
Optimal Scheduling Algorithms for LLM Inference: Theory
and Practice
AGRIM BARI∗, The University of Texas at Austin, United States

PARIKSHIT HEGDE∗, The University of Texas at Austin, United States

GUSTAVO DE VECIANA, The University of Texas at Austin, United States

With the growing use of Large Language Model (LLM)-based tools like ChatGPT, Perplexity, and Gemini

across industries, there is a rising need for efficient LLM inference systems. These systems handle requests

with a unique two-phase computation structure: a prefill-phase that processes the full input prompt and a

decode-phase that autoregressively generates tokens one at a time. This structure calls for new strategies for

routing and scheduling requests.

In this paper, we take a comprehensive approach to this challenge by developing a theoretical framework

that models routing and scheduling in LLM inference systems. We identify two key design principles—optimal

tiling and dynamic resource allocation—that are essential for achieving high throughput. Guided by these

principles, we propose the Resource-Aware Dynamic (RAD) scheduler and prove that it achieves throughput

optimality under mild conditions. To address practical Service Level Objectives (SLOs) such as serving requests

with different Time Between Token (TBT) constraints, we design the SLO-Aware LLM Inference (SLAI)

scheduler. SLAI uses real-time measurements to prioritize decode requests that are close to missing their TBT

deadlines and reorders prefill requests based on known prompt lengths to further reduce the Time To First

Token (TTFT) delays.

We evaluate SLAI on the openchat_shareGPT4 dataset using the Mistral-7B model on an NVIDIA RTXADA

6000 GPU. Compared to Sarathi-Serve, SLAI reduces the median TTFT by 53% and increases the maximum

serving capacity by 26% such that median TTFT is below 0.5 seconds, while meeting tail TBT latency constraints.

The complete source code is available at: https://github.com/agrimUT/SLAI.

CCS Concepts: • Computing methodologies→ Artificial intelligence; Distributed algorithms; Machine
learning; Model development and analysis; • Theory of computation→ Theory and algorithms for
application domains.

Additional Key Words and Phrases: LLM inference serving systems, Throughput-optimal systems, SLO aware

schedulers

ACM Reference Format:
Agrim Bari, Parikshit Hegde, and Gustavo de Veciana. 2025. Optimal Scheduling Algorithms for LLM Inference:

Theory and Practice. Proc. ACM Meas. Anal. Comput. Syst. 9, 3, Article 59 (December 2025), 43 pages. https:

//doi.org/10.1145/3771574

∗
Both authors contributed equally to this work.

Authors’ Contact Information: Agrim Bari, agrimchaudhry@gmail.com, Chandra Department of Electrical and Computer

Engineering, The University of Texas at Austin, Austin, TX, United States; Parikshit Hegde, parihegde96@gmail.com,

Chandra Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States;

Gustavo de Veciana, deveciana@utexas.edu, Chandra Department of Electrical and Computer Engineering, The University

of Texas at Austin, Austin, TX, United States.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2476-1249/2025/12-ART59

https://doi.org/10.1145/3771574

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

https://orcid.org/0009-0003-1550-8683
https://orcid.org/0000-0003-3477-4947
https://orcid.org/0000-0002-1498-494X
https://github.com/agrimUT/SLAI
https://doi.org/10.1145/3771574
https://doi.org/10.1145/3771574
https://orcid.org/0009-0003-1550-8683
https://orcid.org/0000-0003-3477-4947
https://orcid.org/0000-0002-1498-494X
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3771574

59:2 Agrim Bari, Parikshit Hegde, and Gustavo de Veciana

1 Introduction
LLM inference systems. The core problem in Large Language Model (LLM) inference is to generate

a response autoregressively, one token
1
at a time, given a prompt—for example, "What is the capital

of France?" producing the output "It is Paris." Modern LLMs such as GPT-4, Llama 3, and Gemini now

power a wide range of services, including chatbots, coding assistants, and search engines. These

services handle millions of user requests daily, and private deployments are rapidly increasing. As

a result, there is growing interest in optimizing how requests are processed across one or more

Graphics Processing Unit (GPU)-enabled nodes in data centers, since improved efficiency can lead

to significant reductions in infrastructure and operating costs.

Objectives for LLM serving systems. To meet growing demand, LLM systems must be care-

fully designed to make efficient use of hardware. A well-designed system keeps each active GPU

busy—fully utilizing both its compute and memory—while also keeping response times low. This

leads to two main goals: (1) achieving high throughput, measured in requests per second, to reduce

the cost per request, and (2) maintaining low latency, which directly affects user experience. Latency

is typically measured using two Service-Level Objectives (SLOs)
2
: Time To First Token (TTFT), which

is the delay between a request’s arrival and the generation of the first output token, capturing how

long a user waits before the LLM starts responding; and Time Between Tokens (TBT), which is the

time between successive output tokens, indicating the rate at which the response is streamed to the

user. In real-world systems, request routing, scheduling, and caching are used to meet these goals.

This paper focuses on scheduling, which plays a critical role in increasing throughput, reducing

TTFT, and keeping TBT within acceptable limits.

Phases of an LLM request and scheduler decisions. Each request to an LLM based on the

Transformer architecture goes through two main phases: prefill and decode. In the prefill-phase,
the model processes the entire prompt and generates the first output token. After that, the request

enters the decode-phase, where it produces one token at a time in an auto-regressive manner until

a stop token is generated. These two phases have distinct characteristics. The prefill-phase is

highly parallelizable and can fully utilize the GPU’s compute resources. By contrast, the decode

phase is sequential and has low parallelism, which means that multiple decode-phase requests

must be batched together to make efficient use of the GPU. Additionally, Transformer models store

intermediate representations of tokens—called the Key-Value (KV) cache—which grow with the

number of tokens processed and consume GPU memory. The scheduler’s job is to select a mix

of prefill-phase and decode-phase requests to include in each GPU batch. These decisions must

balance GPU compute and memory bandwidth usage, stay within the memory budget, and meet

latency SLOs.

Challenges in scheduler design. Designing an effective scheduler for LLM inference presents

several key challenges. First, GPU compute efficiency depends heavily on the composition of each

batch—that is, the mix of prefill and decode-phase requests scheduled together. As a result, the

scheduler must construct batches carefully to make the most of available resources. Second, the

scheduler must balance resource allocation between the prefill and decode phases, as both phases

have their respective SLOs: TTFT and TBT. Prioritizing prefill-phase requests can reduce TTFT

but may delay decodes and worsen TBT. Conversely, prioritizing decode-phase requests keeps

TBT low but can lower compute utilization and increase TTFT for new requests. Third, while the

prompt length is known upon a request arrival the output length is unknown, making memory

1
A token in a LLM is a unit of text-such as a word, subword, or character-used as the basic input element for processing and

generation.

2
Thresholds may vary by application, but these two metrics are commonly used.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

Optimal Scheduling for LLM Inference 59:3

management complex—particularly since GPU memory is often a bottleneck. Finally, many LLM

serving systems support multiple user tiers which have heterogeneous performance needs.

Our approach. In this work, we approach the LLM scheduling problem from two complementary

perspectives. From a theoretical standpoint, we develop a rigorous framework for analyzing and

achieving throughput-optimal scheduling. From a practical perspective, we design a scheduler that

dynamically adapts to diverse latency SLOs across heterogeneous user tiers.

Contributions. Our key contributions are:

(1) A Theoretical Model for LLM Inference Systems. We develop a comprehensive analytical

framework for request routing and scheduling in LLM inference systems, capable of capturing

salient features of practical policies considered in the literature. Additionally, we introduce a

model to represent inference computation times on modern GPU architectures. This unified

framework enables rigorous analysis and comparison of routing and scheduling policies in

such systems. See Section 3.

(2) A Throughput Optimal Scheduler. We identify two key design principles that characterize

optimal resource-utilization in LLM inference systems; optimal tiling and optimal dynamic

resource allocation across prefill and decode workloads. Guided by these insights, we design

a simple load-balancing routing strategy and introduce a Resource-Aware Dynamic (RAD)

scheduler. We rigorously prove that, under mild assumptions, this combination achieves

throughput optimality. See Section 4.

(3) Insights for Practical Systems. Recognizing that in practical LLM inference systems it is

desirable to meet latency SLOs, we provide insights into how real-world systems approximate

and adapt the proposed design principles to satisfy these constraints. See Section 5.

(4) A SLO-Aware Scheduler.We design a practical scheduler called SLO-Aware LLM Inference

(SLAI) scheduler that aims to minimize online median TTFT when serving requests with

heterogeneous TBT constraints. To achieve this, SLAI uses online measurements to decide

when the execution of a decode-iteration has become time-critical, i.e., should be prioritized

for scheduling. In addition, it uses the known prompt length information to order prefill-phase

requests so as to reduce the median TTFT. See Section 6.

(5) Experimental Performance. We evaluate SLAI on the openchat_shareGPT4 dataset using

the Mistral-7B LLM on an NVIDIA RTX ADA 6000 GPU. Our results show that SLAI can

reduce the median TTFT by 53% while meeting TBT requirements compared to Sarathi-serve,

the current state-of-the-art scheduler. Additionally, when median TTFT can not exceed 0.5

seconds, SLAI increases the serving capacity by 26%. See Section 7.

1.1 Related Work
LLM serving systems must make decisions about when to run the prefill and decode phases of

a request, where to execute each request, and how to manage the growing KV cache produced

by the model. Based on these challenges, prior work can be broadly categorized into three areas:

(a) scheduling within a single inference node, (b) routing across multiple inference nodes, and (c)

managing the KV cache. In this section, we focus exclusively on scheduling. For a discussion of

related works on routing and KV cache management, we refer the reader to Appendix A.

1.1.1 Queueing based analysis for schedulers. The queueing-theoretic study of LLM inference

remains in its early stages, especially when compared to themoremature systems-oriented literature.

A recent survey by Mitzenmacher et al. [19] highlights the distinctive characteristics of LLM

inference workloads and emphasizes the importance of queueing-based analysis for such systems.

A closely related work is [17], in which the authors develop a queueing-theoretic model for

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

59:4 Agrim Bari, Parikshit Hegde, and Gustavo de Veciana

LLM inference schedulers and analyze throughput optimality. The authors approximate the batch-

processing time, which is observed to have a staircase-behaviour in practice, by a linear function.

They observe under their model that work conserving schedulers are throughput optimal. In our

work, we model the detailed computations on a GPU to perform LLM inference, and obtain a

formula for the batch processing time that reflects the staircase-behaviour observed in practice. Our

more detailed modeling framework yields novel structural insights—particularly on the optimal

tiling and resource allocation strategies required for throughput optimality. These insights offer

new avenues for improving the performance of practical LLM inference systems. In [20], the authors

study throughput-maximization in a setting where the system is backed up with requests, and the

token generation times depend on the batch size, but not on the token positions.

1.1.2 Scheduling policies. Schedulers differ in how they prioritize prefill-phase and decode-phase

requests, and in their batching granularity. Below, we highlight some of the key work in this

literature.

Decode-prioritizing (request-level) schedulers. Frameworks such as FasterTransformer [23, 24]

and the request-level mode of TensorRT-LLM process a set of requests till completion, before

admitting any new requests. Since new prefill-phase requests never interrupt ongoing decode-

phase requests, these schedulers perform well on TBT. However, they have low throughput when

there is a imbalance in the total (prompt and output) length of requests and thus GPU may be

under-utilized.

