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principles, we propose the Resource-Aware Dynamic (RAD) scheduler and prove that it achieves throughput
optimality under mild conditions. To address practical Service Level Objectives (SLOs) such as serving requests
with different Time Between Token (TBT) constraints, we design the SLO-Aware LLM Inference (SLAI)
scheduler. SLAT uses real-time measurements to prioritize decode requests that are close to missing their TBT
deadlines and reorders prefill requests based on known prompt lengths to further reduce the Time To First
Token (TTFT) delays.

We evaluate SLAI on the openchat_shareGPT4 dataset using the Mistral-7B model on an NVIDIA RTX ADA
6000 GPU. Compared to Sarathi-Serve, SLAI reduces the median TTFT by 53% and increases the maximum
serving capacity by 26% such that median TTFT is below 0.5 seconds, while meeting tail TBT latency constraints.
The complete source code is available at: https://github.com/agrimUT/SLAL
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1 Introduction

LLM inference systems. The core problem in Large Language Model (LLM) inference is to generate
a response autoregressively, one token' at a time, given a prompt—for example, "What is the capital
of France?" producing the output "It is Paris." Modern LLMs such as GPT-4, Llama 3, and Gemini now
power a wide range of services, including chatbots, coding assistants, and search engines. These
services handle millions of user requests daily, and private deployments are rapidly increasing. As
a result, there is growing interest in optimizing how requests are processed across one or more
Graphics Processing Unit (GPU)-enabled nodes in data centers, since improved efficiency can lead
to significant reductions in infrastructure and operating costs.

Objectives for LLM serving systems. To meet growing demand, LLM systems must be care-
fully designed to make efficient use of hardware. A well-designed system keeps each active GPU
busy—fully utilizing both its compute and memory—while also keeping response times low. This
leads to two main goals: (1) achieving high throughput, measured in requests per second, to reduce
the cost per request, and (2) maintaining low latency, which directly affects user experience. Latency
is typically measured using two Service-Level Objectives (SLOs)?: Time To First Token (TTFT), which
is the delay between a request’s arrival and the generation of the first output token, capturing how
long a user waits before the LLM starts responding; and Time Between Tokens (TBT), which is the
time between successive output tokens, indicating the rate at which the response is streamed to the
user. In real-world systems, request routing, scheduling, and caching are used to meet these goals.
This paper focuses on scheduling, which plays a critical role in increasing throughput, reducing
TTFT, and keeping TBT within acceptable limits.

Phases of an LLM request and scheduler decisions. Each request to an LLM based on the
Transformer architecture goes through two main phases: prefill and decode. In the prefill-phase,
the model processes the entire prompt and generates the first output token. After that, the request
enters the decode-phase, where it produces one token at a time in an auto-regressive manner until
a stop token is generated. These two phases have distinct characteristics. The prefill-phase is
highly parallelizable and can fully utilize the GPU’s compute resources. By contrast, the decode
phase is sequential and has low parallelism, which means that multiple decode-phase requests
must be batched together to make efficient use of the GPU. Additionally, Transformer models store
intermediate representations of tokens—called the Key-Value (KV) cache—which grow with the
number of tokens processed and consume GPU memory. The scheduler’s job is to select a mix
of prefill-phase and decode-phase requests to include in each GPU batch. These decisions must
balance GPU compute and memory bandwidth usage, stay within the memory budget, and meet
latency SLOs.

Challenges in scheduler design. Designing an effective scheduler for LLM inference presents
several key challenges. First, GPU compute efficiency depends heavily on the composition of each
batch—that is, the mix of prefill and decode-phase requests scheduled together. As a result, the
scheduler must construct batches carefully to make the most of available resources. Second, the
scheduler must balance resource allocation between the prefill and decode phases, as both phases
have their respective SLOs: TTFT and TBT. Prioritizing prefill-phase requests can reduce TTFT
but may delay decodes and worsen TBT. Conversely, prioritizing decode-phase requests keeps
TBT low but can lower compute utilization and increase TTFT for new requests. Third, while the
prompt length is known upon a request arrival the output length is unknown, making memory

1A token in a LLM is a unit of text-such as a word, subword, or character-used as the basic input element for processing and
generation.
2Thresholds may vary by application, but these two metrics are commonly used.
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management complex—particularly since GPU memory is often a bottleneck. Finally, many LLM
serving systems support multiple user tiers which have heterogeneous performance needs.

Our approach. In this work, we approach the LLM scheduling problem from two complementary
perspectives. From a theoretical standpoint, we develop a rigorous framework for analyzing and
achieving throughput-optimal scheduling. From a practical perspective, we design a scheduler that
dynamically adapts to diverse latency SLOs across heterogeneous user tiers.

Contributions. Our key contributions are:

(1) A Theoretical Model for LLM Inference Systems. We develop a comprehensive analytical
framework for request routing and scheduling in LLM inference systems, capable of capturing
salient features of practical policies considered in the literature. Additionally, we introduce a
model to represent inference computation times on modern GPU architectures. This unified
framework enables rigorous analysis and comparison of routing and scheduling policies in
such systems. See Section 3.

(2) A Throughput Optimal Scheduler. We identify two key design principles that characterize
optimal resource-utilization in LLM inference systems; optimal tiling and optimal dynamic
resource allocation across prefill and decode workloads. Guided by these insights, we design
a simple load-balancing routing strategy and introduce a Resource-Aware Dynamic (RAD)
scheduler. We rigorously prove that, under mild assumptions, this combination achieves
throughput optimality. See Section 4.

(3) Insights for Practical Systems. Recognizing that in practical LLM inference systems it is
desirable to meet latency SLOs, we provide insights into how real-world systems approximate
and adapt the proposed design principles to satisfy these constraints. See Section 5.

(4) A SLO-Aware Scheduler. We design a practical scheduler called SLO-Aware LLM Inference
(SLAI) scheduler that aims to minimize online median TTFT when serving requests with
heterogeneous TBT constraints. To achieve this, SLAI uses online measurements to decide
when the execution of a decode-iteration has become time-critical, i.e., should be prioritized
for scheduling. In addition, it uses the known prompt length information to order prefill-phase
requests so as to reduce the median TTFT. See Section 6.

(5) Experimental Performance. We evaluate SLAI on the openchat_shareGPT4 dataset using
the Mistral-7B LLM on an NVIDIA RTX ADA 6000 GPU. Our results show that SLAI can
reduce the median TTFT by 53% while meeting TBT requirements compared to Sarathi-serve,
the current state-of-the-art scheduler. Additionally, when median TTFT can not exceed 0.5
seconds, SLAI increases the serving capacity by 26%. See Section 7.

1.1 Related Work

LLM serving systems must make decisions about when to run the prefill and decode phases of
a request, where to execute each request, and how to manage the growing KV cache produced
by the model. Based on these challenges, prior work can be broadly categorized into three areas:
(a) scheduling within a single inference node, (b) routing across multiple inference nodes, and (c)
managing the KV cache. In this section, we focus exclusively on scheduling. For a discussion of
related works on routing and KV cache management, we refer the reader to Appendix A.

1.1.1  Queueing based analysis for schedulers. The queueing-theoretic study of LLM inference
remains in its early stages, especially when compared to the more mature systems-oriented literature.
A recent survey by Mitzenmacher et al. [19] highlights the distinctive characteristics of LLM
inference workloads and emphasizes the importance of queueing-based analysis for such systems.
A closely related work is [17], in which the authors develop a queueing-theoretic model for
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LLM inference schedulers and analyze throughput optimality. The authors approximate the batch-
processing time, which is observed to have a staircase-behaviour in practice, by a linear function.
They observe under their model that work conserving schedulers are throughput optimal. In our
work, we model the detailed computations on a GPU to perform LLM inference, and obtain a
formula for the batch processing time that reflects the staircase-behaviour observed in practice. Our
more detailed modeling framework yields novel structural insights—particularly on the optimal
tiling and resource allocation strategies required for throughput optimality. These insights offer
new avenues for improving the performance of practical LLM inference systems. In [20], the authors
study throughput-maximization in a setting where the system is backed up with requests, and the
token generation times depend on the batch size, but not on the token positions.

1.1.2  Scheduling policies. Schedulers differ in how they prioritize prefill-phase and decode-phase
requests, and in their batching granularity. Below, we highlight some of the key work in this
literature.

Decode-prioritizing (request-level) schedulers. Frameworks such as FasterTransformer [23, 24]
and the request-level mode of TensorRT-LLM process a set of requests till completion, before
admitting any new requests. Since new prefill-phase requests never interrupt ongoing decode-
phase requests, these schedulers perform well on TBT. However, they have low throughput when
there is a imbalance in the total (prompt and output) length of requests and thus GPU may be
under-utilized.

Prefill-prioritizing (iteration-level) schedulers. Iteration-level batching, first introduced by
Orca [33], enables dynamic admission and completion of requests at each forward pass. However, it
relies on static memory allocation for the KV cache, which limits the number of concurrent requests
to 16 on an A100 GPU. vLLM [15] overcomes this limitation using paged attention, allowing more
flexible memory management and increasing the maximum number of concurrent requests to 128.
Additionally, like FlashDecoding++ [8] and DeepSpeed-FastGen [7], vLLM aggressively admits
new prefill-phase requests to improve throughput. However, this eager admission policy can delay
decode iterations—especially for long prompts—leading to higher TBT latencies.

Hybrid schedulers. Sarathi-Serve [2] introduces a token-budgeted, chunked-prefill strategy
to balance throughput and TBT, effectively reducing decode-iteration stalls that are common in
prefill-prioritizing schedulers. Beyond such scheduling-focused methods, recent systems propose
orthogonal techniques aimed at improving overall LLM inference performance. BlendServe [34]
targets offline workloads by reordering requests based on their resource usage profiles to improve
hardware efficiency. POD-Attention [14] enables pipelined execution of prefill and decode phases
to increase kernel overlap and improve GPU utilization. HydraGen [13] reduces redundant compu-
tation by identifying and merging shared prompt prefixes across requests. DistServe [36] adopts
a disaggregated architecture that separates prefill and decode execution across different nodes,
thereby eliminating intra-GPU contention; however, it introduces communication overhead due to
the transfer of large KV caches.

2 Background

2.1 Transformer

We focus on the widely used decoder-only Transformer architecture—referred to simply as the
Transformer in this work—that forms the basis of GPT, LLaMA, PaLM and other families of LLM
models. The Transformer is an autoregressive model that generates token 6,1 by conditioning on
all previous tokens 6, . .., 0;. Token 0; is processed by the Transformer as shown in Fig. 1. A token
is first converted into an embedding and then passed through N layers. Let the input to the n'
layer be a vector x" € R% of dimension d,. Each layer comprises of three distinct sub-layers:
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Fig. 1. Transformer architecture.

(1) QKV Projection: This sub-layer is parametrized by three matrices Wé‘, Wy and W)} each of
dimension d X dy . The corresponding Query, Key and Value (or, QKV) vectors are computed
using a linear transformation as, ¢" = Wélx", k" = Wex" and o™ = Wyx", where ¢", k", 0"
are all vectors of dimension d X 1.

(2) Self Attention: For the i token, the key and value vectors of all tokens up to and including
token i are stacked into matrices K™! and V™! of dimension d X i, and the self-attention is
computed as,

1)

y" = V™ softmax

Kn,ian
\/a s

where y" € R? is the resulting context vector. (1) represents a single attention head. In
practice, Transformers employ multiple attention heads [30], meaning that multiple sets of Q,
K, and V vectors are used in parallel in a layer. The resulting outputs are then concatenated
and passed to a Feed-Forward Network (FFN) described below. For simplicity, and without
loss of generality, we focus on a single attention head in our theoretical analysis. Our results
are also applicable to memory-efficient variants such as multi-query attention [27] and
grouped-query attention [3].

(3) Feed Forward Net (FFN): The output of the self-attention sublayer is passed through an FFN
with one hidden-layer. The dimensions of the weight matrices of the FFN, Wl,:"1 and WPf; , are
dry X d and d X dyy respectively. The output of the FFN serves as the input to the (n+1)th

layer.

The output of layer N is passed through a linear transform followed by a softmax operation. The
probability distribution output by the softmax is used to sample the next token in the sequence.

2.2 Inference on a Transformer

An LLM inference system receives requests in the form of prompts, consisting of a variable length
sequence of tokens 61, 0,, ..., 0;p, where IP denotes the prompt length. The inference task is to
autoregressively sample output tokens 0;p,1,0;p,, ..., 0,p,p from the Transformer until a stop
token is sampled at an apriori unknown position [” + [P + 1, where [P denotes the output length.
A central technique used to speed up LLM inference is KV caching, wherein the key and value
vectors (KV vectors) that have been computed for a token 6; are cached in GPU memory. This
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allows subsequent tokens to directly retrieve the relevant KV vectors during attention computation,
avoiding recomputation and significantly improving inference efficiency.

