1, (11)

qi ≥ qmin ∀ i ∈ N . (12)

Let q∗(q̂, s) denote the solution to OPTAVQ(λ, q̂, s).
AVQ.2: In slot t, update q̂i as follows: for all i ∈ N ,

q̂∗i (t) = q̂∗i (t− 1) (13)

+
λi

t+ λmax
(q∗i (q̂∗(t− 1), s(t))− q̂∗i (t− 1)) .

We see that AVQ.1 is quite intuitive by comparing (10) to (3).
In place of user i’s variance in (3), (qi − q̂∗i (t− 1))

2 appears in
(10) in each slot. In the sequel, we show that (q̂∗i )t converges
to the mean of user i’s quality allocation over time.

Throughout the paper, for brevity, we use q∗(t) instead of
q∗(q̂∗(t− 1), s(t)) when the dependence of q∗(t) on (q̂∗(t−
1), s(t)) is clear from context.

For any t, OPTAVQ(λ, q̂∗(t − 1), s(t)) is a convex opti-
mization problem satisfying Slater’s condition. So, the optimal
solution satisfies KKT conditions and thus, there exist non-
negative constants µ∗(t) and (γ∗i (t) : i ∈ N ) such that for all
i ∈ N

U
′
(q∗i (t))− λi (q∗i (t)− q̂∗i (t− 1))

+γ∗i (t)− µ∗(t)
(
fRt,i
)′

(q∗i (t))

ci(t)
= 0, (14)

µ∗(t)

(∑
i∈N

fRt,i(q
∗
i (t))

ci(t)
− 1

)
= 0, (15)

γ∗i (t) (q∗i (t)− qmin) = 0. (16)

The rest of this section is devoted to proving the asymptotic
optimality of AVQ. We use intermediate results, Lemmas 2-5,
to prove the main result given in Theorem 1.

A. Convergence Analysis

In this subsection, we show under fairly weak assumptions
on the process (S(t))t, (q̂∗(t))t converges almost surely. This
is a key intermediate result in proving the main optimality
result discussed in the next subsection.

We begin with the next result in which we establish conti-
nuity and differentiability properties of q∗ (q̂, s) and h (q̂, s)
respectively, as functions of q̂, where

h(q̂, s) =
∑
i∈N

U (q∗i (q̂, s))−
∑
i∈N

λi
2

(q∗i (q̂, s)− q̂i)2 .

Note that q∗ (q̂, s) is the optimizer of OPTAVQ(λ, q̂, s).
So, h(q̂, s) is the value of the optimized objective function.
See Appendix A for a proof of the result which mainly
relies on some fundamental results on perturbation analysis
of optimization problems from [7] and [3], and Bounded
Convergence Theorem (see [9]).

Lemma 2. For any s ∈ S,
(a) q∗ (q̂, s) is a continuous function of q̂;
(b) For each i ∈ N ,

(
∇q̂h (q̂, s)

)
i

= −λi (q∗i (q̂, s)− q̂i).
Let (S(t))t be a stationary ergodic process. Then
(c) E [q∗ (q̂,S(t))] is a continuous function of q̂;
(d) For each i ∈ N ,(
∇q̂E [h (q̂,S(t))]

)
i

= −λi (E [q∗i (q̂,S(t))]− q̂i).

In the sequel, we require the following assumption to hold
for the functions in Fqual and U .

Assumption 1. At least one of the following holds:
A1: There exists positive constant δU ′′ such that U

′′
(q) ≤

−δU ′′ ∀ q ∈ Q.
A2: There exist positive constants δf ′′ , δf ′ and δU ′ such that
for any inverse function f of fQ ∈ Fqual,

f
′′

(q) ≥ δf ′′ , f
′
(q) ≤ δf ′ and U

′
(q) ≥ δU ′ ∀ q ∈ Q.

Later in the section, we show that (q̂∗(t))t converges to
the fixed point of (17). The uniqueness of its fixed point is
discussed in the next result, and the proof of the result is
sketched in Appendix B.

Lemma 3. Let (S(t))t be a stationary ergodic process. Under
Assumption 1, the following fixed point equation has a unique
solution

E [q∗ (q̂,S(t))] = q̂. (17)

Next we show that, under a fairly weak assumption on
(S(t))t given below, (q̂∗(t))t converges.

Assumption 2. At least one of the following holds:
S1: (S(t))t is an i.i.d. process.
S2: (S(t))t is a stationary ergodic process taking values in a
finite S.

The next result says that (q̂∗(t))t converges if Assumptions
1 and 2 hold. A proof of the result is given in Appendix C.
The proof mainly proceeds by viewing (13) as a stochastic
approximation update equation, and using results from [14]
that give sufficient conditions for convergence of a stochastic
approximation scheme.



6

Lemma 4. Suppose Assumptions 1 and 2 hold. Then, if
q̂∗(0) ∈ QN , the sequence (q̂∗(t))t generated by AVQ
converges almost surely to q̂, the unique fixed point of

E [q∗ (q̂,S(t))] = q̂.

To prove the asymptotic optimality of AVQ, we need the
following intermediate result which essentially relies on the
convergence of (q̂∗(t))t.

Lemma 5. Suppose Assumptions 1 and 2 hold. Then, for each
i ∈ N , the following limits converge almost surely

lim
T→∞

(
1

T

T∑
t=1

q∗i (t)− q̂∗i (T )

)
= 0.

