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Abstract—The increasing demands of computationally in-
tensive device applications are driving advancements in edge
technologies and the need for improved computation offloading
policies. This paper focuses on “adaptive” offloading and compu-
tation, i.e., adapting the amount of offload data and, consequently,
the associated compute adaptive job’s quality to the wireless
channel quality, network congestion, and the compute adaptive
job’s computational options. For example, when the channel
quality is poor and a job has a tight deadline, the amount of
offloaded data can be reduced in exchange for a loss in the
associated compute adaptive job’s quality. In this paper, we show
the substantial advantages of adapting the amount of offloaded
data to channel quality and network congestion. We begin by
defining a reward model for compute adaptive jobs based on the
amount of offloaded data and resulting computation quality. We
then develop an upper bound on the achievable revenue rate and
propose/compare various offloading policies: Greedy, Predictive
Abandonment (PA), Probabilistic Admission Control and Layer
Assignment (PACLA), and combinations thereof. We evaluate
our policies via simulation and observe that the combination
of PACLA + PA provides the best offloading performance for
homogeneous or heterogeneous compute adaptive jobs for devices
with varied channel qualities.

Index Terms—Computation offloading, Upper bound.

I. INTRODUCTION

Mobile Edge Computing (MEC): MEC holds the promise
of augmenting the capabilities of devices, resulting in im-
proved Quality of Service (QoS) and reduced cost/energy
burdens for computationally-intensive applications [1], [2].
By leveraging processing on devices, edge and cloud, and
wireless communication to transfer compute adaptive job-
related input/output data among nodes, MEC can support
compute adaptive jobs associated with AR/VR, computational
perception, and new forms of personalization. To achieve
this promise, one must address the central problem of how
to jointly optimize applications and system design to make
the most of available resources and adapt to system load,
heterogeneity, and variability in wireless channel qualities.

Adaptive offloading and computation: A central prob-
lem in optimizing the execution of applications consisting
of several processing steps across MEC lies in judiciously
deciding when/where to partition and offload them. Offloading
requires sharing data over typically limited wireless resources
interconnecting devices with edge/cloud compute servers (e.g.,
[1], [2], [3]). In this paper, we consider scenarios where
application partitioning decisions have already been made,
yet one can adapt the amount of data at the pre-selected
partition point that gets offloaded to the user’s current channel

quality and/or network’s overall congestion. Like the video-
rate/quality adaptation found in scalable video coding, layered
compression standards, etc., offloading policies that adapt the
amount of offloaded data to changing network conditions in
real-time are better equipped to deliver robust performance.
To that end, we consider applications designed to support
varying compute adaptive job models (and quality) based on
the amount of input data that can be offloaded to the edge
within a specified time budget. Input data is structured as a
sequence of layers, 1, . . . , L, which an offloading policy will
seek to progressively deliver to the edge, see e.g., [4]. Each
additional layer improves the compute adaptive job’s quality,
which translates to increased user satisfaction and additional
reward for the service provider.

Definition: A layered family of compute adaptive models
for a job include: a) a shared computation model which results
in output data D, and b) a family of compatible computation
models 1, 2. . . .L depending on a sequence of nested data
subsets, D1 ⊂ D2 ⊂ . . .DL = D outputted by shared model
– input for family of compatible models. We refer to D1 as
the data required to execute the 1st model and Dl \ Dl−1 as
the additional data corresponding to layer l and dl = |Dl| the
cumulative data required to execute the lth model. Successful
execution of the shared model, combined with data offloading
of Dl and execution of the compatible lth model, results in a
compute adaptive job quality/reward αl, which is assumed to
be increasing in l.