The computation associated with completing an LLM inference request can be divided into two
distinct phases,

(1) Prefill-Phase: Although prompt tokens are specified by the request and thus do not need to
be sampled, the KV vectors for all prompt tokens do need to computed and cached for all
layers since they are required to perform the self-attention computation for later tokens. The
computation of the KV vectors corresponding to prompt tokens is called the prefill-phase.
Since all the prompt tokens are available, the prefill-phase can be done in parallel for all the
prompt tokens at once, or a chunk of tokens at a time. This is discussed further in Sections

3.1 and 3.2.
(2) Decode-Phase: The decode-phase denotes the computations involved in generating output
tokens 0;p,q, Op1, ..., 0pp. The KV vectors computed in this phase are also cached in

memory for use in the self-attention computation of future tokens. Since this is the token
generation phase, it is autoregressive in nature unlike the prefill-phase, and thus due to
dependencies cannot be parallelized across tokens of the request.

See Fig. 2 for a visualization of the two phases of LLM inference.

A

é] UJ ! é]
I A A

61 6 O1p| 0r4q Orpsy  \Oppypp
Prefill Phase ecode Phase

Fig. 2. Prefill and decode phases of a request during inference on a Transformer.

2.3 Computation on a GPU

A significant fraction of computations associated with LLM inference and, more generally, modern
Al workloads involve matrix-matrix multiplication which can be sped up by specialized hardware.
As such, modern GPUs have several components to perform matrix-matrix multiplication that is
distinct from components used to perform general parallel computations. For concreteness, in this
paper we focus our analysis on the terminology and convention used by NVIDIA TensorCore GPUs
[25], while noting that GPUs produced by Intel[10], AMD[1] etc., have analogous components.
From hereon, unless otherwise mentioned, by GPU we mean NVIDIA TensorCore GPU.

A GPU consists of a set of s independent processors called Streaming Multiprocessors (SMs). An
SM in turn consists of a number of fundamental computational units, which can be categorized
into two categories: 1) CUDA cores which are general purpose parallel computation units, and 2)
Tensor Cores that are specifically designed to perform (generalized) matrix-matrix multiplications.
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Two types of computational tasks on a GPU are especially relevant in the context of LLM inference,
Generalized Matrix-Matrix Multiplication (GeMM) and Generalized Matrix Vector Multiplication
(GeMV), which are detailed below.

GeMM. Let A € R%ovXded B ¢ RéeaXdeol C ¢ R%owXdeol and let a, f € R; the GeMM operation
computes C «— aAB + BC. In this formulation d4 and d., denote the row and column dimensions
of the output matrix C, while dq is the reduction dimension, corresponding to the shared inner
dimension of input matrices A and B.

B ;
A i C
Q}tred d
It row 5 rd | P row
S Ao | Feol T Arow

tred H col
—— ——

d red dcol dcol

Fig. 3. Computation of a tile in a GeMM, C <— aAB + C, requires a sweep of a row of tiles of A and a column
of tiles of B.

The GPU GeMM algorithm [22] partitions the output matrix C into tiles of size t;ow X tco] (padding
zeros if necessary to fit dimensions). The computation of a tile of C is assigned to an SM. The input
matrices A and B are tiled into tiles of dimensions t.ow X treq and teq X tcol. Here, we shall refer to
tred as the reduction tile dimension. Each SM loads the corresponding input tiles into local memory
to compute its assigned output tile. See Fig. 3 for a visual representation of this process.

Tensor Cores can only be used if the output tile dimensions belong to a particular GPU-dependent
set, Tout and the reduction tile dimension belongs to a set Treq. Tile dimensions in Tyt and Treq
are always powers of 2. For instance, on the A100 GPU, 7,41% = {(256, 128), (128, 256), (128, 128),
(256, 64), (64, 256), (128, 64), (64,128), (64,64)}, and typically Treq = {32, 64}. Moreover, Tensor
Cores provide a substantially higher FLOP/s rate for GeMM with any of the allowed tile config-
urations as compared to CUDA cores. Therefore it is most often beneficial to pad the input and
output matrices with zeros in order to partition it into tiles that fit in 7oy and Treq, even though it
leads to redundant (zero-padding) computation. When zero padding is used, the FLOP/s rate only
counts the useful computations and excludes redundant computations, i.e., the theoretical peak is
computed using the original matrix sizes, not the padded sizes. For a detailed discussion on the
characteristics of matrix sizes and FLOP/s rate of GeMMs, refer [22].

Suppose the GeMM computation uses output tile dimensions t;4y X teo] and reduction tile
dimension f;e4. The output matrix C then contains [drow/trow | * [deol/tcol ] tiles, and each output tile
requires [dred/tred] tile-pairs of A and B to be multiplied (ref. Fig. 3). Let u(trows teol, tred) denote the
speed of computing the GeMM of a tile-pair with dimensions t;ow X fred and tred X teol, and recall
that s is the number of SMs on the GPU. Then, we model the total time to complete the GeMM as

1 d, deol | | dred
TGeMM(drow, dCOls dred, Lrows teols tred) =7 " row“ " <o “ " r . (2)
S,U(trow> teols tred) Trow || teol || tred

Here, 1/s accounts for the parallelism provided by the s SMs, 1/ (10w, tcols tred) Captures the effective
time to compute one tile-pair multiplication, and the remaining terms count the total number of
tile-pair multiplications needed.

AssUMPTION 1. There exists output tile dimensions (t;y, 1. ) € Tour and a reduction tile size
trq € Tred such that if a GeMM'’s matrices are a) sufficiently large, i.e., can fully utilize the GPU’s
compute resources, and b) are perfectly tiled i.e., there is no padding overhead, then the GPU achieves
its maximal FLOP/s rate.
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Assumption 1 is well supported by empirical studies of GeMM performance on modern GPUs

[22]. Intuitively, when matrices are sufficiently large and partition exactly into the tile size t;,,, X £, |
along the output dimensions and t; ; along the reduction dimension, the GPU can fully utilize its
SMs by creating a large number of independent tile computations. These output tile dimensions
trow X 1) are typically the largest in 7o, which leads to higher arithmetic intensity—the ratio of
floating-point operations to memory accesses—thereby enabling more efficient use of memory
bandwidth and allowing the GPU to operate at its peak throughput. For instance, in the A100 GPU,
trow X . is either 128 X 256 or 256 X 128 and ¢, is 32.

GeMV. Let A € R%owXdeol 5 € Rl and Y€ R%ov_Then, for scalars a, B, the GeMV operation
computes y «— aAx + fy. The GeMV is also implemented by tiling the output vector y into
sub-vectors of size t;ow, Which are assigned to individual SMs and computed using CUDA cores.
Correspondingly, the matrix A is partitioned into tiles of size t;oy X tcol, and the input vector x into
tiles of size t¢o). Let p(tow teol) denote the speed of computing a single tile-pair GeMV. Then the

total time to complete the GeMV is modeled as

1 d deol
TGeMV(drow: dcob Lrows tcol) - ’V_row“ ’Vi“ . (3)
sﬂ(trow> tcol) trow teol
Because GeMV performs fewer floating-point operations per byte of memory traffic than GeMM,
its arithmetic intensity is lower and thus it is less efficient in terms of memory bandwidth utilization.
This motivates the following assumption.

ASSUMPTION 2. Let diow, deol, dred € N. Let A € R%owXded, Lot x(1),...,x(deo) € R%eaX!
and y(1),...,y(deol) € Ré%owX1 pe 2d 1 vectors. Denote the respective stacked vectors as, X =
[x(1)x(2) ..., x(deo))] and Y = [y(1) y(2) ... y(deol)]. Let @, f € R. We will assume, that the
time required to compute the set of GeMVs, y(i) «— aAx(i) + Py(i) foralli € {1,...,d.o1}, is greater
than the time required to compute the GeMM, Y «— aAX + BY.

3 LLM Inference System Model

We shall consider an LLM inference system consisting of r inference nodes coordinated by a central
resource planner as shown in Fig. 4 which function as follows.

Inference node: An inference node is the basic computational unit responsible for performing
LLM inference. For large models such as GPT-3, PaLM, etc., inference is typically performed using
multiple GPUs due to memory constraints. However, all GPUs within a node participate in a
fixed execution pipeline using tensor-parallelism[21] or pipeline-parallelism[9]. Without loss of
generality, it is convenient to model an inference node as operating on a single GPU.

The primary decision process at an inference node lies in its LLM inference scheduler which
decides the order in which to schedule tasks on the node’s GPU. The design of LLM inference
schedulers is the focus of this work, and, we describe a general framework to study them in Section
3.1, after a brief description of the resource planner below.

Resource planner: The resource planner receives incoming requests in the form of prompts and
assigns each one to an inference node, where the request joins a queue and waits to be served.
The planner continuously monitors the status of all inference nodes—tracking metrics such as the
number of pending requests, request latencies, and memory usage (including risks of overflows).
Based on this information, it may choose to reassign waiting requests or even migrate partially
processed requests to other nodes. When a partially completed request is migrated, the source node
must transfer the partially computed KV cache to the destination node, which might incur a cost
such as the time required to complete the transfer.
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Fig. 4. An LLM inference system.

A resource planner in some systems, such as in NVIDIA Dynamo(4], has the ability to turn off
some inference nodes when they are being underutilized, and turn them on when the system is
congested. This feature is especially useful towards achieving energy efficiency when the request
arrival pattern is heterogeneous and may vary through time. We focus on stationary request arrivals
in our work for analytical tractability, and do not study policies to turn nodes on or off.

3.1 A General Framework for LLM Inference Schedulers

We consider a class of schedulers that schedule batches of request iterations non-preemptively that
captures a range of existing schedulers in the literature. In this context, the meaning of an iteration
of a request depends on whether it is in the prefill-phase or the decode-phase, as defined below.

DEFINITION 1 (PREFILL-ITERATION). For a request R, a chunk-size c, and starting token index i, a
prefill-iteration, denoted PI(R, i, c), involves computing the KV vectors for each layer corresponding
to prompt token indices in the range i to i + ¢ — 1 (both inclusive). Once the iteration is complete, the
starting token index is updates to i + c.

In order to schedule PI(R,i,c) on the GPU, the KV vectors for tokens up to index i — 1 must
have been previously computed and cached in GPU memory, and i + ¢ — 1 should not exceed the
prompt length. Moreover, if i + ¢ — 1 corresponds to the last prompt token, then the prefill-iteration
generates the first output token.

DEFINITION 2 (DECODE-ITERATION). An iteration of a request R in the decode-phase, denoted
DI(R, i), corresponds to the generation of the next output token which is at index i + 1.

In order to schedule DI(R, i), all the KV vectors for tokens up to index i — 1 must be previously
computed and cached in GPU memory. Moreover, index i should not correspond to a prompt token,
and should not correspond to a token that follows the stop token.

Let P, and D,, be the sets of requests that are in their prefill-phase and decode-phase respectively
just prior to the construction of batch m. Let B,, denote the set of iterations to be scheduled in
batch m. Initialize B,, = 0. A scheduler selects a subset SP of b¥, prefill-phase requests from P,
and subset S2 of b decode-phase requests from D,, and constructs the batch as follows: 1) for
each selected prefill-phase request R; € St with starting token index i}, it chooses a chunk size
¢j and adds PI(R}, i}, c;) to B,,; 2) for each selected decode-phase request R; € SD with the latest
token index i}, it adds DI(R}, ;) to B,,. At most one decode-iteration can be scheduled per request
in a batch. Then, it schedules 8, on the GPU. Note that all the iterations within the batch may be
processed in parallel by the GPU. A description of some existing LLM schedulers expressed in this
framework is provided in Appendix E.

Next, we discuss how computations corresponding to a batch are performed on the GPU.

3.2 LLM Inference Computation on the GPU

We split the operations involved into 3 categories.
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3.2.1 Linear transformations: This category includes the QKV projections in each layer, the
linear computations in the FFN sub-layer of each layer and also the final linear projection. In all
computations in this category, a weight matrix of the transformer multiplies a token feature vector.
In particular, these computations involve the features of the present token, and do not involve any
previous tokens in the sequence.

