
Fundamentals of Caching Layered Data objects
Agrim Bari and Gustavo de Veciana

Department of Electrical and Computer Engineering

The University of Texas at Austin

Austin, TX, USA
Email: {agrim.bari, deveciana}@utexas.edu

George Kesidis
School of Electrical Engineering and Computer Science

The Pennsylvania State University

State College, PA, USA
Email: kesidis@gmail.com

Abstract—The effective management of the vast amounts of
data processed or required by modern cloud and edge computing
systems remains a fundamental challenge. This paper focuses
on cache management for applications where data objects can
be stored in layered representations. In such representations,
each additional data layer enhances the “quality” of the object’s
version, albeit at the cost of increased memory usage. This layered
approach is advantageous in various scenarios, including the
delivery of zoomable maps, video coding, future virtual reality
gaming, and layered neural network models, where additional
data layers improve quality/inference accuracy. In systems where
users or devices request different versions of a data object,
layered representations provide the flexibility needed for caching
policies to achieve improved hit rates, i.e., delivering the specific
representations required by users. This paper investigates the
performance of the Least Recently Used (LRU) caching policy
in the context of layered representation for data, referred to as
Layered LRU (LLRU). To this end, we develop an asymptotically
accurate analytical model for LLRU. We analyze how LLRU’s
performance is influenced by factors such as the number of
layers, as well as the popularity and size of an object’s layers.
For example, our results demonstrate that, in the case of
LLRU, adding more layers does not always enhance performance.
Instead, the effectiveness of LLRU depends intricately on the
popularity distribution and size characteristics of the layers.

Index Terms—Least Recently Used, Layered representations,
Working set approximation.

I. INTRODUCTION

Managing shared edge caching. Efficient management of
shared memory systems for applications that require large
volumes of data remains a significant challenge. These chal-
lenges are exacerbated when mobile applications with latency
constraints leverage limited/costly edge caching resources but
have limited or variable connectivity to the network edge.
In such settings, ensuring that data is available when needed
becomes even more critical.

Layered representations and applications. This paper fo-
cuses on applications where data objects can be stored and
utilized in multiple versions, represented as Layered Rep-

resentations (LRs). Each version offers a trade-off between
resource requirements (e.g. size) and the quality delivered
to applications. LRs incrementally improve quality with each
additional layer, providing flexibility for systems with diverse
quality demands or resource limitations. LRs have a wide
range of applications. In zoomable maps, they enable for
varying levels of topographic detail. In scalable video cod-
ing, a base layer provides basic quality, while enhancement

layers add finer details. For Virtual Reality (VR), progressive
meshes [12] allow efficient storage and rendering of 3D mod-
els through hierarchical simplification. Similarly, in compact
Neural Networks (NNs), a base model delivers lower accuracy,
while additional layers improve weight fidelity and inference
accuracy [14], [15].

Exploiting layered representations. Applications may re-
quest different versions of a data object for various reasons.
First, limited computational resources on the end devices may
necessitate versions requiring less compute, memory, or en-
ergy. Second, network conditions, such as low bandwidth, may
favor versions that balance quality with efficient transmission.
Third, applications may not always require the highest quality;
for example, in VR gaming, a distant tree can be represented
with a less detailed model. These scenarios demonstrate the
flexibility of Layered Representations (LRs) in addressing
diverse application requirements and constraints.

Alternative representations. There are alternative ap-
proaches to representing different versions of data objects,
such as Multiple Representations (MRs) with or without
transcoding [10], [19], [20]. In MR without transcoding,
discrete and independent versions are created; for instance,
in video streaming, this corresponds to encoding videos at
different rates without layering. In contrast, MR with transcod-
ing stores only the highest-quality version, from which lower-
quality versions can be derived. Transcoding can be performed
in real-time (online), generating lower versions on demand,
or offline, where lower versions are precomputed for future
requests.

LRU with LR. While considerable attention has been paid
to the design and analysis of caching policies for MR, limited
attention has been paid to the LR setting, which, as mentioned
above, we expect to be of increasing relevance to emerging
applications and caching at the network edge. In this paper,
we focus on a disciplined study of LRU, which has been
redesigned to leverage layered representation for data objects.

A. Related work

We review the caching policies relevant to our work. The
foundational studies are summarized in [5], [13], and [11] pro-
vides analytical methods for performance evaluation. Caching
policies aim to maximize the cache hit rate, the fraction of
requests served directly from the cache.

