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Abstract—Modern broadband wireless networks support appli-
cation mixes, with different, possibly complex, application/user
Quality of Service/Experience (QoS/QoE) metrics. The central
problem underlying resource allocation for such systems is real-
izing QoS/QoE trade-offs given the dynamic loads and capacity
variability they would typically see. The paper explores a frame-
work for context-aware scheduling based on: (1) context-aware
flow classification and management, and (2), complementary base
station scheduler. Motivated by typical flow-size distributions
for current traffic and characteristics of the associated delay
optimal (Gittins index-based) schedulers we propose a novel flow
and channel-aware scheduler which meets our design objectives.
Using a combination of analysis and simulation we explore the
achieved QoS/QoE trade-offs across a dynamic mix of traffic,
in particular: 1) mobile web browsing and small file delays; 2)
stored streaming video quality vs re-buffering; 3) throughput of
larger file downloads. They suggest improved QoS/QoE trade-
offs vs traditional proportionally fair schedulers and are robust
to the network load.

I. INTRODUCTION

Modern mobile broadband networks support traffic asso-
ciated with a highly diverse and evolving set of applications
including: stored media streaming, web browsing, file transfers
ranging from small (e.g., instant messages, email) to possibly
large (e.g., images, movies, software updates), along with real-
time media (e.g., live sports) and machine-to-machine data ex-
changes. This makes the design of resource allocation policies
and base station schedulers a particularly hard problem.

There are three interrelated challenges to addressing this
problem. First, the impact of resource allocation on an applica-
tion’s Quality of Service (QoS) or user’s Quality of Experience
(QoE) can be quite different, and in some cases may even be
hard to characterize altogether, e.g., video QoE. Hence, we
have to look at scheduler designs which use different perfor-
mance metrics for different types of applications.Therefore,
the schedulers have to be context-aware, i.e., either explic-
itly or implicitly aware of the nature of applications and/or
relationship between resource allocation and user’s QoE.

Second, wireless systems are subject to substantial tem-
poral variability and spatial heterogeneity in capacity. Even
for stationary users, wireless channel capacity can fluctuate
by several orders of magnitude from the cell’s ‘center’ to
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its ‘edge.’ Further, the number of active users can change
dramatically as they join, move and leave, and the overall
network loads and traffic mixes can vary throughout the day.
Therefore, the allocation of resources should be suitable for
such dynamic settings.

The third challenge is managing trade-offs amongst hetero-
geneous traffic mixes, particularly when the network becomes
congested – i.e., how to optimize a graceful degradation in
QoS/QoE when resources become scarce. Although congested
resources are often the focus of design one must also consider
how to optimize resource allocation when the system has
light/moderate loads. This challenge associated with realizing
trade-offs is really the crux of the problem underlying sched-
uler design and yet is poorly understood and poorly reflected
in state-of-the-art schedulers. Let us illustrate this via several
examples:

1) Web browsing vs large file downloads. Web browsing
sessions involve human interaction on the order of seconds,
so the QoE metric of interest is maintaining responsiveness,
i.e., delays on the order of seconds to download the typically
small files associated with web content for mobile devices.
By contrast, large files take a long time, so one might posit
the relevant QoS metric is long term throughput. Clearly
a scheduler that prioritizes small files associated with web
browsing and other applications, over large files achieves a
good QoS/QoE trade-off for the mix.

2) Video QoE management at congested base stations.
Modern stored video streaming protocols, such DASH (Dy-
namic Adaptive Streaming over HTTP), are rate adaptive, i.e.,
they adapt the video rates, and associated quality, to network
congestion an/or the risk of playback re-buffering. Consider a
setting where a base station serves users with heterogeneous
capacity (center/edge users) via a proportionally fair scheduler,
i.e., allocations which are directly proportional to the user’s
capacity. For light to moderate base station loads edge users
might see reduced video quality vs those at the cell center,
which is reasonable. Under high loads, however, edge users
will start to see playback re-buffering, i.e., QoE which is
unacceptable. Thus for congested resources the scheduler
should be more aggressive in shifting resources from cell
center to edge users.