Proof: Consider any realization of (S(t))t. For any i ∈
N , it follows from (13) that

T∑
t=1

(
t+ λmax

λi

)
(q̂∗i (t)− q̂∗i (t− 1))

=

T∑
t=1

(q∗i (t)− q̂∗i (t− 1)) .

Noting the telescopic sums in the above expression, we can
simplify it to obtain

T q̂∗i (T )−
∑T
t=1 q̂

∗
i (t− 1)

λi
− λmax

λi
(q̂∗i (T )− q̂∗i (1))

=

T∑
t=1

(q∗i (t)− q̂∗i (T ) + q̂∗i (T )− q̂∗i (t− 1)) .

From Lemma 4, we know that if Assumptions 1 and 2 hold,
(q̂∗(t))t converges almost surely. Hence, limits of the terms
in the LHS of the equation below exist, and

lim
T→∞

q̂∗i (T )− 1
T

∑T
t=1 q̂

∗
i (t− 1)

λi

− lim
T→∞

(
q̂∗i (T )− 1

T

T∑
t=1

q̂∗i (t− 1)

)

= lim
T→∞

1

T

T∑
t=1

(q∗i (q̂∗(t− 1), s(t))− q̂∗i (T )) .

Since (q̂∗(t))t converges, the above equation implies that for
almost all sample paths

lim
T→∞

1

T

T∑
t=1

(q∗i (t)− q̂∗i (T )) = 0.

B. Asymptotic Optimality of AVQ

The next result establishes the asymptotic optimality of
AVQ, i.e., if we run AVQ for long enough period, the time
average of the difference in performance of AVQ and the
optimal finite horizon policy becomes negligible. This is a
strong result as it is comparing AVQ, an online algorithm,
against the optimal offline scheme which has access to (s)1:T ,
i.e., channel and

(
fR
)
1:T

, ahead of time.

Theorem 1. Suppose Assumptions 1 and 2 hold. Then, for
almost all sample paths

lim
T→∞

1

T

(
φT ((q∗)1:T )− φT

((
qT
)
1:T

))
= 0.

Proof: Consider any realization of (s)1:T . Let (µ∗)1:T and
(γ∗i : i ∈ N )1:T be the sequences of non negative real numbers
satisfying (14), (15) and (16) for the realization. Hence,
from the non-negativity of these numbers, and feasibility of(
qT
)
1:T

, we have

φT
((

qT
)
1:T

)
≤ ϕT

((
qT
)
1:T

)
.

where

ϕT
((

qT
)
1:T

)
=

T∑
t=1

∑
i∈N

U
(
qTi (t)

)
−
∑
i∈N

(
λiT

2

)
Var
((
qTi
)
1:T

)
−

T∑
t=1

µ∗(t)

(∑
i∈N

fRt,i(q
T
i (t))

ci(t)
− 1

)

+

T∑
t=1

∑
i∈N

γ∗i (t)
(
qTi (t)− qmin

)
.

Since ϕT is a differentiable concave function, we have (see
[4])

ϕT
((

qT
)
1:T

)
≤ ϕT ((q∗)1:T )

+ ∇ϕT ((q∗)1:T ) •
((

qT
)
1:T
− (q∗)1:T

)
,
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where ‘•’ denotes the dot product. Hence, we have

φT
((

qT
)
1:T

)
≤ ϕT

((
qT
)
1:T

)
≤

T∑
t=1

∑
i∈N

U (q∗i (t))−
∑
i∈N

(
λiT

2

)
Var ((q∗i )1:T )

−
T∑
t=1

µ∗(t)

(∑
i∈N

fRt,i(q
∗
i (t))

ci(t)
− 1

)

+

T∑
t=1

∑
i∈N

γ∗i (t) (q∗i (t)− qmin)

+

T∑
t=1

∑
i∈N

(
qTi (t)− q∗i (t)

)
(
U
′
(q∗i (t)) +

λi
T

T∑
τ=1

q∗i (τ)− λiq∗i (t)

−µ∗(t)
(
fRt,i
)′

(q∗i (t))

ci(t)
+ γ∗i (t)

 .

Now, since (µ∗)1:T and (γ∗i : i ∈ N )1:T satisfy (14), (15) and
(16), we have

φT
((

qT
)
1:T

)
≤

T∑
t=1

∑
i∈N

U (q∗i (t))

−
∑
i∈N

(
λiT

2

)
Var ((q∗i )1:T )

+

T∑
t=1

∑
i∈N

λi
(
qTi (t)− q∗i (t)

)
(

1

T

T∑
τ=1

q∗i (τ)− q̂∗i (t− 1)

)
. (18)

Consider the following expression appearing in the last term
in the above line:(

1

T

T∑
τ=1

q∗i (τ)

)
− q̂∗i (t− 1)

= q̂∗i (T )− q̂∗i (t− 1) +

(
1

T

T∑
τ=1

q∗i (τ)

)
− q̂∗i (T ).

From Lemma 5, and since (q̂∗(t))t converges under Assump-
tions 1 and 2 (Lemma 4), we know that we can make the
above term as small as required by choosing a large enough
t for almost all sample paths. Also,

∣∣qTi (t)− q∗i (t)
∣∣ ≤ qmax.

Thus, for almost all sample paths

lim
T→∞

1

T

T∑
t=1

∑
i∈N

λi
(
qTi (t)− q∗i (t)

)
((

1

T

T∑
τ=1

q∗i (τ)

)
− q̂∗i (t− 1)

)
= 0.

