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Abstract— Spread spectrum technologies are appropriate for
ad hoc networking because they permit interference averaging
and tolerate co-located simultaneous transmissions. We develop
analytic results on the transmission capacity of a CDMA ad
hoc network. Transmission capacity is defined as the maximum
permissible density of simultaneous transmissions that allows
a certain probability of successful reception. Three models of
increasing generality are analyzed: a trivial model with two trans-
mitters, a Poisson point process model where each node transmits
with fixed power, and a Poisson point process model where nodes
use variable transmission powers. We obtain upper and lower
bounds on the transmission capacity for both frequency hopped
(FH-CDMA) and direct sequence (DS-CDMA) implementations
of CDMA for the latter two models. Our analysis shows that FH-
CDMA obtains a higher transmission capacity than DS-CDMA
on the order of M1− 2

α , where M is the spreading factor and
α > 2 is the path loss exponent. The interpretation is that FH-
CDMA is generally preferable to DS-CDMA for ad hoc networks,
particulary when the path loss exponent is large.

I. I NTRODUCTION

Ad hoc networks offer the benefit of wireless communication
without requiring planned infrastructure. Spread spectrum tech-
nologies, such as CDMA, are appropriate for ad hoc network-
ing because they permit interference averaging and tolerate co-
located simultaneous transmissions, e.g., [1], [2]. Interference
averaging permits a receiver to successfully decode its intended
transmission provided the aggregate interference power from
other transmissions is sufficiently small relative to the received
power of the intended transmission.

We study both frequency hopped (FH-CDMA) and direct
sequence (DS-CDMA) implementations of CDMA. We let
M denote the spreading factor for both. FH-CDMA divides
the available bandwidth,W , into M sub-channels, each of
bandwidth W

M . A receiver attempting to decode a signal from
a transmitter on sub-channelm only sees interference from
other simultaneous transmissions on sub-channelm. Whereas
FH-CDMA uses the spreading factor,M , to thin out the
set of interfering transmitters, DS-CDMA uses the spreading
factor to reduce the minimum SINR required for successful
reception. If the nominal SINR requirement for FH-CDMA
is β, then DS-CDMA reduces the SINR requirement toβM ,
assuming a typical PN code cross-correlation [3]. Thus, a
receiver on a network using FH-CDMA only sees interference
from transmitters on sub-channelm and the aggregate sub-
channel interference must be such that the received SINR
exceedsβ, while a receiver on a network using DS-CDMA sees
interference from all transmitters but the aggregate interference
must be such that the received SINR exceedsβ

M .

Important recent results [4] demonstrate that per node trans-
port capacity, measured in bit-meters/second, decreases in the
node density. We use a different definition of capacity, termed
transmission capacity, defined as the maximum permissible
density of simultaneous transmissions that satisfies a constraint
on the probability of successful reception. Formally, letΠ =
{Xi} denote a homogeneous Poisson point process on a plane,
where the pointsXi denote the locations of transmitting nodes.
We define the transmission capacity,λ, as the maximum
density of points inΠ such that the probability a typical
receiver is unable to decode its transmission is less thanε,
for some0 < ε ¿ 1. Here,ε is the outage probability require-
ment. Essentially, the transmission capacity is an intuitive and
practical measure of the usefulness of an ad hoc network, since
it determines how many users can be supported at a given data
rate and bandwidth.

In this work the transmission capacity is derived for three
increasingly sophisticated models of a CDMA ad hoc network.
The first is a trivial model consisting of a single receiver
and two transmitters. The purpose for studying this model is
to introduce some intuition behind why FH-CDMA yields a
superior system capacity over DS-CDMA. The second model
assumes the nodes comprising the ad hoc network form a
homogeneous Poisson point process on the plane. The third
model utilizes amarked Poisson point process, where the
marks denote the transmission distance for each node. As will
be explained, we assume nodes utilizepairwise power control,
meaning that each transmitter chooses its transmission power
such that the received signal power will be constant.

