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ABSTRACT
Increasing demand for computationally intensive jobs on mobile de-
vices is driving interest in computation o!oading to the edge/cloud
servers. This paper presents a comprehensive framework for man-
aging o!oading of stochastic and heterogeneous user(s)-generated
jobs while considering job deadlines and congestion on wireless
channels and edge/cloud servers. The goal of o!oading is to maxi-
mize either the net computational work o!oaded or power savings.
We propose a class of policies called Predictive Abandonment (PA),
where users opportunistically cut and o!oad jobs but abandon
o!oading if they predict that communication and computation
delays will preclude on-time completion. Although these user-
driven policies are desirable from an implementation perspective
and achieve relatively good performance, they cannot coordinate
tradeo"s amongst users with heterogeneous job types. To address
this, we propose a complementary approach to coordinate o!oad-
ing based on Probabilistic Admission Control and Cut Assignment
(PACCA). When combined with PA, it delivers signi#cant o!oad-
ing bene#ts. We also develop an upper bound on the bene#ts of
o!oading, which can serve as a baseline for evaluating the ad-
ditional gains of more complex o!oading policies. We evaluate
these policies via simulation for a range of loads and job pro#les,
demonstrating robust gains over a naive greedy o!oading policy
and near-optimal performance in some settings. Furthermore, we
assess the robustness of PACCA + PA to imperfect knowledge of
o"ered job rates.
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• Networks→ Network performance analysis.
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1 INTRODUCTION
Next-generation applications and the MEC fabric. A new gener-
ation of applications powered by machine learning, e.g., AR/VR/XR,
autonomous navigation, and photo editors, is pushing the compu-
tational and energy limits of mobile devices. One way to overcome
these limitations while addressing low latency and privacy require-
ments is for users to (partially) o!oad computationally intensive
jobs to sharedMobile Edge Computing (MEC) resources. By combin-
ing mobile devices’ sensing, communication, and computation ca-
pabilities with computation at nearby edge servers and/or more dis-
tant cloud servers, one can envision a computation-communication
fabric that can cost-e"ectively address the most demanding mobile
users’ compute jobs.

Bene!ts of compute job o"loading. There are several bene#ts
mobile devices can reap from o!oading. First, devices with insuf-
#cient computation resources may only be able to complete a job
through o!oading. Second, even if a device can complete a job, it
may opt to o!oad to save energy and/or reduce its computational
work to allow for computation of other jobs. Third, o!oading a
job might enable a mobile device to leverage powerful MEC/cloud
computation resources to speed up job completion. In this paper,
we introduce policies that maximize the amount of computational
work mobile devices o!oad or the amount of energy devices can
save while completing jobs within their deadlines.

Managing compute job o"loading. To realize these bene#ts,
one must orchestrate o!oading across various resources and ac-
count for the possible costs of doing so. In general, o!oading a
compute job may include the following steps: (i) (partially) com-
puting the job on the device; (ii) transferring data to an edge/cloud
server via a shared wireless link for performing the remaining
computational work; (iii) performing further computation on the
edge/cloud server; and (iv) transferring the results back to the de-
vice. These steps may involve shared computation resources on
the mobile device, shared wireless channels, and shared edge/cloud
computation resources, which may become congested under sto-
chastic loads. Such systems also face signi#cant heterogeneity in
terms of devices’ computation and/or communication capabilities as
well as running heterogeneous compute jobs with di"erent Quality-
of-Service (QoS) requirements, e.g., constraints on completion time.

https://doi.org/10.1145/3616388.3617515
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To address these complex challenges, we present an o!oading
framework that combines an o!oad admission control policy with
a lightweight user-driven o!oad abandonment policy.

DAG job cu#ing and o"loading. In this work, we focus on
o!oading compute jobs that can be roughly modeled as linear
Directed Acyclic Graphs (DAGs), where the nodes represent com-
putational sub-tasks, e.g., Deep Neural Network (DNN) layers, and
edges represent the data dependencies and potential cut locations be-
tween sub-tasks, e.g., see Figure 1. In our work, we use the #ndings
of [19] to only select a single cut location for time-sensitive jobs.
The authors show that, under a block fading/Markovian stochastic
channel, the optimal policy for o!oading computational work from
a local device to an edge/cloud server would at most o!oad once.
This result assumes a congestion-free system, a device expends
more power on processing a job than sending/receiving data, edge
server processes faster, and $exibility to execute sub-tasks on either
device or edge server. In the shared MEC fabric, a job’s optimal cut
location depends on its computation-communication requirements
per cut location, completion deadline, current wireless network
conditions, and the computational resources of the device it is gen-
erated on relative to available networked edge compute servers. It
also depends on the operator’s preferences [9] (e.g., rewards and/or
fairness). Thus, some form of coordination of o!oading decisions
is necessary.

Figure 1: Cutting and o!loading of a linear DAG.

Applicability of DAG model. There are several works [5–7,
11, 15] in the literature that embrace the linear DAG model as an
e"ective abstraction/approximation of jobs that might particularly
bene#t from o!oading. The underlying driver is the layered struc-
ture of DNNs, currently used in several applications ranging from
image classi#cation, facial, digit, and speech recognition to many
others. We believe that a substantial volume of future workloads
will have structures like linear DAGs, where there is $exibility to
cut and o!oad jobs. For a general DAG, the researchers [18] have
extended their o!oading policy for a linear DAG to a general DAG
by exploiting the notion of a DAG’s critical path.

1.1 Related work
O"loading problem. O!oading of compute jobs to MEC has been
widely studied in the literature, which can be divided into two main
categories: binary o!oading and partial o!oading. In binary of-
$oading, a job is either executed on the device or o!oaded to one or
more edge servers for execution, intending to optimize performance
metrics such as average computation delay or energy consump-
tion. In most cases, the binary o!oading problem is NP-hard, and
various heuristics, approximation, and stochastic approaches have

been proposed, see e.g., [1, 3, 4, 10, 12, 16, 17, 20]. Researchers in
[1] explore the behavior of users when making decisions about
o!oading compute jobs in a multi-MEC server environment. They
propose a Prospect Theory-based solution, considering users’ risk-
seeking or loss-aversion behavior. However, [1] has limitations,
focusing on jobs consisting of independent sub-tasks and lacking a
strict deadline constraint. Similarly, authors in [17] propose a game
theoretic solution.