Hence, taking limits in (18),

lim
T→∞

1

T

(
φT ((q∗)1:T )− φT

((
qT
)
1:T

))
≥ 0.

holds for almost all sample paths. From optimality of
(
qT
)
1:T

,

φT
((

qT
)
1:T

)
≥ φT ((q∗)1:T ) .

From the above two inequalities, the result follows.

V. PAVQ: PRACTICAL ALGORITHM MOTIVATED BY AVQ

In current practical settings, content providers typically set
a discrete set of video source coding rates or quality levels to
be achieved, e.g., for the associated SVC layers. Note that if
quality levels are fixed, then the associated rates might vary
with the content, and vice versa, over slots, effectively giving
time varying PVQ-rate tradeoffs. This limits the choice of
quality/rate allocations. So AVQ, which assumes PVQ as (time
varying) ‘nice’ (continuous, differentiable etc.) functions of
rate, cannot be directly applied in such settings. In this section,
we present PAVQ, a joint rate adaptation algorithm that does
quality allocations emulating AVQ’s approach, which takes
into account these practical considerations.

Let Rt,i denote the set of rates at which user i’s
video can be encoded in slot t. In slot t, let rt.i(.) de-
note the strictly increasing function that maps rate in-
dices in {1, 2, ..., |Rt,i|} to coding rates in Rt,i for
user i ∈ N . The algorithm PAVQ is described below.

PAVQ.0: Initialize: For all i ∈ N , let q̂Pi (0) ∈ Q.

In each slot t, carry out the following steps:
PAVQ.1: The quality allocation in slot t to user i, qPi (t), is
given by fQt,i (rt,i (ρi)) where ρi is the output of the following
algorithm:

00: Initialize: ρi = 1 for all i ∈ N ; I = {1, 2..., N};
01: while I 6= {}
02: For each i ∈ I, evaluate

µPi =
λi

(
q̂pi (t− 1)− fQt,i (rt,i (ρi))

)
+ U

′
(
fQt,i (rt,i (ρi))

)
(

1
ci(t)

)
rt,i(ρi+1)−rt,i(ρi)

fQ
t,i(rt,i(ρi+1))−fQ

t,i(rt,i(ρi))

;

03: if maxi∈I µ
P
i < 0

04: I = {};
05: else
06: i∗ = argmaxi∈I

(
µPi
)
;

07: ρi∗ = ρi∗ + 1;
08: if ρi∗ = |Rt,i∗ |
10: I = I \ {i∗};
11: end
12: if

∑
i∈N

rt,i(ρi)
ci(t)

> 1
13: ρi∗ = ρi∗ − 1;
14: I = I \ {i∗};
15: end
16: end
17: end

PAVQ.2: In slot t, we update q̂Pi as follows: for each i ∈ N

q̂pi (t) = q̂Pi (t− 1) +
λi

t+ λmax

(
qPi (t)− q̂pi (t− 1)

)
. (19)
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Instead of finding the optimal quality allocations using AVQ.2,
PAVQ finds good quality allocations

(
qP (t)

)
t

using PAVQ.2.
The reason for using µPi in PAVQ.2 is clear from (14) (using
(14), we can obtain an expression similar to (9) for µ∗(t))
by comparing the µPi to µ∗(t). Also, the number of loops
associated with the ‘while’ in PAVQ.1 is at most

∑
i∈N |Rt,i|

in slot t. So the complexity of PAVQ is roughly proportional
to the product of the number of users times the number of
rates per user.

We now introduce two additional joint rate allocation
schemes, PMUR and PMUQ, to be used for comparison
purposes in Section VI. The first, PMUR, corresponds to a
strategy that allocates rates to users with time varying wireless
capacities in a fair manner without considering PVQ-rate
dependencies. It performs quality allocation in each slot t
by running PAVQ.1 with one change: we replace Step 2 of
PAVQ.1 with
02: For each i ∈ I, evaluate

µPi =
U
′
(rt,i (ρi))(

1
ci(t)

)
rt,i(ρi+1)−rt,i(ρi)

fQ
t,i(rt,i(ρi+1))−fQ

t,i(rt,i(ρi))

;

Following a reasoning similar to that for the choice of µPi in
PAVQ.1, we can verify that PMUR is roughly carrying out the
following optimization in each slot t (for some small rmin):

max
r∈RN

{∑
i∈N

U (ri) :
∑
i∈N

ri
ci(t)

≤ 1, ri ≥ rmin ∀i

}
.

The second, PMUQ, corresponds to a strategy that allo-
cates PVQ fairly amongst users with time varying PVQ-rate
tradeoffs and wireless capacities. However, it ignores temporal
variability in PVQ. It carries out quality allocation in each slot
t by running PAVQ.1 with one change: we replace Step 2 of
PAVQ.1 with
02: For each i ∈ I, evaluate

µPi =
U
′
(
fQt,i (rt,i (ρi))

)
(

1
ci(t)

)
rt,i(ρi+1)−rt,i(ρi)

fQ
t,i(rt,i(ρi+1))−fQ

t,i(rt,i(ρi))

;

Following a reasoning similar to that for the choice of µPi in
PAVQ.1, we can verify that PMUQ is roughly carrying out the
following optimization in each slot t:

max
q∈RN

{∑
i∈N

U (qi) :
∑
i∈N

fRt,i(qi)

ci(t)
≤ 1, qi ≥ qmin ∀i

}
.

