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Abstract—We consider a hierarchical inference system with
multiple clients connected to a server via a shared communication
resource. When necessary, clients with low-accuracy machine
learning models can offload classification tasks to a server for
processing on a high-accuracy model. We propose a distributed
online offloading algorithm which maximizes the accuracy subject
to a shared resource utilization constraint thus indirectly realizing
accuracy-delay tradeoffs possible given an underlying network
scheduler. The proposed algorithm, named Lyapunov-EXP4,
introduces a loss structure based on Lyapunov-drift minimization
techniques to the bandits with expert advice framework. We
prove that the algorithm converges to a near-optimal threshold
policy on the confidence of the clients’ local inference without
prior knowledge of the system’s statistics and efficiently solves
a constrained bandit problem with sublinear regret. We further
consider settings where clients may employ multiple thresholds,
allowing more aggressive optimization of overall accuracy at a
possible loss in fairness. Extensive simulation results on real and
synthetic data demonstrate convergence of Lyapunov-EXP4, and
show the accuracy-delay-fairness tradeoffs achievable in such
systems.

Index Terms—Lyapunov optimization, online learning, hierar-
chical inference, computation offloading

I. INTRODUCTION

Machine learning (ML) applications and services are evolv-
ing to enable finding solutions to increasingly more challeng-
ing problems by deploying computationally intense models
[1], [2]. This presents a challenge to their widespread deploy-
ment, especially on platforms with limited power and compu-
tational capabilities such as smartphones and IoT devices.

At one extreme, commonly seen in many real-world ML
based applications [3], the entire ML model is executed on a
server with sufficient computational power allowing devices to
draw on minimal local computation. Although this approach
relieves the computational burden on the users’ devices, it
leads to increased communication costs, reduced responsive-
ness, and may bring up privacy concerns.

At the other extreme, one can run ML based applications
solely on users’ devices. To facilitate this, there has been
significant research on techniques for compressing complex
ML models, resulting in what is commonly referred to as
tinyML [4]. While this allows running models with small
computational and memory footprints, they often come at the
cost of sacrificing performance and accuracy as compared to
the larger complex ML models typically run at the edge/cloud.
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Between these extremes is Hierarchical Inference, a frame-
work aiming to enable combining execution of ML tasks on
users’ devices with computational offloading to a server [5]–
[8]. In particular, users’ devices employ a low-complexity
ML model (L-ML) while the server hosts a more powerful
high-complexity ML model (H-ML). A task is first processed
by L-ML on the user’s device. If the result requires further
investigation or is deemed to have low confidence, the task
is offloaded to the server to be processed by H-ML. Unlike
DNN Partitioning [9], [10], Hierarchical Inference does not
(partially) offload every task to the server, which helps improve
the system’s responsiveness. Although a hierarchical inference
system can be built based on any pair of L-ML and H-ML,
or with an ML model allowing early exit [11], it requires an
offloading policy based on the output of the L-ML decides
if offloading is needed. Furthermore, such decisions might
depend on congestion of the communication resources.

Our work is focused on hierarchical inference systems with
multiple user devices and random offloading costs. We propose
an online algorithm that learns how to manage offloading
in such settings while being oblivious to the statistics of
ML models, input task and offloading cost distributions. The
proposed algorithm utilizes a multi-armed bandit with expert
advice framework [12] to maximize system’s inference accu-
racy while deploying a novel loss structure based on Lyapunov
optimization theory to meet a constraint on resource utilization
or, more generally, on offloading costs. The algorithm con-
verges to an optimal threshold policy applied to the inference
confidence seen on the L-ML model.

A. Related Work

Recently, hierarchical inference systems have attracted sig-
nificant attention from the research community [5]–[8]. An
important line of this research focuses on designing metrics
that capture the confidence of the local inference without
knowing the correctness of the result. Examples include [6],
where a confidence metric based on the variance of the local
classifier’s output is proposed, and [7], where the confidence
of a prediction is assessed by applying a radial function kernel
to the entropy of the local classifier’s output. Ultimately,
confidence metrics are meant to aid in designing offloading
algorithms for hierarchical inference systems such as the one
in [8], which deploys multiple local ML models on devices
and a more complex/accurate ML model on a server. Given
the different accuracy, processing and computation times of
the models, the accuracy maximization problem under a time



constraint is formulated as an integer linear program. An
online learning approach proposed in [5] seeks a threshold
policy on the confidence of L-ML that maximizes the accuracy
under a fixed offloading cost. Although our work has a similar
goal as [5], it is distinct as it focuses on multiple users
under a shared utilization constraint and the distributed online
offloading algorithm.

The long-term stochastic optimization problems encoun-
tered in various computation offloading problem, are studied
using Lyapunov optimization techniques, specifically Drift-
plus-Penalty algorithm [13]. The Drift-plus-Penalty formula-
tion is used in [14], [15] to solve offloading problems, where
[14] investigates a mobile-edge computing system with energy
harvesting devices under a hard execution delay deadline,
and [15] formalizes the joint service caching and task of-
floading problem for minimizing computation latency under
a long-term energy consumption constraint. Similarly, in [16],
[17] authors present long-term optimization problems as two-
step optimization problems and leverage Drift-plus-Penalty
algorithm to solve one of the steps. In all these works, the
Lyapunov formulation involves an integer problem and the
solution requires knowing the system parameters at each slot.

In another line of related recent work, Lyapunov opti-
mization techniques have been combined with online learning
mechanisms to develop algorithms addressing constrained ban-
dit optimization problems [18]–[23]. Specifically, [18], [19],
utilize Lyapunov-drift minimization methods for constrained
online-dispatching via the UCB algorithm. In [20], a generic
constrained bandit problem which incorporates random costs
of actions, a knapsack constraint, and a stochastic feasibility
constraint was studied; there, a Lyapunov-drift minimization
technique was utilized to design a low-complexity bandit
algorithm based on UCB. Our work addresses constrained
contextual bandit problems by combining Lyapunov drift
minimization techniques with EXP4 algorithm.