In line with Assumption 2, this operation may be scheduled efficiently as a GeMM instead of
multiple GeMVs as follows. Let W denote the weight matrix of the transformer. Let 7, denote
the token-count of the m™ batch, which is, 7, = b5 + 3 jRjesk, ¢j- Stack all the 7,, corresponding
feature vectors into a matrix Z™" and compute Z°% = WZ™. Let (trow teol) € Tout and tred € Tred
denote the output tile dimensions and reduction tile dimension used respectively for all linear
transformations. For simplicity, we use a common tile configuration across transformations, as
Assumption 1 implies a single tile configuration can achieve optimal performance across different
GeMM dimensions.

Consider the QKV projection in layer n. The dimensions of WS, Wy and W} are d X dy. Then,
X™, which is the stack of 7, number of x™’s, has a dimension of d X 7,,,. And the 3 output matrices,
which are the stacks of ¢™’s, k"’s and 0™’s respectively of tokens in the batch, have a dimension
of d X 7, each. Since the model dimensions are designed with hardware in mind, d, d, (as well as
other model dimensions) are divisible by the tile dimensions. Therefore, according to (2), the time
3 dy d [ Tm.

’ s/l(thstcol’tred) tred trow | teol
WF’i and W;‘Z have dimensions dg X d and d,. X dg, respectively. Denote the dimension of the final

linear projection matrix as dqyt X dy. Recalling that there are N layers in the transformer, the amount
of time required to compute the linear transformations for a batch with token count z,, is,

1 3Ndx d d dff +Nﬁ dx +d_xd0ut)’77:m“

required to complete the 3 GeMMs is w . The two FFN sub-layer matrices

+ N—

Sﬂ(trow> Leols tred) Ired trow tred trow tred trow tred trow Leol

In the above formula, the scheduler can only modify the token count of the batch, but not any
of the transformer’s parameters. So, we can abstract out fixed components, and express the time
required to complete the linear transformation computations for the tokens in a batch as,

1 T,
- - @ {_’"} . (4)
,ULin(trow, Leols tred) teol

3.2.2  Self-attention: This computation has different characteristics in decode and prefill iterations.

The self-attention for a decode-iteration of a request consists of performing GeMV operations
which cannot be scheduled as a GeMM using batching across requests because each request has a
unique KV cache. Consider a decode-iteration DI(R}, i;) in the batch. Its self-attention computation
involves 2 GeMV’s: one with a matrix of size d X i; and a vector of length i;, and another with a
matrix of size i; X d and a vector of length d. Let (trow, tcol) be the optimal tile configuration for the
GeMV. Then, from (3), the time required to perform Self-Attenion at layer n for this decode-iteration

is,
Y N P
H(trows teol) \ Zeol | trow teol | trow

Above, we use TP54(+) to encapsulate the fixed components of the self-attention computation time.

On the other hand, since prefill-iterations may be scheduled for a chunk of tokens at a time, their
self-attention may be computed as a GeMM as follows. Consider a prefill-iteration PI(R;, i}, c;)
at layer n of the Transformer. Stack the i; + ¢; — 1 each of key and value vectors of dimension d
of the first i; + ¢; — 1 tokens into matrices K" and V". Stack the c¢; query vectors of dimension d
corresponding to the current chunk into the matrix Q. Let M be a masking matrix of dimension
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(ij + cj — 1) X c¢j, where each entry is 1 except in indices (ky, k2) satisfying k; > i and ky < ky — i,
where it is set to 0. The masking matrix allows a token to only attend to previous tokens in
the prompt sequence. Then, the stack of output vectors of the self-attention may be computed
KnTQn

as, Y" = V"softmax ( 0] M) , where © denotes an element-wise product. Observe that this
requires: 1) a GeMM between matrices of dimensions (ij+c;j—1) X d and d X cj, 2) element-wise
multiplication with the mask M followed by a non-linearity (softmax), and 3) another GeMM
between d x (ij+c;j—1) and (ij+c;j—1) X c; matrices. Let (t;ow, tcol) € Tour and tred € Tred denote the
output tile dimensions and reduction tile dimension used respectively for both the GeMMs. We
assume the cost of masking and softmax is negligible for simplicity. Then, according to (2), the time

required to compute the self-attention across all N layers is:
ij +cj— 1
prest), ©

N (Fj-i-cj_lw{cj“d + d {Cj}
sﬂ(trow> Leols tred) Trow teol | tred trow | teol Tred

REMARK 1. For simplicity, we describe the computation of self-attention as two successive GeMM’s
interleaved with non-linear operations. In practice, systems usually use FlashAttention [5]-a hardware-
efficient algorithm which minimizes the number of memory transfers by fusing operations and re-
ordering computation using tiling. Our approach and analysis can be adapted for FlashAttention with
appropriate modifications to (6). We leave this to future work.

3.2.3 Non-Linear Operations: Each SM in a GPU has a Special-Function-Unit that efficiently
computes non-linear functions. Transformers include non-linear operations such as ReLU, softmax,
etc., which—like Linear Transformations—operate only on the tokens being processed in the batch.
The time to compute all non-linear operations for a single token is denoted by ﬁ Thus, for a

L 7., where linLin denotes the rate at
In

batch containing 7, tokens, the total computation time is =

which non-linear operations are performed per token.

Batch execution time: Recall that B, denotes the m' batch with prefill-iterations from requests
in 87, and decode-iterations from requests in SL. Then, summing up the computations times from
(4), (5) and (6) for all the iterations, we express the batch computation time as,

1 T, 1
Ts(By) = —{—’" et N D TP
PLin(trow, Leol, tred) Teol HnLin D
JRjeSm )
(l]+Cj I‘HVCJ"‘ d d "C]’“ l’j+Cj—1“)
+— — + — |-
S,u(trOWs cols red) iR Sp Lrow Leol | tred Lrow | teol tred

The ceiling function in the batch execution time formula captures the staircase-behaviour observed
in practice. See [17, Figure 4].

Next, we present our main theoretical contribution: a simple resource planner and a scheduler that
maximizes the throughput—measured in requests per second—under stationary request arrivals.

4 A Throughput Optimal Inference System
4.1 Throughput optimal resource planner

For simplicity, we assume that all  Inference Nodes in the system are identical and are running
the same Transformer model. We consider a simple uniformly random resource planner, which
distributes each incoming request uniformly at random to one of the r inference nodes.

The random-routing assumption represents a simplified setting. The multi-node model is included
to reflect large-scale inference architectures, which typically involve multiple GPUs or servers.
Within the homogeneous setup considered here, random routing suffices to achieve throughput
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optimality. In more realistic deployments—featuring heterogeneous nodes, bursty workloads, or
latency-sensitive objectives—more sophisticated routing strategies may be required. This model
thus serves as a foundational step toward analyzing such richer settings.

A general resource planner in our model (see Fig. 4) has the ability to monitor node statuses
and transfer pending or partially processed requests from one node to another. While the simple
resource planner above does neither of these, we show that, combined with our proposed scheduler
in Section 4.2, it maximizes resource utilization and is thus throughput-optimal, even when the
cost of transferring the KV cache of partially processed requests between nodes is 0. The ability to
monitor node status and transfer requests becomes particularly useful in practical systems that
aim to minimize delay or satisfy strict latency SLO constraints [4].

4.2 RAD: A throughput optimal scheduler

Our proposed Resource-Aware-Dynamic (RAD) Scheduler is shown in Algorithm 1. The time
horizon of RAD can be partitioned into cycles, where in a cycle, RAD schedules a sequence of
batches that start and complete up to n requests, with n being a parameter. Now, in addition to n,
RAD also accepts the optimal output tile dimensions, (¢, ) € Tour and reduction tile dimension
tr.q € Tred as in Assumption 1, for optimal GeMM computation on the GPU. The central design
principle of RAD is two-fold.

Optimal GeMM tiling. RAD schedules batches such that all GeMM computations in the batch are
optimally tiled. It does so by either scheduling ¢ | decode-iterations in a batch, or, scheduling a
prefill-iteration with chunk size equal to LCM(t]. t;‘ol, tr*e 0‘), where LCM stands for least-common-
multiple. This tiling strategy is violated only in rare cases—specifically, near the end of a cycle—as
further explained in the description of Algorithm 1.

Optimal resource allocation via dynamic scheduling of prefill and decode. RAD dynamically
prioritizes prefill or decode iterations based on the request arrival pattern and its characteristics.
For instance, if the requests have very long prompts but short output lengths, it spends more time
performing prefill iterations. On the other hand, if the requests have relatively shorter prompt
lengths and longer output lengths, it spends more time performing decode iterations. In this context,
prefill and decode phases may be viewed as two classes of tasks, and that RAD partitions the node’s
service capacity such that both prefill and decode tasks may be completed.

In addition to the above principles, RAD also manages GPU memory and prevents overflow
by limiting the number of active requests —requests that currently store their KV cache in GPU
memory— to ¢ |, the number required for optimal tiling. See Assumption 4 for further details.

At a high level, RAD alternates between two operational modes—Prefill Mode and Decode
Mode—as illustrated in Figure 5. At the start of a cycle, RAD enters Prefill Mode, completing ¢
prefill-phase requests, after which the same number of decode-phase requests become active. It then
transitions to Decode Mode, scheduling decode iterations for these active requests in optimally tiled
batches. When one or more decode-phase requests complete, RAD switches back to Prefill Mode
to process additional prefill-phase requests until there are again exactly ¢ | active decode-phase
requests, thereby re-enabling efficient decode batching. Once a sufficient number of requests have
been completed in the current cycle, RAD finishes the remaining ones—even if their batches are
not optimally tiled—before beginning the next cycle.

Next, we provide a detailed explanation of RAD as shown in Algorithm 1. Let  and D denote
the set of requests in prefill and decode phases respectively. A variable, requests_in_cycle keeps
track of how many requests have started processing (i.e., have had an iteration scheduled) in the
current cycle. During a cycle, we continue to update # with any requests that arrive. Then at the
completion of a batch, the next batch is selected as follows. If there are no requests in P or @, the
scheduler simply waits until a new arrival happens (lines 5). Otherwise, 1) If there are enough decode
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/\

Prefill Mode Decode Mode
Complete prefill phase of requests Schedule and execute iterations for
with optimal tiling until there are active decode phase requests,

t.o; active decode phase requests continuing until at least 1 completes

Fig. 5. High-level operation of the RAD scheduler. In Prefill Mode, the scheduler completes prefill iterations
with optimal tiling until there are ¢ | active decode-phase requests, at which point it switches to Decode
Mode. In Decode Mode, it schedules decode iterations for these active requests until at least one completes,
after which it switches back to Prefill Mode.

phase requests, or there are no prefill phase requests, or n requests have started processing in the current
cycle (Lines 6-11): RAD selects one decode iteration per request in 9 and runs them together as a
batch. After the GPU completes processing the batch, any requests that sampled the stop token
are removed. If D is now empty, it signals the end of the current cycle, and requests_in_cycle is
set to 0. 2) Else (Lines 12-21): RAD chooses a request in a first-come-first-serve (FCFS) manner
from P and schedules its prefill-iterations in chunks of size LCM (t;oy, tcols tred), Unless there are
fewer tokens, until its prefill phase is complete. The request is then moved to D, and the number
requests_in_cycle is updated.

Algorithm 1 Resource Aware Dynamic (RAD) Scheduler

Require: Parameter n // Max number of prefills per cycle
Require: Output tile size (1, . ) and reduction tile dimension ¢, // For optimal tiling
LP—0,D«0 // Set of requests in prefill and decode phase

2: requests_in_cycle « 0

3: while True do

4:  Update P based on new arrivals

5 if # = 0 and D = ( then continue // Do nothing
6: elseif |D| =1t or P =0 orrequests_in_cycle = n then

7 Schedule a DI with appropriate token index for each request in D in a batch

8 Remove requests that sampled the stop token from D

9

If D = 0 then requests_in_cycle < 0 // End of cycle
10: else
11: Choose a request R first-come-first-serve from # and set i < 1
12: while prefill phase of the chosen request is incomplete do
13: ¢ =min{t; ,LP(R) - i} /1t = LCM (i £, 5 0)
14: Schedule PI(R, i,c) in a batch
15: i—i+c
16: end while
17: Move the request from P to D
18: requests_in_cycle « requests_in_cycle + 1

19:  end if
20: end while
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4.3 Throughput Optimality Characterization

The following theorem characterizes the maximum arrival rate under which any routing and
scheduling policy could be stable.

THEOREM 1 (UPPER BoUND). Consider a system with a resource planner and r identical inference
nodes. Let requests arrive to the system according to a Poisson-Point-Process (PPP) of rate A. Let the
j™ request arrival, R;, have prompt and output lengths, Lf and LJ[.), sampled according to a bounded
joint-distribution prr b, i.i.d., across requests.