The Least Recently Used (LRU) policy retains recently
accessed objects, capitalizing on temporal locality. Under
the Independent Reference Model (IRM), where data objects
are requested independently of previous requests, analytical
results for LRU include the invariant distribution for uniformly
sized objects [16] and the working-set approximation [6], [7].
The working-set approximation, introduced in [6], provides
a method to compute the cache hit rate, with its asymptotic
accuracy formally proven in [7]. In this paper, we extend this
analysis to layered representations.

Beyond the IRM model, competitive analyzes compare on-
line policies, which lack future knowledge, to Belady’s offline
optimal policy [3]. LRU’s competitive ratio scales linearly with
cache size B. To improve LRU, e.g., the Marker algorithm [8]
achieves a competitive ratio of 2HB → 2 log(B), where HB is
the B-th harmonic number. No online policy can outperform
HB . Recent work [17] shows that combining Marker with
future request predictions can further reduce the competitive
ratio, depending on the accuracy of the prediction. The idea
of segmented caches, which have in the past been used to
more efficiently evict “one-hit wonders” (e.g., [18]), has more
recently been combined with low-complexity FIFO policies
[21]. In the following, we extend classical non-segmented
LRU and leave to future work adaptations of our approach
to segmented caching policies. An extended version of this
work, which includes additional experiments and discussions,
is available on arXiv [2].

B. Paper contributions and organization

The key contributions of this paper are now summarized.
First, we redesign and analyze the Least Recently Used (LRU)
caching policy for systems where data objects are available
in layered representations (LR). The proposed Layered LRU

(LLRU) policy is simple, robust to dynamic request patterns,
and well suited for caching in LR-based systems. Second, we
introduce a new working-set approximation to compute hit
probabilities for data objects under the LLRU policy, assuming
an Independent Reference Model (IRM) for versioned data
object requests. We demonstrate the asymptotic accuracy of
this approximation for a fixed number of layers. Finally,
we investigate the sensitivity of LLRU’s performance to the
size and popularity of layers and data object versions. This
analysis provides insights into determining the optimal number
of layers and identifying scenarios where additional layers
enhance performance.

The paper is organized as follows. Section II presents the
system model and the working set approximation for LLRU,
along with a proof of its asymptotic accuracy. In Section III,
we empirically validate the claims from Section II. Finally,
Section IV concludes the paper.

II. SYSTEM MODEL AND ANALYSIS

A. Model for cache

The system consists of a cache server of capacity B bytes.
The server stores various versions of data objects to serve
near-future requests from a user population. Due to practical

constraints, the cache capacity is typically not enough to store
all versions of data objects.

B. Model for data objects and arrival requests

Let D be the set of data objects, with cardinality D = |D|.
Each data object d ↑ D can have multiple versions, all with the
same total number of versions, indexed by v ↑ {1, 2, . . . , V },
where V is the total number of versions. The arrival rate of
requests for version v of data object d is denoted by ω(d, v).
The total arrival rate of requests for data object d is given by
ω(d) =

∑V
v=1 ω(d, v), and the overall arrival rate of requests

from all users is ω =
∑D

d=1 ω(d). The probability of a request
for data object d is q(d) = ω(d)/ω, and the probability of a
request for version v of data object d is q(d, v) = ω(d, v)/ω.
Next, we describe our model for layered representations.

C. Model for Layered representations

In LRs, version v of a data object is represented by a set of
consecutive layers l ↑ {1, 2, . . . , v}, where the size of layer l
for data object d is denoted by ε(d, l). Consequently, version
v of data object d occupies a total space of sLR(d, v) =∑v

l=1 ε(d, l) in the cache. We define ϑ(d, l) =
∑V

v=l ω(d, v)
as the total request rate for layer l of data object d, accounting
for requests for all versions that include this layer. The
request probability for layer l of data object d is given by
p(d, l) = ϑ(d, l)/ω =

∑V
v=l q(d, v).

D. Layered Least Recently Used (LLRU):

Property of LLRU. If layer l+1 of a data object is present
in the cache, then all lower layers i ↑ {1, 2, . . . , l} must also
be in the cache.