B. Contributions

The contributions of this paper are summarized as follows.
• For a hierarchical inference system supporting multiple

clients, we formulate an accuracy maximization problem
under a shared resource utilization constraint and explore
the associated accuracy-delay trade-offs. We combine
Lyapunov drift minimization techniques and bandits with
expert advice framework to propose a low-complexity
online offloading algorithm that we refer to as Lyapunov-
EXP4 (Ly-EXP4). Ly-EXP4 converges to a near-optimal
thresholding policy on the local inference confidence
while satisfying the utilization constraint without prior
knowledge of the statistics of tasks, confidence metric,
and service times across clients. We prove that for finite
horizon N and M discretized thresholds, Ly-EXP4 has a
regret bound of O(

p
2N⇣ log(M)) and an optimality-gap

of O( 1
V )+✏0, where V is a parameter controlling tradeoff

between accuracy and constraint violation. To the best of
our knowledge, our work is the first one in the literature
discussing a hierarchical inference problem with multiple
clients under a utilization constraint.

• We show that Ly-EXP4 can be used as a distributed online
offloading algorithm maximizing the total accuracy of a
system under a resource utilization constraint. In such
settings, each client or a group of clients simultaneously
learns an individual thresholding policy.

• Ly-EXP4 is not limited to the hierarchical inference
problem; instead, it can be used in a more general class
of constrained contextual bandit problems – a potentially
valuable contribution in itself.

• We provide extensive simulation results using both real
and synthetic ML models and datasets, demonstrating
the performance of Ly-EXP4 in terms of convergence,
delay and fairness. Additionally, we explore the accuracy-
fairness trade-off in settings with multiple thresholds
which allow Ly-EXP4 to achieve higher accuracy at the
expense of fairness across clients.

II. SYSTEM MODEL FOR THE HIERARCHICAL INFERENCE

We consider a hierarchical inference system with a set
K of clients k 2 K connected to a server over a shared
communication resource, executing classification tasks using
a neural network based classifier. The classification tasks that
the clients face are first processed locally using a small ML
model with low complexity and low accuracy (L-ML); in
addition to the prediction, L-ML quantifies the confidence in
its decision. After comparing the confidence with a threshold,
the client decides whether to offload the task to a server to
be processed with a more complex ML classifier with higher
accuracy (H-ML). However, shared communication resources
limit the number of tasks that the clients can offload.

We assume that classification tasks arrive to a client ac-
cording to a Poisson process. Let �k denote the arrival rate of
tasks to client k, and let � =

P
k2K �k. The nth task arriving

to the system is received by client Kn at time Tn. Let us
denote the true class of task n and the class predicted by
the local L-ML by Cn and Ĉn, respectively. We assume that
the true class of a task received by client k is independent
and identically distributed according to an unknown client-
specific distribution, i.e., ↵k = (↵k(c) : c 2 C), where ↵k(c)
denotes the probability that a task arriving to client k is of class
c, and C is the set of classes. Since true class distributions
of tasks differ from one client to another, and the clients
deploy potentially different L-ML models, the predicted class
distributions generally vary across the clients.

An L-ML model locally processing classification task n
provides predicted class Ĉn and confidence measure Zn. Given
Cn and Ĉn, Zn is assumed to be independent and identically
distributed on a bounded support ⌦Z . As with Cn and Ĉn, we
do not assume a specific distribution for Zn.

Since in our hierarchical inference system the offloading
decisions are based on the local inference confidence, the
quality of confidence metric is essential. Nevertheless, the
offloading algorithm introduces in Section III converges to
an optimal threshold policy without prior knowledge of the
distribution of Zn, regardless of the choice of metric.

When L-ML is a neural network used for classification, a
simple choice for the confidence metric is the largest output of



the last soft-max layer; such a quantity must be at least 1/|C|
(when all class outputs are equal), and cannot exceed 1.

Next, we define the stationary threshold policy for the
hierarchical inference.

Definition 1 (Stationary Threshold Policy). The offloading

decision under a threshold policy ⇡✓ with a threshold ✓ 2 ⌦Z

is given by

I⇡✓
n = I{Zn < ✓}, ✓ 2 ⌦Z , (1)

where I⇡✓
n = 1 indicates offload of task n.

Offloading a task incurs resource expenditures, e.g., extra
load on the communication channel or an operational cost of
using the server. The offloading cost of task n is modelled by a
random variable Xn; the offloading costs of the tasks received
by client k are assumed to be independent and identically dis-
tributed according to an unknown client-specific distribution
with a bounded support (without a loss of generality, [0,1])
and mean µ�1

k = E[Xn|Kn = k]. We consider the case where
the clients share a pool of resources, e.g., wireless access to
a BS/server. The constraint on resource utilization is given byX

k2K
�̂⇡✓
k µ�1

k  �, (2)

where �̂⇡✓
k is the offloading rate of client k under the stationary

threshold policy ⇡✓. In practical systems with shared resources,
the offloading cost can be thought of as the monetary value of
using computational resources at the server, where � can be
interpreted as the budget per unit operational time. When it
comes to communications, the mean offloading cost µ�1

k can
be thought of as the mean service time of client k, with � being
a utilization constraint which indirectly controls the average
delay in the system. The latter interpretation of � is due to
an observation that in a network where a scheduling policy
controls how multiple clients share communication resources,
utilization can be treated as a proxy for average delay as the
two quantities are monotonically related to each other.