VI. SIMULATIONS

In this section, we use simulations to compare the perfor-
mance of PAVQ, to that of PMUR and PMUQ in different
scenarios with U = log and T = 105 slots.

We consider four scenarios:
(a) I.I.D. channels and homogeneous users;
(b) I.I.D. channels and heterogeneous users;
(c) Markov channels and homogeneous users;

(d) Markov channels and heterogeneous users.
Under scenarios (a) and (b), users see I.I.D. channels: (Ci(t))t
for each user i ∈ N is obtained independently in each slot
t from a distribution which is representative of capacities
seen by a randomly placed user with single antenna equalizer
in an HSDPA system with 50% load (and thus associated
interference) from its neighbors. Under scenarios (c) and (d),
users see Markov channels: we use Markov Chain Monte Carlo
method to generate (Ci(t))t in such a way that the values in
consecutive slots are positively correlated, and yet the station-
ary distribution matches the above distribution. Furthermore in
scenarios (b) and (d), we consider heterogeneous users: a third
of the users see 0.5 (C)1:T , a third of the users see (C)1:T and
remaining third see 1.5 (C)1:T , where (C)1:T is the channel
seen by a typical user under (a) over T slots.

Fig. 1. Obtaining functions in Fqual

In all the scenarios, the PVQ-rate functions, FQt,i are chosen
independently and uniformly at random from Fqual in each



9

slot t for each user i ∈ N . Fig. 1 (a) shows estimates of
perceived quality at various rates that were obtained using
data from LIVE Video Quality Database ([22]), and represent
PVQ-rate tradeoffs for 8 sec segments of diverse compressed
videos. Then, using cubic interpolation (using MATLAB), we
found approximate values of perceived quality at certain rates
of interest (See Fig. 1 (b)). Then, we obtained a concave
approximation of the functions by taking these function (See
Fig. 1 (c)). The values in Fig. 1 (a) were obtained for
videos watched on devices with big screens over the wireline
networks, and hence the rates involved are fairly large. We
scale down the rates by 10 to get reasonable approximations
for applications used by mobile devices that typically do not
need such high rates (See Fig. 1 (d)).

We compare the performance of PMUR and PMUQ against
that of PAVQ10−3 , which is PAVQ with λi = 10−3 for all
i ∈ N , and PAVQ1, which is PAVQ with λi = 1 for all
i ∈ N . For each algorithm π, we consider following metrics:

Q =
1

NT

∑
i∈N

T∑
t=1

qπi (t),

Var =
1

N

∑
i∈N

Var ((qπi )1:T ) ,

∧Q =
TF
NT

∑
i∈N

T/TF∑
t=1

∧qπi (t),

MK =
1

N

∑
i∈N

MKi,

|∆Q| =
1

N(T − 1)

∑
i∈N

T∑
t=2

|qπi (t)− qπi (t− 1)| ,

CV =
1

N

∑
i∈N


√

Var
(
(qπi )1:T

)
Mean

(
(qπi )1:T

)
 ,

where ∧qπi (t) = minτ (qπi (τ) : τ ∈ [(t− 1)TF + 1, tTF ]),
TF = 10 and MKi is the QoE metric proposed in [20] (setting
parameters τ = 2, K = 50, α = 0.8).

Instead of comparing our schemes using a single QoE
metric, we will use all the above metrics – there is no ‘perfect’
QoE metric in the literature and the search for one is an
ongoing work. Note Q, CV and Var are averages across users
of the mean, coefficient of variation and variance of the PVQ
seen over time. Coefficient of variation (CV) is the ratio of
the standard deviation and mean, and has an impact on QoE
(see for e.g., [19]). We use ∧Q to roughly capture the worst
perceived quality seen by the users over time which has a
major impact on the QoE (as pointed out in [20]). |∆Q|
captures the average change in perceived quality of the users
over consecutive slots. Finally, note that using Q and Var, one
can compute QoE metric proposed in [26] for scenario (a).

For almost all combinations of N and the scenarios, Tables
(I)-(IV) show that PMUQ outperforms PMUR in all the met-
rics. This was expected as the former utilizes the knowledge
of the dependence of quality on the coding rates.

We can also see that PAVQ1 outperforms the algorithms as
far the metrics ∧Q, MK , |∆Q|, CV and Var are concerned.
For instance, we see that CV and Var of PAVQ1 is significantly
less than that of PMUQ. This was expected as our problem
formulation (OPT(T )) explicitly accounts for the impact of
PVQ variance. Though we only considered variance in our
formulation, we see that the PAVQ1 has significantly lesser
|∆Q| than PMUQ. For instance, in scenario (d) (see Table
IV), the percentage reduction of |∆Q| ranges from 42%-64%.
Also, the percentage gains over PMUQ in the QoE metric MK

ranges from 20%-48% under scenario (a) (see Table I).
As expected, PMUQ has better Q when compared to PAVQ1

in all almost all settings. But, one can control the emphasis on
reducing variability by reducing (λi)i∈N . Indeed PAVQ10−3

has better Q though it comes at the cost of other metrics.
In the simulations, we observed that (q̂)t converges fairly

quickly. For instance, consider Fig. 2 which depicts (q̂i)1:500
for i ∈ {1, 11, 21} under Setting (b) for PAVQ1 with N = 30.
The value to which (q̂i)t converges is different for different
i ∈ {1, 11, 21} due to heterogeneity of the users in Setting
(b), e.g., user corresponding to i = 21 sees better channels on
average.