To our knowledge, this research is the first to analytically
compare the system capacity of DS-CDMA and FH-CDMA in
the ad hoc network scenario. Some previous results compare
aspects of FH-CDMA and DS-CDMA for ad hoc networks
[5] and cellular networks [6], [7], [8]. Specifically, previous
results in [7], [8], which focused on the bit-error rate (BER)
performance under various channel models, have shown FH-
CDMA achieves better performance than DS-CDMA when
centralized power control is not available. Instead of focusing
on BER like prior research, we directly approach the com-
parison of DS-CDMA and FH-CDMA from the perspective
of system capacity and show that FH-CDMA offers capacity
improvement above DS-CDMA on the order ofM1− 2

α for
interference–constrained ad hoc wireless networks.

II. BASE MODEL: TWO TRANSMITTERS AND ONE RECEIVER

Consider the case shown in Figure 1 where we have a
receiver at the origin and two transmitters at random locations



within a circle of radiusr̄ of the receiver. Transmitter1 is
trying to communicate with the receiver and transmitter2 is
transmitting to some other receiver, and therefore is causing
interference for the receiver at the origin. We are interested
in studying the probability that the receiver can successfully
receive the transmission from transmitter1 when the nodes
use FH-CDMA and DS-CDMA.

Fig. 1. Transmitter1, at distanceR1 from the receiver at the origin, sends a
signal to the receiver, while transmitter2, at distanceR2, causes interference.

If we assume that transmitters1 and 2 are uniformly
and independently distributed in the ballb(0, r̄), then it is
easily seen that the CDF for their distance from the origin is
FR1(r) = FR2(r) =

(
r
r̄

)2
with corresponding PDFfR1(r) =

fR2(r) = 2r
r̄2 . We defineR = R2

R1
as theratio of the distances.

Straightforward analysis shows the CDF forR to be

FR(r) =
{

r2

2 , 0 ≤ r ≤ 1
1− 1

2r2 , r ≥ 1
(1)

Our propagation model ignores shadowing and multi-path
effects and focuses just on path loss. Specifically, we use a
simplified path loss model where the received powerPr =
ρr−α, where α > 2 is the path loss exponent andρ is
the transmitted power multiplied by some constant – we will
simply refer toρ as the transmit power. The actual value forα
depends on the environment, butα ∈ [3, 5] is a fairly typical
range [9]. We will assume for this model that both transmitters
use a fixed power levelρ.

Consider first the case where the transmitters and receivers
use DS-CDMA with a nominal SINR requirement ofβ and
a spreading factorM . The outage probability for DS-CDMA,
pDS

o , is the probability the SINR is inadequate, i.e.,pDS
o =

P
(

ρR−α
1

ρR−α
2

≤ β
M

)
. Simple analysis shows

pDS
o = P

(R2

R1
≤ ( β

M

) 1
α

)
= FR

(( β

M

) 1
α

)
=

1
2

( β

M

) 2
α

. (2)

Next consider the outage probability for the FH-CDMA case,
pFH

o . Here we assume there areM sub-channels available, and
that each transmitter chooses a channel independently, so the
outage probability is multiplied by1M , i.e., the probability that
the two transmitters choose the same sub-channel:

pFH
o = P

(ρR−α
1

ρR−α
2

≤ β
) 1

M
= FR

(
β

1
α

) 1
M

=
1
2
β

2
α

1
M

(3)

Taking the ratio of the loss probability for DS over the loss

probability for FH we obtain:

pDS
o

pFH
o

=
1
2

(
β
M

) 2
α

1
2β

2
α

1
M

= M1− 2
α . (4)

Note the loss probability ratio is1 for α = 2 and monotoni-
cally increases inα for α > 2. Thus the benefit of FH-CDMA
over DS-CDMA is more pronounced in transmission areas with
high attenuation.