Applicability of compute adaptive job model: There are
several classes of applications that can be structured to allow
for variable input data size and adaptive computing. Most
notably, applications such as speech recognition, image classi-
fication, computational perception, etc., based on Deep Neural
Networks (DNNs) can be designed in this manner. As shown
in Fig. 1a, one can partition a DNN at various points, and
depending on where this occurs, the amount of data that must
be transmitted to the edge may vary. Determining the best
partition point depends on the DNN requirements (deadline,
processing size per node, etc), processing capabilities of the
device vs. edge/cloud, DNN’s input/output data sizes, wireless
channel conditions, energy consumption for computation and
communication, and the energy restrictions of device [5].
We assume that the optimal partition point has been pre-
selected. However, the data offloading process (when multiple
users are simultaneously offloading) may not be robust to
the heterogeneity and variability in users’ wireless channel
capacity and network congestion. Thus, we explore a layered



(a) Partitioning of a DNN.

(b) Partitioning and Layered offloading of a DNN.

Figure 1: Example of adaptive computation for DNN.

approach to offloading the input data, adjusting the number of
transmitted data layers to changing channel conditions and/or
wireless network congestion. Fig. 1b, depicts how a DNN-
based compute adaptive job’s quality improves as more input
data layers are offloaded within the time budget. A DNN-
based family of compute adaptive models for a job can be
trained/designed to support computation based on varying
input data sizes. Thus adapting the number of input data
layers offloaded selects different computation models and thus
different quality of the result.

Remark 1:. Consider a DNN based family of compute
adaptive models for a job trained to detect items in a picture.
The family of models share the same initial architecture, which
is executed locally. Thus local computation burden is fixed.
However, we can adapt the amount of input data (output of
shared model) that gets offloaded based on the transmission
rate and network congestion. The detection accuracy depends
on how many nested data layers we manage to offload in time
to allow the edge to complete execution of the compatible
model and return the result before the deadline.

Design objectives for offloading policies: The following
are some of the key objectives/characteristics that we posit are
most important in the design of layered offloading policies:

• Edge-based: able to make good offloading decisions
with minimal state information from, coordination with,
and changes to Base Station (BS) (or Access Point)

schedulers.
• Adapt to uncertainty: able to adapt to heterogeneity

and temporal variability (load, interference, contention)
in wireless systems.

• Delay constrained: able to complete compute adaptive
jobs within the heterogeneous time budgets associated
with diverse applications.

• Performance management: able to achieve high system
revenue rate/user satisfaction in systems shared by het-
erogeneous compute adaptive job types.

A. Related Work

Offloading: Computation offloading strategies have been
extensively studied in the context of applications, such as
image recognition (DNN based), augmented reality, and au-
tonomous driving. In early studies related to offloading poli-
cies (e.g., [6], [7]), the focus is on deciding whether to execute
a job entirely locally or on the edge server. Decisions were
usually made based on server speed, server load, required input
data, and channel quality. In particular, in [6], the authors
attempt to develop a delay-optimal computation offloading
policy using a Markov Decision Process (MDP) framework,
but the proposed approach is limited since it does not consider
time-varying channel. The authors of [7] also formulate the
problem as an MDP and consider time-varying communication
resources and offloading time budgets. However, their analysis
focuses on a representative user with a time-varying wireless
channel, but there is no consideration of possible network
congestion.

DNN offloading: Recent studies (e.g., [8], [5], [9], [10],
[11]) on DNN-based applications have explored the advantages
of partial offloading, i.e., process a part of the job locally
and the rest on edge server. However, they do not consider
heterogeneity in channel quality, network congestion, and do
not impose delay constraints. The authors of [4] consider
varying channel capacity and delay constraint, but still, only
consider settings where a single device is offloading at a given
time instance.

Offload friendly DNNs: Another related research area and
perspective lies in devising offload friendly DNNs (e.g., [12],
[13], [14], [15], [16]), where the DNN structure is adjusted per
the device’s processing capabilities, time budget, and channel
capacity (e.g., introduce a partition point which is composed of
few nodes, in the early stages of the DNN structure, enabling
in-network compression of input data and reducing the load
on a device). However, for the most part, these studies ignore
key aspects of a wireless network. For example, in [15],
a modified DNN model is developed along with real-time
offloading decisions but again there is no delay constraint on
data transmission, and the focus is on a single user.