Let (1 t;‘ol) € Tout and t:ol € Tred be the optimal output tile dimensions and reduction tile

dimension respectively from Assumption 1, and let, tl*cm = LCM(t],, t:ol’ t:e d)‘ Define,

- ! B[l +1P] B[LF+LP] LZD:TDSA(LP )
= - - = ” + + ? +1
I’lLi”(th’ tcol’ tred) tcol HnLin i=1
Nd

E[LP(LP + ¢ )]

SH (tr*ow’ t:ol’ t:ed)t?OWt:olt:ed
Denote Q(t) to be the number of pending requests in the system at time t, i.e., those that have arrived
but not yet completed service. Under Assumptions 1 and 2, if ATR > r, there exists an & > 0 such that

or any resource planner and scheduler, lim;_, QW + v almost surely.
y p 7 Y.

The proof of Theorem 1 can be found in Appendix B. Intuitively, the argument proceeds by
showing that, in the best case, an inference node may be viewed as a single server system with
expected service time TR. Then, instability may be shown to occur when the load on the system
exceeds its service capacity.

Next, we proceed to analyze the range of arrival rates under which the RAD scheduler stabilizes
the system. First, we make two assumptions.

AssUMPTION 3. Let (1},

by RAD. Then, prompt lengths Lp ~ p;r are multiples of LCM(t;;

row?

tr ;) andt: , be output tile dimensions and reduction tile dimension used
t’ s trow) almost surely. Finally,

assume the prompt and output lengths are upper bounded by "™ and [P™3 respectively.

The upper bound on the prompt and output lengths is natural since LLMs only support bounded
context lengths. If the prompt length is not a multiple of LCM(t;,y,, £, Irow)> then any scheduler
may have to complete a part of the prefill-phase with non-optimal tiling. We make this assumption

to simplify our scheduler and its analysis.

ASSUMPTION 4. Let (t;oy, t7 ) be the output tile dimensions used by RAD. Each inference node is
provisioned with sufficient GPU memory to store the KV cache fort’ | concurrent requests, each with

prompt length [P and output length 1P where [P gnd [P™3% gre defined in Assumption 3.

This assumption ensures that sufficient GPU memory is available to accommodate the worst-case
KV cache requirements needed by the RAD scheduler. The above assumption is also a mild one
because ¢ is typically as small as 64 or 128. Modern LLM inference nodes that use paged-attention
[15] are able to accommodate the KV-cache of these many requests in their GPU memory.

Next, we state our result which characterizes the loads that the RAD scheduler combined with a
simple resource planner can stabilize.

THEOREM 2 (THROUGHPUT OPTIMALITY OF RAD). Consider a system with a uniformly random
resource planner, and r identical Inference Nodes running the RAD scheduler. Let requests arrive
according to a Poisson Point Process (PPP) of rate 1. Let the j request arrival, R;, have prompt and
output lengths, Lf and L]D , sampled according to a joint-distribution pyr b, i.i.d., across requests.
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Suppose Assumptions 1, 2, 3, and 4 hold. Let TR be as defined in Theorem 1. Define the worst-case
time to complete a request as:

lP,max + lD,max lP,max + lD,maX [Pmasy | D.max
T £ max + +N Z PS4 (0)] .
(trowsteol) € Touts tred € Tred ,ULin(trOWs teols tred) HnLin =1

Suppose there exists ¢ > 0 such that A\TR < r(1 - ¢). Then, RAD with parameter n satisfying
(t:ol_l) Tmax

n> —r—— is stable in the following sense. Let Q,(t) denote the number of pending requests at
noder’ at time t. For everyr’, (Qy (t)),s, forms a positive-recurrent regenerative process[28].

We outline the arguments used to prove the statement above. First we construct a discrete-time
Markov chain (DTMC) for each node that tracks the number of requests at the node at the start of
each cycle. We show that the DTMC is positive recurrent under the conditions of the Theorem.
Further, we show that the expected time of a cycle is finite. This leads us to conclude that the
number of pending requests Q. () at any time ¢ at a node r’ forms a positive-recurrent regenerative
process— it visits 0 in finite expected time. The proof can be found in Appendix C.

5 Practical Insights from Theory

In Section 4, we identified two key principles that make a system throughput optimal: 1) optimal
GeMM tiling when there are sufficient requests in the system, 2) optimal resource allocation for
prefill and decode iterations to account for variability and uncertainty of prompt and output lengths.

In practice, LLM inference systems also have to meet other latency-based SLO constraints, such as
TTFT and TBT as explained in the Section 1. We believe that designing a system that simultaneously
achieves optimal GeMM tiling and optimal resource allocation, while maintaining low TTFT and
TBT is challenging. As an illustrative example, consider an instance of running the RAD scheduler
where in every batch of ¢’ | decode-iterations, one or more requests generate their stop token. In
this case, the RAD scheduler has to complete prefill-phases of an equal number of new requests
in between every consecutive batch of decode-iterations. Since prefill-phases may take a while to
complete because of long prompt lengths, all requests may experience high TBT. See Appendix D
for a throughput-optimal scheduler with low TBT but which incurs high TTFT.

In real-world deployments, meeting both TTFT and TBT constraints often necessitates a tradeoff
between optimal tiling and optimal resource allocation. We examine two state-of-the-art LLM
inference paradigms—single-node serving, where both the prefill and decode phases of each request
are executed on the same inference node, and disaggregated serving, where these phases are
distributed across different nodes—and present a novel perspective on how these systems adopt
complementary strategies to navigate this tradeoft.

Single node serving maintains optimal resource allocation but sacrifices optimal GeMM tiling.
Consider, Sarathi-serve [2] a state-of-the-art single node serving scheduler. When enough requests
are present, Sarathi-serve prioritizes filling a batch with available decode iterations, then adds prefill
iterations such that the total token count equals 7hudget, 2 multiple of ¢7 . This dynamic batching
strategy is similar to the RAD scheduler’s, and preserves optimal allocation across prefill and decode.
However, since it does not enforce that prefill chunk sizes are multiples of LCM(#],,, t:ol’ l‘;‘e d), it
does not guarantee optimal tiling. Other schedulers, such as vLLM [15] and Orca [33], also fall into
the category of single-node serving schedulers.

Disaggregated serving, by contrast, maintains optimal GeMM tiling but sacrifices optimal resource
allocation. Distserve [36], a state-of-the-art disaggregated serving scheduler, statically partitions
inference nodes into prefill-nodes and decode-nodes. Prefill-nodes exclusively handle prefill itera-
tions, which allows them to, in most cases, schedule with optimal chunk sizes, helping minimize
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TTFT. Completed prefill-phase requests are transferred to decode-nodes. Decode-nodes handle
decode iterations and can batch ¢ ; decode requests when available, keeping TBT low. However,
static partitioning may lead to resource imbalance: for instance, when prompt lengths are short
but output lengths are long, decode-nodes may become overloaded while prefill-nodes remain
underutilized.

To address practical needs, we next consider the design of a scheduler that serves heterogeneous
request classes subject to latency constraints at a single node. Since single node serving systems
dynamically allocate resources and are therefore more robust to heterogeneity in request arrivals,
we focus on this paradigm in the sequel.

6 SLO Aware LLM Inference Scheduler

Request classes. In real-world LLM serving systems, requests may come from different classes of
user with heterogeneous latency SLOs. For example, paying users typically expect fast and smooth
responses, especially during token generation, which requires stricter TBT deadlines. By contrast,
free-tier users are generally more tolerant of delays and can be served with more relaxed TBT
constraints. Managing these mixed latency requirements well is important to keep users satisfied
while making efficient use of system resources.

Recall that we consider a class of schedulers that executes prefill-phase and decode-phase requests
as sequences of prefill-iterations and decode-iterations, respectively, see Definitions 1 and 2.

Motivation. The throughput-optimal RAD scheduler described in Section 4 focuses on maximiz-
ing throughput, but it does not consider latency SLOs during either the prefill or decode phases due
to the challenges mentioned in Section 5. However, in practice, meeting these latency constraints is
critical to deliver a good user experience.

Sarathi-Serve, the current state-of-the-art scheduler, addresses this by chunking long prefill-phase
requests into smaller chunks and interleaving them with decode-phase requests in each batch. Each
batch is constrained by a token budget—the maximum number of tokens it can process. Sarathi-
Serve includes all active decode-phase requests from the previous batch in the current one and uses
the remaining token budget to schedule prefill-iterations. However, it treats all decode-iterations of
associated decode-phase requests as if they had the strictest TBT deadline, even when actual TBT
deadlines vary across requests. While this conservative strategy ensures tail TBT latency is below
some threshold, it can lead to inefficient use of batch capacity and does not address reducing TTFT
for prefill-phase requests. To overcome this limitation, we propose the SLO-Aware LLM Inference
(SLAI) Scheduler. SLAI tracks each decode-iteration’s TBT deadline and delays its inclusion in a
batch until necessary. This allows the scheduler to allocate more of the batch’s token budget to
prefill-iterations earlier, without missing TBT deadlines on decode-iterations. As we will show, this
approach better aligns scheduling decisions with request-specific needs, resulting in lower median
TTFT for prefill-phase requests while still meeting tail TBT latency constraints on decode-iterations.

Key concepts and parameters. We begin by explaining how SLAI dynamically decides when to
include a decode-iteration in a batch. The key idea in this process is the last schedulable time, which
determines when a decode-iteration becomes critical and must be included to meet its latency
target.

Let § > 0 be an offset parameter for SLAI that defines how early a decode-iteration should
be considered critical. Consider the i decode iteration for a given request j which has an SLO
requirement of TBT;, SLAI notes the end time of the most recent batch in which its (i — 1)t decode-
iteration was included, denoted e;_; ;. It also maintains the running average of batch execution
times observed so far, denoted by Zpaic,. We define its last schedulable time as:

Cij = ei-1,j + TBT; = & - tharch 6]
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This is the latest wall-clock time by which decode-iteration j must be included in a batch to meet its
TBT deadline. When constructing batch m at time t,,, the scheduler checks each active (in progress
that currently occupies GPU memory) decode-phase request and labels its decode-iteration as
critical if t,, > C; j; otherwise, it is considered as non-critical and can be deferred to a later batch.

Besides this dynamic prioritization, SLAI uses several key parameters to balance latency targets
with efficient GPU use. The token budget rbudget gets the maximum token count allowed in a batch,
ensuring effective use of the GPU’s compute resources without violating TBT SLOs. A cap on
the number of active requests « limits how many active requests are allowed at once, helping
prevent memory overflows for large models or long prompts. A decode limit f restricts how many
of decode-iterations can be included in a batch, avoiding long batch execution times due to too
many decode-iterations in a batch. Finally, the offset parameter § provides a safety margin for the
last schedulable time computation to absorb variability in batch execution and reduce the risk of
missing TBT SLOs. We will later discuss how these parameters interact and influence the behavior
and performance of the scheduler. Next, we describe how the SLAI scheduler works.

Batch construction. We now describe how a batch is constructed by the SLAI scheduler. At
each decision point, the scheduler forms a batch from the set of active requests and new requests
that have not yet been processed. While forming a batch, it must respect several system constraints:
the token budget (rP"2t), the cap on active requests (), and the decode request limit (). The batch
construction follows these steps:

(1) Identify critical decode-iterations: For each active decode-phase request, compute the last
schedulable time for its decode-iteration. A decode-iteration is marked as critical if current
time is past its last schedulable time; otherwise, it is marked as non-critical.

(2) Add critical decode-iterations: Include critical decode-iterations in the batch, in the increasing
order of last schedulable time. This ensures that decode-iterations that are closest to their
TBT deadline are scheduled first.

(3) Add prefill-phase requests: Next, add prefill-phase requests in a non-preemptive manner.
Among these, requests that have already been scheduled at least once (i.e., active prefill-phase
requests) are given a higher priority. If token budget and cap on number of active requests has
not been exceeded, new prefill-phase requests are considered. We consider two possibilities
for ordering the incoming requests: Shortest Prefill First (SPF) to reduce the average or median
TTFT or First Come First Serve (FCFS) order to ensure fairness.

(4) Add non-critical decode-iterations: Finally, if there further token budget remains and number
of decodes in the batch are less than the decode limit, include additional non-critical decode-
iterations in increasing order of their last schedulable time.

Next, we discuss the impact of parameters other than the offset (§), which has already been
covered in our earlier discussion of the scheduler.