This simple model illustrates that when an ad hoc network
is interference constrained, avoiding interference by random
hopping (FH-CDMA) is preferable to interference suppression
(DS-CDMA). Notably, the gain offered by FH-CDMA is
significant even when there are only a few interfering sources
for a typical path loss exponent ofα ∈ [3, 5] [9]. This is
reminiscent of the well-known ‘near-far’ problem in wire-
less communications (especially CDMA), where an interfering
transmitter in near proximity to a receiver causes such a high
level of interference that successful reception is impossible
at the receiver. This ‘near-far’ problem is inevitable for ad
hoc networks and poses a particularly significant obstacle for
regions with a large path loss exponent. For FH-CDMA, the
outage probability is independent of neighboring interference
power provided the interfering nodes are not simultaneously
contending for the same sub-channel as the receiver. For DS-
CDMA, however, the outage probability is very sensitive to the
interference power level. This translates directly to an increased
outage probability for DS-CDMA, for a given configuration
of node positions. The two transmitter model is obviously
unrealistic–this motivates us to consider a more general ad hoc
network, described in the next section.

III. SECOND MODEL: POINT PROCESS AD HOC NETWORK

WITH FIXED TRANSMISSION DISTANCE

Our second model utilizes a homogeneous Poisson point
processΠ = {Xi} on the planeR2 to represent the locations of
all nodes transmitting at some timet. The transmission capacity
of the network, as defined earlier, is the maximum intensityλ
of the processΠ such that outage probability is less thanε,
for 0 < ε ¿ 1. We will write Ri = |Xi| for the distance from
nodei to the origin. Note that the transmission capacity may
be improved through local scheduling or mobility (we assume
nodes are fixed and always transmitting); these topics are left
for future work.

To evaluate the outage probability we will condition on a
typical transmitter at the origin giving what is known as the
Palm distribution for transmitters on the plane [10]. It follows
by Slivnyak’s Theorem [10] that this conditional distribution
corresponds to a homogenous Point process with the same
intensity and an additional point at the origin. Now shifting
this entire point process so that the receiver associated with
the typical transmitter lies at the origin, we see that the
conditional distribution of potential interferers is a homogenous
Poisson point process with the same intensity. We will denote
this process byΠ and denote probability with respect to this
distribution byP0.

For the FH-CDMA case we assume each transmitter chooses
its sub-channel independently. We letΠm denote the set of
transmitters which select sub-channelm, for m = 1, . . . ,M .



Because of the independent sampling assumption, each process
Πm is a homogeneous Poisson point process with intensityλ

M .
The ambient noise density is denoted byNo. For FH-CDMA

the total ambient noise power isNo
W
M ≡ η, i.e., only the power

from the frequency sub-band corresponding to the active sub-
channel causes noise for the receiver. For DS-CDMA the total
ambient noise power isNoW = Mη, i.e., power from the
entire band,W , causes noise for the receiver.

We assume for simplicity thati) all transmitters utilize the
same transmission power,ρ, andii) all transmission distances
are over the same distanced. These assumptions will be
removed in the third model.

It is easily seen that the appropriate requirements onλ are
given below:

FH P0
( ρr−α

η +
∑

i∈Πm
ρR−α

i

≤ β
)
≤ ε, (5)

DS P0
( ρr−α

Mη +
∑

i∈Π ρR−α
i

≤ β

M

)
≤ ε. (6)

We will obtain upper and lower bounds onλ in the formλ∗ ≤
λ ≤ λ∗. The lower boundλ∗ is such thatλ < λ∗ ensures
po < ε, i.e., the QoS requirement is definitely met, and the
upper boundλ∗ is such thatλ > λ∗ ensurespo > ε, i.e., the
QoS requirement is definitely violated. These bounds, and the
transmission capacity ratio obtained of FH-CDMA over DS-
CDMA, are given in the following theorem.

Theorem 3.1:For small ε, the lower and upper bounds on
transmission capacity for FH-CDMA and DS-CDMA when
transmitters employ a fixed transmission powerρ and a fixed
transmission distancer are:

1
2

ε

π

(
κM

) 2
α ≤ λDS ≤ ε

π

(
κM

) 2
α

(7)

1
2

εM

π
κ

2
α ≤ λFH ≤ εM

π
κ

2
α (8)

whereκ = r−α

β − η
ρ .