Prefill-prioritizing (iteration-level) schedulers. Iteration-level batching, first introduced by

Orca [33], enables dynamic admission and completion of requests at each forward pass. However, it

relies on static memory allocation for the KV cache, which limits the number of concurrent requests

to 16 on an A100 GPU. vLLM [15] overcomes this limitation using paged attention, allowing more

flexible memory management and increasing the maximum number of concurrent requests to 128.

Additionally, like FlashDecoding++ [8] and DeepSpeed-FastGen [7], vLLM aggressively admits

new prefill-phase requests to improve throughput. However, this eager admission policy can delay

decode iterations—especially for long prompts—leading to higher TBT latencies.

Hybrid schedulers. Sarathi-Serve [2] introduces a token-budgeted, chunked-prefill strategy
to balance throughput and TBT, effectively reducing decode-iteration stalls that are common in

prefill-prioritizing schedulers. Beyond such scheduling-focused methods, recent systems propose

orthogonal techniques aimed at improving overall LLM inference performance. BlendServe [34]

targets offline workloads by reordering requests based on their resource usage profiles to improve

hardware efficiency. POD-Attention [14] enables pipelined execution of prefill and decode phases

to increase kernel overlap and improve GPU utilization. HydraGen [13] reduces redundant compu-

tation by identifying and merging shared prompt prefixes across requests. DistServe [36] adopts

a disaggregated architecture that separates prefill and decode execution across different nodes,

thereby eliminating intra-GPU contention; however, it introduces communication overhead due to

the transfer of large KV caches.

2 Background
2.1 Transformer
We focus on the widely used decoder-only Transformer architecture—referred to simply as the

Transformer in this work—that forms the basis of GPT, LLaMA, PaLM and other families of LLM

models. The Transformer is an autoregressive model that generates token 𝜃𝑖+1 by conditioning on

all previous tokens 𝜃1, . . . , 𝜃𝑖 . Token 𝜃𝑖 is processed by the Transformer as shown in Fig. 1. A token

is first converted into an embedding and then passed through 𝑁 layers. Let the input to the 𝑛th

layer be a vector 𝒙𝑛 ∈ R𝑑𝑥 of dimension 𝑑𝑥 . Each layer comprises of three distinct sub-layers:

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

Optimal Scheduling for LLM Inference 59:5

Fig. 1. Transformer architecture.

(1) QKV Projection: This sub-layer is parametrized by three matrices𝑊 𝑛
𝑄
,𝑊 𝑛

𝐾
and𝑊 𝑛

𝑉
each of

dimension 𝑑 × 𝑑𝑥 . The corresponding Query, Key and Value (or, QKV) vectors are computed

using a linear transformation as, 𝒒𝑛 =𝑊 𝑛
𝑄
𝒙𝑛 , 𝒌𝑛 =𝑊 𝑛

𝐾
𝒙𝑛 and 𝒗𝑛 =𝑊 𝑛

𝑉
𝒙𝑛 , where 𝒒𝑛 , 𝒌𝑛 , 𝒗𝑛

are all vectors of dimension 𝑑 × 1.

(2) Self Attention: For the 𝑖th token, the key and value vectors of all tokens up to and including

token 𝑖 are stacked into matrices 𝐾𝑛,𝑖 and 𝑉 𝑛,𝑖 of dimension 𝑑 × 𝑖 , and the self-attention is

computed as,

𝒚𝑛 = 𝑉 𝑛,𝑖softmax

(
𝐾𝑛,𝑖

⊤
𝒒𝑛

√
𝑑

)
, (1)

where 𝒚𝑛 ∈ R𝑑 is the resulting context vector. (1) represents a single attention head. In

practice, Transformers employ multiple attention heads [30], meaning that multiple sets of𝑄 ,

𝐾 , and 𝑉 vectors are used in parallel in a layer. The resulting outputs are then concatenated

and passed to a Feed-Forward Network (FFN) described below. For simplicity, and without

loss of generality, we focus on a single attention head in our theoretical analysis. Our results

are also applicable to memory-efficient variants such as multi-query attention [27] and

grouped-query attention [3].

(3) Feed Forward Net (FFN): The output of the self-attention sublayer is passed through an FFN

with one hidden-layer. The dimensions of the weight matrices of the FFN,𝑊 𝑛
𝐹1

and𝑊 𝑛
𝐹2

, are

𝑑𝑓 𝑓 × 𝑑 and 𝑑𝑥 × 𝑑𝑓 𝑓 respectively. The output of the FFN serves as the input to the (𝑛+1)th
layer.

The output of layer N is passed through a linear transform followed by a softmax operation. The

probability distribution output by the softmax is used to sample the next token in the sequence.

2.2 Inference on a Transformer
An LLM inference system receives requests in the form of prompts, consisting of a variable length

sequence of tokens 𝜃1, 𝜃2, . . . , 𝜃𝑙𝑃 , where 𝑙
𝑃
denotes the prompt length. The inference task is to

autoregressively sample output tokens 𝜃𝑙𝑃+1, 𝜃𝑙𝑃+2 . . . , 𝜃𝑙𝑃+𝑙𝐷 from the Transformer until a stop
token is sampled at an apriori unknown position 𝑙𝑃 + 𝑙𝐷 + 1, where 𝑙𝐷 denotes the output length.
A central technique used to speed up LLM inference is KV caching, wherein the key and value

vectors (KV vectors) that have been computed for a token 𝜃𝑖 are cached in GPU memory. This

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

59:6 Agrim Bari, Parikshit Hegde, and Gustavo de Veciana

allows subsequent tokens to directly retrieve the relevant KV vectors during attention computation,

avoiding recomputation and significantly improving inference efficiency.

The computation associated with completing an LLM inference request can be divided into two

distinct phases,

(1) Prefill-Phase: Although prompt tokens are specified by the request and thus do not need to

be sampled, the KV vectors for all prompt tokens do need to computed and cached for all

layers since they are required to perform the self-attention computation for later tokens. The

computation of the KV vectors corresponding to prompt tokens is called the prefill-phase.

Since all the prompt tokens are available, the prefill-phase can be done in parallel for all the

prompt tokens at once, or a chunk of tokens at a time. This is discussed further in Sections

3.1 and 3.2.

(2) Decode-Phase: The decode-phase denotes the computations involved in generating output

tokens 𝜃𝑙𝑃+1, 𝜃𝑙𝑃+2, . . . , 𝜃𝑙𝑃+𝑙𝐷 . The KV vectors computed in this phase are also cached in

memory for use in the self-attention computation of future tokens. Since this is the token

generation phase, it is autoregressive in nature unlike the prefill-phase, and thus due to

dependencies cannot be parallelized across tokens of the request.

See Fig. 2 for a visualization of the two phases of LLM inference.

Fig. 2. Prefill and decode phases of a request during inference on a Transformer.

2.3 Computation on a GPU
A significant fraction of computations associated with LLM inference and, more generally, modern

AI workloads involve matrix-matrix multiplication which can be sped up by specialized hardware.

As such, modern GPUs have several components to perform matrix-matrix multiplication that is

distinct from components used to perform general parallel computations. For concreteness, in this

paper we focus our analysis on the terminology and convention used by NVIDIA TensorCore GPUs

[25], while noting that GPUs produced by Intel[10], AMD[1] etc., have analogous components.

From hereon, unless otherwise mentioned, by GPU we mean NVIDIA TensorCore GPU.

A GPU consists of a set of 𝑠 independent processors called Streaming Multiprocessors (SMs). An

SM in turn consists of a number of fundamental computational units, which can be categorized

into two categories: 1) CUDA cores which are general purpose parallel computation units, and 2)

Tensor Cores that are specifically designed to perform (generalized) matrix-matrix multiplications.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

Optimal Scheduling for LLM Inference 59:7

Two types of computational tasks on a GPU are especially relevant in the context of LLM inference,

Generalized Matrix-Matrix Multiplication (GeMM) and Generalized Matrix Vector Multiplication

(GeMV), which are detailed below.

GeMM. Let 𝐴 ∈ R𝑑row×𝑑red , 𝐵 ∈ R𝑑red×𝑑col , 𝐶 ∈ R𝑑row×𝑑col and let 𝛼, 𝛽 ∈ R; the GeMM operation

computes𝐶 ← 𝛼𝐴𝐵 + 𝛽𝐶 . In this formulation 𝑑row and 𝑑col denote the row and column dimensions

of the output matrix 𝐶 , while 𝑑red is the reduction dimension, corresponding to the shared inner

dimension of input matrices 𝐴 and 𝐵.

Fig. 3. Computation of a tile in a GeMM,𝐶 ← 𝛼𝐴𝐵 + 𝛽𝐶 , requires a sweep of a row of tiles of𝐴 and a column
of tiles of 𝐵.

The GPU GeMM algorithm [22] partitions the output matrix𝐶 into tiles of size 𝑡row×𝑡col (padding
zeros if necessary to fit dimensions). The computation of a tile of𝐶 is assigned to an SM. The input

matrices 𝐴 and 𝐵 are tiled into tiles of dimensions 𝑡row × 𝑡red and 𝑡red × 𝑡col. Here, we shall refer to
𝑡red as the reduction tile dimension. Each SM loads the corresponding input tiles into local memory

to compute its assigned output tile. See Fig. 3 for a visual representation of this process.

Tensor Cores can only be used if the output tile dimensions belong to a particular GPU-dependent

set, Tout and the reduction tile dimension belongs to a set Tred. Tile dimensions in Tout and Tred
are always powers of 2. For instance, on the A100 GPU, T𝐴100

out
= {(256, 128), (128, 256), (128, 128),

(256, 64), (64, 256), (128, 64), (64, 128), (64, 64)}, and typically Tred = {32, 64}. Moreover, Tensor

Cores provide a substantially higher FLOP/s rate for GeMM with any of the allowed tile config-

urations as compared to CUDA cores. Therefore it is most often beneficial to pad the input and

output matrices with zeros in order to partition it into tiles that fit in Tout and Tred, even though it

leads to redundant (zero-padding) computation. When zero padding is used, the FLOP/s rate only

counts the useful computations and excludes redundant computations, i.e., the theoretical peak is

computed using the original matrix sizes, not the padded sizes. For a detailed discussion on the

characteristics of matrix sizes and FLOP/s rate of GeMMs, refer [22].

Suppose the GeMM computation uses output tile dimensions 𝑡row × 𝑡col and reduction tile

dimension 𝑡red. The output matrix𝐶 then contains ⌈𝑑row/𝑡row⌉ · ⌈𝑑col/𝑡col⌉ tiles, and each output tile

requires ⌈𝑑red/𝑡red⌉ tile-pairs of 𝐴 and 𝐵 to be multiplied (ref. Fig. 3). Let 𝜇 (𝑡row, 𝑡col, 𝑡red) denote the
speed of computing the GeMM of a tile-pair with dimensions 𝑡row × 𝑡red and 𝑡red × 𝑡col, and recall

that 𝑠 is the number of SMs on the GPU. Then, we model the total time to complete the GeMM as

𝑇GeMM (𝑑row, 𝑑col, 𝑑red, 𝑡row, 𝑡col, 𝑡red) =
1

𝑠𝜇 (𝑡row, 𝑡col, 𝑡red)

⌈
𝑑row

𝑡row

⌉ ⌈
𝑑col

𝑡col

⌉ ⌈
𝑑red

𝑡red

⌉
. (2)

Here, 1/𝑠 accounts for the parallelism provided by the 𝑠 SMs, 1/𝜇 (𝑡row, 𝑡col, 𝑡red) captures the effective
time to compute one tile-pair multiplication, and the remaining terms count the total number of

tile-pair multiplications needed.