Although our model and algorithm can be used in more
general settings, in the remainder of this paper we focus on
the accuracy-delay tradeoff in hierarchical inference systems
where the task offloading follows a scheduling policy. Since
the offloading rates �̂⇡✓

k are well-defined under the stationary
threshold policy ⇡✓, we have that

�̂⇡✓
k = lim

N!1

1

TN

X

n2[N ]:Kn=k

E[I⇡✓
n ] (3)

= lim
N!1

�

N

X

n2[N ]:Kn=k

E[I⇡✓
n ]. (4)

Once task n is received by client Kn at time Tn, the
client processes the task using its L-ML model. Based on
the confidence Zn of the L-ML prediction, the client decides
whether to send the task to the server to be classified by
the H-ML model. We assume that the H-ML classifies the
tasks perfectly, i.e., has 100% inference accuracy, and that the
computation time by the client and the server is negligible
compared to the communication time needed to offload the
task. In addition, we assume that there is a feedback channel
between the server and the clients, which is used to transmit

parameters required by the algorithm (e.g., inference results
and bandit loss of an offload, formally defined later in Section
III-B). Since the transmitted data is relatively small, we assume
that the delay on the feedback channel is negligible.

A. Problem Formulation

Given the shared communication resource and the hierarchi-
cal inference mechanism, we want to find an offloading policy
that maximizes the overall inference accuracy of the system
while satisfying the utilization constraint. By substituting (4)
in (2), we write the inference accuracy maximization problem
as the minimization

min
✓2⌦Z

lim
N!1

1

N

NX

n=1

E[Yn(1� I⇡✓
n )] (5)

s.t. lim
N!1

1

N

NX

n=1

E[I⇡✓
n Xn] 

�

�
, (6)

where Yn = I{Cn 6= Ĉn}, e.g., the indicator of an incorrect
local classification. If Xn and Yn were available at each time
step before taking the offloading decision, the constrained
optimization problem in (5) could be solved using the Lya-
punov drift minimization technique referred to as the drift-
plus-penalty algorithm [13]. However, due to the structure
of the hierarchical inference system, Xn and Yn are only
revealed if task n is offloaded. Since they are observed
in hindsight, we need a methodology that allows efficient
exploration/exploitation of the system’s unknown statistics. To
this end, we adopt a constrained bandit framework.

Next, we introduce an algorithm based on Lyapunov-EXP4
that makes offloading decision based on a single threshold.
In Section III-C, this algorithm is extended to the multiple
thresholds case, enabling its distributed implementation.

III. THRESHOLD OFFLOADING POLICY USING
LYAPUNOV-EXP4 (LY-EXP4)

To solve the optimization problem (5), we propose a compu-
tationally efficient online learning algorithm Lyapunov-EXP4
(Ly-EXP4) based on the contextual bandits framework. Ly-
EXP4 makes decisions using a loss structure that employs the
Lyapunov drift minimization technique, maximizing accuracy
while satisfying a long-term average expectation constraint.

A. Virtual Queue and Drift-plus-Penalty Ratio

In this subsection, we introduce a virtual queue capturing
the constraint (6) and a drift-plus-penalty ratio motivated by
[13], which are then utilized to specify the bandit loss. To
start, we define the causal policy space for our problem.

Definition 2 (Causal Policy). Let ⇡ be a policy that yields a

sequence of offloading decisions {I⇡n 2 {0, 1} : N � n � 1}.

Under ⇡, the history until time n is the filtration

F⇡
n = � ({Zt+1, I

⇡
t , XtI

⇡
t , YtI

⇡
t : 1  t  n}) , (7)

where �(·) denotes the sigma-field, and Xt and Yt are

observed only if task t is offloaded (as implied by the terms

XtI⇡t and YtI⇡t ). A policy ⇡ is said to be causal if ⇡ is non-

anticipating, i.e., {I⇡n = a} 2 F⇡
n�1 for all a, n.



We define the virtual queue under casual policy ⇡ as

Q⇡
n+1 = max[Q⇡

n + I⇡nXn � �

�
, 0], (8)

where Q⇡
1 = 0. The time average expectation constraint (6) can

be viewed as a mean rate stability constraint of a virtual queue
[13] under causal policy ⇡. To see how the mean rate stability
of Q⇡

n enforces (6), note that by the telescoping argument

Q⇡
N+1

N
� Q⇡

1

N
� 1

N

NX

n=1

I⇡nXn � �

�
. (9)

Taking expectations and letting N ! 1 one can show that

lim
N!1

E[Q⇡
N+1]

N
� lim

N!1

1

N

NX

n=1

E[I⇡nXn]�
�

�
. (10)

If Q⇡
n is mean rate stable, i.e., limN!1

E[Q⇡
N+1]

N = 0, then the
constraint (6) is satisfied.

With a Lyapunov function L(Qn) = 1
2Q

2
n, for any causal

policy ⇡ we have
L(Q⇡

n+1)� L(Q⇡
n)

=
1

2

⇣
max[Q⇡

n + I⇡nXn � �

�
, 0]

⌘2
� 1

2
Q⇡

n
2 (11)

=
1

2
((I⇡nXn)

2 + (
�

�
)2) +Q⇡

nI
⇡
nXn �Q⇡

n
�

�
(12)

 B +Q⇡
nI

⇡
nXn �Q⇡

n
�

�
, (13)

where B = 1
2 (1 + ( �� )

2).
Let En[·] = E[·|F⇡

n ] denote the conditional expectation
given the history up to time n. Denote the Lyapunov drift by
�(Q⇡

n) = En�1[L(Q⇡
n+1)�L(Q⇡

n)], where Q⇡
n is measurable

with respect to F⇡
n�1 for all n (⇡ is causal). At each slot,

the drift-plus-penalty algorithm opportunistically minimizes
an upper bound on the drift (13) summed with the one-slot
penalty, which in our setting leads to

�(Q⇡
n) + V En�1[Yn(1� I⇡n )]

B +Q⇡
nEn�1[I

⇡
nXn] + V En�1[Yn(1� I⇡n )]�Q⇡

n
�

�
, (14)

where V > 0 is the parameter controlling the trade-off
between penalty and drift. Note that if Xn and Yn were
observed before the offloading decision of task n, i.e., if
Xn, Yn 2 F⇡

n�1, the one-slot optimization problem the drift-
plus-penalty algorithm tackles would become

min
I⇡
n2{0,1}

Q⇡
nI

⇡
nXn/V + Yn(1� I⇡n ). (15)

The aforementioned bandit algorithm Ly-EXP4, formally pre-
sented in the next subsection, deploys (15) as the loss at time
n and exhibits convergence to a near-optimal solution of (5).