The transmission capacity ratio is

γfixed =
λFH
∗

λDS∗
=

λ∗,FH

λ∗,DS
= M1− 2

α . (9)

See appendix for proof.
Theorem 3.1 shows the capacity improvement of FH-CDMA

over DS-CDMA equals the outage probability ratio obtained
in Section II. The intuition follows from the same argument,
i.e., that FH-CDMA is less sensitive to the near-far problem
than DS-CDMA. In addition, we observe a capacity gain – the
capacity improves linearly (FH-CDMA) and sub-linearly (DS-
CDMA) in the spreading gainM (whenα > 2). Hence, if the
traffic in an ad hoc network does not require a very high data
rate, e.g., voice traffic, it is desirable to use a high spreading
gain in order to achieve robust interference tolerance or high
transmission capacity.

IV. T HIRD MODEL: POINT PROCESS AD HOC NETWORK

WITH VARIABLE TRANSMISSION DISTANCE

For our third model we remove the assumption that all trans-
mitters use the same transmission power and have the same
transmission distance. In real ad hoc networks transmission
relay distances will be variable as will interference power

levels. Both factors suggest transmitters use power control
since too high of a signal power level causes unnecessary
interference and too low of a signal power level will not
be successfully received. Finding a system-wide optimal set
of transmission power levels is the subject of recent work
[11] and has shown that efficient distributed algorithms for
global power control are difficult. For this work we take a
simpler approach and assume that transmitters choose their
transmission power as a function of their distance from their
intended receiver and independent of the interference level
of the receiver. We call thispairwise power controlsince
each transmitter and receiver pair determines the transmission
power independently of other pairs. Specifically, the transmitter
chooses its transmission power such that the signal power at
the receiver will be some fixed level%. Thus if a transmitter
and receiver are separated by a distanced then the transmitter
will employ a transmission power%dα so that the received
signal power will be%. We make no particular assumption on
the value of%, other than% > η

β , which is required to keep
the received signal power above the noise floor.

Formally, our third model consists of amarkedhomogeneous
Poisson point processΦ = {(Xi, Di)} where the points{Xi}
again denote transmitter locations and the marks{Di} denote
the distance from transmitteri to its intended receiver. We
assume the marks are independent and identically distributed
with CDF FD(d), and that the marks are also independent of
the points. We again useRi = |Xi| to denote the distance
from node i to the origin. Similar to the second model, we
evaluate the outage probability using the Palm distributionP0

which places a typical receiver at the origin. Also similar to
the second model, we define the sampled sub-processΦm as
a homogeneous marked Poisson point processes consisting of
all transmitters on sub-channelm, for m = 1, . . . ,M .

We define the functiong(r, d) as giving the signal power
level at a distancer from the transmitter when the transmitter’s
intended recipient is at a distanced. Thus,g(r, d) = %

(
d
r

)α

.

Note in particular thatg(d, d) = %, i.e., at the distance of the
intended receiver the signal power is the desired level. Note
that the transmission power isg(1, d) = %dα.

Devices are assumed to have a maximum transmission power
of %̄. Solving %dα ≤ %̄ for d gives a maximum transmission

distance ofd̄ =
(

%̄
%

) 1
α . We stated above that the transmission

distances are assumed to be iid with CDFFD(d). We assume
that a transmitter is equally likely to chooseany oneof the
receivers within a circle of radius̄d of it. The probability
a transmitter will have a transmission distanced should be
proportional tod, i.e.,fD(d) ∝ d. Normalizing this distribution
with the constraint thatd ≤ d̄ gives the CDF and PDF as

FD(d) =
(

d
d̄

)2

andfD(d) = 2d
d̄2 .

It is easily seen that the appropriate requirements onλ are
given below:

FH P0
( %

η +
∑

i∈Φm
g(Ri, Di)

≤ β
)
≤ ε, (10)

DS P0
( %

Mη +
∑

i∈Φ g(Ri, Di)
≤ β

M

)
≤ ε. (11)

We define similar bounds,λ∗, λ∗ as for the second model.
These bounds, and the transmission capacity ratio obtained



of FH-CDMA over DS-CDMA, are given in the following
theorem.