Assumption 1. There exists output tile dimensions (𝑡∗
row
, 𝑡∗
col
) ∈ Tout and a reduction tile size

𝑡∗
red
∈ Tred such that if a GeMM’s matrices are a) sufficiently large, i.e., can fully utilize the GPU’s

compute resources, and b) are perfectly tiled i.e., there is no padding overhead, then the GPU achieves
its maximal FLOP/s rate.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

59:8 Agrim Bari, Parikshit Hegde, and Gustavo de Veciana

Assumption 1 is well supported by empirical studies of GeMM performance on modern GPUs

[22]. Intuitively, when matrices are sufficiently large and partition exactly into the tile size 𝑡∗
row
×𝑡∗

col

along the output dimensions and 𝑡∗
red

along the reduction dimension, the GPU can fully utilize its

SMs by creating a large number of independent tile computations. These output tile dimensions

𝑡∗
row
× 𝑡∗

col
are typically the largest in Tout which leads to higher arithmetic intensity–the ratio of

floating-point operations to memory accesses–thereby enabling more efficient use of memory

bandwidth and allowing the GPU to operate at its peak throughput. For instance, in the A100 GPU,

𝑡∗
row
× 𝑡∗

col
is either 128 × 256 or 256 × 128 and 𝑡∗

red
is 32.

GeMV. Let 𝐴 ∈ R𝑑row×𝑑col , 𝒙 ∈ R𝑑col , and 𝒚 ∈ R𝑑row . Then, for scalars 𝛼, 𝛽 , the GeMV operation

computes 𝒚 ← 𝛼𝐴𝒙 + 𝛽𝒚. The GeMV is also implemented by tiling the output vector 𝒚 into

sub-vectors of size 𝑡row, which are assigned to individual SMs and computed using CUDA cores.

Correspondingly, the matrix 𝐴 is partitioned into tiles of size 𝑡row × 𝑡col, and the input vector 𝒙 into

tiles of size 𝑡col. Let 𝜇 (𝑡row, 𝑡col) denote the speed of computing a single tile-pair GeMV. Then the

total time to complete the GeMV is modeled as

𝑇GeMV (𝑑row, 𝑑col, 𝑡row, 𝑡col) =
1

𝑠𝜇 (𝑡row, 𝑡col)

⌈
𝑑row

𝑡row

⌉ ⌈
𝑑col

𝑡col

⌉
. (3)

Because GeMV performs fewer floating-point operations per byte of memory traffic than GeMM,

its arithmetic intensity is lower and thus it is less efficient in terms of memory bandwidth utilization.

This motivates the following assumption.

Assumption 2. Let 𝑑row, 𝑑col, 𝑑red ∈ N. Let 𝐴 ∈ R𝑑row×𝑑red . Let, 𝒙 (1), . . . , 𝒙 (𝑑col) ∈ R𝑑red×1

and 𝒚(1), . . . ,𝒚(𝑑col) ∈ R𝑑row×1 be 2𝑑col vectors. Denote the respective stacked vectors as, 𝑋 =

[𝒙 (1) 𝒙 (2) . . . , 𝒙 (𝑑col)] and 𝑌 = [𝒚(1)𝒚(2) . . . 𝒚(𝑑col)]. Let 𝛼, 𝛽 ∈ R. We will assume, that the
time required to compute the set of GeMVs, 𝒚(𝑖) ← 𝛼𝐴𝒙 (𝑖) + 𝛽𝒚(𝑖) for all 𝑖 ∈ {1, . . . , 𝑑col}, is greater
than the time required to compute the GeMM, 𝑌 ← 𝛼𝐴𝑋 + 𝛽𝑌 .

3 LLM Inference System Model
We shall consider an LLM inference system consisting of 𝑟 inference nodes coordinated by a central

resource planner as shown in Fig. 4 which function as follows.

Inference node: An inference node is the basic computational unit responsible for performing

LLM inference. For large models such as GPT-3, PaLM, etc., inference is typically performed using

multiple GPUs due to memory constraints. However, all GPUs within a node participate in a

fixed execution pipeline using tensor-parallelism[21] or pipeline-parallelism[9]. Without loss of

generality, it is convenient to model an inference node as operating on a single GPU.

The primary decision process at an inference node lies in its LLM inference scheduler which
decides the order in which to schedule tasks on the node’s GPU. The design of LLM inference

schedulers is the focus of this work, and, we describe a general framework to study them in Section

3.1, after a brief description of the resource planner below.

Resource planner: The resource planner receives incoming requests in the form of prompts and

assigns each one to an inference node, where the request joins a queue and waits to be served.

The planner continuously monitors the status of all inference nodes—tracking metrics such as the

number of pending requests, request latencies, and memory usage (including risks of overflows).

Based on this information, it may choose to reassign waiting requests or even migrate partially

processed requests to other nodes. When a partially completed request is migrated, the source node

must transfer the partially computed KV cache to the destination node, which might incur a cost

such as the time required to complete the transfer.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

Optimal Scheduling for LLM Inference 59:9

Fig. 4. An LLM inference system.

A resource planner in some systems, such as in NVIDIA Dynamo[4], has the ability to turn off

some inference nodes when they are being underutilized, and turn them on when the system is

congested. This feature is especially useful towards achieving energy efficiency when the request

arrival pattern is heterogeneous and may vary through time. We focus on stationary request arrivals

in our work for analytical tractability, and do not study policies to turn nodes on or off.

3.1 A General Framework for LLM Inference Schedulers
We consider a class of schedulers that schedule batches of request iterations non-preemptively that

captures a range of existing schedulers in the literature. In this context, the meaning of an iteration

of a request depends on whether it is in the prefill-phase or the decode-phase, as defined below.

Definition 1 (Prefill-Iteration). For a request 𝑅, a chunk-size 𝑐 , and starting token index 𝑖 , a
prefill-iteration, denoted 𝑃𝐼 (𝑅, 𝑖, 𝑐), involves computing the KV vectors for each layer corresponding
to prompt token indices in the range 𝑖 to 𝑖 + 𝑐 − 1 (both inclusive). Once the iteration is complete, the
starting token index is updates to 𝑖 + 𝑐 .

In order to schedule 𝑃𝐼 (𝑅, 𝑖, 𝑐) on the GPU, the KV vectors for tokens up to index 𝑖 − 1 must

have been previously computed and cached in GPU memory, and 𝑖 + 𝑐 − 1 should not exceed the

prompt length. Moreover, if 𝑖 + 𝑐 − 1 corresponds to the last prompt token, then the prefill-iteration

generates the first output token.

Definition 2 (Decode-Iteration). An iteration of a request 𝑅 in the decode-phase, denoted
𝐷𝐼 (𝑅, 𝑖), corresponds to the generation of the next output token which is at index 𝑖 + 1.

In order to schedule 𝐷𝐼 (𝑅, 𝑖), all the KV vectors for tokens up to index 𝑖 − 1 must be previously

computed and cached in GPU memory. Moreover, index 𝑖 should not correspond to a prompt token,

and should not correspond to a token that follows the stop token.

LetP𝑚 andD𝑚 be the sets of requests that are in their prefill-phase and decode-phase respectively

just prior to the construction of batch𝑚. Let B𝑚 denote the set of iterations to be scheduled in

batch𝑚. Initialize B𝑚 = ∅. A scheduler selects a subset S𝑃𝑚 of 𝑏𝑃𝑚 prefill-phase requests from P𝑚
and subset S𝐷𝑚 of 𝑏𝐷𝑚 decode-phase requests from D𝑚 and constructs the batch as follows: 1) for

each selected prefill-phase request 𝑅 𝑗 ∈ S𝑃𝑚 with starting token index 𝑖 𝑗 , it chooses a chunk size

𝑐 𝑗 and adds 𝑃𝐼 (𝑅 𝑗 , 𝑖 𝑗 , 𝑐 𝑗) to B𝑚 ; 2) for each selected decode-phase request 𝑅 𝑗 ∈ S𝐷𝑚 with the latest

token index 𝑖 𝑗 , it adds 𝐷𝐼 (𝑅 𝑗 , 𝑖 𝑗) to B𝑚 . At most one decode-iteration can be scheduled per request

in a batch. Then, it schedules B𝑚 on the GPU. Note that all the iterations within the batch may be

processed in parallel by the GPU. A description of some existing LLM schedulers expressed in this

framework is provided in Appendix E.

Next, we discuss how computations corresponding to a batch are performed on the GPU.

3.2 LLM Inference Computation on the GPU
We split the operations involved into 3 categories.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

59:10 Agrim Bari, Parikshit Hegde, and Gustavo de Veciana

3.2.1 Linear transformations: This category includes the QKV projections in each layer, the

linear computations in the FFN sub-layer of each layer and also the final linear projection. In all

computations in this category, a weight matrix of the transformer multiplies a token feature vector.

In particular, these computations involve the features of the present token, and do not involve any

previous tokens in the sequence.

In line with Assumption 2, this operation may be scheduled efficiently as a GeMM instead of

multiple GeMVs as follows. Let𝑊 denote the weight matrix of the transformer. Let 𝜏𝑚 denote

the token-count of the𝑚th
batch, which is, 𝜏𝑚 = 𝑏𝐷𝑚 +

∑
𝑗 :𝑅 𝑗 ∈S𝑃𝑚 𝑐 𝑗 . Stack all the 𝜏𝑚 corresponding

feature vectors into a matrix 𝑍 𝑖𝑛 and compute 𝑍𝑜𝑢𝑡 =𝑊𝑍 𝑖𝑛 . Let (𝑡row, 𝑡col) ∈ Tout and 𝑡red ∈ Tred
denote the output tile dimensions and reduction tile dimension used respectively for all linear

transformations. For simplicity, we use a common tile configuration across transformations, as

Assumption 1 implies a single tile configuration can achieve optimal performance across different

GeMM dimensions.