The above exemplify some of the complex trade-offs

1

2016 14th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

978-1-5090-1311-1/16/$31.00 ©2016 IEEE 147



Stored Video Streaming Web browsing/Small files Large files

Network load Video quality Re-buffering Mean flow delay Mean throughput

Low High Low Low High

Medium Medium Low Low High

High Low Low Low/Medium Medium
TABLE I

SCHEDULER DESIGN OBJECTIVES: QOS/QOE TRADE-OFFS ACROSS APPLICATIONS VS NETWORK LOADS.

base station schedulers need to make across heterogeneous
applications. Realizing such trade-offs through the design
and analysis of context-aware schedulers is the focus of this
paper. Table I exhibits an example of the high-level goals
we aim to achieve for a mix of stored video streaming, web
browsing, and file transfers. We shall focus on the following
natural QoS/QoE metrics which represent a simplification of
the more complex models discussed further in the related
work.
1) Mean delay for small flows. Most small flows are currently
due to web traffic, for which the overall transfer delay (time
to display) is the key goal. It is of interest to limit such
delays to less than a second, in order to maintain interactivity.
Further, ideally these delays should not be too sensitive to
other network loads, e.g., video streaming, large files etc.
2) Video quality and re-buffering for stored video streaming.
The first priority is to avoid client re-buffering, beyond this
one would like to achieve good average video quality
depending on the load and the users’ channel condition.
3) Throughput for large files. It is reasonable for large files
to see delays proportional to their size. Therefore, one would
expect the perceived throughput to be the relevant metric,
though it might be affected by the overall system load and
mix of traffic.

Before we discuss our work in more detail, let us put it into
proper context based on the substantial previous work consid-
ering base station scheduling from different perspectives.

A. Related work.

Modeling QoS/QoE. Traditional QoS metrics such as
throughput, packet delays and jitter, may not properly reflect
user experience. For this reason there has been significant
interest in better modeling user perceived QoE for various
applications. For example, for interactive web browsing, QoE
was found to be well modeled as a function of the delay of
transactions, see [1], [2]. In particular [1] shows that web
browsing QoE is an S-shaped function of transaction delay,
whereas [2], propose polynomial functions of transaction
delays. These, and other recent efforts reinforce the need to
look at QoE metrics depending on flow (transaction) delays.
Perhaps the simple lesson learned here is that one would
like to see small transaction delays, below some level, but
further reductions do not have a high marginal benefit. We
shall embrace this principle in this paper. Similarly, there has
been substantial recent interest in modeling streaming video
QoE including aspects of the quality of the reproduced video,

possibly quality variability, re-buffering, and start up delays,
see [3] and references therein. In general there is agreement
that avoiding re-buffering is the priority if one is to improve
user perceived QoE, see [4].

Scheduling. Traditional work focused on scheduling for
elastic traffic1 focused on ‘fair’ rate allocation by using
utility maximization approaches in the full buffer model, see
e.g., [5]–[7] for detailed surveys. In general this fails to directly
account for the dynamic nature of traffic and indeed the flow-
level delays which may be most related to user perceived QoE.

There is also substantial work on queue-based schedulers
addressing stability and/or QoS for real-time traffic, e.g, VoIP
in LTE networks. Most of this work augments the utility-based
schedulers such as proportionally fair (PF) with the current
queue lengths of users, see e.g., [7]. A weakness of this work
remains the lack of focus on flow level metrics and ability
to multiplex and control performance when there are user
dynamics.

Another area of substantial research is network scheduling
and transport for modern DASH-like video streaming, see
e.g, [8]–[10]. In general these works strive to optimize the
video client behaviour as well BS/core network scheduling to
optimize video QoE with constraints on re-buffering time, or
fraction of time low quality video is delivered. These works
do not fully address the impact of flow level dynamics and in
particular the sharing of resources by heterogeneous applica-
tions. Still in the sequel we shall adopt [8] as a representative
mechanism to assess our context-aware scheduler.