B. Ly-EXP4: A Bandit with Expert Advice

In the bandits with expert advice framework, instead of
learning an arm selection policy, the agent learns a way
of combining experts’ predictions that minimizes the regret.
One common algorithm to tackle this problem is the EXP4
[12], which randomly selects arms according to a distribution
computed by a soft-max operation on the cumulative loss each
expert received.

We formulate hierarchical inference as a multi-arm-bandit
problem with expert advice; the offloading decisions are

denoted by a 2 {0, 1}, where a = 0 corresponds to “not
offloading” while a = 1 corresponds to “offloading”. In
addition, we assume that there are M experts, each corre-
sponding to a threshold policy as in (1) with a threshold
✓m 2 M, m 2 [1, . . . ,M ], where M is a set of discretized
thresholds on the support of the confidence metric ⌦Z . Note
that discretizing the thresholds induces a discretization error;
while we do not assume a specific discretization scheme, we
assume that the optimality gap between the best threshold in
M and the optimal (continuous) solution to (5) is negligible.

Assumption 1. Let AN (⇡) denote the accuracy at time N
under policy ⇡, i.e.,

AN (⇡) =
1

N

NX

n=1

E[Yn(1� I⇡n )]. (16)

Given a set of discretized thresholds M, there exists at least

one threshold ✓m 2 M such that

lim
N!1

AN (⇡✓m)�AN (⇡✓⇤)  ✏0, (17)

where ✓⇤ 2 ⌦Z is the optimal threshold for problem (5).

A simple discretization scheme would be to select uniform
discretization intervals, which ensures ✏0  1

M . Note that As-
sumption 1 enforces not only a condition on the discretization
scheme but also a smoothness property on the distribution of
the confidence metric Zn.

Next, we define bandit loss based on (15); for task n, let
ln,a denote the loss corresponding to decision a 2 {0, 1},

ln,a =

8
<

:

Yn a = 0 (do not offload),
QnXn

V
a = 1 (offload).

(18)

Note that such a loss is a combination of the minimization
objective and the utilization constraint. Based on (18), the
loss associated with the offloading decisions taken by the
algorithm, Ln, and the loss associated with the mth expert,
Ln,m, can be written as

Ln = ln,In , Ln,m = ln,In,m , 8n,m, (19)
where In,m = I{✓m > Zn} is the offloading decision of expert
m for the task n. Since the virtual queue process Qn is driven
by the decisions Ly-EXP4 makes, expert loss Ln,m depends
not only on the expert’s own decisions In,m but also on the
previous decisions of Ly-EXP4.

The regret that we want to minimize is defined relative to
the best expert in hindsight,

RN = E
"

NX

n=1

Ln � min
m2M

NX

n=1

Ln,m

#
. (20)

The regret RN , loss Ln and expert loss Ln,m are all incurred
under the Ly-EXP4 policy. However, for notational simplicity,
we drop superscript ⇡LYEXP4 from these expressions.

Ly-EXP4 acts in this bandit setting similarly to EXP4. De-
pending on Zn, each expert incurs a loss due to either incorrect
local inference or offloading cost. Based on the experts’ cu-
mulative loss, Ly-EXP4 computes normalized weight for each
expert via soft-max, where a weight represents “contribution”
of an expert to the stochastic offloading decision.



Since Xn and Yn are observed only if a task is offloaded,
experts’ losses are not always known. To overcome this
problem, we employ an importance-weighted estimator of the
experts’ loss, L̂n,m, as defined below. Let Ŝn,m =

Pn
t=1 L̂t,m

denote the cumulative estimated loss for expert m until time
n. The normalized weight of expert m at time n is defined as

!n,m =
exp (�⌘Ŝn�1,m)

P
m2M exp (�⌘Ŝn�1,m)

. (21)

It follows from (21) that an expert with a higher loss will
be assigned a smaller weight. At time n, Ly-EXP4 takes a
random offloading decision with probability pn equal to the
sum of the weights of the experts advising to offload based
on the observed confidence Zn,

pn =
X

m:✓m>Zn

!n,m. (22)

Note that this procedure is effectively as same as sampling an
expert m at random from distribution !n = (!n,m : m 2 M)
and following the offloading decision of the selected expert,
where the experts with lower cumulative loss have higher
probability of being chosen. Since pn depends on the losses
received until time (n�1), we define the importance-weighted
loss estimate as

L̂n,m =

8
>>>><

>>>>:

0, In = 0
Yn

pn
, In = 1 and In,m = 0

QnXn

V pn
, In = 1 and In,m = 1

, 8n,m. (23)

If task n is offloaded, the experts incur a loss according to
their own offloading decisions In,m; if task n is not offloaded,
experts incur zero loss. The next lemma establishes that L̂n,m

is an unbiased estimator of ln,In,m .

Lemma 1. Since En�1[I{In = 1}] = pn and pn is Fn�1-

measurable, Ln,m is an unbiased estimator of ln,In,m , i.e.,

En�1[L̂n,m] = ln,In,m . (24)

The proof of Lemma 1 is given in Appendix A.
In contrast to EXP4, the offloading decisions in Ly-EXP4

affect the loss in subsequent steps through the virtual queue
Qn, representing the constraint violation. As a consequence
of the adopted loss function, when the resource utilization
grows the weights of the experts in favor of offloading become
smaller. Similarly, when the resource utilization is low, the
algorithm tends to offload more due to decreased offloading
loss. Ly-EXP4 is formalized as Algorithm 1. In what follows,
we prove finite-horizon regret bounds for Ly-EXP4.