Video layered coding - rate adaptation: The idea of
structuring jobs’ input data into layers and progressively
transmitting them as channel capacity allows, parallels layered
coding for adaptive bit rate video streaming [17], [18]. Layered
coding generates a base layer and additional enhancement
layers. The base layer is necessary for decoding the media



stream, whereas enhancement layers improve video quality.
This framework allows one to prioritize uninterrupted video
streaming at the cost of (a temporary) quality reduction in
scenarios where network congestion or packet losses occur.
The central idea underlying this paper is the design of adaptive
applications that can operate with varying amounts of input
data and permit one to perform dynamic offloading decisions
of compute adaptive jobs in response to heterogeneous and
time-varying channel capacity/congestion.

B. Contributions and Organization

In this paper, we study offloading policies for compute
adaptive jobs that support adaptive computation based on the
amount of offloaded data. Our focus is on stochastic settings
with homogeneous, then heterogeneous compute adaptive jobs
sharing wireless network resources, and our contributions are
as follows.

We begin by deriving a simple universal upper bound on
the revenue rate achievable by any offloading policy. This
is motivated by [19]. The revenue rate captures the benefit
derived from offloading compute adaptive jobs with possibly
different amounts of input data, i.e., number of nested layers.
We propose and compare several opportunistic data offloading
policies for homogeneous compute adaptive job types and
show the benefits of adaptive computation in terms of revenue
rate and the fraction of completed offloads.

Our results show that data offloading policies that transmit
input data layers until the compute adaptive job times out,
e.g., Greedy, lead to throughput collapse as the rate of offered
load grows, resulting in zero completion rate for offloads
under heavy loads. By contrast, Predictive Abandonment (PA)
based policies, that only transmit the next input data layer if
it is estimated to arrive on time and otherwise quit, avoid
throughput collapse and sustain a reasonable revenue rate
even under high loads. We also investigate a Probabilistic
Admission Control and Layer Assignment (PACLA) policy
that predetermines the number of data layers to offload based
on user channel quality and the overall load, channel qualities,
etc. in the network. The combination of PACLA + Greedy sig-
nificantly outperforms Greedy policy, and out/under-performs
PA depending on scenario. Combining PACLA with PA always
outperforms PACLA + Greedy and also outperforms PA.

In settings with heterogeneous compute adaptive jobs that
have different rewards and different demands on the channel,
PACLA is critical to maximizing total network revenue. We
observe that PACLA + PA results in a high revenue rate
and is robust to heavy loads, due to PACLA’s ability to
maximize revenue based on knowledge of the offered loads
and channel/revenue models of different types of compute
adaptive jobs in the system, while PA adjusts to congestion
on the wireless network.

The paper is organized as follows: In Section II we introduce
our basic system model. In Section III we explore different
input data offloading policies and develop an upper bound on
the overall system performance. We end the section with some
simulation results. Finally Section V concludes the paper.

II. SYSTEM MODEL

We begin by proposing a model for the study of offloading
policies for homogeneous compute adaptive jobs with layered
input data in systems with stochastic and heterogeneous wire-
less channels.

A. Compute adaptive job Model

A compute adaptive job may involve processing on the
device, transmission of input data to the edge, processing
on the edge, and then transmission of results back to the
device. We assume a fixed time budget, τ , for the transmission
of a compute adaptive job’s input data to the edge, as this
is typically the bottleneck [1]. It is derived from the job’s
overall delay budget once the time required to compute the
job on the user + edge and return of results is accounted
for. As introduced in Section I, our compute adaptive job
can be executed on a range of nested data subsets. If we
let L = {1, 2, ..., L} denote the discrete set of input layers
– capturing data subsets, then dl for l ∈ L denotes the
cumulative input data associated with delivering Layers 1
through l. The reward αl represents the quality of output when
the compute adaptive job is computed using Layers 1 through
l, where αl = α(dl). We consider α(·) concave, representing
applications with diminishing incremental reward per input
layer, see Fig. 2.

Figure 2: Reward versus cumulative offloaded data when α(.)
is concave.