LLRU manages the cache by evicting the least recently
accessed layers of data objects. Let a(d, l) denote the last
access time of layer l for data object d ↑ D. When an LLRU
cache processes a request for (d, v) at time t, it operates as
follows: a) During a cache hit/miss - Update a(d, l) = t for all
layers l ↓ v, ensuring lower layers are accessed after higher
layers, and b) If a cache miss occurs, evict layers of other
cached data objects in increasing order of their last access
times until sufficient space is available to store all layers l ↓ v

of data object d.
Instead of using access times, the LLRU cache-eviction

order can be maintained by using a doubly-linked list.

E. Working-set approximation for LLRU

We introduce a working-set approximation for the LLRU
policy when data objects are stored in LRs. The accuracy of
this approximation is demonstrated in two ways: analytically,
as the number of data objects approaches infinity, and empir-
ically, through simulations.

Consider a system where time is divided into discrete slots.
We assume that the request arrival process for each data object
d and layer l follows a Bernoulli process with parameter
p(d, l). This means the probability of a request for data object
d and layer l in a time slot is p(d, l), and such events occur
independently across time slots.

1) Characteristic Time: Suppose there is a request for data
object d and layer l at time zero. Let Tf (i, k) denote the
time of the first request for data object i ↔= d and layer
k, where k ↑ {1, 2, . . . , V }. Similarly, let Tn(d,m) denote
the time of the next request for data object d and layer m,
where m ↓ l. Under the Bernoulli arrival process, these times
are geometrically distributed, i.e., Tf (d, l) ↗ Geo(p(d, l)) and
Tn(d, l) ↗ Geo(p(d, l)).

At time t > 0, the total size of requested data objects and
layers up to time t, excluding requests for data object d and
layer l, is given by:

S→(d,l)(t) =
D∑

i=1
i ↑=d

V∑

k=1

ε(i, k)1 {Tf (i, k) < t}+

l→1∑

k=1

ε(d, k)1 {Tn(d, k) < t} , (1)

where ε(i, k) represents the size of layer k for data object i.
The characteristic time T→(d,l)(B), a random variable, is

defined as the minimum time t > 0 at which the working-set
size excluding data object d and layer l exceeds B:

T→(d,l)(B) = min{t > 0 : S→(d,l)(t) ↘ B}. (2)

A request for data object d and layer l at time Tn(d, l)
is a cache hit if the working-set size remains below B,
i.e., S→(d,l)(Tn(d, l)) < B, or equivalently, if Tn(d, l) <

T→(d,l)(B). This relationship is expressed as:

{S→(d,l)(Tn(d, l)) < B} = {T→(d,l)(B) > Tn(d, l)}. (3)

The hit probability for data object d and layer l is then:

h(d, l) = P
(
T→(d,l)(B) > Tn(d, l)

)
(4)

= E
[
1≃ (1≃ p(d, l))T→(d,l)(B)→1

]
. (5)

Since T→(d,l)(B) corresponds to the time when the working-
set size first reaches B, we have:

B =
D∑

i=1
i ↑=d

V∑

k=1

ε(i, k)E
[
1≃ (1≃ p(i, k))T→(d,l)(B)→1

]
+

l→1∑

k=1

ε(d, k)E
[
1≃ (1≃ p(d, k))T→(d,l)(B)→1

]
. (6)

We use two common approximations from the literature to
simplify hit probability calculations; see [4], [9] for details.

Approximation 1: For D ⇐ 1, the characteristic time
T→(d,l)(B) becomes concentrated around its mean value.
Therefore, T→(d,l)(B) can be approximated by a deterministic
value t→(d,l)(B) for data object d and layer l.

Approximation 2: The dependence of t→(d,l)(B) on (d, l)
can be ignored for all data objects and layer. This is works
when p(d, l) is relatively insignificant to 1, and becomes exact
if request probabilities are equiprobable. In summary, the

working-set approximation for LLRU is as follows. Let t↓(B)
be such that:

B =
D∑

d=1

V∑

l=1

ε(d, l)
(
1≃ (1≃ p(d, l))(t

↑(B)→1)
)

(7)

Then the hit probability for data object d ↑ D and layer l ↑
{1, 2, . . . , V } is given by

h(d, l) =
(
1≃ (1≃ p(d, l))(t

↑(B)→1)
)
. (8)

This hit probability for data object d and layer l is equal to
hit probability for data object d and version v, where v = l

because of the property of LLRU. The results for a time-slotted
system can be extended to continuous time, where the request
arrival process for data object d and layer l is a Poisson process
with parameter ϑd,l. The hit probability for data object d and
layer l is given by

h(d, l) = 1≃ e
→ωd,lt

↑(B)
, (9)

where t
↓(B) is such that:

B =
D∑

d=1

V∑

l=1

ε(d, l)
(
1≃ e

→ωd,lt
↑(B)

)
. (10)

In the next section, we show the asymptotic accuracy of
working-set approximation.