Theorem 4.1:For small ε, the lower and upper bounds on
transmission capacity for FH-CDMA and DS-CDMA when
transmitters employ variable transmission powers are

1
2

ε

πd̄2

(
δM

) 2
α ≤ λDS ≤ 4

ε

πd̄2

(
δM

) 2
α

(12)

1
2

εM

πd̄2
δ

2
α ≤ λFH ≤ 4

εM

πd̄2
δ

2
α (13)

whereδ = 1
β − η

% .
The transmission capacity ratio is

γfixed =
λFH
∗

λDS∗
=

λ∗,FH

λ∗,DS
= M1− 2

α . (14)

See appendix for proof.
Power control in cellular networks solves the ‘near-far’

problem by equalizing receiving powers at the central base
station. The pair-wise power control scheme in ad hoc networks
can not fully solve the ‘near-far’ problem since transmitters
have different intended receivers, but it offers a simple and
distributed means by which to mitigate the interference across
concurrent transmissions.

V. CONCLUSION

We have compared the performance of FH-CDMA and DS-
CDMA in ad hoc networks in terms of transmission capacity.
When capacity is constrained by neighboring interference,
either because of high path loss or because of clustered
interference, FH-CDMA is more appropriate for achieving high
transmission capacity than DS-CDMA, especially when a large
spreading gain is possible. The advantage of FH-CDMA also
increases as the path loss exponent increases. This implies
that in more severe propagation environments such as indoor
wireless systems with walls and obstacles, frequency hopping
enjoys an even larger advantage over direct sequence spreading.

APPENDIX

Please note that the appendices may be shortened for the
camera-ready version. They are included in this submission
for completeness.

PROOF OFTHEOREM 3.1

The QoS constraints can be written as

FH P0
(∑

Πm

R−α
i ≥ κ

)
≤ ε, (15)

DS P0
(∑

Π

R−α
i ≥ Mκ

)
≤ ε. (16)

for κ = r−α

β − η
ρ .

We first address the FH-CDMA case. Let(Ω,F ,P0) rep-
resent the underlying probability triple for the processΠ, let
ω ∈ Ω represent outcomes, i.e., particular realization of the

point process. Define the following events:

F =
{

ω
∣∣∣

∑

Πm(ω)

Ri(ω)−α ≥ κ
}

(17)

F1 =
{

ω
∣∣∣Πm(ω) ∩ b(0, s) 6= ∅

}
(18)

F2 =
{

ω
∣∣∣

∑

Πm(ω)∩b̄(0,s)

Ri(ω)−α ≥ κ
}

(19)

The eventF consists of all outage outcomes,F1 consists of
all outcomes where there are one or more transmitters withins
of the origin, and the eventF2 consists of all outcomes where
the set of transmitters outside the ballb(0, s) generate enough
interference power to cause an outage at the origin.

Lemma 1.1:For s = κ
−1
α thenF1 ⊂ F ⊂ (F1 ∪ F2).

Proof For s = κ
−1
α even one transmitter withinb(0, s) can

cause an outage, thusF1 ⊂ F . Note we actually haveF =
F1 ∪ F2.

Lemma 1.2:P0(F1) = 1− e−
λ
M πs2

.

Proof Note 1 − P0(F1) is the probability there are no
transmitters inb(0, s), which is simply the void probability
[10]. For a Poisson process in the plane with intensityλ the
void probability forb(0, s) is e−λπs2

.

Lemma 1.3:λ∗ = − ln(1− ε)M
π κ

2
α .

Proof Clearly P0(F1) ≤ P0(F ). If we can find aλ∗ such
that λ > λ∗ ⇒ P0(F1) > ε then it follows thatP0(F ) > ε.
We find such aλ∗ by solving P0(F1) = ε and substituting
s = κ

−1
α .

Lemma 1.4:If P0(F1) <
√

1 + ε − 1 and P0(F2) <√
1 + ε− 1 thenP0(F ) < ε

Proof Clearly P0(F ) ≤ P0(F1 ∪ F2). Also, by definition,
P0(F1∪F2) = P0(F̄1∩F2)+P0(F1∩ F̄2)+P0(F1∩F2). Next
note thatF1, F2 are independent since they concern disjoint
regions on the plane, implyingP0(F1∪F2) = P0(F̄1)P0(F2)+
P0(F1)P0(F̄2) + P0(F1)P0(F2). Using the weak bound of
P0(F̄1) ≤ 1 andP0(F̄2) ≤ 1, we get

P0(F1∪F2) ≤ 2(
√

1 + ε−1)+(
√

1 + ε−1)(
√

1 + ε−1) = ε.
(20)

Lemma 1.5:P0(F1) <
√

1 + ε − 1 if λ < − ln(2 −√
1 + ε)M

π κ
2
α

Proof Similar to Lemma 1.3, we solveP0(F1) =
√

1 + ε−1
for λ.