Proposition 1 (Ly-EXP4 Regret Analysis). Given the number

of experts M , learning rate ⌘ > 0, and V > 0, the regret

under Ly-EXP4 satisfies

RN  RN,m  log(M)

⌘
+
⌘N

2
⇣, 8m 2 M, (25)

where ⇣ > 2. Specifically, for ⌘ =
q

2 log(M)
N⇣ the regret is

RN = O
⇣p

2N⇣ log(M)
⌘
. (26)

The proof is outlined in Appendix B.
Note that Ly-EXP4 converges to the threshold minimizing

the regret based on the loss formed as a combination of
the objective and the problem constraint. Therefore, the best
expert’s policy Ly-EXP4 converges is not necessarily the
optimal threshold policy for problem (5). In the next theorem,
we prove Ly-EXP4 is asymptotically near-optimal.

Theorem 1 (Optimality of Ly-EXP4). Let ⇡ and ⇡✓⇤ denote

the policy of Ly-EXP4 and the optimal threshold policy,

respectively. By Assumption 1, the regret bound in Proposition

1, and for B = 1
2 (1 + ( �� )

2),

AN (⇡)�AN (⇡✓⇤) 
B

V
+

RN,m‘

N
+ ✏0, (27)

where m0
is the expert with threshold ✓m0 2 M that yields

the best solution to problem (5). For ⌘ =
q

2 log(M)
N⇣ and as

N ! 1, the optimality gap between Ly-EXP4 and the optimal

threshold policy is

lim
N!1

[AN (⇡)�AN (⇡✓⇤)] = O(
1

V
) + ✏0. (28)

The proof is provided in Appendix C.
Algorithm 1 Lyapunov - EXP4 (Ly-EXP4)

1: Input: N, �, �, V , M, ⌘
2: Initialize Q1 = 0, Ŝ0,m = 0, 8m
3: for n = 1, · · · , N do
4: Observe Zn,

5: pn =

P
m:✓m>Zn

e�⌘Ŝn�1,m

P
m2M

e�⌘Ŝn�1,m
, 8m

6: Choose the offloading decision In ⇠ pn,
7: Compute estimates of expert losses L̂n,m, 8m
8: Ŝn,m = Ŝn�1,m + L̂n,m, 8m
9: Qn+1 = max[Qn + InXn � �

� , 0]

As seen from Proposition 1, the regret achieved by Ly-EXP4
differs by only a constant factor from EXP4. This means that
by Theorem 1, Ly-EXP4 solves constrained bandit problems
at a convergence rate similar to that of EXP4. Note that
increasing M and/or V will decrease the sub-optimality error,
but M increases the complexity of the algorithm while V
increases the sensitivity to constraint violation and decreases
convergence speed.

C. Extension to Multiple Thresholds

In Section III-B, we provide a regret and discuss an optimal-
ity analysis for the setting where a single instance of Ly-EXP4
is used to find a single threshold policy applied by all clients.
However, by treating different groups of clients as different
“contexts”, one can deploy separate instances of Ly-EXP4 for
each group of clients to learn a multi-threshold policy for the
offloading problem (5). At one extreme, each client can use a
separate instance of Ly-EXP4 to find an individual threshold
policy, which eventually allows our algorithm to be used in a
distributed manner.

In what follows, we show the regret for the multi-threshold
case based on the principles outlined in Chapter 18.1 of [12].



Let g 2 G denote the set of disjoint groups of clients, and Gn

denote the group task n belongs. By Proposition 1, the regret
of the Ly-EXP4 instance executed for group g 2 G is

R(g)
N 

vuut2
NX

n=1

I{Gn = g}⇣ log(M), (29)

where the sum under the square root counts the number of
tasks that belong to group g 2 G. Since the number of tasks
received by the clients in a group is not known in advance,
we use the changing learning rate encountered in the anytime
version of EXP4,

⌘(g)n =

s
log(M)

⇣
Pn

t=1 I{Gt = g}
. (30)

Defining RN as the sum of individual regrets across all groups,
the regret for multi-threshold case can be bounded as

RN 
X

g2G
R(g)

N 
X

g2G

vuut2
NX

n=1

I{Gn = g}⇣ log(M) (31)


p
2N |G|⇣ log(M), (32)

where (32) is the worst-case regret corresponding to the setting
where each group receives same number of tasks.

As seen from (32), the regret bound for multiple threshold
case scales up with the square root of the number of client
groups. As discussed in Section IV, although Ly-EXP4 learns
a multiple threshold policy slower than a single threshold
policy, it achieves significantly better accuracy with a multiple
threshold policy by exploiting the heterogeneity in service time
and confidence metric distributions across client groups.

IV. SIMULATION RESULTS

We conducted extensive simulations running Ly-EXP4 in
both single and multiple thresholds settings on real and
synthetic models. Specifically, we consider a hierarchical
inference system with 4 client groups – with 25 clients
each, each experiencing different service times due to various
factors including distance to the server and channel quality. For
this system, we report results that demonstrate convergence
of Ly-EXP4 as well as delay-accuracy and fairness-accuracy
tradeoffs.

In the synthetic model, client k 2 K(g) receives tasks
according to a Poisson process with rate �k, where K(g)

denotes the set of clients in client group g 2 G. The true class
Cn is assigned to each task according to a client-specific class
distribution ↵k, where the arrival rates �k, and the class prob-
abilities ↵k(c), c 2 C are sampled from a uniform distribution
with a support [0, 1] and normalized so that total arrival rate
� =

P
g2G

P
k2K(g) �k = 1 and

P
c2C ↵k(c) = 1. A synthetic

classifier model for L-ML is characterized by a confusion
matrix, denoted by H , where each element represents the
likelihood of the L-ML model predicting class c0 given that
the true class is c, i.e., Hc,c0 = P(Ĉn = c0|Cn = c). The
elements of H are generated uniformly at random from [0, 1],
and the diagonal elements are adjusted such that the model is
typically most confident about the true class. Each row is then
normalized so that

P
c02C Hc,c0 = 1, 8c 2 C.