Finally, there has been some work on scheduling to address
flow-level delays which draws from a rich body of work in
queuing theory, see e.g., [11]–[18]. These works address the
minimization of average flow delay for traffic having a mix of
small and large flows, i.e., the so called mice and elephants.
It is well known that if a scheduler knows the required
processing time of flows, the Shortest Remaining Processing
Time policy minimizes the mean delay, see e.g., [17]. If such
information is not available, the scheduler may infer this based
on cumulative service to date and/or use prior knowledge of
the flow size distribution. This is represented by schedulers
such as the Foreground-Background (FB) or Least Attained
Service (LAS), Multi-Level processor sharing, FCFS + FB,
etc, which are delay optimal in various settings depending
on the flow-size distribution, see e.g. [12]–[14], [17]. These
above works for the most part do not address wireless networks

1Traditionally interactive web browsing, large file downloads, emails etc
are classified into a single category called best effort elastic traffic.
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Fig. 1. The block diagram for our context-aware scheduler.

where different flows may see heterogeneous and/or changing
wireless capacity. Exceptions include downlink scheduling
studied in [11], [19]. We will draw on this previous theoretical
work in developing our own approach and in our effort to
tackle QoS/QoE trade-offs across heterogeneous traffic.

B. Our Contributions

In this paper we recognize that for many applications the
QoS/QoE is tied to flow-level performance. For web browsing
sessions, flows are associated with web pages that are being
downloaded. Similarly modern stored video streaming can be
viewed as a stream of ‘flows’ associated with video segments
whose quality and thus size may be adapted to network con-
gestion. Thus the QoE for video depends on the delays/arrivals
of the stream of flows. We propose a two-level framework for
context-aware scheduling. The upper block, called the flow

classifier, realizes context-aware decisions, regarding applica-
tions flows and possible trade-offs e.g, managing re-buffering
amongst video streams. The lower block, implements a flow-
and channel-aware scheduling algorithm, aimed at reducing
delays for small flows without requiring prior knowledge
of their size. To that end we study the characteristics of
mean delay optimal Gittins index scheduler for an idealized
model of a wireless BS serving users with heterogeneous
capacity and for a class of flow size distribution typical of
today’s networks. Extensive simulations are used to compare
our context-aware scheduler to traditional proportional fair
schedulers. In particular we show that our approach is able
to achieve the desired trade-offs (see Table I) in QoS/QoE
amongst streaming video, web browsing and large file transfers
and do so robustly over a range of network loads.

C. Organization

The paper is organized as follows. In Sec. II we present
an architecture of our context-aware scheduler. Its design and
analysis are discussed in Sec. III. A performance analysis via
simulation is presented in Sec. IV, followed by our conclusions
in Sec. V.

II. CONTEXT-AWARE SCHEDULER

Our context-aware scheduler consists of two modules,
namely, a flow classifier and a flow and channel-aware sched-
uler. The block diagram is shown in Figure 1. We describe the
two blocks in detail.

A. Flow classifier

Packet streams arrive to the flow classifier block which real-
izes context-aware decisions. This block may be implemented
at the BS itself or in the core network. Its main functions are
twofold.

1) Manage flow information. It distinguishes flows based
on their application type and marks the packets associated
with a flow with a unique flow id. This information is later
used by the scheduler block. It may decide when a flow has
completed based on a threshold on the gap in inter-packet
arrivals. The flow classifier exchanges control signals and
flow level information with the scheduler, for example, to
signal the initiation of a new flow. It may also gather meta-
data associated with the flows which may be shared with
the scheduler, e.g., knowledge of video segment playback
duration.

2) Monitor performance. We envisage a flow-classifier
that may actively manage performance, e.g., video QoE. For
example, it may aim to ensure sustained playback for video
clients without re-buffering. To that end, it may monitor video
streams to ensure they are not starved of resources by the
scheduler block. Suppose that all video users are continuously
watching the video. Otherwise, the video clients stop request-
ing new segments and our flow classifier detects that streaming
has completed based on inter-packet intervals. Consider the
following simple strategy to prevent re-buffering. The flow
classifier samples the deficit of video streams whenever a flow
completes service.2 Let N be the set of video streams in the
system. Let τi, i = 1, 2, . . . be the instants at which flows, i.e.,
video segments are delivered. If si (t1, t2] is the total number
of segments downloaded by video stream i between time t1
and t2, then the deficit for the ith stream di (τk) is defined as

di (τk) := max {di (τk−1) + τk − τk−1

−τseg si (τk−1, τk] , γ} , (1)

where τseg is the video playback duration of a segment and
γ ≤ 0 is a suitably chosen threshold. A positive deficit at any
time means that the number of segments downloaded until then
is not sufficient for sustained playback, and the video client
is in re-buffering state. A negative γ puts a more stringent
constraint on re-buffering. Let D(τk) be the set of flows for
which the deficit is strictly greater than γ at time τk. If D(τk)
is non-empty, then the flow classifier block disables the set of
flows N \D(τk) till τk+1, i.e., the flows in the set N \D(τk)
do not contend for the radio resources in the next τk+1 − τk
seconds. This ensures that the deficient video streams are given
priority over the streams which have a sufficient number of
segments in the playback buffer.