Lemma 1.6:Consider0 ≤ ε ¿ 1, κ > 0, a homogeneous
Poisson point processΠ = {Xi} on the plane of intensity
λ, and Y =

∑
Π g(Xi) for g(·) a non-negative continuous

function such that the integrals
∫
R2 g(x)dx and

∫
R2 g(x)2dx

exist. If λ < κ2

σ2 ε thenP0
(∑

Π g(Xi) ≥ κ
)
≤ ε, whereσ2 =

1
λV ar

(∑
Π g(Xi)

)
.



Proof Let µ = E[Y ]
λ . By Chebychev’s inequality,

P0(Y ≥ κ) ≤ P0(|Y − µλ| ≥ κ− µλ) (21)

≤ σ2λ

(κ− µλ))2
(22)

for λµ ≤ κ. We can rearrange σ2λ
(κ−µλ))2 = ε as a quadratic

equation forλ:

µ2λ2 − (2µκ +
σ2

ε
)λ + κ2 = 0. (23)

Solving for λ gives

λ =
κ

µ
+

σ2

2µ2ε

(
1−

√
1 +

4κµε

σ2

)
. (24)

We find the first three terms in the MacLaurin expansion of√
1 + aε as

√
1 + aε ≈ 1 + a

2 ε− a2

8 ε2. Applying this for a =
4κµ
σ2 and rearranging givesλ ≈ κ2

σ2 ε.

Lemma 1.7:P0(F2) <
√

1 + ε−1 if λ < (
√

1 + ε−1)(α−
1)M

π κ
2
α

Proof Define σ2 = 1
λV ar

(∑
Πm∩b̄(0,s) R−α

i

)
. In words,

σ2λ is the variance of a function of a homogeneous Poisson
point process on the plane with intensityλ, where the function
is the normalized aggregate interference power seen at the
origin caused by all transmitters outside the circleb(0, s). By
the previous lemma,P0(F2) ≤

√
1 + ε−1 if λ < κ2

σ2 (
√

1 + ε−
1). Straightforward application of Campbell’s Theorem [10]
yields σ2 =

∫
R2∩b̄(0,s)

(|x|−α
)2

dx = πs2(1−α)

α−1 . Note thatΠm

has intensityλ
M . Thus we requireλ

M ≤ κ2

σ2 (
√

1 + ε− 1). Sub-

stituting σ2 we getλ ≤ Mκ2(α−1)
πs2(1−α) (

√
1 + ε − 1). Substituting

s = κ−
1
α and rearranging yields the lemma.

Lemma 1.8:λ∗ = − ln(2−√1 + ε)M
π κ

2
α .

Proof Combining Lemmas 1.4, 1.5 and 1.7 we know that
if λ < min

{
− ln(2 − √

1 + ε), (
√

1 + ε − 1)(α − 1)
}

M
π κ

2
α

thenP(F ) < ε. We take the MacLaurin expansion of the two
functions inside the minimum and find− ln(2−√1 + ε) ≈ 1

2ε
and (

√
1 + ε − 1)(α − 1) ≈ α−1

2 ε. Sinceα > 2 this means
that− ln(2−√1 + ε) is the smaller function for smallε. This
yields the lemma.

Lemma’s 1.3 and 1.8 give usλ∗FH = − ln(1 − ε)M
π κ

2
α

andλ∗,FH = − ln(2−√1 + ε)M
π κ

2
α respectively. Taking the

MacLaurin expansion of− ln(1−ε) and− ln(2−√1 + ε) gives
λ∗FH ≈ εM

π κ
2
α and λ∗,FH ≈ 1

2
εM
π κ

2
α for small ε. Thus the

spread of our bound isλ
∗
F H

λF H∗
= 2, so we know the transmission

capacity of the FH-CDMA system within a factor of2.