In addition to the above, confidence Zn is sampled from a
distribution depending on the correctness of the inference,

Zn ⇠
(

Uniform(0.1, 0.9), if Cn 6= Ĉn,

Uniform(0.5, 1), if Cn = Ĉn.
(33)

In the case of real datasets and models, the tasks are
assigned to the clients with probability �k/� regardless of
the true class of a task; confidence Zn is observed as the
maximum of the last soft-max layer of the classifier model.
We utilize relatively small models that are deployable on IoT
devices, including a simple neural network with a single dense
layer applied to FMNIST dataset [24], and a LeNet-5 model
[25] applied to CIFAR-10 dataset [26].

The clients in a client group experience random service
times with group-specific distributions. We assign equally-
separated mean service times [0.2, 0.4, 0.6, 0.8] to the client
groups. The service times of a client in group g are distributed
according to a beta distribution with mean µ�1

g and variance
0.01. The service times for synthetic and real dataset/model
cases are generated the same way.

To our knowledge, this is the first work focusing on the hier-
archical inference under utilization constraint. To benchmark
the proposed Ly-EXP4 algorithm, we compared it with the
optimal threshold policies and a simple token bucket policy.
When running Ly-EXP4, confidence support ⌦Z is uniformly
discretized using M = 1000 thresholds. To characterize upper
performance limits, we introduce a genie algorithm: a non-
causal offline algorithm with access to the ground truth,
capable of offloading the maximum number of incorrectly
classified tasks at the lowest cost within the constraint. We
also compute the optimal single and multiple threshold policies
using an exhaustive search over [1/C, 1]|G|. The aforemen-
tioned token bucket policy makes greedy offloading decisions
based on the service times of the tasks and the token bucket
increments by �

� at each task arrival. It offloads task n if the
token bucket has more tokens than the service time Xn. When
task n is offloaded, Xn gets deducted from the token bucket.
Therefore, it is aware of the service times before offloading.

A. Convergence of Ly-EXP4

Figure 1 shows the average accuracy and utilization
achieved by Ly-EXP4 and the benchmarks on both synthetic
and real datasets/models. The service times, arrival rates and
utilization constraint parameter � are kept constant across the
simulations; however, inference confidences, L-ML accuracy
of the models, and task class distributions ↵k depend on the
dataset and model used. From these graphs, it is evident that
both versions of the Ly-EXP4 algorithm successfully converge
to their respective optimal solutions within the specified con-
straint. Additionally, it is observed that Ly-EXP4 achieves
higher accuracy with a slightly slower convergence speed
by exploiting heterogeneity across clients while meeting the
utilization constraint.

Note that in some scenarios the token bucket algorithm
achieves accuracy similar to Ly-EXP4 with multiple thresholds
(see Figure 1a), while in other scenarios it performs worse than
Ly-EXP4 with single threshold (see Figure 1c). This inconsis-



Fig. 1: Sample accuracy as the number of tasks grows. The learning rate ⌘ is determined according to Theorem 1 and (30). In all cases
V = 30, � = 0.1 and � = 1.

tent performance of the token bucket algorithm is due to its
greedy policy that prioritizes the clients with small service
times. If those clients’ L-ML have low local accuracy, token
bucket achieves very good performance; otherwise, it offloads
many correctly classified task and thus uses the resources
inefficiently. Ly-EXP4 avoids this by making decisions based
on the inference confidence.

B. Delay-Accuracy Tradeoff

We further investigate the accuracy-delay trade-off relying
on the monotonic relation between utilization and average
delay that is typical of scheduling policies. We simulate a
network scenario where at most one task from each client
can be offloaded using a shared communication channel under
a processor sharing scheduling. If a client has an ongoing
offload, any new tasks received by the client wait in a
client-specific FCFS queue. If a task is offloaded, the delay
includes the waiting time in the client’s FCFS queue and the
transmission time on the processor sharing channel; if a task
is not offloaded, its delay is zero. The communication time of
task n depends not only on the random service time Xn but
also on other tasks simultaneously being offloaded.

Ly-EXP4 updates its weights based on the loss it receives
after each offload, which is acceptable for scheduling policies
where offloads are performed sequentially (e.g., FCFS). How-
ever, this poses a problem for scheduling policies allowing
simultaneous offloads such as ours, since some offloading
decisions may be taken based on outdated parameters. It
was shown in [27] that delayed feedback in EXP3 causes an
increase in the regret bound which scales with the number of
decisions based on outdated parameters. However, the effect
of delayed feedback in our settings is negligible since the
offloading decisions for the upcoming tasks are made only
after the ongoing offload is completed.

For increasing utilization constraint, corresponding average
delay and accuracy results are illustrated together in Figure 2.
One can observe diminishing returns in accuracy with respect
to delay. Moreover, the accuracy improvements obtained by
utilizing multiple thresholds is more significant when the
utilization constraint is low, implying that using multiple

thresholds is more beneficial when the resources are scarce
and thus more efficient offloading decisions are needed.