B. Model for load

Compute adaptive job offloads are initiated stochastically
by a population of users. When a user initiates an offload,
it is assumed to have one of a discrete set C of channel
qualities/classes with a baseline uplink transmission rate rc,
where c ∈ C, to its associated BS. The channel quality is
assumed constant throughout the offload process. We assume
each compute adaptive job is generated by a distinct user. We
model the “arrivals” (i.e., initiations) of compute adaptive job
offloads on type c channel as a stationary stochastic process
with an average arrival rate of λc, and let λ = (λc, c ∈ C)
denote a vector capturing the arrival rate of compute adaptive
job offloads on each type of channel. The total arrival rate of
compute adaptive job offloads is λ =

∑
c∈C λc.



C. Model for shared base station resources

In our model, there is a set of users U(t) concurrently of-
floading compute adaptive jobs at time t, where N(t) = |U(t)|
denotes the number of active users. Users are associated with
the same BS, and share its uplink resources via a policy that
mimics proportional fair scheduling, where a user with channel
type c is served at a rate rc

1
N(t) . A user can abandon the

offloading of a compute adaptive job at any time. The state
of the system at time t includes the set of active offloads,
U(t), and for each offload u ∈ U(t), its channel class, cu, the
time elapsed since initiating offloading, eu(t), the layer it is
currently offloading, yu(t), and the residual data, su(t), that
needs to be offloaded to complete the delivery of the current
layer, yu(t).

D. Stationary ergodic offloading policies

Consider a set of stationary ergodic offloading policies, Π,
including any combination of admission control and schedul-
ing/resource allocation – where the latter may go beyond the
proportionally fair policy introduced in our system model.
For an offered load, λ, under policy π ∈ Π, we define
q(λ, π) = (qc,l(λ, π) : c ∈ C, l ∈ L), where qc,l(λ, π)
denotes the long term fraction of compute adaptive jobs with
channel quality c that successfully offloaded up through input
layer l within time budget τ . Since we assumed ergodicity and
stationarity, long term fraction is well defined. We must have∑

l qc,l(λ, π) ≤ 1 for all c ∈ C, and note that this may be a
strict inequality if a fraction of the offloads do not complete.
We define F(λ) = {q(λ, π) | π ∈ Π}, as the set of achievable
long term fractions. By time sharing, i.e., alternating over long
periods, between two policies, say π1, π2 ∈ Π, it is easy to
see that F(λ) is a convex set.

E. Revenue rate

We define the revenue rate for offered load λ under policy
π ∈ Π as:

β(q(λ, π),λ) =
∑
c∈C

λc

∑
l∈L

αlqc,l(λ, π).

III. HOMOGENEOUS COMPUTE ADAPTIVE JOBS AND
OFFLOADING POLICIES

In this section, we study different offloading policies with
the design objectives discussed in Section I in mind. We focus
on networks with homogeneous compute adaptive jobs (i.e.,
compute adaptive jobs that have the same number of input
layers and the same reward per number of layers delivered).
Offloads may, however, have different channel qualities and get
different shares of the channel depending on how many other
offloads they have to share it with. We begin by developing
an upper bound for the revenue rate of any stationary ergodic
offloading policy.

Table I: Summary of Notation introduced

Notation Description
L discrete set of input layers for a compute adaptive job
dl cumulative input data up through layer l ∈ L
α(.) reward function based on cumulative offloaded data
τ time budget
Π set of stationary ergodic offloading policies
C discrete set of channel qualities/classes
rc baseline capacity (bits/sec) for channel of

quality/class c ∈ C
λc arrival rate of compute offloads with channel c
λ total arrival rate of compute offloads
λ vector capturing the arrival rate of compute offloads

per channel type
U(t) set of users performing offloading at time t
N(t) number of users performing offloading at time t
cu channel quality/class of user u ∈ U(t)

eu(t) time since user u ∈ U(t) initiated offloading
yu(t) layer that user u ∈ U(t) is currently offloading
su(t) residual data that user u ∈ U(t)

needs to offload to deliver current layer yu(t)

A. Upper bound

We let q = (qc,l : c ∈ C, l ∈ L), where qc,l denotes the
fraction of compute adaptive jobs with channel quality c that
successfully offload up through layer l within the time budget.
We capture the set of such possible vectors by

Q = {q | q ≥ 0,
∑
l∈L

qc,l ≤ 1, ∀c ∈ C}

where we note that in some settings, a fraction of compute
adaptive jobs may not succeed, whence they need not sum to
1. For a given q, we define the channel utilization by

ρ(q) =
∑
c∈C

λc

∑
l∈L

qc,l
dl
rc
.