In [4], authors address fairness and maximum delay tolerance in
hybrid fog/cloud systems by jointly optimizing computation migra-
tion and resource allocation (including computing and bandwidth).
They propose a suboptimal algorithm to solve the formulated mixed
integer non-linear programming problem. Another paper, [20], fo-
cuses on joint computation o!oading decisions, resource allocation,
and content caching strategy. The authors transform the problem
into a convex form and solve it in a distributed and e%cient manner
using optimization theory tools. Given a set of jobs and multiple
edge servers, [3] proposes an approximate solution considering dy-
namic voltage frequency scaling for mobile devices. Their heuristic
algorithm optimizes job o!oading and frequency scaling decisions.
However, all of the aforementioned works focus on static regimes
where all jobs are assumed to be present at the beginning and ignore
congestion on wireless channels and edge servers.

Partial o"loading. In partial o!oading, a job represented as a
DAG, see Figure 1, can be o!oaded at several cut locations. Several
research studies such as [2, 8, 13, 18, 19] have been conducted on
partial o!oading in the context of edge computing. In [19], the
focus is on minimizing energy consumption while meeting latency
constraints in a collaborative mobile device and edge server envi-
ronment with stochastic channels. They propose a polynomial time
algorithm for e%cient job execution. Building on this work, [18] ex-
tends the approach to encompass general DAG frameworks beyond
linear ones. In [2], the authors employ Reinforcement Learning
(RL) to explore o!oading multiple users’ jobs to multiple servers.
The users o!oad heterogeneous jobs over time-varying wireless
channels. However, the RL-based policy requires re-learning for
each new environment (number of users, job pro#les, channel ca-
pacity, etc.). To overcome this limitation, [13] introduces the use
of Meta Reinforcement Learning, enabling the RL agent to quickly
adapt to new environments without re-learning. [8] investigates an
online o!oading framework similar to ours, where heterogeneous
job types with deadline constraints arrive in the network according
to a stochastic process and are executed dynamically over time.
The authors propose a heuristic approach by relaxing the deadline
constraint. The objective is to minimize the average makespan time.

1.2 Contributions and organization
The main contributions of this paper are summarized as follows:

• To the best of our knowledge, this is the #rst work to tackle
the design of o!oading policies for stochastic and hetero-
geneous job requests (distinct deadlines, cut locations, and
computation-communication requirements per cut locations)
under strict deadline constraints.

• We introduce and evaluate two “revenue” models to capture
the possible bene#ts of o!oading. The #rst model, termed
net timely o!oaded workload, aims to maximize the amount



Managing Edge O"loading for Stochastic Workloads with Deadlines MSWiM ’23, October 30-November 3, 2023, Montreal, QC, Canada

of computational work o!oaded while accounting for of-
$oading overheads. The second model, referred to as power
savings with wastage, aims to maximize power savings while
considering power wastage associated with unsuccessful of-
$oads. As a comparative baseline, we derive an upper bound
on the revenue under any o!oading and scheduling policy.

• We propose several classes of o!oading policies. They di"er
in terms of (1) their requirements of knowledge of the system
state, including adapting to the long-term o!oading o"ered
load and job types; (2) leveraging measurement-based aban-
donment policy, which reacts dynamically to congestion
resulting from an excessive number of active users or poor
wireless channel capacity relative to the job deadlines; and
(3) their ability to adapt decisions regarding the choice of cut
location and the fraction of jobs to admit based on changes
in long term loads. We evaluate and compare these policies
using representative job pro#les from [6]. We do this for a
range of o"ered job rates resulting in varying levels of con-
gestion on the wireless network and edge server and study
how close their performance is to the performance upper
bound. Since some policies, such as PACCA + PA, our best
policy, require prior knowledge of loads and thus possibly
re-optimization when loads change, we also evaluate it under
imperfect estimates of o"ered loads showing the approach
is robust to such errors.

The paper is organized as follows: In Section 2, we introduce our
basic system model. In Section 3, we develop an upper bound on the
achievable revenue rate and explore di"erent o!oading manage-
ment policies. We end the section with some simulation results. We
discuss o!oading management policies for heterogeneous compute
job types in Section 4. Finally, Section 5 concludes the paper.

2 SYSTEM MODEL
We begin by introducing our system model for a set of users, gen-
erating homogeneous jobs (identical deadlines, cut locations, and
computation-communication requirements per cut location) with
limited local computation resources and a limited amount of shared
wireless network and edge/cloud computation resources. We later
consider heterogeneous jobs.

2.1 Model for load
We letU denote a set of users sharing a wireless access point – the
set has cardinality 𝐿 = |U|. Each user 𝑀 generates homogeneous
jobs according to a stationary process. Users can have di"erent
channel qualities/classes.We let C denote the set of possible channel
qualities with associated capacities. We let 𝑁𝐿 denote the channel
quality of user 𝑀 and use 𝑂𝐿,𝑀𝐿 to denote the arrival rate of jobs
from user 𝑀. The total arrival rate of jobs from users with channel
quality 𝑁 is given by 𝑂𝑀 =

∑
𝐿↑U 𝑂𝐿,𝑀𝐿1(𝑁𝐿 = 𝑁). We denote the

vector of total arrival rates for each channel quality as 𝜴 = (𝑂𝑀 , 𝑁 ↑
C). Finally, we de#ne the total job arrival rate to the system as
𝑂 =

∑
𝑀↑C 𝑂𝑀 .

2.2 Job model
The execution of a job may involve computation on a user’s de-
vice, o!oading of data to the edge/cloud server, processing on the

edge/cloud server, and then transmitting the result back to the
device. Initially, we focus on a single job type with a #xed time
budget, 𝑃 , for job execution – that does not include the time re-
quired to transmit the result back to the user device1. We model
the job as a DAG, where the possible cut locations are denoted
by a set S = {1, 2, ...,𝑄}, with 𝑄 representing the last cut location.
For a cut location 𝑅 ↑ S, we let 𝑆𝑁 denote the cumulative device
processing measured in !oating point operations (FLOPs) including
overhead related to cutting itself, 𝑇𝑁 denotes the o!oad data vol-
ume (in bits), and 𝑈𝑁 models the cumulative edge server processing
(in FLOPs). Here, 𝑅 = 1 corresponds to processing everything on
the edge server, and 𝑅 = 𝑄 corresponds to processing everything
on the user’s device.

2.3 Model for user’s device, wireless channels,
and edge server resources

A user’s device has an e"ective processing speed denoted by 𝑉 ,
measured in !oating point operations per second (FLOPs/sec). A user
with channel quality 𝑁 has an uplink capacity to the base station of
𝑊𝑀 Mbps. However, the transmission rate throughout the o!oading
process, as explained later, may be reduced by congestion, e.g., by
competing job o!oads from other users.