C. Fairness-Accuracy Tradeoff

As the results show, Ly-EXP4 with multiple thresholds
generally achieves higher accuracy than the single threshold
strategy. This is accomplished by exploiting the heterogeneity
in service time, and task and class distributions across clients.
We complement those results by characterizing fairness as
quantified by the Jain’s index

J (A(1)
N , A(2)

N , . . . , A(K)
N ) =

(
PK

k=1 A
(k)
N )2

K
PK

k=1 A
(k)
N

2 , (34)

where A(k)
N = 1

Nk

PN
n=1 Yn(1� In)I{Kn = k} is the sample

accuracy of client k and Nk is the number of tasks it receives.
Figure 3 shows that Ly-EXP4 with a single threshold is

almost perfectly fair across clients, which also means that
a single instance of Ly-EXP4 is fair to the clients within a
group. As the number of client groups grows, one observes
an improvement in the overall accuracy at the expense of
fairness. This allows flexibility when utilizing Ly-EXP4 in
different settings. By comparison, the token bucket policy
achieves fairness similar to Ly-EXP4 with 4 groups. However,
token bucket cannot provide an option of trading fairness for
accuracy the way Ly-EXP4 can.

Fig. 2: Average delay vs. accuracy under increasing utilization
constraint.

V. CONCLUSION

In this paper, we proposed a low-complexity online offload-
ing algorithm that we refer to as Lyapunov-EXP4 (Ly-EXP4).



Fig. 3: Accuracy vs. fairness as the number of client groups varies.

Ly-EXP4 combines Lyapunov drift minimization techniques
and the bandits with expert advice framework to maximize
accuracy in a hierarchical system with multiple clients, con-
verging to an optimal threshold policy within the utilization
constraint. We proved a sublinear regret bound and near-
optimality of Ly-EXP4; the proposed framework and presented
analysis may be relevant to a broader class of constrained
bandit problems. The convergence of Ly-EXP4 and the delay-
accuracy-fairness tradeoffs achievable in hierarchical inference
systems are demonstrated via simulations on real and syn-
thetic datasets and models. As part of the future work, we
aim to explore settings with multiple servers having varying
communication capacities and model accuracy, and offloading
policies that exploit heterogeneity across not only clients but
also task classes. Exploring fairness-performance tradeoffs in
such system present another line of potentially interesting
future work.

APPENDIX

A. Proof of Lemma 1

The loss estimate (23) can be re-written as

L̂n,m =
ln,In,mI{In = 1}

pn
, 8n,m. (35)

Since En�1[I{In = 1}] = pn,

En�1[L̂n,m] = En�1


ln,In,mI{In = 1}

pn

�
(36)

=
ln,In,m

pn
En�1 [I{In = 1}] = ln,In,m , (37)

which shows L̂n,m is indeed an unbiased estimate of ln,In,m .

B. Proof of Proposition 1

Lemma 2 (Bounded first and second moment of Qn). For

V > 0 and a lower bound on service times xmin  Xn, 8n,

the virtual queue process under Ly-EXP4 policy has bounded

first and second moment

E[Qn] = O( V
xmin

), E[Q2
n] = O(( V

xmin

)2). (38)

Proof Sketch. This proof is inspired by [28] and the extensions
in [20] which allow us to bound the moment generating
function of Qn. Due to space limitations we refer the reader
to Lemma 7 in [20] for the intermediate steps of the proof.

From (8), for some l⇤ > �
� , �⇤ < �

� and ✏ > 0, we obtain
En�1[Qn+1 �QnI{Qn � l⇤, pn < �⇤}]  �✏. (39)

By using the Taylor expansion on En�1[e⌘0(Qn+1�Qn)], the
negative drift (39), and due to the fact |Qn+1 � Qn| < 1
because Xn is bounded and Yn is in (0, 1], for some ⌘0 < 1
and ⇢0 = 1� ✏⌘0 + ⌘20(e� 2) it holds that

En�1

h
e⌘0(Qn+1�Qn)I{Qn � l⇤, pn < �⇤}

i
 ⇢0 < 1, (40)

En�1

h
e⌘0(Qn+1�Qn)I {Qn < l⇤}

i
e⌘0 . (41)

Let xmin denote a lower bound on Xn, i.e., Xn � xmin >
0, 8n. Defining l⇤ = V

xmin
, we argue that {Qn � l⇤, pn � �⇤}

is a low-probability event, i.e.,
P{Qn � l⇤, pn � �⇤}  �0. (42)

Let Ln,ma be the loss of any expert m with offloading decision
In,m = a. The low-probability event argument stems from the
fact that by the definition of the expert weights and expert
losses, if Qn � V

xmin
, then Ln,m1 � Ln,m0 for all m, and the

weight distribution !n shifts towards smaller values, making
the algorithm less likely to offload.

Following the steps in [20], and using (40), (41) and (42),
leads us to the inequality

E0

⇥
e⌘0Qn+1

⇤
 ⇢E0

⇥
e⌘0Qn

⇤
+ e⌘0(l

⇤+1), (43)

where ⇢ = ⇢0 +
q
�0(

1
1� + 1) < 1 and  = 1

4 (e
3⌘0 � e⌘0).

Taking telescoping sum over n yields

E0

⇥
e⌘0Qn

⇤
 ⇢ne⌘0Q1 +

1� ⇢n

1� ⇢
e⌘0(l

⇤+1). (44)

Applying the Chernoff bound, we obtain a bound on the
cumulative CDF of Qn,

P [Qn � q]  ⇢ne⌘0Q1�q +
1� ⇢n

1� ⇢
e⌘0(l

⇤+1�q). (45)

Since Qn is non-negative for all n and Q1 = 0, for ⌘0 = 2
l⇤ <

1 we obtain a bound on the second moment

E[Q2
n] = 2

Z 1

0
qP [Qn � q] dq (46)

 2

⌘20
(⇢n +

1� ⇢n

1� ⇢
)e⌘0(l

⇤+1) = O(l⇤2). (47)

Setting l⇤ = V
xmin

completes the proof. The proof for the first
moment follows similar procedure.