F. Asymptotic accuracy of working-set approximation

We extend the analysis from [7] to incorporate layers into
the construction, focusing on LR for this part. Specifically, we
consider a system of caches where the request probability for
data objects and the working-set size scale as a function of
D. In this framework, each data object is assumed to have V

fixed layers (or versions).
Let F be a smooth, monotone increasing function with

domain [0, 1], such that F (0) = 0 and F (1) = 1. We define
the request probability for data object d and version v as D

scales in the following manner:

q
(D)(d, v) = (F (d/D)≃ F ((d≃ 1)/D)) g(v; d/D) (11)

where g(v; d/D) denotes the request probability for ver-
sion v of data object d and

∑V
v=1 g(v; d/D) = 1 for

all data objects. Based on the definition of F and g, we
have

∑D
d=1

∑V
l=1 q

(D)(d, v) = 1 and q
(D)(d, v) ↘ 0. Thus,

q
(D)(d, v) is a probability distribution determined by F and
g. We use ε

(D)(d, l) to denote the size of layer l for data
object d and p

(D)(d, l) =
∑V

v=l q
(D)(d, v) denotes the request

probability for layer l of data object d.
We define b = B/D, which scales as a function of D, and

develop the notion of characteristic time in the same way as
in the previous section. We assume a system with time-slots
and request arrival process for data object d and layer l is a
Bernoulli process with parameter p

(D)(d, l) and such events
occur independently over time-slots.

Suppose there is a request for data object d and layer l

at time zero. Let T
(D)
f (i, k) be the time of first request for

data object i ↔= d and layer k, where k = {1, 2, . . . , V }.
We use T

(D)
n (d,m) to denote the time of next query for

data object d and layer m, where m ↓ l. Under the
Bernoulli arrival process model, these times are geometrically
distributed, i.e., T (D)

f (d, l) ↗ Geo(p(D)(d, l)) or T (D)
n (d, l) ↗

Geo(p(D)(d, l)). At time t > 0, the total size of different data
objects and layer requested upto time t (i.e., working-set size),
excluding requests for data object d and layer l is

S
(D)
→(d,l)(t) =

l→1∑

k=1

ε
(D)(d, k)1

{
T

(D)
n (d, k) < t

}
+

D∑

i=1
i ↑=d

V∑

k=1

ε
(D)(i, k)1

{
T

(D)
f (i, k) < t

}
, (12)

with

E
[
S
(D)
→(d,l)(t)

]
=

l→1∑

k=1

ε
(D)(d, k)

(
1≃ (1≃ p

(D)(d, k))(t→1)
)

+
D∑

i=1
i ↑=d

V∑

k=1

ε
(D)(i, k)

(
1≃ (1≃ p

(D)(i, k))(t→1)
)
. (13)

Similarly, we can find the working-set size at time t and its
expectation is given by:

E
[
S
(D)(t)

]
=

D∑

d=1

V∑

l=1

ε
(D)(d, l)

(
1≃ (1≃ p

(D)(d, l))(t→1)
)
.

(14)

Lemma 1. In the independent reference model with D data
objects and V layers, the variance in the size of the working
set is bounded by:

V
(
S
(D)(t)

)
↓

(
D · V
4

+D · V · (V ≃ 1)

)
·
(
ε
(D)
max

)2
,

where ε
(D)
max = maxd↔D,l↔{1,2,...,V } ε

(D)(d, l).