Consider the QKV projection in layer 𝑛. The dimensions of𝑊 𝑛
𝑄
,𝑊 𝑛

𝐾
and𝑊 𝑛

𝑉
are 𝑑 × 𝑑𝑥 . Then,

𝑋𝑛 , which is the stack of 𝜏𝑚 number of 𝒙𝑛’s, has a dimension of 𝑑𝑥 × 𝜏𝑚 . And the 3 output matrices,

which are the stacks of 𝒒𝑛’s, 𝒌𝑛’s and 𝒗𝑛’s respectively of tokens in the batch, have a dimension

of 𝑑 × 𝜏𝑚 each. Since the model dimensions are designed with hardware in mind, 𝑑,𝑑𝑥 (as well as

other model dimensions) are divisible by the tile dimensions. Therefore, according to (2), the time

required to complete the 3 GeMMs is,
3

𝑠𝜇 (𝑡row,𝑡col,𝑡red)
𝑑𝑥
𝑡red

𝑑
𝑡row

⌈
𝜏𝑚
𝑡col

⌉
. The two FFN sub-layer matrices

𝑊 𝑛
𝐹1

and𝑊 𝑛
𝐹2

have dimensions 𝑑ff × 𝑑 and 𝑑𝑥 × 𝑑ff, respectively. Denote the dimension of the final

linear projection matrix as 𝑑out×𝑑𝑥 . Recalling that there are 𝑁 layers in the transformer, the amount

of time required to compute the linear transformations for a batch with token count 𝜏𝑚 is,

1

𝑠𝜇 (𝑡row, 𝑡col, 𝑡red)

(
3𝑁

𝑑𝑥

𝑡red

𝑑

𝑡row
+ 𝑁 𝑑

𝑡red

𝑑ff

𝑡row
+ 𝑁 𝑑ff

𝑡red

𝑑𝑥

𝑡row
+ 𝑑𝑥

𝑡red

𝑑out

𝑡row

) ⌈
𝜏𝑚

𝑡col

⌉
In the above formula, the scheduler can only modify the token count of the batch, but not any

of the transformer’s parameters. So, we can abstract out fixed components, and express the time

required to complete the linear transformation computations for the tokens in a batch as,

1

𝜇Lin (𝑡row, 𝑡col, 𝑡red)

⌈
𝜏𝑚

𝑡col

⌉
. (4)

3.2.2 Self-attention: This computation has different characteristics in decode and prefill iterations.

The self-attention for a decode-iteration of a request consists of performing GeMV operations

which cannot be scheduled as a GeMM using batching across requests because each request has a

unique KV cache. Consider a decode-iteration 𝐷𝐼 (𝑅 𝑗 , 𝑖 𝑗) in the batch. Its self-attention computation

involves 2 GeMV’s: one with a matrix of size 𝑑 × 𝑖 𝑗 and a vector of length 𝑖 𝑗 , and another with a

matrix of size 𝑖 𝑗 ×𝑑 and a vector of length 𝑑 . Let (𝑡row, 𝑡col) be the optimal tile configuration for the

GeMV. Then, from (3), the time required to perform Self-Attenion at layer 𝑛 for this decode-iteration

is,

1

𝜇 (𝑡row, 𝑡col)

(
𝑑

𝑡col

⌈
𝑖 𝑗

𝑡row

⌉
+

⌈
𝑖 𝑗

𝑡col

⌉
𝑑

𝑡row

)
≜ 𝑇𝐷,𝑆𝐴 (𝑖 𝑗). (5)

Above, we use𝑇𝐷,𝑆𝐴 (·) to encapsulate the fixed components of the self-attention computation time.

On the other hand, since prefill-iterations may be scheduled for a chunk of tokens at a time, their

self-attention may be computed as a GeMM as follows. Consider a prefill-iteration 𝑃𝐼 (𝑅 𝑗 , 𝑖 𝑗 , 𝑐 𝑗)
at layer 𝑛 of the Transformer. Stack the 𝑖 𝑗 + 𝑐 𝑗 − 1 each of key and value vectors of dimension 𝑑

of the first 𝑖 𝑗 + 𝑐 𝑗 − 1 tokens into matrices 𝐾𝑛 and 𝑉 𝑛 . Stack the 𝑐 𝑗 query vectors of dimension 𝑑

corresponding to the current chunk into the matrix 𝑄𝑛 . Let𝑀 be a masking matrix of dimension

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

Optimal Scheduling for LLM Inference 59:11

(𝑖 𝑗 + 𝑐 𝑗 − 1) × 𝑐 𝑗 , where each entry is 1 except in indices (𝑘1, 𝑘2) satisfying 𝑘1 > 𝑖 and 𝑘2 ≤ 𝑘1 − 𝑖 ,
where it is set to 0. The masking matrix allows a token to only attend to previous tokens in

the prompt sequence. Then, the stack of output vectors of the self-attention may be computed

as, 𝑌𝑛 = 𝑉 𝑛softmax

(
𝐾𝑛⊤𝑄𝑛

√
𝑑
⊙ 𝑀

)
, where ⊙ denotes an element-wise product. Observe that this

requires: 1) a GeMM between matrices of dimensions (𝑖 𝑗+𝑐 𝑗−1) × 𝑑 and 𝑑 × 𝑐 𝑗 , 2) element-wise

multiplication with the mask 𝑀 followed by a non-linearity (softmax), and 3) another GeMM

between 𝑑 × (𝑖 𝑗+𝑐 𝑗−1) and (𝑖 𝑗+𝑐 𝑗−1) × 𝑐 𝑗 matrices. Let (𝑡row, 𝑡col) ∈ Tout and 𝑡red ∈ Tred denote the
output tile dimensions and reduction tile dimension used respectively for both the GeMMs. We

assume the cost of masking and softmax is negligible for simplicity. Then, according to (2), the time

required to compute the self-attention across all 𝑁 layers is:

𝑁

𝑠𝜇 (𝑡row, 𝑡col, 𝑡red)

(⌈
𝑖 𝑗 + 𝑐 𝑗 − 1

𝑡row

⌉ ⌈
𝑐 𝑗

𝑡col

⌉
𝑑

𝑡red
+ 𝑑

𝑡row

⌈
𝑐 𝑗

𝑡col

⌉ ⌈
𝑖 𝑗 + 𝑐 𝑗 − 1

𝑡red

⌉)
. (6)

Remark 1. For simplicity, we describe the computation of self-attention as two successive GeMM’s
interleaved with non-linear operations. In practice, systems usually use FlashAttention [5]-a hardware-
efficient algorithm which minimizes the number of memory transfers by fusing operations and re-
ordering computation using tiling. Our approach and analysis can be adapted for FlashAttention with
appropriate modifications to (6). We leave this to future work.

3.2.3 Non-Linear Operations: Each SM in a GPU has a Special-Function-Unit that efficiently

computes non-linear functions. Transformers include non-linear operations such as ReLU, softmax,

etc., which—like Linear Transformations—operate only on the tokens being processed in the batch.

The time to compute all non-linear operations for a single token is denoted by
1

𝜇nLin
. Thus, for a

batch containing 𝜏𝑚 tokens, the total computation time is
1

𝜇nLin
𝜏𝑚 , where 𝜇nLin denotes the rate at

which non-linear operations are performed per token.

Batch execution time: Recall thatB𝑚 denotes the𝑚th
batch with prefill-iterations from requests

in S𝑃𝑚 and decode-iterations from requests in S𝐷𝑚 . Then, summing up the computations times from

(4), (5) and (6) for all the iterations, we express the batch computation time as,

𝑇𝐵 (B𝑚) =
1

𝜇Lin (𝑡row, 𝑡col, 𝑡red)

⌈
𝜏𝑚

𝑡col

⌉
+ 1

𝜇nLin
𝜏𝑚 + 𝑁

∑︁
𝑗 :𝑅 𝑗 ∈S𝐷𝑚

𝑇𝐷,𝑆𝐴 (𝑖 𝑗)

+ 𝑁

𝑠𝜇 (𝑡row, 𝑡col, 𝑡red)
∑︁

𝑗 :𝑅 𝑗 ∈S𝑃𝑚

(⌈
𝑖 𝑗 + 𝑐 𝑗 − 1

𝑡row

⌉ ⌈
𝑐 𝑗

𝑡col

⌉
𝑑

𝑡red
+ 𝑑

𝑡row

⌈
𝑐 𝑗

𝑡col

⌉ ⌈
𝑖 𝑗 + 𝑐 𝑗 − 1

𝑡red

⌉)
.

(7)

The ceiling function in the batch execution time formula captures the staircase-behaviour observed

in practice. See [17, Figure 4].

Next, we present ourmain theoretical contribution: a simple resource planner and a scheduler that

maximizes the throughput—measured in requests per second—under stationary request arrivals.

4 A Throughput Optimal Inference System
4.1 Throughput optimal resource planner
For simplicity, we assume that all 𝑟 Inference Nodes in the system are identical and are running

the same Transformer model. We consider a simple uniformly random resource planner, which
distributes each incoming request uniformly at random to one of the 𝑟 inference nodes.

The random-routing assumption represents a simplified setting. Themulti-nodemodel is included

to reflect large-scale inference architectures, which typically involve multiple GPUs or servers.

Within the homogeneous setup considered here, random routing suffices to achieve throughput

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

59:12 Agrim Bari, Parikshit Hegde, and Gustavo de Veciana

optimality. In more realistic deployments—featuring heterogeneous nodes, bursty workloads, or

latency-sensitive objectives—more sophisticated routing strategies may be required. This model

thus serves as a foundational step toward analyzing such richer settings.

A general resource planner in our model (see Fig. 4) has the ability to monitor node statuses

and transfer pending or partially processed requests from one node to another. While the simple

resource planner above does neither of these, we show that, combined with our proposed scheduler

in Section 4.2, it maximizes resource utilization and is thus throughput-optimal, even when the

cost of transferring the KV cache of partially processed requests between nodes is 0. The ability to

monitor node status and transfer requests becomes particularly useful in practical systems that

aim to minimize delay or satisfy strict latency SLO constraints [4].

4.2 RAD: A throughput optimal scheduler
Our proposed Resource-Aware-Dynamic (RAD) Scheduler is shown in Algorithm 1. The time

horizon of RAD can be partitioned into cycles, where in a cycle, RAD schedules a sequence of

batches that start and complete up to 𝑛 requests, with 𝑛 being a parameter. Now, in addition to 𝑛,

RAD also accepts the optimal output tile dimensions, (𝑡∗
row
, 𝑡∗
col
) ∈ Tout and reduction tile dimension

𝑡∗
red
∈ Tred as in Assumption 1, for optimal GeMM computation on the GPU. The central design

principle of RAD is two-fold.

Optimal GeMM tiling. RAD schedules batches such that all GeMM computations in the batch are

optimally tiled. It does so by either scheduling 𝑡∗
col

decode-iterations in a batch, or, scheduling a

prefill-iteration with chunk size equal to LCM(𝑡∗
row
, 𝑡∗
col
, 𝑡∗
red
), where LCM stands for least-common-

multiple. This tiling strategy is violated only in rare cases—specifically, near the end of a cycle—as

further explained in the description of Algorithm 1.

Optimal resource allocation via dynamic scheduling of prefill and decode. RAD dynamically

prioritizes prefill or decode iterations based on the request arrival pattern and its characteristics.

For instance, if the requests have very long prompts but short output lengths, it spends more time

performing prefill iterations. On the other hand, if the requests have relatively shorter prompt

lengths and longer output lengths, it spends more time performing decode iterations. In this context,

prefill and decode phases may be viewed as two classes of tasks, and that RAD partitions the node’s

service capacity such that both prefill and decode tasks may be completed.

In addition to the above principles, RAD also manages GPU memory and prevents overflow

by limiting the number of active requests —requests that currently store their KV cache in GPU

memory— to 𝑡∗
col
, the number required for optimal tiling. See Assumption 4 for further details.