Fig. 2. Convergence of (q̂i)1:500 for i ∈ {1, 11, 21}

VII. CONCLUSIONS

We proposed first centralized joint rate adaptation algorithm
which is sensitive to variability in the perceived video quality.
It outperforms aggressive baseline solutions across multiple
QoE metrics. The approach has the merit of allowing the
engineer to realize tradeoffs in fairness across users, mean
PVQ and variability in the PVQ. Our approach captures
the key sources of variability in such systems and essential
requirements of such systems, and yet is surprisingly spare in
terms of requiring a priori statistical information.



10

TABLE I
SCENARIO (A): IID CHANNELS, HOMOGENEOUS USERS

ALG, N Q ∧Q MK |∆Q| CV, Var
PAVQ1, 15 49.3 41.2 32.9 3.8 0.10, 23.1

PAVQ10−3 , 15 58.2 40.2 29.5 9.0 0.16, 85
PMUR, 15 56.8 23.7 15.6 20.1 0.32, 339.4
PMUQ, 15 58.8 38.2 27.5 11.2 0.18, 119.5
PAVQ1, 30 34.3 24.2 16.9 4.8 0.15, 27.0

PAVQ10−3 , 30 43.0 19.4 12.5 14.4 0.30, 172
PMUR, 30 44.2 13.2 8.9 23.4 0.46, 419.2
PMUQ, 30 45.3 17.1 11.4 18.3 0.36, 272.8
PAVQ1, 45 26.8 15.3 10.0 7.0 0.25, 43.2

PAVQ10−3 , 45 32.4 11.9 8.0 14.2 0.39, 156
PMUR, 45 35.1 9.5 6.8 22.5 0.56, 384.32
PMUQ, 45 35.3 10.6 7.4 20.0 0.49, 301.8

TABLE II
SCENARIO (B): IID CHANNELS, HETEROGENEOUS USERS

ALG, N Q ∧Q MK |∆Q| CV, Var
PAVQ1, 15 46.3 19.6 29.5 3.9 0.11, 24.4

PAVQ10−3 , 15 55.8 19.9 25.9 10.3 0.19, 109
PMUR, 15 54.5 14.7 15.1 20.3 0.35, 342.6
PMUQ, 15 56.5 18.4 24.2 12.4 0.21, 146.4
PAVQ1, 30 32.6 18.2 15.4 5.5 0.19, 33.8

PAVQ10−3 , 30 40.3 16.1 11.9 13.8 0.32, 159
PMUR, 30 41.5 12.0 8.7 22.2 0.49, 383.5
PMUQ, 30 42.3 14.0 10.5 18.3 0.40, 269.7
PAVQ1, 45 25.1 12.3 8.1 8.5 0.32, 61.2

PAVQ10−3 , 45 29.3 10.3 7.1 13.7 0.42, 146
PMUR, 45 31.4 8.6 6.3 20.0 0.56, 317.5
PMUQ, 45 31.4 9.3 6.7 18.4 0.52, 260.2

In future work, we expect to build upon this framework
towards fully characterizing potential gains and tradeoffs that
joint rate adaptation can provide in such systems, and explore
the possibility of further simplifying our approach allowing a
distributed implementation.
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APPENDIX A
PROOF OF LEMMA 2

Proof: We will use Theorem 2.2 from [7] to establish
part (a) of this lemma by verifying that OPTAVQ(λ, q̂, s)
satisfies the conditions in of the theorem. Theorem 2.2 (i) is
satisfied since the objective function of OPTAVQ(λ, q̂, s) is a
continuous function of q for any q̂. Theorem 2.2 (ii) is satisfied
since the feasible region of OPTAVQ(λ, q̂, s) is a closed set,
and independent of q̂. Theorem 2.2 (iii) is satisfied since
OPTAVQ(λ, q̂, s) is always feasible, and because the square
term in the objective function ensures strict concavity which
in turn ensures that the optimal solution is unique. Theorem
2.2 (iv) is satisfied since q∗ (q̂, s) is uniformly compact near
q̂. This is due to the fact that q∗ (q̂, s) for any q̂ lies in the
bounded set QN . Thus, all conditions of Theorem 2.2 hold,
and part (a) follows.

Part (b) of the lemma follows from Theorem 4.1 in [3] and
the remark following the theorem.

To verify part (c), consider any sequence (q̂m)m such that
limm→∞ q̂m = q̂, we have

lim
m→∞

E [q∗i (q̂m,S(t))] = E
[

lim
m→∞

q∗i (q̂m,S(t))
]

= E [q∗i (q̂,S(t))] ,

which follows from Bounded Convergence Theorem since
q∗i ≤ qmax, and part (a). This establishes part (c).

To prove (d), we show that for each i ∈ N ,

∂

∂q̂i
E [h (q̂,S(t))] = E

[
∂

∂q̂i
h (q̂,S(t))

]
.