We consider multiple processors with multiple cores at the edge
server. The total processing capacity, 𝑋 (FLOPs/sec), is modeled as
the sum of all cores’ processing rates across all processors, assuming
jobs can be parallelized on all processors and cores. Thus, all active
jobs get an “equal” time of edge server. Note that modern computing
systems would allow the parallelization of jobs across only a limited
number of cores of a given processor. Hence this is a simpli#cation.

We let S𝑀 ↓ S denote the set of cut locations for a user with
channel quality 𝑁 that guarantee the job will meet its delay deadline,
𝑃 when one optimistically assumes there is no competition for
communication or computation resources in the system. Thus 𝑅 is
in S𝑀 if

𝑆𝑁
𝑉︸︷︷︸

local processing

+ 𝑇𝑁
𝑊𝑀︸︷︷︸

data o!oading

+ 𝑈𝑁
𝑋︸︷︷︸

edge processing

↔ 𝑃 (1)

where the left-hand side is the best possible end-to-end time to
complete the o!oad when a job is cut at location 𝑅 .

2.4 Sharing base station uplink resources
At any time, 𝑌 , multiple users may be o!oading data.U(𝑌) repre-
sents the set of active users, and 𝐿 (𝑌) = |U(𝑌) | is its cardinality. We
shall assume that all users in U(𝑌) share the BS’s uplink resources
in a Proportional Fair manner, with each ongoing o!oading over
channel 𝑁 served at rate 𝑊𝑀 1

𝑂 (𝑃 ) .

2.5 Model for computation on the device and
data o!loading

When a job with local computational requirements is generated on a
user’s device, it undergoes computation based on a non-preemptive

1We neglect this because for a variety of applications such as video analytics, data
volume associated with the result is much smaller than the uplink data transfer and
the downlink capacity is typically much higher than the uplink capacity.
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priority scheme that prioritizes jobs by their generation time. As a
result, a job may be queued before its execution. After it leaves the
queue, it is processed if there is enough time to execute it; otherwise,
it is dropped.

Once the local part of the execution is complete, a job with data
to o!oad is served on a #rst-come, #rst-served basis, so there may
be additional waiting before o!oading to the edge server begins.

2.6 Stationary o!loading policies
We consider a set ω of stationary o!oading policies. A policy may
consist of any combination of job admission control/cutting
/o!oading methods, wireless channel scheduling, and edge server
resource sharing. For a given o"ered load 𝜴 and policy 𝑍 ↑ ω,
we de#ne q(𝜴, 𝑍) = (𝑎𝑀,𝑁 (𝜴, 𝑍) : 𝑁 ↑ C,𝑅 ↑ S), where 𝑎𝑀,𝑁 (𝜴, 𝑍)
denotes the long-term fraction of jobs that belong to users with
channel quality 𝑁 , are cut at location 𝑅 , and complete. Naturally, it
must be the case that the sum of these fractions is less than or equal
to one, meaning

∑
𝑁↑S 𝑎𝑀,𝑁 (𝜴, 𝑍) ↔ 1 for all 𝑁 ↑ C (in case not all

jobs complete on time). We de#ne F (𝜴) = {q(𝜴, 𝑍) | 𝑍 ↑ ω}, as
the set of fractions that are feasible under some policy. This set is
convex since if 𝑍1, 𝑍2 ↑ ω, then by alternating between policies
over long periods, one can achieve any convex combination of their
associated performance.

2.7 Reward model and revenue metric
We introduce two reward models to guide the design and evaluation
of o!oading policies. We use 𝑏𝑁 to represent the reward associated
with the timely completion of a job cut at location 𝑅 .

Net timely o"loaded workload. The #rst reward model cap-
tures the total amount of work o!oaded to the edge server for
jobs that complete on time. It indirectly captures the freeing up of
users’ computation resources. The reward for o!oading a job at
cut location 𝑅 is modeled as

𝑏𝑁 = 𝑈𝑁 ↗ 𝑐 · 𝑇𝑁 . (2)

Here 𝑈𝑁 denotes computation work o!oaded to the edge and 𝑐 · 𝑇𝑁
the overhead of doing so, where 𝑇𝑁 represents the volume of data
o!oaded, and 𝑐 is a factor that “converts” bits to FLOPs.

The net timely o"oaded workload measured in FLOPs/sec for a
given o"ered load 𝜴 under policy 𝑍 , is de#ned as

𝑑 (q(𝜴, 𝑍),𝜴) = 𝑒ow (q(𝜴, 𝑍),𝜴) ↗ 𝑓ow (𝜴, 𝑍) (3)

where
𝑒ow (q(𝜴, 𝑍),𝜴) =

∑
𝑀↑C

𝑂𝑀
∑
𝑁↑S

𝑏𝑁𝑎𝑀,𝑁 (𝜴, 𝑍) (4)

denotes the rate at which net work is o!oaded, and 𝑓ow (𝜴, 𝑍) is
the rate of computational work on users’ devices associated with
jobs that do not complete on time and with jobs that a user attempts
to o!oad but ends up completing locally2.

Power savings with wastage. The second reward model quan-
ti#es the energy savings on a user device resulting from o!oading.
The energy expended by a device when o!oading a job at cut 𝑅
is modelled as 𝑔 · 𝑆𝑁 + 𝑕 · 𝑇𝑁 joules, where 𝑔 and 𝑕 represent the
energy expended per FLOP for local computation and per bit for
data o!oading, respectively. The energy savings from o!oading
2Note this occurs when a user attempts to o!oad a job but due to congestion on
wireless channels and/or edge server abandons and reverts to local execution.

at cut 𝑅 vs. not o!oading at all, i.e., cut at 𝑄 (the last cut location),
is given by

𝑏𝑁 = 𝑔 · (𝑆𝑄 ↗ 𝑆𝑁 ) + 𝑕 · (𝑇𝑄 ↗ 𝑇𝑁 ) (5)

in joules. This captures the energy saved from decreased local com-
putation while considering the energy overhead of data o!oading.

We de#ne the net power savings with wastagemeasured in Watts
for a given load 𝜴 under policy 𝑍 , as

𝑖 (q(𝜴, 𝑍),𝜴) = 𝑒ps (q(𝜴, 𝑍),𝜴) ↗ 𝑓ps (𝜴, 𝑍) (6)

where 𝑒ps (·) is de#ned in the same way as 𝑒ow (·) but with the
energy savings reward 𝑏𝑁 de#ned above for each timely job com-
pletion. 𝑓ps (𝜴, 𝑍) represents the power expended at devices associ-
ated with jobs that miss their deadlines and with jobs that a user
attempts to o!oad but ends up completing locally.