Proof of the Regret Bound. Let us define the expected regret
relative to expert m as

RN,m = E
"

NX

n=1

Ln �
NX

n=1

ln,In,m

#
. (48)

To prove the claim, we will bound Rn,m for all m, including
the best expert. Let Ŝn,m =

Pn
t=1 L̂t,m denote the cumulative

estimated loss for expert m. For the sake of convenience and
brevity, we introduce pn,a = P{In = a}, 8a 2 {0, 1}, where
pn,1 = pn and pn,0 = 1� pn. Let L̂n,ma be the loss estimate
of any expert m with offloading decision In,m = a. From
Lemma 1,

E[Ŝn,m] =
nX

t=1

lt,It,m , (49)

En�1[Ln] =
X

a2{0,1}

pn,aln,a =
X

a2{0,1}

pn,aEn�1[L̂n,ma ].

(50)



By the tower rule for conditional expectations and (50),

RN,m = E[
NX

n=1

X

a2{0,1}

pn,aEn�1[L̂n,ma ]]� E[ŜN,m] (51)

= E[
NX

n=1

X

a2{0,1}

pn,aL̂n,ma ]� E[ŜN,m] (52)

= E[ŜN � ŜN,m]. (53)

Let us introduce Wn =
PM

m=1 exp (�⌘Ŝn,m) and note that
for all experts Ŝ0,m = 0. Due to Ŝn,m � 0, 8m,n,

exp (�⌘ŜN,m) 
MX

m=1

exp (�⌘ŜN,m) = WN = M
NY

n=1

Wn

Wn�1

(54)
The ratio in the product above can be written in terms of pn,a,

Wn

Wn�1
=

MX

m=1

exp (�⌘Ŝn�1,m)

Wn�1
exp (�⌘L̂n,m) (55)

=
X

a2{0,1}

pn,a exp (�⌘L̂n,ma) (56)

By using the fact that 1� x  exp(�x)  1� x+ x2

2 , where
the lower bound is valid 8x 2 R and the upper bound is valid
8x � 0,

Wn

Wn�1

(a)


X

a2{0,1}

pn,a(1� ⌘L̂n,ma +
⌘2

2
L̂2
n,ma

) (57)

(b)
 exp(�⌘

X

a2{0,1}

pn,aL̂n,ma +
⌘2

2

X

a2{0,1}

pn,aL̂
2
n,ma

), (58)

where in (a) the upper bound and in (b) the lower bound of
exp(�x) are used. When we substitute (57) in (54), we obtain

e�⌘ŜN,m  M exp(�⌘
NX

n=1

X

a2{0,1}

pn,aL̂n,ma

+
⌘2

2

NX

t=1

X

a2{0,1}

pn,aL̂
2
n,ma

) (59)

=M exp(�⌘ŜN +
⌘2

2

NX

t=1

X

a2{0,1}

pn,aL̂
2
n,ma

) (60)

By taking the logarithm of both sides and rearranging the
terms, it follows that

ŜN � ŜN,m  log(M)

⌘
+
⌘

2

NX

n=1

X

a2{0,1}

pn,aL̂
2
n,ma

. (61)

Taking the expectation gives us a bound on regret relative to
any expert,

RN,m  log(M)

⌘
+
⌘

2
E[

NX

n=1

X

a2{0,1}

pn,aL̂
2
n,ma

]. (62)

Finally, we need to bound the last term on the right side. Since
En�1[L̂n,m] = lt,In,m ,

E[
NX

n=1

X

a2{0,1}

pn,aL̂
2
n,ma

] = E[
NX

n=1

X

a2{0,1}

pn,aEn�1[L̂
2
n,ma

]]

= E[
NX

n=1

(pn,0l
2
n,0 + pn,1l

2
n,1)]  N +

NX

n=1

E[pn,1(
QnXn

V
)2]

 N +
1

V 2

NX

n=1

E[Q2
n]  N⇣, (63)

where the last inequality follows from Lemma (2) and ⇣ =
O( 1

xmin
) + 1 is a constant. Substituting (63) in (62) completes

the proof.

C. Proof of Suboptimality of Ly-EXP4

Let ⇡ denote the Ly-EXP4 policy. From (14),
�(Q⇡

n) + V En�1[Yn(1� I⇡n )]

 B+Q⇡
nEn�1[I

⇡
nXn] + V En�1[Yn(1� I⇡n )]�Q⇡

n
�

�
(64)

= B+En�1[Ln]�Q⇡
n
�

�
, (65)

where the last equation stems from the definition of Ln. By
the telescoping argument and taking the expectation we obtain

E[L(Q⇡
N )]+V

NX

n=1

E[Yn(1� I⇡n )]

NB + V E[SN ]� �

�

NX

n=1

E [Q⇡
n]. (66)

Let ✓m0 2 M denote the best discretized threshold for the
optimization problem (5). For brevity, we denote threshold
policy ⇡✓ by (✓). Using the regret bound relative to ✓m0 in
(66) yields

E[L(Q⇡
N )] + V

NX

n=1

E[Yn(1� I⇡n )]

NB + V E[SN,m0 ] + V RN,m0 � �

�

NX

n=1

E [Q⇡
n] (67)

=NB +
NX

n=1

E[Q⇡
n]E[I(✓m0 )

n Xn] + V
NX

n=1

E[Yn(1� I(✓m0 )
n )]

+ V RN,m0 � �

�

NX

n=1

E [Q⇡
n] (68)

NB + V
NX

n=1

E[Yn(1� I(✓m0 )
n )] + V RN,m0 , (69)

where in the last inequality we use the fact that ✓m0 satisfies
the utilization constraint (6). Since L(Q⇡

N ) � 0 and by
Assumption 1, rearranging the terms and dividing both sides
by NV leads to

AN (⇡)�AN (✓⇤)  B

V
+

RN,m0

N
+ ✏0, (70)

where AN (⇡) and AN (✓⇤) are the average accuracy at time N
under Ly-EXP4 and the optimal threshold policy, respectively.
According to Proposition 1, Ly-EXP4 converges to a threshold
policy corresponding to the best expert in the bandit setting.
Therefore, the limit limN!1 AN (⇡) exists, which completes
the proof.
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