B. Flow and channel-aware scheduler

This block allocates the radio resources to flows. The
scheduling policy specifies which flows are to be served at
each slot. It may use the current Channel Quality Indicator

2Video segments are marked as flows by flow classifier.
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metric (CQI) of users with active flows and/or the flow state
information, e.g., the amount of service given to a flow. We
discuss its design and analysis in the next section.

III. DESIGN AND ANALYSIS OF FLOW AND

CHANNEL-AWARE SCHEDULER

A. Idealized queuing model

To motivate our flow and channel-aware scheduler we shall
revisit an idealized queuing model based on a traditional multi-
class M/GI/1 queue.

Arrival process. We shall model the arrival process of flows
to the system as a Poisson process of appropriate rate. Each
flow is associated with a user having possibly different channel
strengths and thus associated peak (average) transmission
rates. We classify flows into K distinct classes based on their
current transmission rates. The rate of arrival for each class
is given by λi, i = 1, 2, . . . ,K. Let ci be the transmission
rate for the ith class and let c1 < c2 . . . , cK . We assume, for
now, that a flow’s transmission rate remains fixed throughout
its lifetime. However, class changes can be easily incorporated
into our scheduling algorithm – this is addressed in Sec. IV.

Flow size distribution. Our scheduler sees a heterogeneous
mix of flows associated with interactive web traffic and small
to large file downloads. Therefore, from a statistical point of
view, the scheduler sees a concentration short and medium
sized flows and few large flows.3 This is very well captured
by the NBUE + DHZ (β) flow size distributions introduced
below.

Let X denote the random variable (r.v.) modeling the size of
a typical flow. Let GX(x), gX(x), and GX (x) be the cumula-
tive distribution function (c.d.f.), probability density function
(p.d.f.), and complementary c.d.f. (c.c.d.f.), respectively. We
assume that the c.d.f. is a continuous function of the flow
size. Define the hazard rate function by hX(x) := gX(x)

GX(x)
. A

distribution is said to be of type NBUE + DHZ (β) if:

1) When the flow size is less than β bits, then the distribution
is of the type New Better Than Used in Expectation
(NBUE), i.e., the expected residual size of a flow which
has attained service less than β bits is less than the
original expected size of the flow. This implies that
∀a ≤ β,

E [X] ≥ E [X − a|X > a] . (2)

2) When the flow size is more than β bits, then the flow
size distribution has Decreasing Hazard Rate (DHZ).
This means that hX(x) is decreasing function of x for
x > β. The DHZ property is a sufficient condition for a
distribution to have an increasing mean residual file size.

An example of a distribution which is NBUE + DHZ (β) is
the Exp. + Pareto distribution which is given below:

GX (x) =

{

exp (−µx) , x < β,

exp (−µβ)
(

β
x

)α

, x ≥ β,
(3)

3See extended version of paper for statistical analysis and fit of data
collected by [20] showing this is indeed the case.

where µ > 0 and α > 1, where α models the tail of the Pareto
distribtion of large files. More examples are given in [12].

Our preliminary exploration of measured data in [20] shows
that flow size distributions on today’s networks are very well
modeled by NBUE + DHZ (β) distributions with Pareto tail.
Due to space constraints, we have included it in the extended
version [21]. Therefore, in this paper we mainly consider
distributions with Pareto tail and we call them NBUE + Pareto
(α,β).

B. Mean delay optimal policy

When flow sizes are not directly available, the Gittins index
scheduling policy is known to minimize the expected delay in
an M/GI/1 queue [16]. Below we shall introduce the Gittins
index and discuss some of its important properties derived
in [12], [13]. We shall build on these properties to derive the
optimal scheduling policy for our multi-class wireless setting.