3 HOMOGENEOUS JOBS AND OFFLOADING
POLICIES

In this section, we propose and evaluate several o!oading policies
for users with heterogeneous channel qualities but a homogeneous
job type. In the next section, we extend the analysis to the case
with heterogeneous job types.

3.1 Upper bound
We begin by developing a simple upper bound for the net timely
o!oaded workload or power savings with wastage achievable by
any stationary o!oading policy. Let q = (𝑎𝑀,𝑁 : 𝑁 ↑ C,𝑅 ↑ S),
where 𝑎𝑀,𝑁 denotes the fraction of jobs that belong to users with
channel quality 𝑁 , are cut at location 𝑅 , and complete. We de#ne
the set of all possible vectors q as

Q = {q | q ↘ 0,
∑
𝑁↑S

𝑎𝑀,𝑁 ↔ 1≃𝑁 ↑ C and𝑎𝑀,𝑁 = 0 𝑁 ↑ C, 𝑅 ↑ S\S𝑀 }

(7)
where in some settings, a fraction of jobs may not complete, hence
they need not sum up to 1, and fractions for infeasible cut locations
are zero. Given q, we de#ne the channel and edge server utilization
as

𝑗ch (q) =
∑
𝑀↑C

𝑂𝑀
∑
𝑁↑S

𝑎𝑀,𝑁
𝑇𝑁
𝑊𝑀
1(𝑅 ↑ S𝑀 ), (8)

𝑗ed (q) =
∑
𝑀↑C

𝑂𝑀
∑
𝑁↑S

𝑎𝑀,𝑁
𝑈𝑁
𝑋
1(𝑅 ↑ S𝑀 ), (9)

respectively. Recall that we de#ned F (𝜴) to be the set of feasible
long-term fractions of successful job completions under a set of
stationary o!oading policies when the system load is 𝜴. We de#ne
the set of all possible successful long term fractions

F (𝜴) = {q | q ↑ Q, 𝑗ch (q) ↔ 1 and 𝑗ed (q) ↔ 1} (10)

as a natural outer bound for F (𝜴) which leads to the following
simple performance bounds.

Theorem1.Given an o"ered load𝜴we have thatF (𝜴) ↓ F (𝜴) .
Then the maximum net timely o!oaded workload achievable by
any stationary o!oading policy is de#ned as

𝑑⇐ (𝜴) := max
q↑F(𝜴)

𝑑 (q,𝜴) ↔ max
q↑F(𝜴)

𝑒ow (q,𝜴) (11)



Managing Edge O"loading for Stochastic Workloads with Deadlines MSWiM ’23, October 30-November 3, 2023, Montreal, QC, Canada

Similarly, the maximum power savings with wastage achievable by
any stationary o!oading policy is de#ned as

𝑖⇐ (𝜴) := max
q↑F(𝜴)

𝑖 (q,𝜴) ↔ max
q↑F(𝜴)

𝑒ps (q,𝜴) (12)

P!""#. We #rst argue that F (𝜴) ↓ F (𝜴). Indeed suppose q ↑
F (𝜴). Recall that 𝑎𝑀,𝑁 represents the fraction of incoming jobs
that belong to users with channel quality 𝑁 , are cut at location
𝑅 , and complete. Since each job is cut at only one location, these
fractions always sum to less than or equal to 1 over all cut locations,
thus 𝑎 is clearly in Q – but suppose the load on the channel or
edge server is greater than 1 – given these fraction of jobs, i.e.,
𝑗ch (q) > 1 or 𝑗ed (q) > 1. If this is true, then not all jobs will
complete on time, contradicting our earlier statement. Thus, the
channel and edge server load must be less than or equal to 1, i.e.,
𝑗ch (q) ↔ 1 and 𝑗ed (q) ↔ 1 if q ↑ F (𝜴), which implies q ↑ F (𝜴).
Thus F (𝜴) ↓ F (𝜴). This then implies maxq↑F(𝜴) 𝑒ow (q,𝜴) ↔
maxq↑F(𝜴) 𝑒ow (q,𝜴) which results in the Equation 11, since
𝑓ow (𝜴, 𝑍) ↘ 0. Similarly under the energy savings reward model
and recognizing that 𝑓ps (𝜴, 𝑍) ↘ 0, we have Equation 12.

↭

Remark 1. We let q⇐ow (𝜴) = argmaxq↑F(𝜴) 𝑒ow (q,𝜴) and
q⇐ps (𝜴) = argmaxq↑F(𝜴) 𝑒ps (q,𝜴) denote the vector that maxi-
mizes the bounds for the two reward models. These indicate the
fraction of load to admit across sets of channel qualities and cut lo-
cations to maximize revenue in the absence of resource contention
during job o!oading.

3.2 O!loading policies
NaiveGreedy (NG).TheNG o!oading policy optimistically assigns
the cut location,𝑅𝐿 , that yields the highest reward among all feasible
cut locations given deadline 𝑃 , to all jobs generated by user 𝑀 in U
with channel quality 𝑁𝐿 as follows:

𝑅𝐿 = argmax
𝑁↑S𝑀𝐿

𝑏𝑁 (13)

where 𝑏𝑁 either re$ects net o!oaded workload or energy savings,
see Section 2.7. The policy then greedily tries to o!oad data and
process on the edge server until success or time budget, 𝑃 , expires.

Predictive Abandonment (PA). PA is a real-time user-based
o!oading policy that adapts to channel and edge/cloud server con-
gestion. Similar to the NG policy, a user 𝑀 implementing PA selects
the cut location 𝑅𝐿 with the highest reward, see Equation 13. How-
ever, unlike NG, during the o!oading process, a user implementing
PA estimates the feasibility of meeting a job’s completion deadline
given current channel and/or edge server congestion. If the dead-
line is unlikely to be met, PA saves resources by abandoning the
job’s o!oad, thus increasing the likelihood of completing other
jobs on time. Furthermore, a job whose o!oad is abandoned can
still attempt to complete its residual processing on the user device
if time permits. Thus, PA can be viewed as performing a type of
state-dependent self-admission control or abandonment policy.