Proof. Let X
(D)(d, l; t) be a random variable which is 1 if

data object d and layer l is in the cache at time t, and 0
otherwise. The working set at time t is given by:

S
(D)(t) =

D∑

d=1

V∑

l=1

ε
(D)(d, l)X(D)(d, l; t), (15)

then the variance V
(
S
(D)(t)

)
in the size of working set is

V
(
S
(D)(t)

)
= V

(
D∑

d=1

V∑

l=1

ε
(D)(d, l)X(D)(d, l; t)

)
. (16)

Since

V
(
X

(D)(d, l; t)
)
↓ 1/4,

Cov
(
X

(D)(i, l; t), X(D)(d, l; t)
)
↓ 0, i ↔= d

Cov
(
X

(D)(d, l; t), X(D)(d, k; t)
)
↓ 1, l ↔= k,

where Cov is the covariance. We find that

V
(
S
(D)(t)

)
↓

(
D · V
4

+D · V · (V ≃ 1)

)
·
(
ε
(D)
max

)2
(17)

We define Riemann integrable ! satisfying !(d/D, l) =
ε
(D)(d, l) for all D, d and l for the theorem below.

Theorem 1 (Asymptotic hit probability). Consider the system

of caches which scales as a function of D. For large D, the

hit probability for data object d and layer l, h
(D)(d, l), is

approximated by

h
(D)(d, l) =

(
1≃ (1≃ p

(D)(d, l))(t
↑(B)→1)

)
(18)

where t
↓(B) is such that:

B =
D∑

d=1

V∑

l=1

ε
(D)(d, l)

(
1≃ (1≃ p

(D)(d, l))(t
↑(B)→1)

)
.

(19)
In the limit D ⇒ ⇑, the hit probability for data object d

and layer l is given by:

h(d, l) := lim
D↗↘

h
(D)(d, l) = 1≃ e

→ε↑(b)F ↓(d)
∑V

v=l g(v;d)

(20)
where ϖ

↓(b) is such that:

b = lim
D↗↘

E
[
S
(D)(Dϖ)

D


(21)

and

lim
D↗↘

E
[
S
(D)(Dϖ)

D


=

 1

0

V∑

l=1

!(x, l)dx≃

 1

0

V∑

l=1

!(x, l)e→ε↑(b)F ↓(x)
∑V

v=l g(v;x)dx. (22)

Proof Sketch. This proof is inspired by [7]. Due to space
limitations we refer the reader to Theorem 1 in [7] for the
intermediate steps of the proof.

Using Mean Value Theorem, Lemma 10 from [7], and
Convergence of Riemann Integrals, we obtain Eq. 22. Let
ϖ
↓(b) denote the unique solution to Eq. 21. For finite D ⇐ 1,

Eq. 21 can be approximated by:

B =
D∑

d=1

V∑

l=1

ε
(D)(d, l)

(
1≃ (1≃ p

(D)(d, l))(Dε→1)
)

(23)

for B = Db. We define t
↓(B) = Dϖ

↓(b) as the unique
solution for the above equation. Note that as D ⇒ ⇑,

S
(D)
→(d,l)(Dϖ)

D
↗ S

(D)(Dϖ)

D

Now using Lemma 1 and convergence in probability we have:

lim
D↗↘

P
(
S
(D)
→(d,l)(Dϖ) ↘ B

)
= lim

D↗↘
P
(
S
(D)(Dϖ)/D ↘ b

)

= u(ϖ ≃ ϖ
↓(b)) (24)

(a) Version 1 (b) Version 2

(c) Version 3 (d) Version 4

Fig. 1. Hit probability against cache capacity for selected data objects under
LLRU caching policy.

By Palm’s theorem [1], the stationary LRU miss probability
for data object d and layer l is

1≃ h
(D)(d, l) = P

(
S
(D)
→(d,l)(T

(D)(d,l)
n) ↘ B

)

=
↘∑

t=1

P
(
S
(D)
→(d,l)(t) ↘ B|T (D)(d,l)

n = t

)
P
(
T

(D)(d,l)
n = t

)

For B = Db and D ⇐ 1, we use t = Dϖ and Eq. 24 to
simplify above to get:

1≃ h
(D)(d, l) = (1≃ p

(D)(d, l))Dε↑(b)→1

for all data objects d and layer l. We can replace Dϖ
↓(b) with

t
↓(B). As D ⇒ ⇑, using Lemma 10 from [7] or point wise

limits for right hand side, we obtain

1≃ h(d, l) = e
→ε↑F ↓(d)

∑V
v=l g(v;d). (25)

III. NUMERICAL EVALUATION AND SIMULATION RESULTS

In this section, we perform extensive numerical evaluations
based on the working set approximation. The aim is to
characterize the fundamental tradeoffs underlying the caching
of data objects with layered representations.