Gittins Index. We shall first study a single class M/GI/1
queue which serves flows at unit rate. This means that a flow of
size x bits will take x seconds to complete service. Consider a
flow which has already been received a bits of service. Define
J (a,∆) for ∆ ≥ 0 as

J (a,∆) :=
R(a)

C(a)
, (4)

where R(a) =
(

GX (a)−GX (a+∆)
)

/GX (a) and C(a) =
(

∫∆
0 GX (a+ t) dt

)

/GX (a). Here R(a) and C(a) are the

probability that a flow which has attained service of a bits
will complete and the expected additional time required by
the flow to complete when it is allocated ∆ seconds of ser-
vice, respectively. Therefore, J (a,∆) is the ratio of expected
reward to the expected cost of giving a ∆ seconds of service to
a flow that has already received a bits of service. The Gittins
index defined in [22] is given by

GX (a) = sup
∆≥0

J (a,∆) . (5)

There may be many values of ∆ that maximize the above
expression with a possible value of +∞. We define ∆∗ (a) as

∆∗ (a) = sup
∆≥0

{∆ : J (a,∆) = GX (a)} . (6)

A scheduler is which serves the flow with the highest Gittins
index at all times is called the Gittins index scheduler.

We summarize the important properties of the Gittins index
for NBUE + DHZ (β) type distributions, these are derived
in [12], [13].

Proposition 3.1: The Gittins index GX (·) for NBUE + DHZ
(β) distributions has the following property:

(a) ∆∗ (0) ≥ β.

(b) For all a < ∆∗ (0) , GX (a) ≥ GX (0).
(c) For all a ≥ β, GX (a) is decreasing and GX (a) =

hX (a).
(d) If hX(x) is continuous and 0 < ∆∗ (0) < ∞, then

GX (0) = GX (∆∗ (0)) = hX (∆∗ (0)).
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Comments. (a) and (b) above imply that if a flow which has
not received any prior service is selected for service, it would
receive ∆∗ (0) ≥ β seconds of server time. Once it begins
service, other flows in the system which have not received any
service previously would not preempt it. Property (c) implies
that the Gittins index is a decreasing function of x, for x > β.
This is because of the DHZ tail which makes it less beneficial
for the system to serve large flows.

Next we discuss the Gittins index scheduler for our wireless
BS model based on multi-class class M/GI/1 queue.

C. Optimal scheduler for multi-class M/GI/1 queuing system

Consider the multi-class M/GI/1 queuing model for the BS.
A flow of size x bits in ith class requires x/ci seconds of
server time. Therefore, the mean service time associated with
a flow in ith class is E [X] /ci. For now we shall assume that
at any time t ≥ 0 only one flow is scheduled for transmission
using the entire bandwidth available.

Before we derive the optimal Gittins index scheduler for
this model, we consider the Gittins index for our multi-class
system. The Gittins index in this setting depends on both the
class of a flow and its attained service. This is because when
the server allocates ∆ seconds of service time to a flow, the
probability that it completes service within the ∆ seconds and
the expected time it takes to complete service depend on the
transmission rate of its class. We shall express the Gittins index
of a flow in ith class, Gi (·), in terms of the Gittins index GX (·)
associated with an M/GI/1 system where flows are served at
unit rate.

Lemma 3.2: Suppose a flow of class i has attained x bits
of service, then its Gittins index Gi (·) is given by:

Gi (x) = ciGX (x) . (7)

Proof: Proof is given in the extended version [21].

The Gittins index scheduler requires exact knowledge of
the index as a function of the service given to a flow.
Thus in order to compute the Gittins index we require the
knowledge of the distribution of flow sizes. This information
may not available in practice. Therefore, we require a robust
approximation to the Gittins index scheduler which is based on
easily measurable statistical properties such as the mean flow
size. In the sequel we discuss some of the key characteristics
of the Gittins index scheduler which will be used to motivate
our scheduler design.

D. Qualitative characteristics of the optimal scheduler

Fig. 2 illustrates all the properties of the Gittins index
mentioned in Prop. 3.1 and in Lemma 3.2. At any given time,
the states of flows present in the system can be visualized as
points on the Gittins index curves based on the service they
have attained. The x-axis of a point represents the number of
bits served for that flow, and y-axis is its Gittins index based
on its class, for example, a new flow arriving to class i is
represented by the point (0,Gi (0)). As the flows get served
they move along the Gittins index curve.