Under PA, a user 𝑀 determines whether its 𝑘th job is likely to
complete on time by considering/predicting the following factors:
queuing time, local processing time, data o!oading time, and edge
processing time. The queuing time for a job 𝑘 at time 𝑌 , denoted

𝑙𝐿,𝑅 (𝑌), corresponds to the time the job has been waiting in the
user’s queue. The local processing time is calculated as the number
of operations before the cut location 𝑅𝐿 divided by the device’s exe-
cution speed, i.e., 𝑆𝑁𝐿𝑇 secs. Since a user’s compute speed is #xed,
this value is the same for all 𝑌 . Also, recall that all jobs from a user 𝑀
are cut at the same location. The data o!oading time at time 𝑌 is cal-
culated as the sum of time already spent o!oading the job (if any)
and the time required to o!oad any remaining data. The latter can
be estimated by dividing the data yet to be o!oaded at time 𝑌 , 𝑚𝐿,𝑅 (𝑌),
by an estimate for the future average transmission rate 𝑛𝐿,𝑅 (𝑌). Sup-
pose user𝑀 initiates data o!oading of job 𝑘 at time 𝑌𝐿,𝑅 over channel
quality 𝑁𝐿 . At any instance 𝑌 ⇒ (for 𝑌 ⇒ greater than or equal to 𝑌𝐿,𝑅 ),
the transmission rate under our model is given by 𝑈𝑀𝐿

𝑂 (𝑃 ⇒ ) , where
recall 𝑊𝑀𝐿 is the uplink channel capacity and 𝐿 (𝑌 ⇒) is the number
of active users. We estimate the future average transmission rate
based on the average throughput experienced by the user 𝑀 since it
began o!oading job 𝑘 , i.e.,

𝑛𝐿,𝑅 (𝑌) =
1

𝑜𝐿,𝑅 (𝑌)

𝑉𝐿,𝑂 (𝑃 )+𝑃𝐿,𝑂∑
𝑃 ⇒=𝑃𝐿,𝑂

𝑊𝑀𝐿
𝐿 (𝑌 ⇒) (14)

where 𝑜𝐿,𝑅 (𝑌) is the time elapsed since o!oading began. The last
factor in the equation for job latency is the edge processing time.We
assume that the edge server provides users with or users themselves
maintain estimates of the job’s processing time per cut location,
𝑝𝑁𝐿 . These estimates are periodically updated.

Putting together the elapsed time and estimated future transmis-
sion/processing latencies, the estimated total latency for user 𝑀’s
job 𝑘 is given by

𝑙𝐿,𝑅 (𝑌)︸⨌⨌︷︷⨌⨌︸
queuing

+
𝑆𝑁𝐿
𝑉︸︷︷︸

local processing

+ 𝑜𝐿,𝑅 (𝑌) +
𝑚𝐿,𝑅 (𝑌)
𝑛𝐿,𝑅 (𝑌)︸⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︸

data o!oading

+ 𝑝𝑁𝐿︸︷︷︸
edge processing

. (15)

Under PA, a user may abandon o!oading if it determines that
its estimated total latency for job 𝑘 is greater than its time budget,
𝑃 . Once abandoned, any remaining computation, 𝑈𝑁𝐿 , for job 𝑘 can
be completed on the user’s device if there is enough time.

This prediction method is crude but roughly captures the impact
of the user’s channel capacity 𝑊𝑀𝐿 , channel’s uplink congestion
𝐿 (𝑌), and congestion at the edge server using the actual estimate
of processing latencies,𝑝𝑁𝐿 . Note that these estimates will re$ect
changes resulting from the PA policy itself since PA impacts the
load on the channel and edge server. For more accurate predictions,
one can consider additional factors such as number of active users
during each user’s o!oad and/or remaining service requirements
of currently o!oading jobs. See, [14] for such a discussion in a
processor-sharing scenario without abandonment.

PA e"ectively performs a sort of “real-time" admission control
by abandoning jobs unlikely to meet their deadlines due to channel
and/or edge server congestion. In congested scenarios, PA “prefers"
users with better channels, since they are more likely to complete
their o!oads on time. Finally, note PA, like NG, is decentralized
and does not require knowledge of the overall o"ered job rate, 𝜴.
Next, we explore a policy that considers the overall rate of o"ered
jobs for coordination.
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Figure 2: Simulation parameters associated with AlexNet and DeepFace job types.

Probabilistic Admission Control and
Cut Assignment (PACCA). Under PACCA, we pre-determine 𝑞𝑀,𝑁 ,
the fraction of jobs that belong to users with channel quality 𝑁 that
should be o!oaded at each cut location 𝑅 to maximize revenue
given the rate of incoming jobs. We let p = (𝑞𝑀,𝑁 : 𝑁 ↑ C,𝑅 ↑ S),
and require

∑
𝑁↑S 𝑞𝑀,𝑁 ↔ 1 for all 𝑁 ↑ C. We denote the associated

policy as PACCA (p). If a job is not admitted for o!oading under
this policy, it will attempt to execute locally. Determining p is
complex, as it involves multiple factors, such as contending o!oads
from users with di"erent channel qualities, channel and server
congestion, delay constraints, and revenue rate optimization. We
propose to choose p based on the upper bounds from Theorem 1,
either q⇐ow (𝜴) to maximize net timely o!oaded workload or q⇐ps (𝜴)
to maximize power savings with wastage. In later sections, for
brevity we use q⇐ to refer to either q⇐ow (𝜴) or q⇐ps (𝜴). Given that
there is no resource contention underlying Theorem 1 (see Remark
1), these probabilities re$ect optimistic admission control and cut
assignment for a given 𝜴. Nevertheless, they still re$ect reasonable
overall system tradeo"s.

Once a job is admitted for o!oading, the user can either attempt
to o!oad the job greedily at the assigned cut location or perform PA,
only proceeding with the o!oad if it determines the job’s deadline
can be met. We refer to the former policy as PACCA (q⇐) + Greedy
and the latter as PACCA (q⇐) + PA.

3.3 Simulation results
In this subsection, we evaluate the performance of our proposed
o!oading policies via discrete-time simulations in terms of: (i) net
timely o!oaded workload; (ii) power savings with wastage (ex-
plained in Section 2.7). We also plot the fraction of jobs completed.
The simulations are conducted in MATLAB R2023a.