Recall that we defined F(λ) to be the set of achievable long
term fractions of offloads per channel type and number of
input layers that complete on time when the load is λ. Here
we define the set of all possible successful long term fractions

F(λ) = {q | q ∈ Q and ρ(q) ≤ 1}

as a natural outer bound.

Theorem 1: Given an offered load λ we have that F(λ) ⊆
F(λ) and

β∗(λ) := max
q∈F(λ)

β(q,λ) ≤ max
q∈F(λ)

β(q,λ)

where β∗(λ) denotes the maximum achievable revenue rate
given an offered load λ by any stationary offloading policy.

Proof. We first argue that F(λ) ⊆ F(λ). Indeed suppose
q ∈ F(λ). Recall that qc,l represents the fraction of offloaded
compute adaptive jobs with channel type c that can be com-
pleted on time when offloading Layer 1 through l. Since each
compute adaptive job is offloading till a particular layer l these
fractions always sum to less than or equal to 1. Thus q is
clearly in Q. But suppose the load on the channel is greater
than 1 given these fractions, i.e., ρ(q) > 1. If this is true,



then not all compute adaptive jobs will complete on time,
contradicting our earlier statement. Thus, the channel load
must be less than or equal to 1, i.e., ρ(q) ≤ 1 if q ∈ F(λ),
which implies q ∈ F(λ). Thus F(λ) ⊆ F(λ). This then
implies the following bound

max
q∈F(λ)

β(q,λ) ≤ max
q∈F(λ)

β(q,λ).

Remark 2: We let q∗ = argmaxq∈F(λ) β(q,λ). Note
that q∗ may not actually be achievable yet it provides some
guidance on the fraction of compute adapitve jobs to admit
across wireless channels with different capacity and up to
which layers offloading should take place.

B. Offloading policies

Greedy: Under the Greedy offloading policy, users progres-
sively transmit input layers until the compute adaptive job’s
offloading time budget, τ , expires. The reward for a user
is determined by the cumulative number of layers that were
successfully delivered.

Predictive Abandonment (PA): The Predictive Abandon-
ment (PA) policy adapts to changes in channel capacity and
uplink congestion as the number of users trying to offload
simultaneously varies. Under PA, a user, u ∈ U(t), continues
to transmit input data only as long as the residual data
associated with the current input layer, yu(t), is estimated to
be successfully delivered within the remaining time budget,
(τ −eu(t)). We estimate the time required to finish offloading
of the current layer by dividing the bits remaining to be
transmitted, su(t), by the throughput, hu(t), seen by the user
since it began offloading, tu, where

hu(t) =
1

eu(t)

eu(t)+tu∑
t′=tu

rcu
N(t′)

.

The user stops offloading input data if

su(t)

hu(t)
> (τ − eu(t)).

This prediction method is crude, but roughly captures the
average throughput seen by the user. It is user-oriented and
does not require any coordination with BS. More accurate esti-
mates could be made by considering the total number of users
in the system during each user’s offload, remaining service
requirements of currently offloading compute adaptive jobs,
and/or completed service requirements of offloaded compute
adaptive jobs. See, [20] for a discussion of such considerations
in a processor sharing scenario without layered input data and
abandonment.

The PA policy effectively performs a sort of dynamic
admission control, since it blocks a user from initiating offload
it it estimates that the user would not be able to offload the
first input layer within the time budget given the user’s channel
quality and the current number of co-channel users.

In the homogeneous scenario, where users’ compute adap-
tive jobs have identical offloading time budgets and input

layers, those with better channel qualities will not only transfer
more data per second, they will also stay on the system longer,
since they have a higher probability of estimating that their
“next layer” will transfer within the remaining time budget.
Thus, the PA policy is opportunistic in terms of channel
quality, promoting more aggressive layer offloading when a
user has good throughput. Both the Greedy and PA policies
are decentralized and require no information about the overall
system load λ. Next, we consider policies that take the overall
system load into account.