6.1 Impact of different scheduler parameters

6.1.1 Token budget (?“¥¢t), The token budget places an upper limit on the number of tokens that
can be processed in a single batch—one token per decode-phase request and ¢ > 1 tokens per prefill
chunk. Fig. 6a shows how the choice of token budget r"%&¢ affects TTFT and batch-execution
time. When 7748 is small, a 2048-token prefill must be split into many small chunks. This leads
to frequent kernel launches and synchronization, causing the GPU to spend more time idling. As
a result, TTFT increases. Conversely, when rhudget jq large, the scheduler can process the entire
request in fewer large batches. This improves GPU utilization but each batch takes longer to execute.
If a decode-iteration is scheduled during such a long batch, it must wait, increasing the risk of
violating its TBT constraint. The scheduler must thus choose a token budget 7"t that balances
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Fig. 6. Impact of token budget, concurrency, and batch composition on request execution latency and GPU
memory usage for Mistral-7B on a single NVIDIA RTX ADA 6000 GPU.

efficiency and responsiveness. Batches should be large enough to use the GPU effectively, but not
so long that they excessively delay latency-sensitive decode-phase requests. Choosing this value
carefully is a key part of designing an effective scheduling policy.

6.1.2  Cap on the number of active requests («). Each request generates KV tensors that must be
stored in GPU memory until the request is completed. Fig. 6b shows how GPU memory utilization
grows with the number of active decode-phase requests, based on runs with N concurrent decode-
phase requests (each with a 2048-token prefill followed by a 1-token decode iteration) on Mistral-7B.
As more requests become active, memory usage increases steadily.

When too many requests are active, the scheduler may need to evict KV tensors to make room
for new ones. If a request’s KV tensors are evicted, they must be recomputed before the request can
resume decoding. This adds unnecessary delay and increases TTFT, even for requests that have not
yet been scheduled. To avoid this, the scheduler should cap the number of active requests, ensuring
that all necessary KV tensors can remain in memory without eviction. Doing so helps maintain
low latency and avoids unnecessary recomputation overheads.

6.1.3  Decode limit (). The decode limit sets an upper bound on how many decode-iterations can
be included in a single batch. Fig. 6¢c shows how batch-execution time changes as the number of
decode-iterations increases, while keeping the token budget fixed at 512. When only a few decode
iterations are present, the batch finishes quickly. However, as more decode-iterations are added,
the batch takes significantly longer to finish due to increased pressure on compute and memory
resources. Each decode-iteration triggers self-attention computation, which involves GeMVs per
request—an inefficient computation on GPU (see Section 3.2.2).

When many decode-phase requests are active, limiting the number of decode-iterations in each
batch helps control latency. In order to meet strict TBT deadlines, the scheduler can cap the number
of decode-iterations per batch, reducing the number of TBT violations and maintaining better
responsiveness under load.

7 Experimental results

Implementation. We built SLAI on top of the open-source implementations of Sarathi-serve [2]
and vLLM [15]. The complete source code is available at: https://github.com/agrimUT/SLAIL
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Evaluation. We evaluate SLAI using the Mistral-7B [12] model (mistralai/Mistral-7B-Instruct-
v0.2) and run all experiments on a single NVIDIA RTX 6000 Ada GPU with 48 GB of memory. The en-
vironment uses CUDA 12.1 and Python 3.10. For our workload, we use the openchat_shareGPT4 [31]
dataset, which contains multi-round conversations between users and ChatGPT4 [26]. Each round
is treated as a separate request.

Our baseline is Sarathi-serve configured with FCFS ordering for prefill-phase requests, referred to
as Sarathi-serve (FCFS), which represents the current state-of-the-art in LLM inference scheduling
on a single node. We also evaluate a variant of Sarathi-serve that uses shortest prefill first ordering,
referred to as Sarathi-serve (SPF).

Similarly, we assess SLAI under both FCFS and SPF prefill orderings, referred as SLAI (FCFS,
fixed offset) and SLAI (SPF, fixed offset), respectively. In addition, we evaluate a dynamic version of
SLAJ, called SLAI (SPF, dynamic offset), where the offset § is adjusted at runtime based on GPU
memory utilization measurements. When GPU memory usage is low, a small offset is used to allow
more prefill-phase requests into the system. When memory usage is high, a larger offset is applied
so that decode-iterations are marked critical earlier and prioritized accordingly, thus clearing out
memory. For completeness, we also include vLLM in our comparisons, a scheduler that prioritizes
prefill-phase requests and serves as another relevant baseline.

Metrics. We evaluate two key metrics. The first measures the median TTFT since this is measured
only once per request. This reflects how well the scheduler meets responsiveness objectives across
requests. The second metric is the 99th percentile of the TBT, which is computed once per generated
token and captures tail latency during the decode-iterations. This helps assess how smoothly tokens
are generated over time.

Workload. To emulate realistic traffic, we generate synthetic traces based on request length
distributions observed in the openchat_shareGPT4 dataset (see Table 1). Each synthetic request is
generated by sampling one row from the dataset, which provides the number of prefill tokens and
decode tokens for that request. We then cap the total length at 8192 tokens to respect our maximum
sequence length. The sampled prefill and decode lengths are used directly in our trace generator.
Inference requests are generated according to a Poisson process with rates A € {0.2,0.4,...,1.6}
requests per second. Each experiment runs for 35 minutes of wall-clock time, including a short
warm-up period before measurement begins. To ensure reproducibility, we fix random seeds for
both the trace generation and scheduler runs. We consider two types of requests associated with
paying and free-tier users. Paying users expect faster and smoother generation compared to free-tier
users. To reflect this, we assign a TBT SLO threshold of 0.1 seconds for paying users and 0.5 seconds
for free-tier user. These values are slightly relaxed compared to real-world production settings
because our implementation is in Python (which is not fully optimized), includes telemetry overhead,
and also reflects the inherent performance limitations of the model-hardware combination. Each
incoming request is randomly marked as associated with a paying or free-tier user with some
probability.

Dataset Prompt length (tokens) | Decode length (tokens)
Median | P90 Std. Median | P90 Std.
openchat_sharegpt4 1730 5696 | 2088 415 834 101

Table 1. Prompt and decode length (token) statistics for requests in the openchat_sharegpt4 dataset.

Results discussion. We first consider a scenario where each request has a 5% chance of coming
from a paying user. This low percentage reflects the user distribution seen on platforms like
ChatGPT, where most users belong to the free tier and Figures 7a and 7b present the 99th percentile
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TBT (P99 TBT) for paying and free-tier users, respectively. Figure 7c illustrates the median TTFT
as a function of the request rate. In all experiments, we configure Sarathi-serve (both FCFS and
SPF variants) with a token budget of 512 to ensure that the 0.1-second TBT target for paying users
is met. For all SLAI variants, we use the same token budget, and set both the number of active
requests and concurrent decode-phase request limit to 128. For SLAI (FCFS/SPF, fixed offset), we
set the offset parameter to 10, which controls when a decode-phase request becomes time-critical,
whereas for SLAI (SPF, dynamic offset), the offset is set to 5 if GPU memory utilization is below
96%, and to 10 otherwise.
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Fig. 7. Performance comparison of SLAI, Sarathi-serve, and vLLM under mixed user workloads with 5%
paying users. SLAI (SPF, dynamic offset) achieves the best latency-throughput trade-off.

TBT Behavior. Figures 7a and 7b show how SLAI dynamically prioritizes requests during their
decode phase based on their TBT targets. Under Sarathi-serve, the 99th percentile TBT steadily
increases for both paying and free-tier requests as the system load grows. This happens because
every decode-iteration is included in every batch, and as load increases, so does the batch execution
time, leading to higher delays for all requests. By contrast, SLAI handles decode-iterations differently.
Requests from paying users have strict (low) TBT targets, which in most cases are always considered
time-critical. As the load increases and batches take longer to run, their P99 TBT naturally increases.
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Free-tier requests, however, have more relaxed TBT targets. At lower loads, the scheduler can
defer these decode-iterations to prioritize prefills, since they are not immediately time-critical. This
initially causes their P99 TBT to rise. But as the load continues to increase and batch execution
time becomes longer, the window during which a free-tier decode-iteration remains non-critical
shortens. As a result, these decode-iterations become time-critical sooner and are prioritized earlier
in scheduling. This leads to a drop in their P99 TBT. Eventually, at high loads, all free-tier decode-
iterations are immediately marked as time-critical, and their TBT increases again—now dominated
by the growing batch execution time, similar to paying users. Lastly, vLLM since it is a prefill-
prioritizing scheduler ends up violating P99 TBT at a relatively low load and thus is not effective at
managing decode-phase requests.

TTFT behaviour. Figure 7c shows the median TTFT as a function of requests per second. The
vLLM policy, which prioritizes prefill-phase requests, achieves the lowest median TTFT at low
loads. However, it does so by aggressively batching prefill requests at the expense of violating 99th
percentile TBT latency constraints, making it unsuitable for scenarios with strict QoS requirements.
Sarathi-serve improves upon this by balancing prefill and decode phases to maintain both acceptable
median TTFT and TBT tail latencies. When Sarathi-serve is combined with the SPF-based policy
it yields a better median TTFT than its FCFS counterpart, highlighting the benefit of reordering
prefill requests by prompt length. However, Sarathi-serve does not adapt to heterogeneous TBT
deadlines across requests. SLAI (SPF, fixed offset) addresses this by selectively deferring decode-
phase requests with relaxed deadlines, achieving further improvements in median TTFT. Finally,
SLAI (SPF, dynamic offset) introduces dynamic decode-iteration deferral based on real-time GPU
memory utilization, allowing the system to better utilize available token budget of a batch. As a
result, SLAI delivers significant performance improvements: it reduces the median TTFT from 1.5
seconds (under Sarathi-Serve (FCFS)) to 0.7 seconds—a 53% improvement under high load—and
increases the maximum sustainable request rate from 1.15 to 1.45 requests per second while
maintaining a fixed median TTFT constraint of 0.5 seconds and meeting tail TBT latency targets,
representing a 26% increase in serving capacity.

See Appendix F for additional experimental results that highlight several important aspects: i)
the performance of different policies as a function of prompt lengths, ii) the impact of prioritizing
paying users over free-tier users during the prefill phase, and iii) how the policies compare when
the proportion of paying users increases to 50% or 95%.

7.1 Choosing the parameters for SLAI (SPF, dynamic offset)
Role of 8. As described in Section 6, the last schedulable time for the i'h decode-iteration of request
Jj is given by:

Cij = ei-1,j + TBT; = & - thatch )

At the time of constructing batch m (at time t,,), we mark a decode-iteration as time-critical if
tm = C; ;. Otherwise, it is considered non-critical and can be deferred to a future batch. The offset
parameter & controls how aggressively we prioritize decode-iterations of decode-phase requests: a
smaller § delays when decode-iterations are considered critical (favoring prefill-phase requests),
while a larger § marks them critical sooner (favoring decode-phase requests).

Empirical motivation. Recall that our goal is to reduce the median TTFT while ensuring that
tail TBT constraints are always respected. Figure 8 shows GPU memory utilization under three
different policies: SLAI (SPF, fixed offset 10), SLAI (SPF, fixed offset 5), and SLAI (SPF, dynamic
offset). All experiments were conducted at a load of 1.6 requests per second.

With a fixed offset of § = 10, decode-phase iterations are prioritized. This keeps TBT well within
bounds but underutilizes the GPU memory. For example, requests from users with a relaxed TBT
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Fig. 8. GPU memory utilization over time for SLAI (SPF, fixed offset 10), SLAI (SPF, fixed offset 5), and SLAI
(SPF, dynamic offset: § = 5 below 96%, § = 10 otherwise) for a fixed load of 1.6 requests per second.

constraint of 0.5 seconds consistently achieve tail TBT values far below the target (see Fig. 7b).
This suggests we are being too conservative and missing the chance to initiate more prefill-phase
requests.

We then tried a fixed offset of § = 5, which gives higher priority to prefill-phase requests and
delays scheduling of decode-iterations of decode-phase requests. However, at high load (e.g., 1.6
requests per second), this led to memory saturation, as seen in Fig. 8. This happens because decode-
phase requests’ KV tensors stayed in memory for too long, preventing the system from admitting
new prefill-phase requests. As a result, TTFT blows up, and the SLAI policy with fixed offset 5 is
unable to sustain the 1.6 requests per second load.

These results show a clear trade-off: we want to be aggressive in admitting prefill-phase requests
when memory allows, but we also need to ensure decode-phase requests do not build up and block
future admissions.

Dynamic offset policy. To balance these needs, we propose a simple dynamic policy that
switches ¢ based on current GPU memory usage:

5,  if GPU memory utilization < 96% (favor prefill-phase requests);
10, otherwise (favor decode-phase iterations).

When memory usage is below 96%, we assume there is enough headroom to safely admit more
prefill-phase requests. When usage crosses 96%, we shift priority to decode-phase iterations to
eventually complete requests and free up memory.