Se#ings. We consider a system with 𝐿 = 20 users3, where
each user generates an equal rate of homogeneous jobs per second,

3We chose this to represent typical tra%c at a 5G BS/AP in a dense urban environment
deployment scenario, we can increase/decrease the number as needed.

according to a Poisson distribution4, with intensity 𝑂/20. This re-
sults in an aggregate job generation/arrival rate of 𝑂 per second.
The system includes two channel qualities, half of the users (i.e.,
10) have one channel quality, half the other5. A user’s channel
quality/capacity does not change, but the transmission rate at any
instance depends on both the channel capacity and the number
of competing users because of the Proportional Fair sharing of
uplink resources. Table 1 summarizes the simulation parameters.
We present results for the homogeneous scenario based on the job
characteristics of AlexNet, a state-of-the-art Convolutional Neural
Network for image classi#cation. In the next section, we will also
use DeepFace, which is used for face recognition. Figure 2 displays
the job characteristics of AlexNet on the left and DeepFace on the
right. The four bar graphs (from top to bottom) show the volume
of data that gets o!oaded, the amount of local vs. edge processing,
the energy saved, and the amount of work that gets o!oaded per
cut location. The worst delay a job may experience is calculated as
𝑃max = max𝑁

(
𝑆𝑁
𝑇 + 𝑊𝑁

min𝑀↑C 𝑈𝑀 + 𝑋𝑁
𝑌

)
. However, this may not be the

absolute worst case as it only considers the worst channel quality
and not congestion. We evaluated our policies under both strict
𝑃 = 0.4𝑃max and relaxed 𝑃 = 0.8𝑃max delay deadlines. Results are
averaged over 20 Monte Carlo simulations, each performed over
5e5 time slots. Here a time slot is 100 µs long.

Table 1: Simulation parameters
Parameter (units) Value Parameter (units) Value

𝑊𝑀 (Mbps) (20, 40) 𝑐 (FLOP/bit) 2
𝑉 (FLOPs/sec) 1125 ⇐ 106 𝑔 (J/FLOP) 6 ⇐ 10↗9
𝑋 (FLOPs/sec) 11360 ⇐ 106 𝑕 (J/bit) 4 ⇐ 10↗7

Results discussion. Our #rst set of results, presented in Figures
3a and 3b, include the net timely o!oaded workload and fraction
of completed jobs for our policies per total o"ered job rate, respec-
tively, under a strict job deadline. In Figure 3a, we show the net
computational workload o!oaded, which depends on the fraction
4We also ran the simulations for other arrival processes but due to space limitations
only include the results for the Poisson arrival process.
5We consider this for simplicity; our work applies to any number of channel qualities.
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of completed jobs and the reward per completed job. Therefore, a
policy can perform equally well in two cases: (i) completing nu-
merous jobs with a low reward or (ii) completing fewer jobs with a
high reward. Thus, we also present the fraction of completed jobs
in Figure 3b for the same simulation setting for all policies.

We observe that as the o"ered job rate 𝑂 increases, the NG policy
experiences throughput collapse, see Figure 3a. By contrast, policies
like PA, which implement congestion-dependent o!oad abandon-
ment, and PACCA, which determines admission control and cut
assignments based on prior knowledge of incoming jobs per user
and channel quality, perform well under heavy job loads. However,
PA does not perform as well as PACCA, highlighting the bene#t
reserving channel and edge resources for jobs with good channels
and/or high reward cut locations. The bene#t of combining these
policies, PACCA + PA becomes more evident at high-load regimes
where admission control and congestion management is crucial.

In Figure 3b, we show the fraction of completed jobs under dif-
ferent o!oading policies as job arrival rate 𝑂 increases. With PA,
more than 90% of jobs are completed in the load regimes considered.
Indeed, for all the results reported hereafter, we only considered
load regimes where PA has a high completion rate (at least 90%)
and where the channel is the bottleneck. Interestingly, the fraction
of jobs that complete under PACCA + Greedy is non-monotonic
with increasing load. This is because initially (from 0 to 23 jobs/sec),
PACCA selects the highest reward cut location for every job. How-
ever, since channel capacity is #xed, an increase in the number of
jobs means a decrease in completions. Hence, the downward curve.
Then, at 23 jobs/sec, PACCA determines it will earn more revenue
by adjusting the distribution of cut locations, so that jobs have
less data to o!oad. This results in less reward per job, but more
completed jobs. PACCA makes this adjustment every time the rate
of incoming jobs increases beyond 23 jobs/sec, thus the upward
curve. We observe similar non-monotonic behavior for PACCA +
PA though it is barely perceptible in the #gure.

In Figure 3a, we saw the advantage of combining PACCA with
PA under a strict delay deadline. We observe similar bene#ts under
a relaxed delay deadline, see Figure 4; however, the performance
gap between PACCA + PA and PACCA + Greedy decreases. This is
because, with a relaxed delay deadline, a user has a higher chance
of completing an o!oad, even with network congestion. Thus, net-
work congestion is detrimental only under strict delay deadlines
necessitating a congestion-aware policy like PA. We see similar
trends with power savings with wastage in Figures 5a and 5b. Addi-
tionally, as we relax the completion deadline, our best-performing
policy (PACCA + PA) approaches the upper bound for both perfor-
mance metrics.

Robustness study.We demonstrate the robustness of PACCA
+ PA to imperfect knowledge of o"ered jobs per sec in Figure 6,
for net timely o!oaded workload under a strict delay deadline6.
In these simulations, we added errors to the estimates of job ar-
rival rates per user, which a"ects the aggregate arrival rate per
channel quality. We optimize PACCA + PA for the corresponding
load and compare three scenarios: (i) PACCA + PA (exact), where
we provide PACCA with the exact load, i.e., 𝑂 ; (ii) PACCA + PA

6Due to space constraints, we exclude similar results for the metric power savings
with wastage.

(a) Net timely o!loaded workload (FLOPs/sec).

(b) Fraction of completed jobs.
Figure 3: Comparing the net timely o!loaded work and frac-
tion of jobs that complete for di!erent policies when the
job’s delay deadline is strict, i.e., 𝑃 = 0.4𝑃max.

Figure 4: Comparing the net timely o!loaded workload for
di!erent policies when the job’s delay deadline is relaxed,
i.e., 𝑃 = 0.8𝑃max.