At a high level, RAD alternates between two operational modes—Prefill Mode and Decode

Mode—as illustrated in Figure 5. At the start of a cycle, RAD enters Prefill Mode, completing 𝑡∗
col

prefill-phase requests, after which the same number of decode-phase requests become active. It then

transitions to Decode Mode, scheduling decode iterations for these active requests in optimally tiled

batches. When one or more decode-phase requests complete, RAD switches back to Prefill Mode

to process additional prefill-phase requests until there are again exactly 𝑡∗
col

active decode-phase

requests, thereby re-enabling efficient decode batching. Once a sufficient number of requests have

been completed in the current cycle, RAD finishes the remaining ones—even if their batches are

not optimally tiled—before beginning the next cycle.

Next, we provide a detailed explanation of RAD as shown in Algorithm 1. Let P and D denote

the set of requests in prefill and decode phases respectively. A variable, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠_𝑖𝑛_𝑐𝑦𝑐𝑙𝑒 keeps

track of how many requests have started processing (i.e., have had an iteration scheduled) in the

current cycle. During a cycle, we continue to update P with any requests that arrive. Then at the

completion of a batch, the next batch is selected as follows. If there are no requests in P or Q, the
scheduler simply waits until a new arrival happens (lines 5). Otherwise, 1) If there are enough decode

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

Optimal Scheduling for LLM Inference 59:13

Fig. 5. High-level operation of the RAD scheduler. In Prefill Mode, the scheduler completes prefill iterations
with optimal tiling until there are 𝑡∗

col
active decode-phase requests, at which point it switches to Decode

Mode. In Decode Mode, it schedules decode iterations for these active requests until at least one completes,
after which it switches back to Prefill Mode.

phase requests, or there are no prefill phase requests, or 𝑛 requests have started processing in the current
cycle (Lines 6-11): RAD selects one decode iteration per request in D and runs them together as a

batch. After the GPU completes processing the batch, any requests that sampled the stop token
are removed. If D is now empty, it signals the end of the current cycle, and 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠_𝑖𝑛_𝑐𝑦𝑐𝑙𝑒 is

set to 0. 2) Else (Lines 12-21): RAD chooses a request in a first-come-first-serve (FCFS) manner

from P and schedules its prefill-iterations in chunks of size LCM(𝑡row, 𝑡col, 𝑡red), unless there are
fewer tokens, until its prefill phase is complete. The request is then moved to D, and the number

𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠_𝑖𝑛_𝑐𝑦𝑐𝑙𝑒 is updated.

Algorithm 1 Resource Aware Dynamic (RAD) Scheduler

Require: Parameter 𝑛 // Max number of prefills per cycle
Require: Output tile size (𝑡∗

row
, 𝑡∗
col
) and reduction tile dimension 𝑡∗

red
// For optimal tiling

1: P ← ∅, D ← ∅ // Set of requests in prefill and decode phase
2: 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠_𝑖𝑛_𝑐𝑦𝑐𝑙𝑒 ← 0

3: while True do
4: Update P based on new arrivals

5: if P = ∅ and D = ∅ then continue // Do nothing
6: else if |D| = 𝑡∗

col
or P = ∅ or 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠_𝑖𝑛_𝑐𝑦𝑐𝑙𝑒 = 𝑛 then

7: Schedule a DI with appropriate token index for each request in D in a batch

8: Remove requests that sampled the stop token from D
9: If D = ∅ then 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠_𝑖𝑛_𝑐𝑦𝑐𝑙𝑒 ← 0 // End of cycle
10: else
11: Choose a request 𝑅 first-come-first-serve from P and set 𝑖 ← 1

12: while prefill phase of the chosen request is incomplete do
13: 𝑐 = min{𝑡∗

lcm
, 𝐿𝑃 (𝑅) − 𝑖} // 𝑡∗

lcm
= LCM(𝑡∗

row
, 𝑡∗
col
, 𝑡∗
red
)

14: Schedule 𝑃𝐼 (𝑅, 𝑖, 𝑐) in a batch

15: 𝑖 ← 𝑖 + 𝑐
16: end while
17: Move the request from P to D
18: 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠_𝑖𝑛_𝑐𝑦𝑐𝑙𝑒 ← 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠_𝑖𝑛_𝑐𝑦𝑐𝑙𝑒 + 1

19: end if
20: end while

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

59:14 Agrim Bari, Parikshit Hegde, and Gustavo de Veciana

4.3 Throughput Optimality Characterization
The following theorem characterizes the maximum arrival rate under which any routing and

scheduling policy could be stable.

Theorem 1 (Upper Bound). Consider a system with a resource planner and 𝑟 identical inference
nodes. Let requests arrive to the system according to a Poisson-Point-Process (PPP) of rate 𝜆. Let the
𝑗 th request arrival, 𝑅 𝑗 , have prompt and output lengths, 𝐿𝑃𝑗 and 𝐿

𝐷
𝑗 , sampled according to a bounded

joint-distribution 𝑝𝐿𝑃 ,𝐿𝐷 , i.i.d., across requests.
Let (𝑡∗

row
, 𝑡∗
col
) ∈ Tout and 𝑡∗

col
∈ Tred be the optimal output tile dimensions and reduction tile

dimension respectively from Assumption 1, and let, 𝑡∗
lcm

= LCM(𝑡∗
row
, 𝑡∗
col
, 𝑡∗
red
). Define,

𝑇𝑅 =
1

𝜇Lin (𝑡∗row, 𝑡∗
col
, 𝑡∗
red
)
E

[
𝐿𝑃 + 𝐿𝐷

]
𝑡∗
col

+
E

[
𝐿𝑃 + 𝐿𝐷

]
𝜇nLin

+ 𝑁E


𝐿𝐷∑︁
𝑖=1

𝑇𝐷,𝑆𝐴 (𝐿𝑃 + 𝑖)


+ 𝑁𝑑

𝑠𝜇 (𝑡∗
row
, 𝑡∗
col
, 𝑡∗
red
)𝑡∗
row
𝑡∗
col
𝑡∗
red

E
[
𝐿𝑃 (𝐿𝑃 + 𝑡∗

lcm
)
]
.

Denote 𝑄 (𝑡) to be the number of pending requests in the system at time 𝑡 , i.e., those that have arrived
but not yet completed service. Under Assumptions 1 and 2, if 𝜆𝑇𝑅 > 𝑟 , there exists an 𝛼 > 0 such that
for any resource planner and scheduler, lim𝑡→∞

𝑄 (𝑡)
𝑡

> 𝛼 almost surely.

The proof of Theorem 1 can be found in Appendix B. Intuitively, the argument proceeds by

showing that, in the best case, an inference node may be viewed as a single server system with

expected service time 𝑇𝑅 . Then, instability may be shown to occur when the load on the system

exceeds its service capacity.

Next, we proceed to analyze the range of arrival rates under which the RAD scheduler stabilizes

the system. First, we make two assumptions.

Assumption 3. Let (𝑡∗
row
, 𝑡∗
col
) and 𝑡∗

red
be output tile dimensions and reduction tile dimension used

by RAD. Then, prompt lengths 𝐿𝑃 ∼ 𝑝𝐿𝑃 are multiples of LCM(𝑡∗
row
, 𝑡∗
col
, 𝑡∗
row
) almost surely. Finally,

assume the prompt and output lengths are upper bounded by 𝑙𝑃,max and 𝑙𝐷,max respectively.

The upper bound on the prompt and output lengths is natural since LLMs only support bounded

context lengths. If the prompt length is not a multiple of LCM(𝑡∗
row
, 𝑡∗
col
, 𝑡∗
row
), then any scheduler

may have to complete a part of the prefill-phase with non-optimal tiling. We make this assumption

to simplify our scheduler and its analysis.

Assumption 4. Let (𝑡∗
row
, 𝑡∗
col
) be the output tile dimensions used by RAD. Each inference node is

provisioned with sufficient GPU memory to store the KV cache for 𝑡∗
col

concurrent requests, each with
prompt length 𝑙𝑃,max and output length 𝑙𝐷,max, where 𝑙𝑃,max and 𝑙𝐷,max are defined in Assumption 3.

This assumption ensures that sufficient GPU memory is available to accommodate the worst-case

KV cache requirements needed by the RAD scheduler. The above assumption is also a mild one

because 𝑡∗
col

is typically as small as 64 or 128. Modern LLM inference nodes that use paged-attention

[15] are able to accommodate the KV-cache of these many requests in their GPU memory.

Next, we state our result which characterizes the loads that the RAD scheduler combined with a

simple resource planner can stabilize.

Theorem 2 (Throughput Optimality of RAD). Consider a system with a uniformly random
resource planner, and 𝑟 identical Inference Nodes running the RAD scheduler. Let requests arrive
according to a Poisson Point Process (PPP) of rate 𝜆. Let the 𝑗 th request arrival, 𝑅 𝑗 , have prompt and
output lengths, 𝐿𝑃𝑗 and 𝐿

𝐷
𝑗 , sampled according to a joint-distribution 𝑝𝐿𝑃 ,𝐿𝐷 , i.i.d., across requests.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

Optimal Scheduling for LLM Inference 59:15

Suppose Assumptions 1, 2, 3, and 4 hold. Let 𝑇𝑅 be as defined in Theorem 1. Define the worst-case
time to complete a request as:

𝑇max ≜ max

(𝑡row,𝑡col) ∈Tout, 𝑡red∈Tred


𝑙𝑃,max + 𝑙𝐷,max

𝜇Lin (𝑡row, 𝑡col, 𝑡red)
+ 𝑙

𝑃,max + 𝑙𝐷,max

𝜇nLin
+ 𝑁

𝑙𝑃,max+𝑙𝐷,max∑︁
𝑖=1

𝑇𝐷,𝑆𝐴 (𝑖)
 .

Suppose there exists 𝜀 > 0 such that 𝜆𝑇𝑅 ≤ 𝑟 (1 − 𝜀). Then, RAD with parameter 𝑛 satisfying
𝑛 >

(𝑡∗
col
−1)𝑇max

𝜀𝑇𝑅 , is stable in the following sense. Let 𝑄𝑟 ′ (𝑡) denote the number of pending requests at
node 𝑟 ′ at time 𝑡 . For every 𝑟 ′, (𝑄𝑟 ′ (𝑡))𝑡≥0

forms a positive-recurrent regenerative process[28].

We outline the arguments used to prove the statement above. First we construct a discrete-time

Markov chain (DTMC) for each node that tracks the number of requests at the node at the start of

each cycle. We show that the DTMC is positive recurrent under the conditions of the Theorem.

Further, we show that the expected time of a cycle is finite. This leads us to conclude that the

number of pending requests𝑄𝑟 ′ (𝑡) at any time 𝑡 at a node 𝑟 ′ forms a positive-recurrent regenerative

process— it visits 0 in finite expected time. The proof can be found in Appendix C.

5 Practical Insights from Theory
In Section 4, we identified two key principles that make a system throughput optimal: 1) optimal

GeMM tiling when there are sufficient requests in the system, 2) optimal resource allocation for

prefill and decode iterations to account for variability and uncertainty of prompt and output lengths.

In practice, LLM inference systems also have to meet other latency-based SLO constraints, such as

TTFT and TBT as explained in the Section 1. We believe that designing a system that simultaneously

achieves optimal GeMM tiling and optimal resource allocation, while maintaining low TTFT and

TBT is challenging. As an illustrative example, consider an instance of running the RAD scheduler

where in every batch of 𝑡∗
col

decode-iterations, one or more requests generate their stop token. In

this case, the RAD scheduler has to complete prefill-phases of an equal number of new requests

in between every consecutive batch of decode-iterations. Since prefill-phases may take a while to

complete because of long prompt lengths, all requests may experience high TBT. See Appendix D

for a throughput-optimal scheduler with low TBT but which incurs high TTFT.