Looking at equations 15 and 16, it’s clear that the exact same
analysis for DS-CDMA holds provided we replaceλ with Mλ
andκ with Mκ. Thus, if 1

2
εM
π κ

2
α ≤ λFH ≤ εM

π κ
2
α holds for

FH, then 1
2

εM
π (Mκ)

2
α ≤ MλDS ≤ εM

π (Mκ)
2
α holds for DS.

It’s clear that the transmission capacity ratio of FH-CDMA
over DS-CDMA isγfixed = M1− 2

α . ¥

PROOF OFTHEOREM 4.1

The QoS constraints can be written as

FH P0
(∑

Φm

(Di

Ri

)α ≥ δ
)
≤ ε, (25)

DS P0
(∑

Φ

(Di

Ri

)α ≥ δ

M

)
≤ ε. (26)

for δ = 1
β − η

ρ .
We first address the FH-CDMA case. Let(Ω,F ,P0) rep-

resent the underlying probability triple for the processΠ, let
ω ∈ Ω represent outcomes, i.e., particular realization of the
point process. Define the following events:

F =
{

ω
∣∣∣

∑

Φm(ω)

(Di(ω)
Ri(ω)

)α
> δ

}
(27)

F1 =
{

ω
∣∣∣Φm(ω) ∩ (b(0, s)× [sδ

1
α , d̄) 6= ∅

}
(28)

F2 =
{

ω
∣∣∣Φm(ω) ∩ (b(0, s)× R+) 6= ∅

}
(29)

F3 =
{

ω
∣∣∣

∑

Φm(ω)∩b̄(0,s)

(Di(ω)
Ri(ω)

)α
> δ

}
(30)

The event F consists of all outage outcomes. The event
F1 consists of all outcomes where there are one or more
transmitters withins of the origin with transmission distances
exceedingsδ

1
α . This threshold is the smallest transmission

distance such that even one transmitter inb(0, s) with such
a transmission distance will cause an outage at the origin. The
eventF2 consists of all outcomes with one or more transmitters
in b(0, s); but note that not all outcomes inF2 will cause an
outage. Finally, the eventF3 consists of all outcomes where the
interference power at the origin caused by all the transmitters
outsideb(0, s) is adequate to cause an outage at the origin.

Lemma 1.9:For all s, F1 ⊂ F ⊂ (F2 ∪ F3)
Proof The proof is straightforward and is omitted. Note,

contrary to Lemma 1.1, we don’t haveF = (F2 ∪ F3).

Lemma 1.10:For arbitrarys,

P0(F1) =
(
1− e−

λ
M πs2

)(
1− (sδ

1
α

d̄

)2
)
. (31)

For s = d̄√
2δ

1
α

,

P0(F1) =
1
2

(
1− e−

λ
M πs2

)
. (32)

Proof Since the marks are independent of the point locations,
we can decompose the probability into the product of the
probabilities that there aren’t any points inb(0, s) times the
probability that a given point has a mark in[sδ

1
α , d̄). The

probability of the former is1 − e−
λ
m πs2

and the probability

of the latter is1−(
sδ

1
α

d̄

)2
. This yields the first equation in the

Lemma. The second equation is immediate for the specifieds.

Lemma 1.11:λ∗ = −2 ln(1−2ε)Mδ
2
α

πd̄2

Proof Clearly P0(F1) ≤ P0(F ). If we can find aλ∗ such
that λ > λ∗ ⇒ P0(F1) > ε then it follows thatP0(F ) > ε.



We find such aλ∗ by solving P0(F1) = ε and substituting
s = d̄√

2δ
1
α

.

Lemma 1.12:If P0(F1) <
√

1 + ε − 1 and P0(F2) <√
1 + ε− 1 thenP0(F ) < ε.
Proof Same as Lemma 1.4.

Lemma 1.13:P0(F2) <
√

1 + ε − 1 if λ <
−2 ln(2−√1+ε)Mδ

2
α

πd̄2 .

Proof Similar to Lemma 1.2, we findP0(F2) = 1−e−
λ
M πs2

,
set this equal to

√
1 + ε − 1, solve forλ, and substitutes =

d̄√
2δ

1
α

.