Probabilistic Admission Control and Layer Assignment
(PACLA): PACLA pre-determines the probability, pc,l, with
which a user with channel quality c should attempt to offload
its compute adaptive job up through layer l. We let p = (pc,l :
c ∈ C, l ∈ L), where we require

∑
l pc,l ≤ 1 for all c ∈ C and

denote the associated policy as PACLA (p). Determining a
good choice for p is challenging given the complex interplay
among contending loads from sets of channel types, possible
congestion on the network, delay constraint, and the revenue
rate the offloading policy seeks to optimize. We propose to
choose p based on the upper bounds in Theorem 1, i.e., we
let p = q∗, the solution that would in principle optimize
the revenue rate. These probabilities are determined based on
knowledge of the overall system load, λ, thus the policy should
be viewed as relying on a form of centralized coordination.
Since PACLA (p) can vary its admission probabilities across
users based on channel quality, it can be made opportunistic
across users with different channel qualities.

Users can then either greedily transmit their data up through
their assigned layer l or expiration of their time budget,
whichever comes first. Alternatively, users can use PA to avoid
wasting channel resources when their current input layer is not
estimated to arrive on time. We refer to the former policy as
PACLA (q∗) + Greedy and the latter as PACLA (q∗) + PA.

C. Simulation results

In this subsection, we compare the different offloading
policies discussed in the previous section. The overall compute
adaptive job arrival process is modeled as a Poisson arrival
process with intensity λ. We assume each compute adaptive
job is initiated by a distinct user, and users have 1 of 3
equally likely channel qualities, i.e., λc = λ/3 for all c in
C. In our simulation, we perform a discrete-time simulation
of each policy. The slot size is 100 µs. We simulate for 5e4
time slots and averaged over 100 Monte Carlo simulations.
The simulation parameters are given in Table II, where b is
a scale factor. We compare policies based on their achieved
revenue rates and offload completion probability, which is
defined as the fraction of offloads that transmit at least up
through Layer 1 within time budget τ . Fig. 3 exhibits the
revenue rates and offload completion probabilities generated
by our proposed offloading policies as a function of offload
rate λ, when the relationship between reward and number of
successfully offloaded input layers is concave. In this case,
α(d) =

√
d/b, where b is a constant.



(a) Revenue rate from successful offloading. (b) Offload completion probability.

Figure 3: Comparison of different offloading policies.

Table II: Simulation parameters

Parameter Value Units/Remarks
(d1, d2, d3) b · (1/3, 2/3, 1) bits

τ 1/30 sec
rc b · (50, 75, 100) bits/sec

(α1, α2, α3) (0.58, 0.82, 1) Concave

From Fig. 3a, we see that the Greedy policy suffers from
throughput collapse as λ increases. By contrast, policies like
PACLA that limit the load on the channel via admission
control and PA that stop the transmission of input data when
the current layer’s offload is estimated to exceed the time
budget, perform well even under high loads.

With a concave α(.), most of a compute adaptive job’s re-
ward is gained with the 1st input layer. As a result, a policy like
PA, which reduces the number of input layers a user transmits
as channel congestion increases, will perform quite well as the
load grows. As Fig. 3 shows, PACLA + PA outperforms all
the other policies in terms of revenue rate and the fraction of
successful offloads. When λ = 100, its performance is within
82% of the (unachievable) upper bound developed in Theorem
1, suggesting that any additional revenue from some smarter
scheduling and/or admission control would be limited.

In Fig. 4, we show the revenue rate and offload completion
probability of the highest revenue rate-achieving policy (PA-
CLA + PA) with and without the benefit of layered input data.
We do this to emphasize the benefits of adaptive computation
(i.e., the ability to adapt computation based on amount of
offloaded data). In the figures, we refer to the case where
input data is delivered in layers and compute adaptive jobs
can be executed on anything from 1-3 layers as “Adaptive
computation” while “No adaptive computation” refers to the
case when there are no layers and all input data must be
delivered to do the computation. As Fig. 4 shows, PACLA

+ PA improves significantly both with respect to revenue rate
and offload completion probability when adaptive computation
is supported.