In real-world deployments, meeting both TTFT and TBT constraints often necessitates a tradeoff

between optimal tiling and optimal resource allocation. We examine two state-of-the-art LLM

inference paradigms—single-node serving, where both the prefill and decode phases of each request

are executed on the same inference node, and disaggregated serving, where these phases are

distributed across different nodes—and present a novel perspective on how these systems adopt

complementary strategies to navigate this tradeoff.

Single node serving maintains optimal resource allocation but sacrifices optimal GeMM tiling.
Consider, Sarathi-serve [2] a state-of-the-art single node serving scheduler. When enough requests

are present, Sarathi-serve prioritizes filling a batch with available decode iterations, then adds prefill

iterations such that the total token count equals 𝜏budget, a multiple of 𝑡∗
col
. This dynamic batching

strategy is similar to the RAD scheduler’s, and preserves optimal allocation across prefill and decode.

However, since it does not enforce that prefill chunk sizes are multiples of LCM(𝑡∗
row
, 𝑡∗
col
, 𝑡∗
red
), it

does not guarantee optimal tiling. Other schedulers, such as vLLM [15] and Orca [33], also fall into

the category of single-node serving schedulers.

Disaggregated serving, by contrast, maintains optimal GeMM tiling but sacrifices optimal resource
allocation. Distserve [36], a state-of-the-art disaggregated serving scheduler, statically partitions

inference nodes into prefill-nodes and decode-nodes. Prefill-nodes exclusively handle prefill itera-

tions, which allows them to, in most cases, schedule with optimal chunk sizes, helping minimize

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

59:16 Agrim Bari, Parikshit Hegde, and Gustavo de Veciana

TTFT. Completed prefill-phase requests are transferred to decode-nodes. Decode-nodes handle

decode iterations and can batch 𝑡∗
col

decode requests when available, keeping TBT low. However,

static partitioning may lead to resource imbalance: for instance, when prompt lengths are short

but output lengths are long, decode-nodes may become overloaded while prefill-nodes remain

underutilized.

To address practical needs, we next consider the design of a scheduler that serves heterogeneous

request classes subject to latency constraints at a single node. Since single node serving systems

dynamically allocate resources and are therefore more robust to heterogeneity in request arrivals,

we focus on this paradigm in the sequel.

6 SLO Aware LLM Inference Scheduler
Request classes. In real-world LLM serving systems, requests may come from different classes of

user with heterogeneous latency SLOs. For example, paying users typically expect fast and smooth

responses, especially during token generation, which requires stricter TBT deadlines. By contrast,

free-tier users are generally more tolerant of delays and can be served with more relaxed TBT

constraints. Managing these mixed latency requirements well is important to keep users satisfied

while making efficient use of system resources.

Recall that we consider a class of schedulers that executes prefill-phase and decode-phase requests

as sequences of prefill-iterations and decode-iterations, respectively, see Definitions 1 and 2.

Motivation. The throughput-optimal RAD scheduler described in Section 4 focuses on maximiz-

ing throughput, but it does not consider latency SLOs during either the prefill or decode phases due

to the challenges mentioned in Section 5. However, in practice, meeting these latency constraints is

critical to deliver a good user experience.

Sarathi-Serve, the current state-of-the-art scheduler, addresses this by chunking long prefill-phase

requests into smaller chunks and interleaving them with decode-phase requests in each batch. Each

batch is constrained by a token budget—the maximum number of tokens it can process. Sarathi-

Serve includes all active decode-phase requests from the previous batch in the current one and uses

the remaining token budget to schedule prefill-iterations. However, it treats all decode-iterations of

associated decode-phase requests as if they had the strictest TBT deadline, even when actual TBT

deadlines vary across requests. While this conservative strategy ensures tail TBT latency is below

some threshold, it can lead to inefficient use of batch capacity and does not address reducing TTFT

for prefill-phase requests. To overcome this limitation, we propose the SLO-Aware LLM Inference

(SLAI) Scheduler. SLAI tracks each decode-iteration’s TBT deadline and delays its inclusion in a

batch until necessary. This allows the scheduler to allocate more of the batch’s token budget to

prefill-iterations earlier, without missing TBT deadlines on decode-iterations. As we will show, this

approach better aligns scheduling decisions with request-specific needs, resulting in lower median

TTFT for prefill-phase requests while still meeting tail TBT latency constraints on decode-iterations.

Key concepts and parameters. We begin by explaining how SLAI dynamically decides when to

include a decode-iteration in a batch. The key idea in this process is the last schedulable time, which
determines when a decode-iteration becomes critical and must be included to meet its latency

target.

Let 𝛿 > 0 be an offset parameter for SLAI that defines how early a decode-iteration should

be considered critical. Consider the 𝑖th decode iteration for a given request 𝑗 which has an SLO

requirement of TBT𝑗 , SLAI notes the end time of the most recent batch in which its (𝑖 − 1)th decode-

iteration was included, denoted 𝑒𝑖−1, 𝑗 . It also maintains the running average of batch execution

times observed so far, denoted by 𝑡batch. We define its last schedulable time as:

𝐶𝑖, 𝑗 = 𝑒𝑖−1, 𝑗 + TBT𝑗 − 𝛿 · 𝑡batch (8)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

Optimal Scheduling for LLM Inference 59:17

This is the latest wall-clock time by which decode-iteration 𝑗 must be included in a batch to meet its

TBT deadline. When constructing batch𝑚 at time 𝑡𝑚 , the scheduler checks each active (in progress

that currently occupies GPU memory) decode-phase request and labels its decode-iteration as

critical if 𝑡𝑚 ≥ 𝐶𝑖, 𝑗 ; otherwise, it is considered as non-critical and can be deferred to a later batch.

Besides this dynamic prioritization, SLAI uses several key parameters to balance latency targets

with efficient GPU use. The token budget 𝜏budget sets the maximum token count allowed in a batch,

ensuring effective use of the GPU’s compute resources without violating TBT SLOs. A cap on

the number of active requests 𝛼 limits how many active requests are allowed at once, helping

prevent memory overflows for large models or long prompts. A decode limit 𝛽 restricts how many

of decode-iterations can be included in a batch, avoiding long batch execution times due to too

many decode-iterations in a batch. Finally, the offset parameter 𝛿 provides a safety margin for the

last schedulable time computation to absorb variability in batch execution and reduce the risk of

missing TBT SLOs. We will later discuss how these parameters interact and influence the behavior

and performance of the scheduler. Next, we describe how the SLAI scheduler works.

Batch construction. We now describe how a batch is constructed by the SLAI scheduler. At

each decision point, the scheduler forms a batch from the set of active requests and new requests

that have not yet been processed. While forming a batch, it must respect several system constraints:

the token budget (𝜏budget), the cap on active requests (𝛼), and the decode request limit (𝛽). The batch

construction follows these steps:

(1) Identify critical decode-iterations: For each active decode-phase request, compute the last

schedulable time for its decode-iteration. A decode-iteration is marked as critical if current
time is past its last schedulable time; otherwise, it is marked as non-critical.

(2) Add critical decode-iterations: Include critical decode-iterations in the batch, in the increasing

order of last schedulable time. This ensures that decode-iterations that are closest to their

TBT deadline are scheduled first.

(3) Add prefill-phase requests: Next, add prefill-phase requests in a non-preemptive manner.

Among these, requests that have already been scheduled at least once (i.e., active prefill-phase

requests) are given a higher priority. If token budget and cap on number of active requests has

not been exceeded, new prefill-phase requests are considered. We consider two possibilities

for ordering the incoming requests: Shortest Prefill First (SPF) to reduce the average or median

TTFT or First Come First Serve (FCFS) order to ensure fairness.

(4) Add non-critical decode-iterations: Finally, if there further token budget remains and number

of decodes in the batch are less than the decode limit, include additional non-critical decode-

iterations in increasing order of their last schedulable time.

Next, we discuss the impact of parameters other than the offset (𝛿), which has already been

covered in our earlier discussion of the scheduler.

6.1 Impact of different scheduler parameters
6.1.1 Token budget (𝜏budget). The token budget places an upper limit on the number of tokens that

can be processed in a single batch—one token per decode-phase request and 𝑐 ≥ 1 tokens per prefill

chunk. Fig. 6a shows how the choice of token budget 𝜏budget affects TTFT and batch-execution

time. When 𝜏budget is small, a 2048-token prefill must be split into many small chunks. This leads

to frequent kernel launches and synchronization, causing the GPU to spend more time idling. As

a result, TTFT increases. Conversely, when 𝜏budget is large, the scheduler can process the entire

request in fewer large batches. This improves GPU utilization but each batch takes longer to execute.

If a decode-iteration is scheduled during such a long batch, it must wait, increasing the risk of

violating its TBT constraint. The scheduler must thus choose a token budget 𝜏budget that balances

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

59:18 Agrim Bari, Parikshit Hegde, and Gustavo de Veciana

200 400 600 800 1000
Token budget

200

300

400

500

600

700

M
ed

ia
n

TT
FT

 (
m

s)

30

40

50

60

70

M
ea

n
ba

tc
h

ex
ec

ut
io

n
ti

m
e

(m
s)

(a) Median TTFT and mean batch
execution time for 100 indepen-
dent requests (each with a 2048-
token prefill and 1-token decode)
as a function of the token budget.

8 16 32 64 108
Number of

 active requests

0

20

40

60

80

G
PU

 m
em

or
y

 u
ti

liz
at

io
n

(%
)

(b) GPU memory usage versus
number of concurrent decode-
phase requests (each with a 2048-
token prefill and 1-token decode).

8 16 32 64 128 256
Number of decode-

iterations in the batch

0

100

200

300

Ba
tc

h
ex

ec
ut

io
n

 t
im

e
(m

s)

(c) Batch execution time for 𝑁
decode-phase requests (token po-
sition 513), co-scheduled with one
prefill-only request to fully utilize
the token budget of 512 tokens.

Fig. 6. Impact of token budget, concurrency, and batch composition on request execution latency and GPU
memory usage for Mistral-7B on a single NVIDIA RTX ADA 6000 GPU.

efficiency and responsiveness. Batches should be large enough to use the GPU effectively, but not

so long that they excessively delay latency-sensitive decode-phase requests. Choosing this value

carefully is a key part of designing an effective scheduling policy.

6.1.2 Cap on the number of active requests (𝛼). Each request generates KV tensors that must be

stored in GPU memory until the request is completed. Fig. 6b shows how GPU memory utilization

grows with the number of active decode-phase requests, based on runs with 𝑁 concurrent decode-

phase requests (each with a 2048-token prefill followed by a 1-token decode iteration) on Mistral-7B.

As more requests become active, memory usage increases steadily.

When too many requests are active, the scheduler may need to evict KV tensors to make room

for new ones. If a request’s KV tensors are evicted, they must be recomputed before the request can

resume decoding. This adds unnecessary delay and increases TTFT, even for requests that have not

yet been scheduled. To avoid this, the scheduler should cap the number of active requests, ensuring

that all necessary KV tensors can remain in memory without eviction. Doing so helps maintain

low latency and avoids unnecessary recomputation overheads.