For any sequence (q̂im)m such that limm→∞ q̂im = 0, using
Mean Value Theorem and Lemma 2 (b), for s ∈ S, we have∣∣∣∣h (q̂ + eiq̂im, s)− h (q̂, s)

q̂im

∣∣∣∣
= λi |q∗i (q̂ + eiq0m, s)− q̂i − q0m|
≤ λiqmax,

for 0 < q0m < q̂im. Hence, from Bounded Convergence
Theorem, we have

lim
m→∞

E

[
h (q̂ + eiq̂im,S(t))− h (q̂,S(t))

q̂im

]
= E

[
lim
m→∞

(
h (q̂ + eiq̂im,S(t))− h (q̂,S(t))

q̂im

)]
= −λiE [q∗i (q̂,S(t))− q̂i] .

APPENDIX B
PROOF OF LEMMA 3

Proof: We begin the proof by introducing some new
notation. Given any q ∈ QN , let q̃ be defined as follows:
q̃i =

√
λiqi for each i ∈ N . Also define function q̃∗

(˜̂q, s)
as follows: q̃∗i

(˜̂q, s) =
√
λiq
∗
i (q̂, s) ∀ i ∈ N . Essentially˜ is an overloaded operator that operates on vectors and

the functions (q∗i : i ∈ N ). Also, for any q1,q2 ∈ RN , let

d
(
q1,q2

)
=
√∑

i∈N (q1i − q2i )
2.

To prove the result, we will show two intermediate results.
The first is that the following fixed point equation has at least
one solution

E
[
q̃∗
(˜̂q,S(t)

)]
= ˜̂q. (20)

Secondly, we show that E
[
q̃∗ (.,S(t))

]
is a pseudo-

contraction ([1]) which implies the uniqueness of fixed point.
Indeed, E

[
q̃∗ (.,S(t))

]
is a continuous function (See

Lemma 2 (c)) mapping a convex compact subset of RN to
itself. So, the existence of a fixed point of (20) follows from
Brouwer’s fixed point theorem (see [17]).

To show that E
[
q̃∗ (.,S(t))

]
is a pseudo-contraction, we

prove the following claim: Assume that Assumption 1 holds,
and let ˜̂q1 be a solution of (20). Then for any q̂2 ∈ QN such
that q̂2 6= q̂1, we have

d
(
E
[
q̃∗
(˜̂q1,S(t)

)]
, E
[
q̃∗
(˜̂q2,S(t)

)])
< d

(˜̂q1, ˜̂q2
)
.

Since, QN is a compact set, the above result implies that
E
[
q̃∗ (.,S(t))

]
is a pseudo-contraction.

To prove the claim, we first show that q̃∗ (., s) is Lipschitz
continuous with a Lipschitz constant less than one. Note
that for s =

(
c, fR

)
, q̃∗

(˜̂q, s) is the optimal solution for

M-OPTAVQ(λ, ˜̂q, s). a modification of OPTAVQ(λ, q̂, s) (see
(10)-(12)), given below:

max
q̃

h0

(
q̃, ˜̂q)

subject to
∑
i∈N

1

ci
fRi

(
q̃i√
λi

)
≤ 1, (21)

q̃i√
λi
≥ qmin ∀ i ∈ N ,

where

h0

(
q̃, ˜̂q) =

∑
i∈N

U

(
q̃i√
λi

)
−
∑
i∈N

λi
2

(
q̃i√
λi
−
˜̂qi√
λi

)2

.

We use Proposition 6.1 from [3] to verify the Lipschitz
continuity (and obtain the Lipschitz constant) of q̃∗ (., s) in a
neighborhood of ˜̂q1. We verify that the two conditions given
in the proposition hold. The first condition requires that the



12

function ∆h0

(
q̃, ˜̂q1, ˜̂q2

)
given below is Lipschitz continuous

in a neighborhood of ˜̂q1:

∆h0

(
q̃, ˜̂q1, ˜̂q2

)
= h0

(
q̃, ˜̂q2

)
− h0

(
q̃, ˜̂q1

)
.

=
1

2

∑
i∈N

( ˜̂q1i − ˜̂q2i )(2q̃i − ˜̂q1i − ˜̂q2i ) .
Then,∣∣∣∆h0 (q̃1, ˜̂q1, ˜̂q2

)
−∆h0

(
q̃2, ˜̂q1, ˜̂q2

)∣∣∣
=

∣∣∣∣∣∑
i∈N

( ˜̂q1i − ˜̂q2i )(q̃1i − q̃2i )
∣∣∣∣∣

≤ d
(˜̂q1, ˜̂q2

)
d
(
q̃1, q̃2

)
, (22)

where the last step follows from Cauchy-Schwarz inequality.
Hence, the first condition given in Proposition 6.1, [3] holds.

Next, we show that the second condition referred to as
second-order growth condition given in the proposition also
holds. The condition requires that there exists a positive
constant c such that

h0

(
q̃∗
(˜̂q1, s

)
, ˜̂q1
)
−h0

(
q̃, ˜̂q1

)
≥ c

(
d
(
q̃, q̃∗

(˜̂q1, s
)))2

,

for each feasible (for M-OPTAVQ(λ, ˜̂q1, s)) q̃ in a neigh-
borhood of q̃∗

(˜̂q1, s
)

To check this condition, we apply

Theorem 6.1 from [2] to M-OPTAVQ(λ, ˜̂q, s) with ˜̂q = ˜̂q1
.