Fig. 2. Illustration of Gittins index curves as function of the flow size for a
multi-class M/GI/1 queuing system.

Define θ := ∆∗ (0). We call θ as the cross-over threshold.
Later in this section, we will see that the Gittins index policy
treats flows that have received less than θ bits of service
and more than θ bits of service differently. We shall use this
property to develop our approximation to the Gittins index
scheduler.

Consider the characteristics of the optimal scheduling policy
when all the flows in the system have received less than θ bits
of service. The flow which is in state F1 on the Gittins index
curve in Fig. 2 has received less than θ bits of service. Its
Gittins index is greater than G1 (0). This means it enjoys a
higher priority over new arrivals to class 1 and over the flows
in Class 1 which have not been served till now. Therefore, the
scheduling policy is First Come First Serve (FCFS) among
the Class 1 flows which have received service less than θ bits.
This is true for other classes too. This FCFS policy is a result
of the NBUE property of the flow size distribution when flow
sizes are less than β bits (which is less than θ).

In scenarios where the capacities of various classes are
widely separated, if i > j, then Gi (xi) > Gj (xj) , ∀xi, xj ≤
θ. Therefore, among the flows which have attained service
less than θ bits, flows with higher transmission rates should
preempt the flows with lower transmission rates. For example,
a flow in state F2 should preempt a flow at F1. This implies
that the scheduling policy is multi-class preemptive FCFS for
all flows which have attained service less than θ bits i.e., the
policy is FCFS for flows within a class and flows in classes
with higher transmission rates can pre-empt flows with lower
transmission rates.

Next we discuss the characteristics of the optimal schedul-
ing policy for long flows which have received a large amount
of service. Consider points P1, P2, and P3 on the Gittins index
curves in Fig. 2. They all have the same value for their Gittins
index. Let M be the total number of flows in these states. If we
consider distributions with Pareto tails, i.e., the tail probability
decays as 1/xα, α > 1, then it is clear that the Gittins index
scheduler serves these M flows according to the Processor
Sharing (PS) discipline with equal fraction of time given to
all the flows, see [11]. Since each flow receives an equal
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fraction of time, they get rates proportional to their channel
capacities, i.e., rate allocation is Proportionally Fair (PF).

Another key observation is that all really long flows in the
system which already received a large amount of service have
a lower Gittins index than new arrivals and the flows which
have received service less than θ bits. This is due to the DHZ
property of the tail.

To summarize, the optimal scheduler has the following
characteristics

1) All flows which have received cumulative service less
than θ bits are served based on pre-emptive priority for
classes with higher ci and FCFS within classes.

2) Flows which have received a large cumulative service are
eventually served using PF scheduling.

3) Flows which have received service less than θ bits have
priority over those which have already seen a large
cumulative service.

The above characteristics motivate an approximation to the
optimal Gittins index scheduler. This is explained next.

Let f be an active flow. Its time of arrival is denoted by f.t.
At any point in time flows in a given class i are partitioned
into two sets: Li denoting those that have received less than
or equal to θ bits and Hi the remaining flows. Define L :=
∪Ki=1Li and H := ∪Ki=1Hi. The sets L and H include all
active flows which have received less than θ bits of service
and more than θ bits of service, respectively. If A and B are
two sets, then A ≻ B implies that the flows of A are given
preemptive priority over the flows of B. Next we introduce
our approximation to Gittins index scheduler which we will
call p-FCFS + PF (θ).

E. Approximation to Optimal Scheduling – p-FCFS + PF (θ)

To specify a scheduling policy, we need to specify how
flows are prioritized among the sets {Li}

K
i=1 and {Hi}

K
i=1.

Once we decide the priority between sets, we specify how
resources are allocated to flows within these sets. We shall
give priority to various sets in the following manner – LK ≻
LK−1 . . . ≻ L2 ≻ L1 ≻ H. In Li, the flow which has
the earliest arrival time has the highest priority. In H, all
flows have the same priority. Thus in each slot we propose
to implement Algorithm 1.