6.1.3 Decode limit (𝛽). The decode limit sets an upper bound on how many decode-iterations can

be included in a single batch. Fig. 6c shows how batch-execution time changes as the number of

decode-iterations increases, while keeping the token budget fixed at 512. When only a few decode

iterations are present, the batch finishes quickly. However, as more decode-iterations are added,

the batch takes significantly longer to finish due to increased pressure on compute and memory

resources. Each decode-iteration triggers self-attention computation, which involves GeMVs per

request—an inefficient computation on GPU (see Section 3.2.2).

When many decode-phase requests are active, limiting the number of decode-iterations in each

batch helps control latency. In order to meet strict TBT deadlines, the scheduler can cap the number

of decode-iterations per batch, reducing the number of TBT violations and maintaining better

responsiveness under load.

7 Experimental results
Implementation.We built SLAI on top of the open-source implementations of Sarathi-serve [2]

and vLLM [15]. The complete source code is available at: https://github.com/agrimUT/SLAI.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

https://github.com/agrimUT/SLAI

Optimal Scheduling for LLM Inference 59:19

Evaluation.We evaluate SLAI using the Mistral-7B [12] model (mistralai/Mistral-7B-Instruct-

v0.2) and run all experiments on a single NVIDIA RTX 6000 Ada GPUwith 48GB of memory. The en-

vironment uses CUDA 12.1 and Python 3.10. For ourworkload, we use the openchat_shareGPT4 [31]
dataset, which contains multi-round conversations between users and ChatGPT4 [26]. Each round

is treated as a separate request.

Our baseline is Sarathi-serve configured with FCFS ordering for prefill-phase requests, referred to

as Sarathi-serve (FCFS), which represents the current state-of-the-art in LLM inference scheduling

on a single node. We also evaluate a variant of Sarathi-serve that uses shortest prefill first ordering,

referred to as Sarathi-serve (SPF).

Similarly, we assess SLAI under both FCFS and SPF prefill orderings, referred as SLAI (FCFS,

fixed offset) and SLAI (SPF, fixed offset), respectively. In addition, we evaluate a dynamic version of

SLAI, called SLAI (SPF, dynamic offset), where the offset 𝛿 is adjusted at runtime based on GPU

memory utilization measurements. When GPU memory usage is low, a small offset is used to allow

more prefill-phase requests into the system. When memory usage is high, a larger offset is applied

so that decode-iterations are marked critical earlier and prioritized accordingly, thus clearing out

memory. For completeness, we also include vLLM in our comparisons, a scheduler that prioritizes

prefill-phase requests and serves as another relevant baseline.

Metrics.We evaluate two key metrics. The first measures the median TTFT since this is measured

only once per request. This reflects how well the scheduler meets responsiveness objectives across

requests. The second metric is the 99th percentile of the TBT, which is computed once per generated

token and captures tail latency during the decode-iterations. This helps assess how smoothly tokens

are generated over time.

Workload. To emulate realistic traffic, we generate synthetic traces based on request length

distributions observed in the openchat_shareGPT4 dataset (see Table 1). Each synthetic request is

generated by sampling one row from the dataset, which provides the number of prefill tokens and

decode tokens for that request. We then cap the total length at 8192 tokens to respect our maximum

sequence length. The sampled prefill and decode lengths are used directly in our trace generator.

Inference requests are generated according to a Poisson process with rates 𝜆 ∈ {0.2, 0.4, . . . , 1.6}
requests per second. Each experiment runs for 35 minutes of wall-clock time, including a short

warm-up period before measurement begins. To ensure reproducibility, we fix random seeds for

both the trace generation and scheduler runs. We consider two types of requests associated with

paying and free-tier users. Paying users expect faster and smoother generation compared to free-tier

users. To reflect this, we assign a TBT SLO threshold of 0.1 seconds for paying users and 0.5 seconds

for free-tier user. These values are slightly relaxed compared to real-world production settings

because our implementation is in Python (which is not fully optimized), includes telemetry overhead,

and also reflects the inherent performance limitations of the model–hardware combination. Each

incoming request is randomly marked as associated with a paying or free-tier user with some

probability.

Dataset Prompt length (tokens) Decode length (tokens)
Median P90 Std. Median P90 Std.

openchat_sharegpt4 1730 5696 2088 415 834 101

Table 1. Prompt and decode length (token) statistics for requests in the openchat_sharegpt4 dataset.

Results discussion. We first consider a scenario where each request has a 5% chance of coming

from a paying user. This low percentage reflects the user distribution seen on platforms like

ChatGPT, where most users belong to the free tier and Figures 7a and 7b present the 99th percentile

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

59:20 Agrim Bari, Parikshit Hegde, and Gustavo de Veciana

TBT (P99 TBT) for paying and free-tier users, respectively. Figure 7c illustrates the median TTFT

as a function of the request rate. In all experiments, we configure Sarathi-serve (both FCFS and

SPF variants) with a token budget of 512 to ensure that the 0.1-second TBT target for paying users

is met. For all SLAI variants, we use the same token budget, and set both the number of active

requests and concurrent decode-phase request limit to 128. For SLAI (FCFS/SPF, fixed offset), we

set the offset parameter to 10, which controls when a decode-phase request becomes time-critical,

whereas for SLAI (SPF, dynamic offset), the offset is set to 5 if GPU memory utilization is below

96%, and to 10 otherwise.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Requests per second

0.00

0.02

0.04

0.06

0.08

0.10

P9
9

TB
T

(s
)

 p
ay

in
g

SLAI (SPF, fixed offset)
SLAI (SPF, dynamic offset)
SLAI (FCFS, fixed offset)
Sarathi-serve (FCFS)
Sarathi-serve (SPF)
vLLM

(a) 99th percentile TBT for paying users across
different request rates for a target of 0.1 seconds.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Requests per second

0.0

0.1

0.2

0.3

0.4

0.5

P9
9

TB
T

(s
)

 fr
ee

(b) 99th percentile TBT for free-tier users across
different request rates for a target of 0.5 seconds.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Requests per second

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
ed

ia
n

TT
FT

 (s
)

 a
ll

us
er

s

26% serving capacity gain

53%
 latency reduction

SLAI (SPF, fixed offset)
SLAI (SPF, dynamic offset)
SLAI (FCFS, fixed offset)
Sarathi-serve (FCFS)
Sarathi-serve (SPF)
vLLM

(c) Median TTFT for all users as a function of request
rate.

Fig. 7. Performance comparison of SLAI, Sarathi-serve, and vLLM under mixed user workloads with 5%
paying users. SLAI (SPF, dynamic offset) achieves the best latency-throughput trade-off.

TBT Behavior. Figures 7a and 7b show how SLAI dynamically prioritizes requests during their

decode phase based on their TBT targets. Under Sarathi-serve, the 99th percentile TBT steadily

increases for both paying and free-tier requests as the system load grows. This happens because

every decode-iteration is included in every batch, and as load increases, so does the batch execution

time, leading to higher delays for all requests. By contrast, SLAI handles decode-iterations differently.

Requests from paying users have strict (low) TBT targets, which in most cases are always considered

time-critical. As the load increases and batches take longer to run, their P99 TBT naturally increases.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

Optimal Scheduling for LLM Inference 59:21

Free-tier requests, however, have more relaxed TBT targets. At lower loads, the scheduler can

defer these decode-iterations to prioritize prefills, since they are not immediately time-critical. This

initially causes their P99 TBT to rise. But as the load continues to increase and batch execution

time becomes longer, the window during which a free-tier decode-iteration remains non-critical

shortens. As a result, these decode-iterations become time-critical sooner and are prioritized earlier

in scheduling. This leads to a drop in their P99 TBT. Eventually, at high loads, all free-tier decode-

iterations are immediately marked as time-critical, and their TBT increases again—now dominated

by the growing batch execution time, similar to paying users. Lastly, vLLM since it is a prefill-

prioritizing scheduler ends up violating P99 TBT at a relatively low load and thus is not effective at

managing decode-phase requests.

TTFT behaviour. Figure 7c shows the median TTFT as a function of requests per second. The

vLLM policy, which prioritizes prefill-phase requests, achieves the lowest median TTFT at low

loads. However, it does so by aggressively batching prefill requests at the expense of violating 99th

percentile TBT latency constraints, making it unsuitable for scenarios with strict QoS requirements.

Sarathi-serve improves upon this by balancing prefill and decode phases to maintain both acceptable

median TTFT and TBT tail latencies. When Sarathi-serve is combined with the SPF-based policy

it yields a better median TTFT than its FCFS counterpart, highlighting the benefit of reordering

prefill requests by prompt length. However, Sarathi-serve does not adapt to heterogeneous TBT

deadlines across requests. SLAI (SPF, fixed offset) addresses this by selectively deferring decode-

phase requests with relaxed deadlines, achieving further improvements in median TTFT. Finally,

SLAI (SPF, dynamic offset) introduces dynamic decode-iteration deferral based on real-time GPU

memory utilization, allowing the system to better utilize available token budget of a batch. As a

result, SLAI delivers significant performance improvements: it reduces the median TTFT from 1.5

seconds (under Sarathi-Serve (FCFS)) to 0.7 seconds—a 53% improvement under high load—and

increases the maximum sustainable request rate from 1.15 to 1.45 requests per second while

maintaining a fixed median TTFT constraint of 0.5 seconds and meeting tail TBT latency targets,

representing a 26% increase in serving capacity.

See Appendix F for additional experimental results that highlight several important aspects: i)

the performance of different policies as a function of prompt lengths, ii) the impact of prioritizing

paying users over free-tier users during the prefill phase, and iii) how the policies compare when

the proportion of paying users increases to 50% or 95%.

7.1 Choosing the parameters for SLAI (SPF, dynamic offset)
Role of 𝛿 . As described in Section 6, the last schedulable time for the 𝑖th decode-iteration of request

𝑗 is given by:

𝐶𝑖, 𝑗 = 𝑒𝑖−1, 𝑗 + TBT𝑗 − 𝛿 · 𝑡batch (9)

At the time of constructing batch𝑚 (at time 𝑡𝑚), we mark a decode-iteration as time-critical if
𝑡𝑚 ≥ 𝐶𝑖, 𝑗 . Otherwise, it is considered non-critical and can be deferred to a future batch. The offset

parameter 𝛿 controls how aggressively we prioritize decode-iterations of decode-phase requests: a

smaller 𝛿 delays when decode-iterations are considered critical (favoring prefill-phase requests),

while a larger 𝛿 marks them critical sooner (favoring decode-phase requests).

Empirical motivation. Recall that our goal is to reduce the median TTFT while ensuring that

tail TBT constraints are always respected. Figure 8 shows GPU memory utilization under three

different policies: SLAI (SPF, fixed offset 10), SLAI (SPF, fixed offset 5), and SLAI (SPF, dynamic

offset). All experiments were conducted at a load of 1.6 requests per second.