The theorem considers convex optimization problems and
provides sufficient conditions for the second order growth
condition (Theorem 6.1 (v)) to hold when Slater qualification
hypothesis holds (see [2]). It is not hard to see that Slater
qualification hypothesis holds due to the our choice of qmin
(See Section II). Now, we verify that one of the sufficient
conditions, Theorem 6.1 (vii), is satisfied. For this, let

L (q̃, µ, (γi : i ∈ N ))

= h0

(
q̃∗
(˜̂q1, s

)
, ˜̂q1
)
− h0

(
q̃, ˜̂q1

)
+µ

(∑
i∈N

1

ci
fRi

(
q̃i√
λi

)
− 1

)

−
∑
i∈N

γi

(
q̃i√
λi
− qmin

)
.

Then, for any d ∈ RN , the function ψ in Theorem 6.1 (vii) is
given by

ψ
q̃∗
(˜̂q1,s

) (d) = dtr∇2
q̃L
(
q̃∗
(˜̂q1, s

)
, µm, (γmi : i ∈ N )

)
d

where µm and (γmi : i ∈ N ) are the optimal Lagrange multi-
pliers, ∇2

q̃ denotes the Hessian taken with respect to q̃, and

dtr is the transpose of the vector d. We can show that

ψ
q̃∗
(˜̂q1,s

) (d) =
∑
i∈N

d2i

1− 1

λi
U
′′

 q̃∗i
(˜̂q1, s

)
√
λi



+
µm

λi

(
fRt,i
)′′ ( q̃∗i (˜̂q1,s

)
√
λi

)
ci


for any d ∈ RN . Also, since µm is an optimal Lagrange
multiplier (satisfying KKT conditions), µm = 0 if (21) is not
active, and otherwise ∀ i ∈ N satisfies

µm ≥ ci


U
′
(
q̃∗i

(˜̂q1,s
)

√
λi

)
−
√
λi

(
q̃∗i

(˜̂q1, s
)
− q̃1i

)
(
fRt,i
)′ ( q̃∗i (˜̂q1,s

)
√
λi

)
 .

(23)

Hence, we can conclude that for any d ∈ RN ,

ψ
q̃∗
(˜̂q1,s

) (d) ≥
∑
i∈N

d2i . (24)

Further, if A1 in Assumption 1 holds, then

ψ
q̃∗
(˜̂q1,s

) (d) ≥
(

1 +
δU ′′

λmax

)∑
i∈N

d2i .

Thus, Theorem 6.1 (vii) is satisfied and hence from Theorem
6.1 of [2], Theorem 6.1 (v) holds, i.e., second order growth
condition holds. Thus, both the conditions require for Propo-
sition 6.1 of [3] are satisfied, and using the proposition, we
can conclude that under A1, for any s ∈ S,

d
(
q̃∗
(˜̂q1, s

)
, q̃∗

(˜̂q2, s
))

≤
(

1 +
δU ′′

λmax

)−1
d
(˜̂q1, ˜̂q2

)
< d

(˜̂q1, ˜̂q2
)
.

Thus, under A1, we can conclude that

E

[(
d
(
q̃∗
(˜̂q1,S(t)

)
, q̃∗

(˜̂q2,S(t)
)))2]

<
(
d
(˜̂q1, ˜̂q2

))2
.

Now, suppose A2 holds. Pick any j ∈ N . Since ˜̂q1 satisfies
(20), q̃∗j

(˜̂q1,S(t)
)
≤ ˜̂q1j with some probability pj > 0. Since,

U is a strictly increasing function, q̃∗j
(˜̂q1, s

)
≤ ˜̂q1j implies

that (21) is active, and hence from (23), we have

µm ≥ cj(t)


U
′
(
q̃∗j

(˜̂q1,s
)

√
λj

)
(
fRj,t
)′ ( q̃∗j(˜̂q1,s

)
√
λj

)
 ≥ cmin

δU ′

δf ′
.
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Thus, with probability atleast pj ,

ψq̃∗ (d) ≥
∑
i∈N

d2i

1 +
cminδU ′
λiδf ′

(
fRt,i
)′′ ( q̃∗i(˜̂q1,S(t)

)
√
λi

)
Ci(t)


≥

(
1 +

cminδU ′ δf ′′

λmaxδf ′ cmax

)∑
i∈N

d2i .

Thus, with probability atleast pj , Theorem 6.1 (vii) is satisfied
and hence from Theorem 6.1 of [2], Theorem 6.1 (v) holds,
i.e., second order growth condition holds. Thus, both the
conditions given in Proposition 6.1 of [3] are satisfied, and
using the proposition, we can conclude that under A2, with
probability at least pj ,

d
(
q̃∗
(˜̂q1,S(t)

)
, q̃∗

(˜̂q2,S(t)
))

< d
(˜̂q1, ˜̂q2

)
.

We can also use (24) along with similar arguments to apply
Proposition 6.1 of [3] to show that for any s,

d
(
q̃∗
(˜̂q1, s

)
, q̃∗

(˜̂q2, s
))
≤ d

(˜̂q1, ˜̂q2
)
.

Thus, under A2 also, we can conclude that

E

[(
d
(
q̃∗
(˜̂q1,S(t)

)
, q̃∗

(˜̂q2,S(t)
)))2]

<
(
d
(˜̂q1, ˜̂q2

))2
.

Thus, if A1 or A2 holds,

d
(
E
[
q̃∗
(˜̂q1,S(t)

)]
, E
[
q̃∗
(˜̂q2,S(t)

)])
=

√∑
i∈N

(
E
[
q̃∗i

(˜̂q1,S(t)
)
− q̃∗i

(˜̂q2,S(t)
)])2

≤
√∑
i∈N

E

[(
q̃∗i

(˜̂q1,S(t)
)
− q̃∗i

(˜̂q2,S(t)
))2]

=

√
E

[(
d
(
q̃∗
(˜̂q1

)
q̃∗
(˜̂q2

)))2]
< d

(˜̂q1, ˜̂q2
)
.