This is a simple low complexity scheduling policy which
approximates the optimal Gittins index scheduler for small
and really large flows. It only requires knowledge of one
parameter– the cross-over threshold θ. Informally the cross-
over threshold distinguishes between small and large flows.
Choosing the right value of θ is critical to the mean delay
performance of the scheduler. If contextual information about
various types of traffic is available to the network operator,
then θ can be chosen such that the delay critical applications
are given priority. For example if we know the maximum
size of video segments, then for good performance of video
streams, one can choose a value of θ which is slightly
more than the maximum video segment size. If contextual
information is not available and we only have knowledge of
the distribution of the flow sizes of the traffic mix, then we

Algorithm 1 p-FCFS + PF (θ)

{Li, Hi}← FLOW MANAGEMENT( θ)
if L ̸= φ then

i∗ = argmaxi {i|Li ̸= φ}
Serve flow f∗ = argminf {f.t|f ∈ Li∗}

else
if H ̸= φ then

Serve all flows in H according to PF scheduling
policy.

end if
end if
procedure FLOW MANAGEMENT(θ)

Update each Li with new arrivals.
Move flows with attained more than θ bit of service

from the corresponding Li to Hi.
Remove flows that have completed service.

end procedure

have an analytical characterization of θ based on its definition.
One can develop an approximate expression for θ which
depends on two measurable properties – the mean flow size
and the exponent of decay of the tail probability of flow size
distribution.

Proposition 3.3: For NBUE + Pareto (α,β) distribution, θ
is obtained by solving the following fixed point equation:

θ = α

[

E [X]− P (X > θ) αθ
α−1

P (X ≤ θ)

]

, (8)

where X is the random variable denoting the flow size. For
large enough values of α, θ ≈ αE [X].

Proof: Proof is given in the extended version [21].
For α > 2, our approximation is quite close to θ. De-
tailed comparisons between θ and its approximation are given
in [21].

IV. PERFORMANCE EVALUATION

In this section we present the simulation results for our
proposed approach. We compare its performance with that
of the PF scheduler. We consider a single BS serving 9
video streaming users and a dynamic number of active web
browsing sessions and file downloads. The BS uses slotted
time with slot duration τslot = 0.01 sec. It makes scheduling
decisions at the beginning of each slot. The users are located
at varying distances from the base station and therefore, have
heterogeneous channel strengths. The channel variations due
to mobility are modeled by Markov Chain. The marginal
distribution of this Markov chain is same as appropriately
scaled versions of the channel strength distribution obtained
from an HSDPA system. See [8] for more details on the
generation of channel realizations. We classify the users into
10 different classes based on their channel strengths in each
slot. Due to the time varying nature of wireless channels, the
users may move from one class to another.

The flow sizes of the mix of web browsing and file down-
loads are modeled as a Pareto distribution with the parameters
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Fig. 3. Mean quality vs normalized load of web traffic and file downloads.

β = 40 Kbits and α = 5. These flows arrive to the system as
a Poisson process with suitable rate, independent of the video
traffic in the system. We classify the flows with size less than
100 Kbits size as interactive web traffic and the rest as file
downloads.

The stored video delivery model which we simulate mimics
the DASH framework. Similar simulation model for video
has also been studied in [8]. The video users view different
parts of three open source movies, namely, Oceania, Route
66, and Valkama. The video segments sent are of one second
playback duration. Each video segment has 6 different rep-
resentations of varying quality and segment sizes. The sizes
of various representations in the increasing order of quality
are 100, 200, 300, 500, 900, and 1500 Kbits/segment. We use
MSSSIM-Y metric (see [23]) for video segments to measure
the mean quality of the video stream delivered.

The video client application with each user is such that
it requests the next video segment only after the previous
segment is delivered. The video client can buffer at most ten
video segments. When the buffer is not full the client requests
the next segment using the state-of-the-art algorithm QNOVA
proposed in [8]. QNOVA is a client application which takes
into account mean-variability trade-offs in quality, pricing
constraints and re-buffering constraints to request appropriate
representation for next video segment. In our simulation we
adjust QNOVA such that it does not consider variability in
quality across video segments nor pricing constraints. We
also relax the re-buffering constraints in QNOVA because our
context-aware scheduler takes care of the re-buffering events.