The 96% threshold was chosen based on empirical observations. In our setup, each new prefill-
phase request is allocated memory for its KV tensors at the time of admission—even before all
prefill tokens are processed. We found that admitting a new prefill-phase request can consume up
to 4% of GPU memory. To avoid admission failures, we ensure that this much headroom is always
available, and thus set the switching threshold to 96%.

Observed effect. As shown in Figure 8, the dynamic policy maintains high GPU memory utiliza-
tion similar to fixed § = 5, but avoids hitting 100%, which can cause admission stalls. This dynamic
adjustment ensures that TBT constraints are met while also improving TTFT and overall system
throughput.

8 Conclusion

This paper presented a framework for designing efficient LLM inference systems. By modeling the
unique two-phase structure of LLM inference, we identified two key design principles—optimal
tiling and optimal resource allocation—as essential for achieving high throughput. Based on these
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insights, we introduced the RAD scheduler, which, when combined with a uniformly random
resource planner, provably achieves throughput optimality. In real-world deployments, however,
systems must also meet SLOs. We argued that practical schedulers often approximate only one of
the two design principles, thereby sacrificing some throughput to satisfy these SLOs. To handle
heterogeneous request classes with different latency needs, we proposed the SLAI scheduler. SLAI
reduces TTFT by intelligently prioritizing requests while still meeting tail TBT constraints. In
comparison to existing state-of-the-art, SLAI reduced the median TTFT by 53% and increased the
maximum serving capacity by 26% for a fixed median TTFT, while meeting the TBT constraints.
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A Other Related Work
A.1 Cluster-level Routing

Per-GPU schedulers rely on the router to provide a well-balanced stream of requests. Most produc-
tion systems still use simple strategies like round-robin or shortest-queue routing. These methods
overlook the complex relationship between request length, prompt size, and current GPU state. The
Intelligent Router for LLM Workloads [11] addresses this by framing routing as a sequential decision
problem. It trains a workload-aware reinforcement learning agent to minimize overall latency by
predicting each request’s response length and estimating how much delay each placement would
cause.

A.2 KV-Cache Management

In transformer models, self-attention reuses all previous tokens, making KV-cache management
critical for both speed and capacity.

Memory layout. vLLM [15] uses paged attention, which divides GPU memory into fixed-size
blocks that are dynamically assigned to requests. This reduces fragmentation and allows hundreds
of requests to run in parallel. Llumnix [29] builds on this by migrating KV tensors across replicas
in real time, balancing memory usage and lowering preemption costs.

Prefix reuse and compression. Some systems try to reduce the amount of KV data stored or
recomputed. SGLang [35] introduces a radix-tree cache and orders batches to maximize prefix
reuse across multi-turn chats and speculative decoding. CacheGen [18] compresses KV blocks and
streams them on demand, while FlashInfer [32] creates custom GPU kernels that operate directly
on the compressed format. These techniques are independent of scheduling and routing and can be
used alongside paged layouts or distributed setups.

Preemption strategies. When GPU memory runs out, systems must either recompute or offload
paused requests. vVLLM [15] and Sarathi-Serve [2] evict stalled requests, splice their outputs back
into the prompt, and later rebuild the KV cache. DistServe [36], on the other hand, moves the
KV tensors to host memory and resumes decoding once space is available. Each method involves
a trade-off between memory traffic and computation, and interacts closely with the scheduler’s
design.

A.3 Speculative decoding

Speculative decoding [16] offers a complementary approach that accelerates decode-phase compu-
tation by generating token drafts using a smaller auxiliary model, which are then validated by the
larger target model. While originally proposed to reduce per-request latency, this technique can
also benefit scheduling by reducing decode durations, improving GPU throughput, and enabling
more efficient batch formation under tight latency constraints.

B Upper Bound Proof

In Section B.1, we establish a lower bound on the time required for any LLM inference system to
serve a given set of requests. Building on this, Section B.2 derives a lower bound on the number of
pending requests at a given time in any system. Finally, in Section B.3, we use these results to prove
Theorem 1, showing that if the request arrival rate exceeds r/TX, the number of pending requests
grows linearly over time—thereby establishing an upper bound on the system’s capacity region..
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B.1 Request Set Drain Time

The first part of the proof is to consider a more powerful class of resource planners and schedulers
(as described below) and lower bound the time required by them to start and complete k requests.

Consider a set, R = {Ry,..., R}, of k requests, where each request R;’s prompt and output
lengths are, L%, Lf) ~ prr p, and are ii.d., across requests. Further, consider a more powerful class
of resource planners and schedulers which are able to, a) commence serving of all requests at time
0, b) serve prefill and decode iterations of requests in an arbitrary order, c) serve the different
iterations of requests at any node, even simultaneously, while paying zero cost for request transfers.
Clearly, the realistic class of schedulers considered in Theorem 1 which— a) may commence serving
requests once they arrive, b) have to serve prefill and decode iterations in order according to
Definitions 1 and 2, and, ¢) may only transfer requests once the respective computations at the
source node are completed— are a subset of this more powerful class of systems. To develop our
bounds, we will compute the least time required by this powerful class of systems to completely
serve all the k requests.

Consider a sequence of batches (Bm,r/)fn/[;'l at node r’, for every r’ € {1,...,r}. Let the set of
batch sequences completely serve all the k requests. Then, the request set drain time which is the
time required to complete k requests using all r nodes, denoted T(R), is given by,

T(R)

M,/
max Z T5(Br),
=1

r'e{1,..r} p

r My
% 3N 1B, (10)

r’'=1m=1

I\

Let 7(8B) be the token count of batch B. Let S”(8) and SP(B) be the sets of prefill and decode
phase requests in the batch. For a decode-phase request R; let i; denote the token position of its
decode-iteration in the batch. And, similarly for a prefill-phase request R;, let i; and c; denote the
starting token index and chunk size of its prefill-iteration in the batch. Let t.ow, tco1 denote the
output tile dimensions and t,.q denotes the reduction tile dimension for the GeMM. Recall the batch
computation time formula for a batch B,

1
+—1(B)+N Y TP
HnLin JjiR;€SD(8)

TB(B) — 1 ’VT(B)

,ULin(trOWa teols tred) Leol

N ij+ci—1||c; | d d | cj
N = et
Sﬂ(trow’ teols tred) iR, €SP(B) trow Leol | Tred trow | teol

ij +Cj - 1“)
Tred '
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Then,
(@ 1 (8
T3(B) > () (B +N > TG
ﬂLin(trOW: Leols tred) Leol HnLin j:RjESD(B)
N ij+cj—1c¢; d d c¢jij+cj—1
Ny (; Ggd dg ;) ,
sﬂ(trow’ teols tred) iR, €SP(B) trow Leol tred trow teol tred

(i) 1 7(B)

a ﬂLin(ﬁow» t:c,p t:ed) t:ol HnLin

7(B) + N Z TPSA(i))
j:R;€SD(B)

N ij+Cj—1Cj d diij+0j—1

), (11)

* * * * * * * * *
SH (trOW’ tcol’ tred) Jj:RjeSP(B) ( trow tcol tred trow tcol tred

where (a) follows by simply removing the ceiling function, and (b) follows from Assumption 1.

Consider request R;. Let ;= LCM(t;y, t7 |, 1rq)- By Assumption 3, Lf is a multiple of #; .
Therefore, the optimal set of chunk positions and chunk size to complete the self-attention in the
prefill phase in minimal time is,

L={(Lt . (tha+ Lt ) (L=t i 0}

Then, define its “optimal effective completion time” as,

1 LP + LD 1 Lf+L?
R/ - J J P D D,SA -
TA()) = oy i (L] + L)) + N D TPSAG)
ﬂLln( TowW> “col? red) col HnLin . 1P
l—Lj +1
N ij+Cj—1Cj d d Cj ij+Cj—1 12
o P ) I ) B
Hlrows Legps Lreq (ij.c;)€; row col “red TOW “col red
1 LP + LD 1 LJF+LjD
- L — @+ ID) 4N ) TP
‘uLin(trOW’ tcol’ tred) tcol HnLin ;1P
l—Lj +1
Nd
74 (Lf.’+t* ) (13)
* * * * % g% j j lem
SH (tmw’ tcol’ tred)tmwtcoltred

Then, we have the following alternate lower bound for the request set drain time.
ProposITION 1. T(R) > 1 ¥5 TR(j).

ProoF. From (10) we have,

where recall that (Bm,,/ :re{1,...,r,me{y,.. .,Mr/}) is a set of batches that complete all the
prefill and decode iterations of all the k requests in R. The batch execution time of a batch is
lower-bounded in (11). By rearranging the terms in the summation of batch execution times, and
using (12), we obtain the result. o

Then, the following limit follows by the strong law of large numbers.
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PROPOSITION 2. For anyk € N, let the set of k requests Ry, . . ., Rx have prompt and output lengths
distributed according to p;p b, and let these lengths be i.i.d., across requests. Then,
k . _
lim %Zj:l TR (j) _ i
k—oo k r’

where TR is as in Theorem 1.

B.2 A lower bound on the pending requests in the system

Let (A (1)) +>o denote the arrival process of requests to the system, where Acont(¢) denotes the
set of requests that have arrived by time ¢. Let, A(t) = ﬂcont'(t)| denote the number of arrivals
by time ¢. Then, recall that by the premise of the theorem, (A(t));s, is a Poisson point process of
rate A, and each request has prompt and output lengths distributed according to p;r ;p ii.d., across
requests. Finally, recall that Q(t) denotes the number of pending requests in the system at time ¢.

Consider the worst-case amount of time, 7™, required to complete a request. This is when
the prompt and output lengths are the longest possible, i.e., I and [P™2* Moreover, in this
worst case, the scheduler schedules prefill-iterations with chunk size 1 at a time without batching
to complete the prefill-phase, and schedules all the decode-iterations as well without batching.
Therefore, we have,

lP‘max +lD,max

+N Z PSA . (14)
i=1

P,max D,max P,max D,max
pmax _ l +1 l +1

max +
(trowstcol) € Touts tred € Tred IlLin(trow: Leol, tred) HnLin
Then, we can prove the following lower bound on the number of pending requests in the system.

LeEmMMA 1. Consider a system with any resource planner and scheduler. Let AA°"(t) denote the set
of requests that have arrived by time t. Let the “optimal request completion time” function TR(-) be as
in (13). Let T™* be as in (14). Then, the number of pending requests in the system at any time t is
lower bounded as,

LY i TRG) — t
Q(t) Z (r jSA(t) ).

Tmax

Proor. The proof is by contradiction. Suppose there is a time time ¢ when,

0(1) < (7 Xjeaw TG) - t).

Tmax

If % 2 j<Acont (1) TR(j) < t, this immediately leads to a contradiction since it implies Q(t) < 0.
The number of pending requests in the system has to be non-negative.

Consider % 2 j<Acont (1) TR(j) < t. In this case, the worst-case amount of time taken to complete
the Q(t) requests happens is, a) the prompt and output lengths are the longest possible, b) none of
the requests have started processing by time ¢, and c) the iterations of each request are scheduled
without batching. Due to (14), the worst-case amount of time taken to complete the Q(#) requests
is Q(t)T™2*, This implies that the amount of time it took to complete all the requests in A" (¢) is,

T(ﬂcont.(t)) <t+ Q(t)Tmax,

1 Ry ;
iy (7 stA(TtI)nzt (J) —t) pmax

<o 3 TRG).

JSA(2)
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This is a contradiction to Proposition 1 which lowers bound the time to complete a set of requests
for any pair of resource planner and scheduler.
This completes the proof by contradiction. O

B.3 Proof of Theorem 1

Recall that (A" (1)) +»o denotes the arrival process of requests to the system, where A™ (1)
denotes the set of requests that have arrived by time t. And, A(t) = ﬂc"“t‘(t)| denotes the number
of arrivals by time ¢. By the premise of the Theorem, A(t) is a Poisson point process of rate A.
Therefore, by the strong law of large numbers,
A(t
lim L) =, almost surely. (15)

t—oco  t

Consider the sequence of requests (R;);, such that Lf , LjD ~ prr o iid, across requests. Then,
again by the strong law of large numbers,

k
.1 R/ _m [TR
1<h—r>r<>10 % ; T.'(j)) =E [T* (1)] , almost surely,

where (a) follows from the formula for TX() in (13) and the expression for TR in Theorem 1.