The third step follows from the Jensen’s inequality. This proves
the claim and hence, the second intermediate result.

Now, to show the main result, suppose (20) has more than
one solution. Let ˜̂q1 and ˜̂q2 be two distinct solutions of (20).
Then, from part above result, we have

d
(˜̂q1, ˜̂q2

)
= d

(
E
[
q̃∗
(˜̂q1,S(t)

)]
, E
[
q̃∗
(˜̂q2,S(t)

)])
< d

(˜̂q1, ˜̂q2
)
.

Thus, we have a contradiction. Hence we can have at most one
solution. In light of the first intermediate result, we conclude
that (20) has a unique solution which in turn implies the main
result.

APPENDIX C
PROOF OF LEMMA 4

Proof: We prove the result by separately considering the
cases where S1 and S2 of Assumption 2 hold.

Suppose S1 holds. We consider the update equation (13) as
a stochastic approximation update equation, and use Theorem
2.1 of Chapter 5 from [14] to prove the result under S1.

In the following, we show that all the assumptions required
to use the theorem are satisfied. The variables corresponding
to θt, Yt and εt associated with Theorem 2.1 are listed next:
θt = q̂∗(t), (Yt)i = λi (q∗i (q̂∗(t),S(t+ 1))− q̂∗i (t)) ∀ i ∈
N , and εt = 1

t+λmax , for each t.
(A.2.1) is satisfied since q̂∗(t) is updated using (13), and

q∗(q̂∗(t−1), s(t)) ∈ QN for any t. (A.2.2) holds by choosing

(ḡ(q̂∗(t)))i = λi (E [q∗i (q̂∗(t),S(t+ 1))]− q̂∗i (t)) , βt = 0 ∀ t.

The measurability of ḡ essentially follows from its continuity
discussed next. (A.2.3) holds since ḡ(q̂) is a continuous
function of q̂ (from Lemma 2 (c)). (A.2.4) and (A.2.5) hold
since εt = 1/ (t+ λmax) ∀ n and βt = 0 ∀ t.

From Lemma 2 (d), ∀ i ∈ N

(ḡ(q̂))i = − (∇E [h (q̂,S(t))])i .

From Lemma 2 (c) and (d), we have that E [h (q̂,S(t))] is a
continuously differentiable function. Hence (A.2.6) holds.

Thus conditions (A.2.1)-(A.2.6) are satisfied. From Theorem
2.1 and Lemma 3 (iii), we can conclude that on almost all
sample paths, (q̂∗(t))t converges to the unique solution of

E [q∗ (q̂,S(t))] = q̂.

Now, suppose that S2 holds. We again consider (13) as a
stochastic approximation update equation, and use Theorem
1.1 of Chapter 6 from [14] to prove the result under S2.

In the following, we show that all the assumptions required
to use the theorem are satisfied. The following variables and
functions θt, ξt, Yt, εt, sigma algebras Ft, the function g,
βt, δMt and Zt, appearing in the exposition of Theorem
2.1, correspond to the following variables and functions in
our problem setting: θt = q̂∗(t), ξt = S(t + 1), (Yt)i =
λi (q∗i (q̂∗(t),S(t+ 1))− q̂∗i (t)) ∀ i ∈ N , εt = 1

t+λmax for
each t, Ft is such that (θ0,Yi−1, ξi, i ≤ t) is Ft-measurable,
(g (q̂, s))i = λi (q∗i (q̂, s)− q̂∗i ) ∀ i ∈ N , βt = 0 for each t,
δMt = 0 for each t, and Zt = 0 for each t.

The Equation 5.1.1 in [14] is satisfied due to our choice
of εt. (A.1.1) is satisfied since q̂∗(t) is updated using (13),
and q∗(q̂∗(t − 1), s(t)) ∈ QN for any t. (A.1.2) holds since
g (q̂, s) is a continuous function of q̂ for any value of s (from
Lemma 2 (c)). (A.1.3) holds since we can choose the function
ḡ as follows

(ḡ (q̂∗(t)))i = λi (E [q∗i (q̂∗(t),S(t+ 1))]− q̂∗i (t)) .

From Section 6.2 of [14], if εt does not go to zero faster
than the order of 1√

t
, for (A.1.3) to hold we only need

to show that the strong law of large numbers holds for
(g (q̂,S(t))− ḡ (q̂))t for any q̂. Strong law of large numbers
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holds since (S(t))t is a stationary ergodic random process.
(A.1.4) and (A.1.5) hold since βt = 0 and δMt = 0 for each
t. For checking (A.1.6) and (A.1.7), we use some sufficient
conditions discussed in [14] following the theorem. (A.1.6)
holds since g (q̂, s) is bounded. (A.1.7) holds since g (q̂, s) is
continuous for any s, and since |S| is finite. Also, (A5.2.6)
holds which can be shown in a manner similar to that done
under assumption S1. Thus, from Theorem 1.1 and Lemma
3, we can conclude that on almost all sample paths, (q̂∗(t))t
converges to the unique solution of

E [q∗ (q̂,S(t))] = q̂.
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