Figure 4: Benefits of adaptive computation - For PACLA +
PA.

IV. HETEROGENEOUS COMPUTE ADAPTIVE JOBS

In this section, we explore how different offloading policies
perform when compute adaptive jobs are heterogeneous, i.e.,
when they no longer have the same deadline, number of layers,
data size per layer, and reward per layer.

We let J = {1, 2, ..., J} denote the set of different compute
adaptive job types and Λ = (λ1, ...,λJ) their arrival rates,
where λj = (λj

c, c ∈ C) denotes a vector capturing the arrival
rate of type j compute adaptive job per channel class. The total
arrival rate of type j compute adaptive jobs is thus denoted by
λj =

∑
c∈C λ

j
c. We let τ j denote the offloading time budget



and Lj = {1, ..., Lj} denote the set of input layers for type j
compute adaptive jobs.

For an offered load, Λ, under policy π ∈ Π, we let
Q(Λ, π) = (q1(Λ, π), ...,qJ(Λ, π)), where qj(Λ, π) =
(qjc,l(Λ, π) : j ∈ J , c ∈ C, l ∈ Lj), and qjc,l(Λ, π) denotes
the long term fraction of type j compute adaptive jobs with
channel quality c that successfully offload up through layer
l within time budget τ j . We must have

∑Lj

l=1 q
j
c,l(Λ, π) ≤

1 ∀j ∈ J , ∀c ∈ C, where again this may be a strict
inequality if a fraction of offloads do not complete. We define
S(Λ) = {Q(Λ, π) | π ∈ Π}, as the set of feasible long term
fractions. As in the homogeneous case this set can be seen to
be convex.

We define a performance metric for systems with heteroge-
neous compute adaptive jobs similar to what we did for the
homogeneous case. For an offered load Λ under policy π,
weighted revenue rate is given by:

β(Q(Λ, π),Λ) =
∑
j∈J

wj

∑
c∈C

λj
c

Lj∑
l=1

αj
l q

j
c,l(Λ, π)


where αj

l is the reward for type j compute adaptive jobs
that successfully offload up through layer l and wj is relative
importance of different compute adaptive job types.

Weights wj allow us to prioritize the revenue rates of one
compute adaptive job over another. However, the underlying
channel scheduler need not favor offloads of one type over
another. In this section we shall continue to assume the
proportionally fair scheduler used in the case when compute
adaptive jobs were homogeneous.

Table III: Summary of Notation introduced

Notation Description
J discrete set of compute adaptive job types

Λ = (λ1, ...,λJ ) vector of vectors capturing offered load of different
types of compute adaptive jobs

λj vector capturing type j compute adaptive job’s
arrival rate per channel class

λj total arrival rate of type j compute adaptive job
τ j time budget for type j compute adaptive job
Lj discrete set of layers for type j compute adaptive job

A. Upper bound

Let Q = (q1, ...,qJ) be a vector of vectors, where qj =
(qjc,l : j ∈ J , c ∈ C, l ∈ Lj), and qjc,l is the fraction of type j
compute adaptive jobs with channel quality c that successfully
offload up through layer l within time budget τ j . We define

Σ = {Q | qj ≥ 0 and

Lj∑
l=1

qjc,l ≤ 1, ∀j ∈ J , ∀c ∈ C}

as the set of such possible vector of vectors. We then define
the channel utilization per type j compute adaptive job based

on Q, which is the long term fraction of completed compute
adaptive jobs, as

ρj(Q) =
∑
c∈C

λj
c

Lj∑
l=1

qjc,l
djl
rc

where djl is the amount of data associated with offloading
type j compute adaptive job up through layer l, and rc is the
transmission rate for channel type c. Let ρ(Q) =

∑
j∈J ρj(Q)

denote the total network utilization.
Recall that we defined S(Λ) to be the set of achievable long

term fractions of successful compute adaptive job completions
by stationary offloading policies when the system load is Λ.
Here we define

S(Λ) = {Q | Q ∈ Σ and ρ(Q) ≤ 1}

as a natural outer bound.