A. How accurate is the working set approximation for LLRU?

Setting. We consider a caching system with D = 100 data
objects, each having V = 4 layered versions. The request
probability q(d) follows a Zipf distribution with parameter 0.8,
while the request probability q(d, v) for version v is uniformly
selected from (0, q(d)), ensuring

∑V
v=1 q(d, v) = q(d). Addi-

tionally, we impose q(d, v1) > q(d, v2) for v1 < v2, reflecting
the higher request frequency of lower versions. Requests for

Fig. 2. Performance of LLRU for different size and popularity for a cache
capacity of 20.

(a) Fraction of requests for layers. (b) Size of layers.

Fig. 3. Popularity and size characterization for different values of m and n
as a function of number of versions.

object d and version v follow a Poisson process with rate
q(d, v). The size of each layer is uniformly chosen from
[1, 240], ensuring a total object size of 240.

Results Discussion. Figure 1 shows the hit probability of
different versions for objects ranked 1, 5, 10, and 15. Squares
represent LLRU simulation results, obtained from sufficiently
long runs for accuracy, while lines correspond to working set
approximations. The near-perfect agreement across all object
layers validates the approximation, which we use to explore
further questions.

B. Impact of layers’ sizes and popularity on performance

In this section, we study the impact of layer size and
popularity of layers on the hit rate. More specifically, we will
fix the size of layers and consider how to set the popularity of
versions and thus layers that is optimal. Similarly, for a fixed
popularity of versions, we address the optimal setting of the
size of each layer.

(a) m = 0, n = -1

X 1

Y 0.79418

X 2

Y 0.816617 X 10

Y 0.786969

(b) m = 2, n = -1

Fig. 4. Comparison of LLRU with V vs. 1 version under LR where popularity
and size scales as a function of V .

Setting. For this section, we have a caching system with
D = 100 data objects and V = 2 versions. The request
probability for data objects follows a Zipf distribution with
parameter 0.8. For the case of 2 versions, we use ϱ to denote
the fraction of requests for Version 1 of data object d and
ς = ε(d, 1) to denote the size of Layer 1 of data object d.

Results discussion. 1) How to set the size and popularity

when each data object has 2 version?

We show the performance of the cache under the LLRU
caching policy in Figure 2 for different values of the fraction of
requests for Version 1 and the size of Layer 1. We observe that
for a fixed fraction of requests for LR 1, as the size of Layer
1 decreases, the performance improvement is monotonically
increasing. However, the same is not true for the fixed size
of Layer 1 and the increasing fraction of requests for LR 1.
Furthermore, if both the size and fraction of requests vary
simultaneously, possibly along a diagonal, the hit rate does
not follow a monotonic pattern. The last observation is that
significant improvements occur with an increasing fraction of
requests for LR 1 and a decreasing size of Layer 1.

C. Is it beneficial to increase the number of versions for a

data object?

Setting. We consider 100 data objects with request proba-
bilities following a Zipf distribution (parameter 0.8). Given
V versions, the request probability of the v-th version of
object d is: q(V)(d, v) = (V→v+1)m∑V

i=1(V→i+1)m
. The size of version

v is: s
(V)
LR (d, v) =

∑v
l=1 ε

(V)(d, l), where ε
(V)(d, l) =

ln∑V
i=1 in

. We plot the request probability, p
(V)(d, l) =

∑V
v=l q

(V)(d, v), for the first three layers, along with ε
(V)(d, l)

as a function of V in Figure 3a and Figure 3b. This is
analogous to the case of partitioning an object into subobjects
based on varying popularities, such as the difference in request
probabilities for street views of a building versus its interiors.

Results discussion. We compare LLRU performance with
V vs. 1 version in Figure 4. Figures 4a and 4b depict the
hit rate under LLRU as a function of V for different values
of m and n. Our results show that both the popularity and
size of layers must vary at a certain rate to improve the hit
rate. In Figure 4a, the hit rate decreases monotonically with
V , whereas increasing m for the same n introduces non-
monotonic behavior, as seen in Figure 4b. This highlights the
nuanced impact of V , popularity, and size characterization on
hit rate. Additionally, we observe a monotonically increasing
hit rate for all m > 0 and n ↘ 0.