For any t > 0, requests (Rj);l:(i) arrive by time t. Moreover, since A(t) is a Poisson point process,
A(t) — oo almost surely as t — oo. Therefore,
1 -
tli_)rgo m Z TR(j) = TR,  almost surely. (16)

J<A(2)

Combining (15) and (16), we get,

im0 = Jm | e 3 )| (42,

J<A(t) J<A(t)
.1 Reo | [ At)
= }Eﬂ,mz L0) (}E‘L‘OT ’
J<SA(t)
= ATR (17)

From Lemma 1 we have,

1 (11 Xjeac TR - 1)
;Q(t) = Tmax .
Taking the limit and substituting (17), we get,
lim lQ(t) > (% (lim; o % 2j<A(t) T*R(J')) -1)
t—0co t - Tmax E)
aT%

= Trax almost surely.

Since, ATR > r, the right hand side of the above equation is positive. Therefore, substituting
ATR _
o= IiTaXl completes the proof of Theorem 1.
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C Throughput Optimality Of RAD Proof
This section contains the proof of Theorem 2. The outline of the proof is as follows:

(1) In Section C.1, we construct a discrete-time process that tracks the number of pending
requests at a node at the start of cycles of RAD. We show that this forms a discrete-time
Markov chain (DTMC).

(2) In Section C.2, we bound the expected cycle times for RAD when there are at least n pending
requests at the start of the cycle.

(3) Building on this, in Section C.3, we show that under the conditions in Theorem 2, the DTMC
tracking the number of requests at the start of cycles is positive-recurrent.

(4) Finally, in Section C.4 we show that the number of pending requests at any node forms a
positive-recurrent regenerative process by showing that the expected cycle time is bounded.

C.1 The Discrete Time Markov Chain (DTMC) Model

Here, we analyze the discrete-time process that tracks the number of pending requests at a node at
the start of cycles. To do so, we introduce some stochastic processes. Consider node r’.

(1) Let (AX™ (1)) 5,
point process of rate A/r, and the j™ request arrival to this node, R i, has prompt and output
lengths, Lf , L].D ~ prr b, independent of other requests.

(2) Let (% ()50 denote the corresponding filtration with 7 (t) = o(AL™(+') : 0 < t' < t).

(3) Let C;'[c] denote the start time of the ¢ cycle of the RAD scheduler, for a cycle ¢ € N.
Since the RAD scheduler only uses causal information, it can be easily shown that C_'[c] is
a stopping-time with respect to (% (1)), for any c.

(4) Let C,»(t) denote the cycle that the RAD scheduler is in at time ¢, i.e., C,v(t) = max{c € N :
Colle] <t}

(5) Let chf’“t‘(t) denote the set of pending requests at time ¢.

(6) Let X [c] £ X5 (C; ! [c]) denote the set of pending requests at the start of cycle c.

(7) Let A, [c] denote the set of arrivals that happen during cycle c. That is, it is the set of arrivals

in (.?Iffmt'(t))tzo
(8) Let R, [c] denote the set of requests that complete in cycle c.
(9) Let O, (t) = |X f,"“t‘(t)| denote the number of pending requests at the node at time ¢.

(10) Let X, [c] = | X, [c]| denote the number of pending requests at the node at the start of cycle
c.

denote the arrival process at the node. The arrival times form a Poisson

between times [Cr‘,1 [c].C M e+ 1]).

We prove the following.
LEmMMA 2. (X, [c])o2, is a DTMC. That is,

P(Xr»[;+ 1] =x[c+1]| Xy [c] =x[c], X [c=1] =x[c—-1],...) =
P (Xp[e+1] = x[c+1] [ Xw[c] = x[c]),
foranyc e Nandx[0],...,x[c+1] e N.

The result will hold true due to the following three reasons,

(1) The arrivals follow a Poisson point process, making future arrivals independent of past
arrivals.

(2) The RAD scheduler is “memoryless” across cycles. It does not use information about past
cycles in order to schedule the requests in the latest cycle.

(3) The prompt and output lengths are i.i.d., across requests, and the RAD scheduler chooses
requests in FCFS. Therefore, after knowing the number of requests at the start of the latest
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cycle, the prompt and output lengths of these requests are independent of the number of
requests in previous cycles.

We provide a formal proof below.

ProOF. Since C;,'[c] is a stopping time, by the strong Markov property of the Poisson point
process, we have,
(AT (0) sy AL For (Colle]), Ve eN, (18)

where 1L denotes statistical independence. Since RAD is a causal scheduler, we have that Xf,"“t'(t)
is causal, i.e., it is measurable in ¥ (¢). This is denoted as ch,"“t'(t) €m Fr (t). Therefore, we have,

Xolel €m Fo(Col[e])., Ve e, (19)

In the ¢ cycle, the set of requests completed by the RAD scheduler is a function of the
set of requests at the start of the cycle, X, [c], and arrival pattern after the start of the cycle,
(ﬂﬁf’“t‘(t)) Therefore the start time of the (c + 1) cycle, C>'[c + 1], the sets of arrived

and completed requests in the ¢ cycle, A, [c] and R, [c], are all measurable functions of,

(1) the set of requests at the node at the start of the ¢ cycle X, [c],
(2) the arrival process after the start of the ¢ cycle, (.?(ﬁf’nt'(t))

t>C

t>C;,1[c]'
Moreover, X,v[c + 1] = X [c] U A [c] \ Ry [c]. So, for some function, f, that is measurable with

respect to o (er [c], (ﬂ;:?nt'(t))t>c—/l[c] ,

Xrle 11 = f (& [el, (A1) oorog) - (20)

Recall, X,- [c] = |X,v[c]|. From (19), for any ¢’ < ¢, we have X,-[¢'] €, Fr (C;1 [c]). Therefore,
from (20) and the strong Markov property in (18), we can establish the following property,
PXplc+1] =x[c+1]|Xp[c] =S8, Xy [c—-1] =x[c—-1],...) =
P (X, [c + 1] =x[c+1]| Xy [c] =8),
for any ¢ € N and x[0],...,x[c + 1] € N and any set of requests S. Also, since P(X = x|Y =

y,g(Y) = g(y)) = P(X = x|Y = y) for any random variables X and Y and measurable function g(-),
we can add X, [c] = |S] to the conditioning on both sides,

P(Xplc+1] =x[c+1]|Xv[c] =8, X [c] =|S]. X [c - 1] =x[c—-1],...) =
P(Xp[c+1] =x[c+1]| Xy [c] =S, X [c] = |S)).
Since RAD chooses requests FCFS, given X, [c] = x, X, [c] is simply the set of the last x requests
in (A™(1)),. e Given the cardinality of X, [c], which is X,/ [c], the prompt and output
lengths of the requests in X [c] is i.1.d., by the premise of the Theorem. Therefore, we have,
P(Xolel =S |Xo[el =ISD = [ prroo (11217) (22)

j:RjES

(1)

where lf and lj.) denotes the prompt and output length realizations of request R;.

Again, since given X, [c] = x, X, [c] is simply the set of the last x requests in (AX™" (1)), 1 (]’
we have that X [c] is independent of the number of requests at the start of previous C};Cles.
Therefore we have,

P(Xp[el =S IXole] = ISL X [e = ) =x[c=1],..) =[] prae@1D), (@3)

J:R;€S
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Then, multiplying (22) on the right-hand-side of (21) and multiplying (23) on the left-hand-size,
and integrating over all sets S of size x[c], we obtain the desired Markov property,

P(Xplc+1] =x[c+1] | Xy [c] =x[c], Xy [c—1] =x[c—-1],...) =
P (Xp[c+1] = x[c+1] [ Xw[c] = x[c]),

C.2 Cycle Times

The RAD scheduler in Algorithm 1 proceeds in cycles. We will bound the expected time of a cycle
given that there are at least n requests at the start of the cycle whose prompt and output lengths
are distributed according to p;r ;p. Recall that in this case RAD starts and completes n requests
chosen in FCFS manner in the cycle.

Let the set of n chosen requests be denoted by R = {Ry, .. ., R, } (where the indexing is without loss
of generality). Consider arequest R; € R. Recall that, due to Assumption 3, tl*C = LCM(t}. t* b e d)

divides the prompt length Lf - In this case, the RAD scheduler schedules chunks of size t,  for the
request, R; alone in a batch. Let,

— P
If - {(1’ tﬁ:m)’ (tl*cm +1, tf::m)’ cet (Lj - tl*cm’ tl*cm)}

denote the set of chunk positions and chunk sizes scheduled to complete the prefill-phase. Then,
required time to complete its prefill-phase, once scheduled, is,

o

1
T]P = * * * *_J + LP
'uLin(th’ tcol’ tred) tcol HnLin
N (ij+Cj—lcj d d cjij+tci—1
* * * * * * * * * >
S/l(tmw, tcol’ tred) (ijcj)el; trow tcol tred trow tcol tred

Taking the sum and the expectation, the expected amount of time to complete the prefill-phases of
all the n requests can be expressed as,

L B[] B[]

'uLin(tf*OW’ t:ol’ t:ed) t:OI HnLin

E[T™(R)] =n- [

(24)
Nd

E[L"(LP+4 )] |
% * * * lem
Sll(trow’ tcol’ tred)tmw col tred

Next, we will focus on bounding the effective execution time of decode-iterations. For this,
consider the set of batch indices, M, where only decode-iterations are scheduled, and denote the
batches by (B )m e mp- Moreover, let MD denote the subset of these batch indices that contain
exactly ¢ | decode-iterations. In other words, these batches are optimally tiled. Therefore, for
m € MP we have the batch execution time given as,

1 £, 1
) et TN 2 T
JjR;€SP(BL)

where recall that i; is the token position corresponding to the decode-iteration of request R; in the
batch.
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For all other batches m € MP \ MP, the batch execution times are upper bounded as,
|8

teol

1
T8(8P) < max
(trowstcol) € Toutstred € Tout ﬂLin(trOWs teol, tred)

1 .
+— 8o+ N E TPSA (1)),
HaLin JiR;€SD(BR)

Let R* denote the set of requests whose every decode iteration is scheduled in an optimally tiled
batch. For R~ € R*, denote the “effective completion time” it took to complete its decode-phase as,
LE+LD

J J

1
———— L+ — 124N Y TPHG).
‘uLin(th’ tcoI’ tred) tcol HnLin

D
1 Lj*

TP(j*) =

i:Lj_’*+1

For all other requests, Ry € R \ R*, their “effective completion times” can be bounded as,

LE+Lb
1 I 'p N psa
TPmax( )y < max L) + L) +N § TPSA().
(trowsteol) € Toutstred € Tou HLin (trows Leols tred) HnLin P41
i=L",
J

Due to Assumption 3,
TPmax () < TMX - almost surely,

where T™* is as defined in Theorem 2.
The condition in Line 6 of Algorithm 1 ensures that when n requests are being processed in the
cycle, i.e., |R| = n, then all the decode-iterations of at least n — t;‘ol + 1 requests are optimally tiled,

ie, [R*| = n—t. . Therefore, [R \ R*| <t} -1
The amount of time required to complete the decode-phase of requests in this cycle can thus be
bounded as,
™= ) T8,
me MP
= >, TRBm+ D TS,
me MP me MP\MP
< DU TPGY+ DL TP,
J*:RjxeR* J"Rjr € R\R*
< )L TPh+ L TP,
J:RjeER J:Rjr €R\R*
< DL TP+t - DT
J:RjeR

Since each request has prompt and output length distributed according to p; r ; p, the expected time
to complete the decode-phase of all the requests in the cycle can be upper bounded as,

P D
1 E LD 1 L"+L
E[TPM] <n _ [* ] E[LP]+NE| > TP54()
Hiin(Bows o trg)  to) HnLin Ry (25)
+(t, — DT™™.
Therefore, the expected cycle time is upper bounded as,
E [Tcycle] =FE [TPM] +E [TDM] ,
<nTR+ (£, - )T™, 26
col
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where the upper bound is obtained by combining (24), (25), and the definition of TX from Theorem
1.

C.3 Positive recurrence of the DTMC

LEMMA 3. Under the same conditions as in Theorem 2, (X,+[c])ez, is positive recurrent.

Proor. Consider a state X,-[c] with X,-[c] > n. Denote A, [c] = |A, [c]]| to be the number of
request arrivals that happen during the ¢ cycle of RAD. Then, X, [c + 1] = X, [c] —n+ A [c],
since RAD completes exactly n requests in a cycle if there are at least n requests at the start of the
cycle.

Since there are already at least n requests at the start of the cycle, and RAD chooses requests in
a FCFS manner, the set of requests completed in the cycle is a subset of these requests. That is,

Ry [c] € Xp[c] and |R-[c]l=n, ifXy[c]=n.

Therefore, in this case, the duration of this cycle is independent of the arrivals after the cyle starts,
ie.,
Colle+1] = Col[c] 1 (AX™ (1))

1>Ce] if X, [c] = n.