Theorem 2: Given an offered load Λ we have that S(Λ) ⊆
S(Λ) and

β∗(Q,Λ) := max
Q∈S(Λ)

β(Q,Λ) ≤ max
Q∈S(Λ)

β(Q,Λ),

where β∗(Q,Λ) denotes the maximum achievable revenue rate
given an offered load Λ by any stationary offloading policy.

Proof. Similar to Proof of Theorem 1

Remark: We let Q∗ = argmaxQ∈S(Λ) β(q,Λ) denote the
maximizers associated with the bound. As before Q∗ may not
actually be achievable.

B. Simulation results

In this subsection, we compare the performance of our
proposed offloading policies when compute adaptive jobs are
heterogeneous. We set PACLA’s admission probabilities to
Q∗, which we denote as PACLA (Q∗) or simply PACLA
for brevity. We then schedule admitted input layers using
the Greedy or PA policy, i.e., PACLA + Greedy or PACLA
+ PA. We consider two types of compute adaptive jobs
in our simulations. Each type of compute adaptive job is
equally likely to experience 1 of 3 channel qualities, i.e.,
λj
c = λj/3 for all c ∈ C. The reward based on amount of

successfully offloaded data is a concave function for both types
of compute adaptive job, i.e., α(d) =

√
d/b. The complete set

of simulation parameters are given in Table IV where b is a
scale factor.

Table IV: Simulation parameters

Parameter Value Units/Remarks

(d11, d
1
2, d

1
3) b · (1/3, 2/3, 1) bits

(d21, d
2
2, d

2
3) b · (2/3, 4/3, 2) bits

rc b · (50, 75, 100) bits/sec
(τ1, τ2) (10/225, 20/225) sec

(α1
1, α

1
2, α

1
3) (0.58, 0.82, 1) Concave

(α2
1, α

2
2, α

2
3) (0.82, 1.16, 1.41) Concave



(a) For (w1, w2) = (1, 1). (b) For (w1, w2) = (10, 1).

Figure 5: Weighted revenue rate for fixed load of Type 2 (λ2 = 98) as load of Type 1 increases.

(a) For (w1, w2) = (1, 1). (b) For (w1, w2) = (10, 1).

Figure 6: Offload completion probability of Type 2 adaptive job for fixed load of Type 2 (λ2 = 98) as load of Type 1 increases.

Fig. 5 shows the weighted revenue rate generated from
different offloading policies when the arrival rate of Type 2
compute adaptive job is fixed while that of Type 1 varies. As in
the case of homogeneous compute adaptive jobs, PACLA + PA
outperforms all other offloading policies. PA alone performs
nearly as well as PACLA + PA when compute adaptive jobs
are weighted equally, but its performance relative to PACLA
+ PA drops significantly when compute adaptive job weights
are heavily skewed. This is because PA admits input layers
solely based on how much data is left in a compute adaptive
job’s current input layer relative to its average throughput
and remaining time budget. It pays no attention to compute
adaptive job priorities/weights, unlike PACLA which statis-
tically admits a compute adaptive job’s input layers based
on how much relative reward they will generate. Revenue
rate maximization does, however, come at the cost of lower

offload completion probability for the lesser weighted compute
adaptive job type when the weights are heavily skewed, as seen
in Fig. 6.

V. CONCLUSION

As the performance results demonstrate, our probabilistic
admission control and layer assignment policy, PACLA, max-
imizes total revenue by adapting the admission probabilities
for different numbers of input layers per compute adaptive
job type to the revenue per compute adaptive job type and
input layer, the average arrival rate per compute adaptive
job type and channel class, and potentially compute adaptive
job’s weight. Our predictive abandonment policy, PA, then
adapts PACLA’s admission control decisions to current channel
conditions by ending offloads when the input layers they
are currently offloading are no longer estimated to complete
within time budget. The combination of the two provides a



robust approach to managing computation offloads of both
homogeneous and heterogeneous compute adaptive jobs.
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