(overestimate), where we provide PACCA with an overestimate of
load, i.e., 𝑂 · (1 + 𝑟%), leading to less o!oading compared to (i);
and (iii) PACCA + PA (underestimate), where we provide PACCA
with an underestimate of load, i.e., 𝑂 · (1 ↗ 𝑟%), resulting in more
o!oading compared to (i). We show PA as a baseline. The results
show that for an estimation error of 25% (i.e., 𝑟 = 25)7, both PACCA
+ PA (overestimate) and PACCA + PA (underestimate) are within
10% of PACCA + PA (exact). Additionally, we observe that PACCA
+ PA (underestimate) performs at least as well as PA, as huge un-
derestimation errors result in admitting every job at the highest
reward cut location, e"ectively imitating PA.
7We also performed simulations for 𝑍 = 50% but exclude it due to space limitations.
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(a) Strict delay deadline, 𝑎 = 0.4𝑎max.

(b) Relaxed delay deadline, 𝑎 = 0.8𝑎max.
Figure 5: Comparing the power savings with wastage for
di!erent policies when the job’s delay deadline is strict vs.
relaxed.

Figure 6: Evaluating robustness of PACCA + PA for a 25%
deviation from exact load knowledge when the job’s delay
deadline is strict, i.e., 𝑃 = 0.4𝑃max.

4 HETEROGENEOUS JOBS
In this section, we investigate the performance of our policies in
networks with heterogeneous jobs, where jobs no longer have
identical deadlines, cut locations, and requirements per cut location
(such as computation and data to o!oad).

We have a set of users generating di"erent types of jobs, denoted
by J = {1, 2, ..., 𝑠 }. For each job type 𝑡 in J , we let U 𝑏 be the
set of users generating such jobs, and 𝑂 𝑏,𝐿 denotes the arrival rate
of job type 𝑡 generated by user 𝑀 in U 𝑏 . The total arrival rate of
job type 𝑡 is denoted as 𝑂 𝑏 =

∑
𝐿↑U 𝑃 𝑂 𝑏,𝐿 . We de#ne the arrival

rate of job type 𝑡 over channel quality 𝑁 in C from all users as

𝑂 𝑏𝑀 =
∑
𝐿↑U 𝑃 𝑂 𝑏,𝐿1(𝑁𝐿 = 𝑁), and let 𝜴 𝑏 = (𝑂 𝑏𝑀 , 𝑁 ↑ C). The arrival

rate of each job type is captured by ! = (𝜴1, ...,𝜴 𝑐 ). We use 𝑃 𝑏 to
represent the delay constraint, and S 𝑏 to capture the set of possible
cut locations for type 𝑡 jobs. As before,S 𝑏

𝑀 is a subset ofS 𝑏 that only
includes cut locations that are feasible for a given user’s channel
quality 𝑁 under time budget 𝑃 𝑏 , i.e., a location 𝑅 is in S 𝑏

𝑀 if

𝑆 𝑏
𝑁

𝑉︸︷︷︸
local processing

+
𝑇 𝑏
𝑁

𝑊𝑀︸︷︷︸
data o!oading

+
𝑈 𝑏
𝑁

𝑋︸︷︷︸
edge processing

↔ 𝑃 𝑏 (16)

where 𝑆 𝑏
𝑁
represents the computational burden (in FLOPs) on

the user (including overhead for cutting), 𝑇 𝑏
𝑁
denotes the volume

(in bits) of data transfer to the edge server, and 𝑈 𝑏
𝑁
captures the

computational burden (in FLOPs) on the edge server for a type 𝑡
job cut at location 𝑅 .

For an o"ered load, !, under o!oading policy 𝑍 ↑ ω, we de#ne
Q(!, 𝑍) = (q1 (!, 𝑍), ..., qJ (!, 𝑍)), where qj (!, 𝑍) = (𝑎 𝑏

𝑀,𝑁
(!, 𝑍) :

𝑁 ↑ C,𝑅 ↑ S 𝑏 ), and 𝑎 𝑏
𝑀,𝑁

(!, 𝑍) is the long-term fraction of type 𝑡
jobs that belong to users with channel quality 𝑁 , are cut at location
𝑅 , and complete. These fractions must sum to less than or equal to
1 (some jobs may not complete), i.e.,

∑
𝑁↑S 𝑃 𝑎 𝑏𝑀,𝑁 (!, 𝑍) ↔ 1 for all

𝑡 ↑ J , 𝑁 ↑ C. We de#ne T (!) = Q(!, 𝑍) for 𝑍 ↑ ω as the set of
feasible long-term fractions, which is convex through time sharing
argument presented in the homogeneous case.

Just as in the homogeneous scenario, we have two revenue met-
rics: weighted net timely o!oaded workload revenue and weighted
power savings with wastage revenue. We let 𝑏 𝑏

𝑁
denote the reward

generated from a successful job completion when a type 𝑡 job on a
user is cut and o!oaded at cut location 𝑅 .

Weighted net timely o!loadedworkload revenue.Wede#ne
it as a weighted sum of net timely o!oaded workload for each job
type, where 𝑢 𝑏 is the weight 8 for job type 𝑡 and

∑
𝑏↑J 𝑢 𝑏 = 1.

For a given o"ered load ! and o!oading policy 𝑍 , the revenue is
de#ned as:

𝑑 (Q(!, 𝑍),!) = 𝑒ow (Q(!, 𝑍),!) ↗ 𝑓ow (!, 𝑍) . (17)

Here

𝑒ow (Q(!, 𝑍),!) =
∑
𝑏↑J

𝑢 𝑏
∑
𝑀↑C

𝑂 𝑏𝑀
∑
𝑁↑S 𝑃

𝑏 𝑏
𝑁
𝑎 𝑏
𝑀,𝑁

(!, 𝑍) (18)

denotes the aggregate reward, and 𝑓ow (!, 𝑍) is the rate of compu-
tational work on users’ devices associated with jobs that do not
complete on time and with jobs that a user attempts to o!oad but
ends up completing locally.

Weighted power savings with wastage revenue.We de#ne
it as a weighted sum of power savings with wastage per job type 𝑡 .
Given an o"ered load ! and an o!oading policy 𝑍 , we calculate it
as follows:

𝑖 (Q(!, 𝑍),!) = 𝑒ps (Q(!, 𝑍),!) ↗ 𝑓ps (!, 𝑍) (19)

where 𝑒ps (·) = 𝑒ow (·) except that reward, 𝑏 𝑏
𝑁
, is based on energy

saved per job completion. 𝑓(!, 𝑍) represents the power expended
8The weights 𝑑 𝑃 are used to prioritize one job type over another in the admission
control policy. However, we still assume the underlying wireless scheduler is round-
robin and unaware of job types.
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at devices associated with jobs that miss their deadlines and jobs
that a user attempts to o!oad but ends up executing locally.