Requests arrive according to a Poisson point process of rate 1/r. Therefore, by the independence
of the cycle duration to the arrival process, we have the expected number of arrivals during the
cycle given as,

E[Av[c]] = AE [C M e +1] - C M [c]],  if X [c] > n.

From the upper bound on the expected duration of the cycle in (26), we have,

E[Ay[c]] < a (nTR +(t
r

col

- 1)Tm“), if X, [c] > n.
Then the drift for all the states x with x > n is,
A +R * max
E [X,/ [e+1] = X, [c]|X,/ [c] = x] =n|=T" - 1|+ At - DT™,
r

(a) .
< —ne+(t

col
(b)
<0, VeceN.

_ 1)ATmax,

(a) follows by the premise, ATR < r(1 — ¢), and (b) follows from the choice of n in Theorem 2.
And clearly E [Xr/ [c+ 1]|X,» [c] = x] < oo for any x € N.
Therefore, by Foster’s Theorem[6], (X;-[c])o2; is positive recurrent. O
C.4 Proof of Theorem 2

First we show that the expected cycle times are finite.
LEMMA 4. Under the same conditions as Theorem 2, for any cycle index ¢ € N:

E[Co'[e+1] - Col[e]] < % + nT™max

Proor. Consider X;-[c] > 0. Then, the RAD scheduler completes at most n requests in this cycle.
The worst case time that a scheduler may take to complete n requests is when, a) the prompt and
output lengths of all requests are the longest possible, and, b) the scheduler processes the requests
one after the other. T™** bounds the worst-case time required to complete a request. Therefore, the
worst-case cycle time of the RAD scheduler is bounded by nT™*.
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Consider X,-[c] = 0. In this case, the RAD scheduler waits for a request to arrive, which takes
expected time r/A. Then, similar to above, the RAD scheduler may complete up to n requests (in
the case where more requests arrive before RAD proceeds to the next cycle). We know that that
worst-case cycle time to complete n requests is nT™#*. Therefore, in this case, the expected cycle
time is bounded as r/A + nT™3, O

Finally, we using the previous Lemmas proved in this section, we present the proof of Theorem
2.

ProoF OF THEOREM 2. By definition, Q,» (C™*[c]) = 0, if and only if X+ [c] = 0. And, by Lemma
3, (X [c])ez; is positive-recurrent. And, by Lemma 4, for any ¢y, ¢; € N such that ¢; < ¢y,
(ca —c)r

E [Cr_,l[CZ] -c! [cl]] < — + (¢ — c1)nT™,

We know the systems starts empty: Q,-(0) = 0. Define, T™8" = min{t > 0 : Q,-(¢) = 0}. Then
by the above results, E [T"6"] < oco. Moreover, RAD starts a new cycle whenever Q,(t) = 0.
Therefore, T™" is aligned with the start of a new cycle: T™€" = C~1[C(T"&")]. Since (X, [c])oe,
is aDTMC, this implies that (Q, (t)) ;s rregen is independent of (Q, (¢)) ;< pregen. Therefore, (Qr (1)) ;5
is aregenerative process, with regeneration point 0. Further it is positive recurrent since E [T™8"] <
00, O

D Another Throughput-Optimal Scheduler

Another throughput-optimal scheduler is presented in Algorithm 2. It has the same high level
design principle as the RAD scheduler. It proceeds in cycles, where in each cycle it starts and
completes up to n requests. This scheduler differs from RAD in the order in which it schedules
prefill and decode iterations.

Algorithm 2 first completes up to n prefill-phase requests (if enough are available) with optimal
tiling (see Lines 3-13). Then it moves to the decode mode, where it first chooses the first ¢ | of the
decode phase requests, 9, and marks them as active, denoted D,ctive. It then proceeds to schedules
batches of decode-iterations of each request in D,tive. After each request it removes requests that
sampled their stop token, and replaces them with remaining requests in D, if there are any. This
proceeds until all the requests in this cycle have completed.

It may be shown that Algorithm 2 schedules optimally tiled batches most of the time, and also
performs dynamic optimal resource allocation between prefill and decode phase requests just
like the RAD scheduler. As such, Theorem 2 applies when the RAD scheduler is replaced by the
scheduler in Algorithm 2 as well. The proof would be very similar to the one presented in Appendix
C for the RAD scheduler. We omit the proof to avoid repetition.

The primary difference in the operation of the two schedulers would be the TTFT and TBT
observed by requests. For the scheduler in Algorithm 2, consider that the first output token of a
request is only produced when it has been moved to the active decode set, Dactive. In this case, the
decode-iterations of this request keep getting scheduled in consecutive batches until the request is
complete. Therefore, the TBT of requests will be low. However, since the scheduler has to complete
a large number, n, of requests before it starts generating the tokens for any of the requests, the TTFT
of the requests will be very high. This is complementary to the RAD scheduler, where requests
observe a hight TBT, but a relatively lower TTFT.

E Other Schedulers in the Framework

As a way of illustration, we provide a description of request-level batching, Sarathi-serve and
DistServe in our scheduler framework introduced in Section 3.1.
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Algorithm 2 Another Throughput Optimal Scheduler

Require: Parameter n
1P —0,D«0
2: while True do
// Cycle starts in PREFILL MODE

3. requests_in_cycle < 0

4 while P # 0 and requests_in_cycle < n do

5 Choose a request R first-come-first-serve from % and set i < 1
6: while prefill phase of the chosen request is incomplete do

7 ¢ = min{LCM(t;oy to  try), Lp(R) — i}

8 Schedule PI(R, i, c) in a batch.

9 i—i+c

10: end while

11: Move the request from  to D

12: requests_in_cycle « requests_in_cycle + 1

13:  end while
//Change mode to DECODE MODE

14: Dactive = 0

15 Move min(z} , |D|) requests from D to Dictive

16: while IDactivel > 0do

17: Schedule one DI for each request in D,ive in a batch.

18: Remove requests that sampled the "stop" token from D,ctive
19: Move min(z | — [Dactive| , |D]) requests from D to Dictive-

20: end while
21: end while

E.1 Request level batching

This scheduler is inspired by FasterTransformer[23], which schedules a batch of b requests at a
time, and only proceeds to other requests after all these requests have completed. We adapt this
scheduler and express it in the “sequences of batches of iterations” framework in Algorithm 3. Here
the scheduler alternates between two modes. It starts in Prefill Mode in which it selects b requests
from the prefill-queue in FCFS order and completes their prefill phases. It then switches to Decode
Mode where it schedules one decode iteration for all active decode-phase requests until all of them
complete. It then switches back to Prefill Mode.

E.2 Sarathi-serve

This scheduler, as shown in Algorithm 4, enforces a fixed token budget per batch and prioritizes
decode-phase requests. It firsts selects a decode iteration for each decode-phase request (the number
of these is guaranteed to be below the budget). It then fills the remaining capacity with chunked
prefill iterations. Completed prefills are transitioned to the decode queue, while completed decodes
are removed.

E.3 DistServe

This is a distributed scheduler, as shown in Algorithm 5, and runs on dedicated prefill and decode
nodes. In prefill nodes, prefill requests are handled one at a time in FCFS order, with entire prompts
processed in a single iteration. Completed requests are transferred to the decode node. At the
decode node, it continuously batches and schedules decode iterations. Here we note that it is
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Algorithm 3 Request-Level Batching Scheduler [23]

Require: Batch size b
LP—0,D«0 // Prefill and decode phase queues
2: mode « Decode
3: while True do
Update P based on arrivals
if mode = Prefill then
if D # 0 then
Schedule DI for each R € D in a batch with appropriate token positions
Remove from D any request that sampled the stop token
else
10: mode «— Prefill
11: end if
122 else if mode = Prefill then
13: if P # 0 then

R A U S

14: Choose up to b requests from P in FCFS order

15: for all selected requests R; do

16: Schedule PI(R, 1, Lf) // Full prompt in one iteration
17: Move R from P to D

18: end for

19: end if

20: mode < Decode

21:  end if
22: end while

possible to run both prefill and decode requests with optimal tiling at the prefill and decode nodes
respectively.

F Additional experimental results
F.1 Results for the scenario of 5% split

Figure 9 presents a comparative evaluation of scheduling policies under heterogeneous TTFT and
TBT constraints, with a workload comprising 5% paying users. Figure 9a shows the median TTFT
for all requests as a function of request rate, plotted on a log-scaled y-axis to highlight differences
at low load. This view reveals how various schedulers handle contention-free versus saturated
conditions. Figure 9b reports the number of requests completed at the peak load of 1.6 requests
per second, bucketed by prompt length. Notably, SLAI (SPF, dynamic offset) serves nearly as many
requests as Sarathi-serve while achieving substantially lower median TTFT, whereas vLLM exhibits
instability and fails to maintain throughput under high load. Finally, Figure 9c plots the mean
TTFT at 1.6 requests per second as a function of prompt length. Despite favoring shorter prompts,
SPF-based schedulers yield a lower overall TTFT compared to FCFS variants, demonstrating the
benefit of prioritizing short requests even in the presence of heterogeneous job sizes.

F.2 Prioritizing prefill-phase requests of paying users over free-tier users

In this section, we evaluate an additional policy: SLAI (SPF with priority, dynamic offset). This
policy gives strict priority to prefill-phase requests from paying users over those from free-tier
users, regardless of prompt length. In other words, it always schedules a paying user’s request
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Algorithm 4 Sarathi-Serve Scheduler[2]

Require: Token budget rPudget // Max tokens per batch

LP—0,D«0 // Requests in prefill and decode phases
2: while True do
3. Update P based on arrivals

& B0 // Current batch and used tokens
5. for all requests R € D do

6: Add DI(R, i) to batch B

7: Marki < i+1forR

8: end for

9: T ¢ |D|

10:  for all R € P in arrival order do

11: while 7 < rPudget do

12: ¢ « min{rPudeet — Lf —i} // i is starting token index left to prefill
13: Add PI(R, i,c) to batch B

14: T« T+¢C

15: Mark i < i+ cfor R

16: end while

17:  end for
18:  Schedule batch 8
19:  for all requests R € P do

20: if prefill of R complete then
21: Move R from P to D
22: end if

23:  end for
24:  for all requests R € O do

25: if decode of R sampled stop token then
26: Remove R from D
27: end if

28:  end for
29: end while

first. All other parameters are the same as in SLAI (SPF, dynamic offset). Figure 10 compares this
priority-based policy with other scheduling strategies. At high load (1.6 requests per second), we
observe that the mean TTFT for paying users is lower than that for free-tier users. However, the
improvement in TTFT for paying users is relatively small.

F.3 Results for the scenario of 50% and 95% split

In this section, we present additional results for scenarios with less heterogeneity in user workloads.
Figures 11 and 12 show results similar to those discussed earlier, but for cases where the percentage
of paying users is 50% and 95%, respectively. As the proportion of paying users increases, the
improvement in serving capacity under SLAI (SPF, dynamic offset) compared to Sarathi-serve
(FCFS) becomes smaller. This is because a larger share of traffic now has stricter TBT constraints,
leaving fewer opportunities for SLAI to defer decode-phase requests dynamically.

Received July 2025; revised September 2025; accepted October 2025
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Algorithm 5 DistServe Scheduler [36]

Require: Separate compute nodes for prefill and decode phases

1:
2:

10:
11:

12:
13:
14:
15:
16:
17:
18:

19:
20:

R A A

— Prefill Node —
Pe—0 // Requests awaiting prefill
while True do
Update P based on new arrivals
if £ = 0 then
continue
end if
Choose request R; from ¥ in first-come-first-serve order
Schedule PI(R}, 1, Lf) // chunked prefill-iteration may be done too
Transfer KV-cache of R to a Decode Node
Remove R from P
end while

— Decode Node —
D0 // Requests in decode phase
while True do

Update D received from a Prefill Node

if D = ( then

continue

end if

Schedule DI(R) for eachR € D inabatch  // t
for optimal tiling

Remove from D any request that sampled the stop token
end while

requests may also be scheduled
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Fig. 9. Performance comparison of different policies under mixed user workloads with 5% paying users.
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Fig. 10. Performance comparison of different policies under mixed user workloads with 5% paying users.
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Fig. 11. Performance comparison of SLAI, Sarathi-serve, and vLLM under mixed user workloads with 50%
paying users. SLAI (SPF, dynamic offset) achieves the best latency-throughput trade-off.
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Fig. 12. Performance comparison of SLAI, Sarathi-serve, and vLLM under mixed user workloads with 95%
paying users. SLAI (SPF, dynamic offset) achieves the best latency-throughput trade-off.
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