Figures 3 and 4 plot the mean quality of video streams
and the average re-buffering time as a function of the nor-
malized load of web traffic and file downloads, respectively.
Normalized load is defined as the total data rate of web
traffic and file downloads arriving to the system divided by
the mean transmission rate for flows. It is a proxy for the
fraction of system utilization by web traffic and file downloads.
Figures 5 and 6 plot the mean flow delay for interactive
web traffic and the mean throughput for file downloads as
a function of its normalized load. We compare our context-
aware scheduler with the PF scheduler which does not use
contextual information. Through simulations we found that θ

Normalized load of web traffic and file downloads
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Fig. 4. Mean re-buffering time vs normalized load of web traffic and file
downloads.

Normalized load of web traffic and file downloads

0 0.2 0.4 0.6 0.8

M
e

a
n

 f
lo

w
 d

e
la

y 
(s

e
c.

)

0

20

40

60

80

100

PF

θ=50

θ=100

Fig. 5. Mean delay for flows less than 100 Kbits vs normalized load of web
traffic and file downloads.

between 50 Kbits and 100 Kbits give good results. The key
results are:

1) Trade-off between mean quality and mean delay at
lower loads. In Fig. 5, we observe that our scheduler improved
the mean delay for interactive web traffic by atleast 54% for
loads less 0.4, when compared to the PF scheduler. This is
because it expedites flows of size less than θ via the flow and
channel-aware scheduler block in our context-aware scheduler.
Thus there is slight reduction in the mean video quality for

Normalized load of web traffic and file downloads
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Fig. 6. Mean throughput for flows greater than 100 Kbits vs normalized load
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system loads less 0.4. Since the lowest quality representation
of video is 100 Kbits, θ = 50 Kbits selectively expedites short
flows over video and file downloads much more than θ =
100 Kbits. Therefore, θ = 50 Kbits gives better mean delay
performance.

2) Robustness to loads. In Fig. 5, we observe that for our
scheduler the mean delays for flows less than 100 Kbits size
do not vary much for loads less than 0.4. For example, when
θ = 50, the mean flow delay increases by 85% when the load
increases from 0.1 to 0.4. However, for the PF scheduler, the
mean delay increases by 323% for the same range of loads.
This robustness is a result of our scheduler favoring short flows
and forcing the video clients to request lower representations
as the load increases. Therefore, the video streams adapt better
to the changing system loads versus PF scheduler.

3) Trade-off between mean quality and re-buffering at
higher loads. Figure 4 shows that our scheduler accommo-
dates a much higher load of interfering web traffic and file
downloads without resulting in re-buffering. For θ = 50 Kbits,
our context-aware scheduler can sustain video playback with-
out re-buffering till a load of 0.55. This is 15% gain over PF
scheduler which has non-zero re-buffering time at a load of
0.48. Similarly for θ = 100 Kbits we see a gain of 46%. For
θ = 100 Kbits the gain is higher because we give priority
to all flows less than 100 Kbits, which include the lowest
quality video segments. The price we pay for avoiding re-
buffering is the reduction in mean quality at higher loads, say
between 0.4 to 0.6. There are two reasons for this reduction
in mean quality. First, our scheduler favors flows of size less
than θ. Second, when the system is congested, the re-buffering
avoidance mechanism in the BS prevents users which have
sufficient segments in their playback buffers from obtaining
the radio resources.

4) Increased throughput. Figure 6 shows that our sched-
ulers have a higher mean throughput for flows of size ex-
ceeding 100 Kbits. For a load of 0.4, our scheduler has
atleast a gain of 46%. Our flow and context-aware scheduler
significantly reduces the delay for flows of size slightly larger
than θ Kbits. This results in the increased throughput for our
scheduler. However, we note that for really large flows the
mean throughput in our scheduler could be less than that of
PF scheduler, but such events occur very rarely.

V. CONCLUSIONS

In this paper, we aimed to design and study scheduler
achieving robust QoS/QoE trade-offs amongst heterogeneous
applications/users sharing a Base Station. Robustness here
corresponds in part to the possibility of changing the nature
of the trade-offs as the network loads increase so as to
better address the sensitivity of various applications/users to
congestion. Through a combination of analysis and extensive
simulations we have evaluated our proposed framework and
believe that it has met the objectives we set for mixes of
streaming video, web browsing, and file transfers which are
the lions share of today’s wireless data traffic.
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