Lemma 1.14:Consider 0 ≤ ε ¿ 1, δ > 0, a homo-
geneous marked Poisson point processΦ = {(Xi, Di)} on
the plane of intensityλ, and Y =

∑
Φ g(Xi, Di) for g(·, ·)

a non-negative continuous function such that the integrals∫
R2

∫ d̄

0
g(x, d) dx dd and

∫
R2

∫ d̄

0
g(x, d)2 dx dd exist. If

λ < δ2

σ2 ε then P0
(∑

Φ g(Xi, Di) ≥ δ
)
≤ ε, where σ2 =

1
λV ar

(∑
Φ g(Xi, Di)

)
.

Proof Same as Lemma 1.6.

Lemma 1.15:P0(F3) <
√

1 + ε− 1 if λ < (
√

1+ε−1)Mδ
2
α

πd̄2 .

Proof Define σ2 = 1
λV ar

(∑
Φm∩b̄(0,s)

(
Di

Ri

)α
)

. In words,

σ2λ is the variance of a function of a homogeneous
marked Poisson point process on the plane with inten-
sity λ, where the function is the normalized aggregate in-
terference power seen at the origin caused by all trans-
mitters outside the circleb(0, s). By the previous lemma,
P0(F3) ≤

√
1 + ε − 1 if λ < δ2

σ2 (
√

1 + ε − 1). Straightfor-
ward application of Campbell’s Theorem [10] yieldsσ2 =∫
R2∩b̄(0,s)

∫ d̄

0

(
( d
|x| )

α
)2

fD(d) dx dd = πs2(1−α)d̄2α

(α−1)(α+1) . Note that

Φm has intensity λ
M . Thus we requireλ

M ≤ δ2

σ2 (
√

1 + ε− 1).
Substitutingσ2 we getλ ≤ (

√
1+ε−1)(α−1)(α+1)Mδ2

πs2(1−α)d̄2α . Substi-

tuting s = d̄√
2δ

1
α

givesλ < 21−α(α+1)(α−1)(
√

1+ε−1)Mδ
2
α

πd̄2 . For

2 ≤ α ≤ 6, a reasonable range forα, we have21−α(α+1)(α−
1) > 1, which we substitute in to simplify the bound.

Lemma 1.16:λ∗ = −(
√

1 + ε− 1) M
πd̄2 δ

2
α .

Proof Combining Lemmas 1.12, 1.13 and 1.15 we know
that if λ < min

{
−2 ln(2 − √

1 + ε), (
√

1 + ε − 1)
}

M
πd̄2 δ

2
α

thenP(F ) < ε. We take the MacLaurin expansion of the two
functions inside the minimum and find−2 ln(2−√1 + ε) ≈ ε
and (

√
1 + ε − 1) ≈ ε

2 , so that(
√

1 + ε − 1) is the smaller
function for smallε.

Lemma’s 1.11 and 1.16 give usλ∗FH = −2 ln(1−2ε) M
πd̄2 δ

2
α

and λ∗,FH = (
√

1 + ε − 1) M
πd̄2 δ

2
α respectively. Taking the

MacLaurin expansion of−2 ln(1−2ε) and(
√

1 + ε−1) gives
λ∗FH ≈ 4 εM

πd̄2 δ
2
α and λ∗,FH ≈ 1

2
εM
πd̄2 δ

2
α for small ε. Thus the

spread of our bound isλ
∗
F H

λF H∗
= 8, so we know the transmission

capacity of the FH-CDMA system within a factor of8.

Looking at equations 25 and 26, it’s clear that the exact same
analysis for DS-CDMA holds provided we replaceλ with Mλ
and δ with Mδ. Thus, if 1

2
εM
πd̄2 δ

2
α ≤ λFH ≤ 4 εM

πd̄2 δ
2
α holds

for FH, then 1
2

εM
πd̄2 (Mδ)

2
α ≤ MλDS ≤ 4 εM

πd̄2 (Mδ)
2
α holds for

DS.
It’s clear that the transmission capacity ratio of FH-CDMA

over DS-CDMA isγvariable = M1− 2
α . ¥
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