4.1 Upper bound
Let Q = (q1, ..., qJ) be a vector of vectors, where qj = (𝑎 𝑏

𝑀,𝑁
: 𝑁 ↑

C,𝑅 ↑ S 𝑏 ), and 𝑎 𝑏
𝑀,𝑁

is the fraction of type 𝑡 jobs that belong to
users with channel quality 𝑁 , are cut at location 𝑅 , and complete.
We de#ne

ε = {Q | q𝑏 ↘ 0,
∑
𝑁↑S 𝑃

𝑎 𝑏
𝑀,𝑁

↔ 1 ≃ 𝑡 ↑ J , 𝑁 ↑ C,

and 𝑎 𝑏
𝑀,𝑁

= 0 ≃ 𝑡 ↑ J , 𝑁 ↑ C, 𝑅 ↑ S 𝑏 \ S 𝑏
𝑀 }

(20)

as the set of such possible vector of vectors. We then de#ne the
channel and edge server utilization per job type 𝑡 based onQ, which
is long term fraction of completed jobs, as

𝑗 𝑏ch (Q) =
∑
𝑀↑C

𝑂 𝑏𝑀
∑
𝑁↑S 𝑃

𝑎 𝑏
𝑀,𝑁

𝑇 𝑏
𝑁

𝑊𝑀
1(𝑅 ↑ S 𝑏

𝑀 ), (21)

𝑗 𝑏ed (Q) =
∑
𝑀↑C

𝑂 𝑏𝑀
∑
𝑁↑S 𝑃

𝑎 𝑏
𝑀,𝑁

𝑈 𝑏
𝑁

𝑋
1(𝑅 ↑ S 𝑏

𝑀 ), (22)

and let 𝑗ch (Q) =
∑

𝑏↑J 𝑗 𝑏ch (Q) and 𝑗ed (Q) =
∑

𝑏↑J 𝑗 𝑏ed (Q) denote
the total channel and the total edge server utilization, respectively.

Recall that we de#ned T (!) to be the set of feasible long term
fractions of successful job completion by stationary o!oading poli-
cies when the system load is !. Here we de#ne

T (!) = {Q | Q ↑ ε, 𝑗ch (Q) ↔ 1 and 𝑗ed (Q) ↔ 1} (23)

as a natural outer bound.
Theorem 2. Given an o"ered load ! we have that T (!) ↓

T (!). Then the maximum weighted net timely o!oaded workload
revenue achievable by any stationary o!oading policy is de#ned
as

𝑑⇐ (!) := max
Q↑T(!)

𝑑 (Q,!) ↔ max
Q↑T(!)

𝑒ow (Q,!) (24)

Similarly, the maximum weighted power savings with wastage
revenue achievable by any stationary o!oading policy is de#ned
as

𝑖⇐ (!) := max
Q↑T(!)

𝑖 (Q,!) ↔ max
Q↑T(!)

𝑒ps (Q,!) (25)

P!""#. Similar to proof of Theorem 1. ↭

Remark 2. We let Q⇐
ow (!) = argmaxQ↑T(!) 𝑒ow (Q,!) and

Q⇐
ps (!) = argmaxQ↑T(!) 𝑒ps (Q,!) denote the maximizers associ-

ated with the bounds for the two reward models. Once again, for
brevity we will use Q⇐.

4.2 Simulation results
In this subsection, we compare the performance of various o!oad-
ing management policies when dealing with heterogeneous jobs.
For PACCA, we determine the admission control probabilities per
combination of job types, user channel qualities, and cut location
based on the fractions that maximize system revenue, i.e., Q⇐. We
then again schedule the o!oading of admitted jobs using either
Greedy or PA policies, i.e., PACCA + Greedy or PACCA + PA. Due

to space constraints, we omitted our study of the robustness of
PACCA + PA for the heterogeneous case.

Se#ing. The simulation involves 20 users generating two job
types, AlexNet and DeepFace. Half of the users (i.e., 10) generate
job Type 1, while the other half generates job Type 2. Each user in
either category generates jobs at an equal rate per second based on a
Poisson distribution with intensity 𝑂 𝑏/10, where 𝑂 𝑏 is the aggregate
arrival rate for job type 𝑡 . We have set equal aggregate arrival rate
for the two job types. Users for each job type are divided equally
into two channel quality groups, with half (i.e., 5) o!oading over
channel Quality 1 and the other half over channel Quality 2. For
more information on the simulation parameters, refer to Table 1
and Figure 2.

Results discussion. Figures 7 and 8 illustrate the weighted
net timely o!oaded workload and weighted power savings with
wastage revenue achieved by various o!oading policies, respec-
tively. As observed in the case of homogeneous jobs, the PACCA
+ PA policy outperforms other policies. However, the relative per-
formance of PA policy has declined compared to the homogeneous
case since it only considers the residual data and channel capacity,
ignoring a job’s weight relative to others. In contrast, PACCA co-
ordinates job admission control and cut assignment based on how
much relative revenue each job type and cut will generate.

(a) Strict delay deadline, (𝑎1,𝑎2 ) =
(0.4𝑎1max, 0.8𝑎2max ) .

(b) Relaxed delay deadline, (𝑎1,𝑎2 ) =
(0.8𝑎1max, 0.8𝑎2max ) .

Figure 7: Comparing the weighted net timely o!loaded work-
load revenue for di!erent policies with (𝑢1,𝑢2) = (0.97, 0.03).
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(a) Strict delay deadline, (𝑎1,𝑎2 ) =
(0.4𝑎1max, 0.8𝑎2max ) .

(b) Relaxed delay deadline, (𝑎1,𝑎2 ) =
(0.8𝑎1max, 0.8𝑎2max ) .

Figure 8: Comparing the weighted power savings with
wastage revenue for di!erent policies with (𝑢1,𝑢2) =
(0.97, 0.03).

5 CONCLUSION
Managing heterogeneous compute job o!oading in the MEC fabric
subject to delay constraints presents signi#cant challenges that
require careful management of user device, channel, and edge server
resources while considering di"erent job characteristics and system
loads. To address this, we have detailed a comprehensive framework,
which relies on job pro#ling, using probabilistic admission control
and cut assignment, coupled with a predictive abandonment policy
that abandons o!oads unlikely to meet their deadline (this not
only frees up resources for jobs with more promise but also avoids
throughput collapse). Our proposed approach, PACCA + PA, is
expected to perform robustly and e"ectively but requires prior
knowledge of o"ered job rates across job types and channel qualities.
If this is not known, signal processing techniques such as window
averaging can be employed to learn the o"ered job rate over time.
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