IV. CONCLUSION

The efficient management of the large amounts of data
required by emerging delay-constrained applications, e.g.,
multiplayer VR gaming and NN-based inference, will require
judicious use of caching that exploits, when appropriate,
hierarchies of data object representations that enable tradeoffs
between a data object’s size and quality. To address this, in this
paper, we have studied Layered Least Recently Used (LLRU)
optimized for data objects with layered representations. To that

end, we have developed a working set approximation for a
practical policy. We exploit this approximation to investigate
the impact that the incremental size of layers and the level
of demand for different versions will play. The paper studies
these impacts showing, e.g., when additional layers may be
of value, and when they may indeed be counterproductive,
towards enhancing performance.

ACKNOWLEDGMENT

This work was supported by National Science Foundation
CNS- 2212202 Award.

REFERENCES

[1] F. Baccelli and P. Brémaud. Elements of Queueing Theory: Palm

Martingale Calculus and Stochastic Recurrences, 2nd Ed. Springer-
Verlag, Berlin, 2003.

[2] Agrim Bari, Gustavo de Veciana, and George Kesidis. Fundamentals of
caching layered data objects, 2025. [Online] Available:https://arxiv.org/
abs/2504.01104.

[3] L. A. Belady. A study of replacement algorithms for a virtual-storage
computer. IBM Systems Journal, 5(2):78–101, 1966.

[4] H. Che, Y. Tung, and Z. Wang. Hierarchical web caching systems:
modeling, design and experimental results. IEEE JSAC, 20(7):1305–
1314, 2002.

[5] A. Dan and D. Towsley. An Approximate Analysis of the LRU and FIFO
Buffer Replacement Schemes. In Proc. ACM SIGMETRICS, 1990.

[6] Peter J. Denning and Stuart C. Schwartz. Properties of the working-set
model. Commun. ACM, 15(3):191–198, mar 1972.

[7] R. Fagin. Asymptotic miss ratios over independent references. Journal

Computer and System Sciences, 14(2):222–250, 1977.
[8] Amos Fiat, Richard M Karp, Michael Luby, Lyle A McGeoch, Daniel D

Sleator, and Neal E Young. Competitive paging algorithms. Journal of

Algorithms, 12(4):685–699, 1991.
[9] C. Fricker, P. Robert, and J. Roberts. A Versatile and Accurate

Approximation for LRU Cache Performance. In Proc. International

Teletraffic Congress, Krakow, Poland, 2012.
[10] Felix Hartanto, Jussi Kangasharju, Martin Reisslein, and Keith Ross.

Caching video objects: Layers vs versions? Multimedia Tools Appl.,
31(2):221–245, nov 2006.

[11] G. Hasslinger, M. Okhovatzadeh, K. Ntougias, F. Hasslinger, and
O. Hohlfeld. An overview of analysis methods and evaluation results
for caching strategies. Computer Networks, 228, 2023.

[12] H. Hoppe. Progressive meshes. In Proc. ACM SIGGRAPH Conf. on

Computer Graphics and Interactive Techniques, page 99–108, 1996.
[13] Predrag R. Jelenković. Asymptotic approximation of the move-to-

front search cost distribution and least-recently used caching fault
probabilities. The Annals of Applied Probability, 9(2):430–464, 1999.

[14] B. Jiang and Y. Mu. Russian doll network: Learning nested networks
for sample-adaptive dynamic inference. In Proc. IEEE/CVF ICCV

Workshops, pages 336–344, 2021.
[15] Eunwoo Kim, Chanho Ahn, and Songhwai Oh. Nestednet: Learning

nested sparse structures in deep neural networks. In 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 8669–
8678, 2018.

[16] W. King. Analysis of paging algorithms. Proc. IFIP Congress, pages
485–490, 1971.

[17] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with
machine learned advice. J. ACM, 68(4), jul 2021.

[18] Memcached. https://memcached.org.
[19] A. Ortega, F. Carignano, S. Ayer, and M. Vetterli. Soft caching:

web cache management techniques for images. In Proc. First Signal

Processing Society Workshop on Multimedia Signal Processing, pages
475–480, 1997.

[20] T. Shanableh and M. Ghanbari. Heterogeneous video transcoding to
lower spatio-temporal resolutions and different encoding formats. IEEE

Transactions on Multimedia, 2(2):101–110, 2000.
[21] Y. Zhang, J. Yang, Y. Yue, Y. Vigfusson, and K.V. Rashmi. SIEVE is

Simpler than LRU: an Efficient Turn-Key Eviction Algorithm for Web
Caches. In Proc. USENIX NSDI, 2024.