With a fixed offset of 𝛿 = 10, decode-phase iterations are prioritized. This keeps TBT well within

bounds but underutilizes the GPU memory. For example, requests from users with a relaxed TBT

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

59:22 Agrim Bari, Parikshit Hegde, and Gustavo de Veciana

0 500 1000 1500 2000
Time (sec)

0

10

20

30

40

50

60

70

80

90

100

GP
U

m
em

or
y

ut
iliz

at
io

n
(%

)

SLAI (SPF, fixed offset 10)
SLAI (SPF, dynamic offset)
SLAI (SPF, fixed offset 5)

Fig. 8. GPU memory utilization over time for SLAI (SPF, fixed offset 10), SLAI (SPF, fixed offset 5), and SLAI
(SPF, dynamic offset: 𝛿 = 5 below 96%, 𝛿 = 10 otherwise) for a fixed load of 1.6 requests per second.

constraint of 0.5 seconds consistently achieve tail TBT values far below the target (see Fig. 7b).

This suggests we are being too conservative and missing the chance to initiate more prefill-phase

requests.

We then tried a fixed offset of 𝛿 = 5, which gives higher priority to prefill-phase requests and

delays scheduling of decode-iterations of decode-phase requests. However, at high load (e.g., 1.6

requests per second), this led to memory saturation, as seen in Fig. 8. This happens because decode-

phase requests’ KV tensors stayed in memory for too long, preventing the system from admitting

new prefill-phase requests. As a result, TTFT blows up, and the SLAI policy with fixed offset 5 is

unable to sustain the 1.6 requests per second load.

These results show a clear trade-off: we want to be aggressive in admitting prefill-phase requests

when memory allows, but we also need to ensure decode-phase requests do not build up and block

future admissions.

Dynamic offset policy. To balance these needs, we propose a simple dynamic policy that

switches 𝛿 based on current GPU memory usage:

𝛿 =

{
5, if GPU memory utilization < 96% (favor prefill-phase requests);

10, otherwise (favor decode-phase iterations).

When memory usage is below 96%, we assume there is enough headroom to safely admit more

prefill-phase requests. When usage crosses 96%, we shift priority to decode-phase iterations to

eventually complete requests and free up memory.

The 96% threshold was chosen based on empirical observations. In our setup, each new prefill-

phase request is allocated memory for its KV tensors at the time of admission—even before all

prefill tokens are processed. We found that admitting a new prefill-phase request can consume up

to 4% of GPU memory. To avoid admission failures, we ensure that this much headroom is always

available, and thus set the switching threshold to 96%.

Observed effect. As shown in Figure 8, the dynamic policy maintains high GPU memory utiliza-

tion similar to fixed 𝛿 = 5, but avoids hitting 100%, which can cause admission stalls. This dynamic

adjustment ensures that TBT constraints are met while also improving TTFT and overall system

throughput.

8 Conclusion
This paper presented a framework for designing efficient LLM inference systems. By modeling the

unique two-phase structure of LLM inference, we identified two key design principles—optimal

tiling and optimal resource allocation—as essential for achieving high throughput. Based on these

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

Optimal Scheduling for LLM Inference 59:23

insights, we introduced the RAD scheduler, which, when combined with a uniformly random

resource planner, provably achieves throughput optimality. In real-world deployments, however,

systems must also meet SLOs. We argued that practical schedulers often approximate only one of

the two design principles, thereby sacrificing some throughput to satisfy these SLOs. To handle

heterogeneous request classes with different latency needs, we proposed the SLAI scheduler. SLAI

reduces TTFT by intelligently prioritizing requests while still meeting tail TBT constraints. In

comparison to existing state-of-the-art, SLAI reduced the median TTFT by 53% and increased the

maximum serving capacity by 26% for a fixed median TTFT, while meeting the TBT constraints.

Acknowledgments
This work was supported in part by NSF Award CNS-2212202 and NSF Award 2148224, which

receives funding from OUSD R&E, NIST, and industry partners through the Resilient & Intelligent

NextG Systems (RINGS) program. We would also like to thank the reviewers and shepherd of our

ACM SIGMETRICS 2026 submission. Their thoughtful feedback and suggestions were instrumental

in improving the quality and clarity of this paper.

References
[1] 2023. Introducing AMD CDNA™ 3 Architecture. White Paper. Advanced Micro Devices, Inc. https://www.amd.com/

content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf Accessed: 2025-06-18.

[2] Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav Gulavani, Alexey Tumanov,

and Ramachandran Ramjee. 2024. Taming Throughput-Latency Tradeoff in LLM Inference with Sarathi-Serve. In 18th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 24). USENIX Association, Santa Clara, CA,

117–134. https://www.usenix.org/conference/osdi24/presentation/agrawal

[3] Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit Sanghai. 2023. Gqa:

Training generalized multi-query transformer models from multi-head checkpoints. arXiv preprint arXiv:2305.13245
(2023).

[4] NVIDIA Corporation. 2025. NVIDIA Dynamo. https://developer.nvidia.com/dynamo. Accessed: 2025-07-07.

[5] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022. FlashAttention: Fast and Memory-Efficient

Exact Attention with IO-Awareness. arXiv:2205.14135 [cs.LG] https://arxiv.org/abs/2205.14135

[6] Frederic G Foster. 1953. On the stochastic matrices associated with certain queuing processes. The Annals of
Mathematical Statistics 24, 3 (1953), 355–360.

[7] Connor Holmes, Masahiro Tanaka, Michael Wyatt, Ammar Ahmad Awan, Jeff Rasley, Samyam Rajbhandari, Reza Yaz-

dani Aminabadi, Heyang Qin, Arash Bakhtiari, Lev Kurilenko, and Yuxiong He. 2024. DeepSpeed-FastGen: High-

throughput Text Generation for LLMs via MII and DeepSpeed-Inference. arXiv:2401.08671 [cs.PF] https://arxiv.org/

abs/2401.08671

[8] Ke Hong, Guohao Dai, Jiaming Xu, Qiuli Mao, Xiuhong Li, Jun Liu, Kangdi Chen, Yuhan Dong, and Yu Wang. 2024.

FlashDecoding++: Faster Large Language Model Inference on GPUs. arXiv:2311.01282 [cs.LG] https://arxiv.org/abs/

2311.01282

[9] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao Chen, HyoukJoong Lee, Jiquan

Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. 2019. GPipe: efficient training of giant neural networks using
pipeline parallelism. Curran Associates Inc., Red Hook, NY, USA.

[10] Intel Corporation. 2024. Intel® Gaudi® 3 AI Accelerator White Paper. Technical Report. Intel Corporation. https:

//www.intel.com/content/www/us/en/content-details/817486/intel-gaudi-3-ai-accelerator-white-paper.html Accessed:

2025-06-18.

[11] Kunal Jain, Anjaly Parayil, Ankur Mallick, Esha Choukse, Xiaoting Qin, Jue Zhang, Íñigo Goiri, Rujia Wang, Chetan

Bansal, Victor Rühle, Anoop Kulkarni, Steve Kofsky, and Saravan Rajmohan. 2025. Intelligent Router for LLM

Workloads: Improving Performance Through Workload-Aware Load Balancing. arXiv:2408.13510 [cs.DC] https:

//arxiv.org/abs/2408.13510

[12] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas,

Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux,

Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. 2023. Mistral 7B.

arXiv:2310.06825 [cs.CL] https://arxiv.org/abs/2310.06825

[13] Jordan Juravsky, Bradley Brown, Ryan Ehrlich, Daniel Y. Fu, Christopher Ré, and Azalia Mirhoseini. 2024. Hydragen:

High-Throughput LLM Inference with Shared Prefixes. arXiv:2402.05099 [cs.LG] https://arxiv.org/abs/2402.05099

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://www.usenix.org/conference/osdi24/presentation/agrawal
https://developer.nvidia.com/dynamo
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2401.08671
https://arxiv.org/abs/2401.08671
https://arxiv.org/abs/2401.08671
https://arxiv.org/abs/2311.01282
https://arxiv.org/abs/2311.01282
https://arxiv.org/abs/2311.01282
https://www.intel.com/content/www/us/en/content-details/817486/intel-gaudi-3-ai-accelerator-white-paper.html
https://www.intel.com/content/www/us/en/content-details/817486/intel-gaudi-3-ai-accelerator-white-paper.html
https://arxiv.org/abs/2408.13510
https://arxiv.org/abs/2408.13510
https://arxiv.org/abs/2408.13510
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2402.05099
https://arxiv.org/abs/2402.05099

59:24 Agrim Bari, Parikshit Hegde, and Gustavo de Veciana

[14] Aditya K. Kamath, Ramya Prabhu, Jayashree Mohan, Simon Peter, Ramachandran Ramjee, and Ashish Panwar. 2025.

POD-Attention: Unlocking Full Prefill-Decode Overlap for Faster LLM Inference. In Proceedings of the 30th ACM
International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2 (ASPLOS
’25). ACM, 897–912. doi:10.1145/3676641.3715996

[15] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao

Zhang, and Ion Stoica. 2023. Efficient Memory Management for Large Language Model Serving with PagedAttention.

arXiv:2309.06180 [cs.LG] https://arxiv.org/abs/2309.06180

[16] Yaniv Leviathan, Matan Kalman, and Yossi Matias. 2023. Fast Inference from Transformers via Speculative Decoding.

arXiv:2211.17192 [cs.LG] https://arxiv.org/abs/2211.17192

[17] Yueying Li, Jim Dai, and Tianyi Peng. 2025. Throughput-optimal scheduling algorithms for llm inference and ai agents.

arXiv preprint arXiv:2504.07347 (2025).

[18] Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray, Yuyang Huang, Qizheng Zhang, Kuntai Du, Jiayi Yao, Shan Lu,

Ganesh Ananthanarayanan, Michael Maire, Henry Hoffmann, Ari Holtzman, and Junchen Jiang. 2024. CacheGen:

KV Cache Compression and Streaming for Fast Large Language Model Serving. arXiv:2310.07240 [cs.NI] https:

//arxiv.org/abs/2310.07240

[19] Michael Mitzenmacher and Rana Shahout. 2025. Queueing, Predictions, and LLMs: Challenges and Open Problems.

arXiv preprint arXiv:2503.07545 (March 2025). arXiv:2503.07545 [cs.AI] https://arxiv.org/abs/2503.07545

[20] Moonmoon Mohanty, Gautham Bolar, Preetam Patil, UmaMaheswari Devi, Felix George, Pratibha Moogi, and Parimal

Parag. 2025. Deferred prefill for throughput maximization in LLM inference. In Proceedings of The 5th Workshop on
Machine Learning and Systems (EuroMLSys’2025). ACM, New York, NY, USA, 100–106. doi:10.1145/3721146.3721962

[21] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti, Dmitri

Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, Amar Phanishayee, and Matei Zaharia. 2021. Efficient

large-scale language model training on GPU clusters using megatron-LM. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (St. Louis, Missouri) (SC ’21). Association for

Computing Machinery, New York, NY, USA, Article 58, 15 pages. doi:10.1145/3458817.3476209

[22] NVIDIA. [n. d.]. Matrix Multiplication Background User’s Guide. https://docs.nvidia.com/deeplearning/performance/dl-

performance-matrix-multiplication/index.html. Accessed: February 27, 2025.

[23] NVIDIA. 2025. FasterTransformer. https://github.com/NVIDIA/FasterTransformer

[24] NVIDIA. 2025. TensorRT-LLM: A TensorRT toolbox for optimized large-language-model inference. https://github.

com/NVIDIA/TensorRT-LLM

[25] NVIDIA Corporation. 2020. NVIDIA A100 Tensor Core GPU Architecture. Technical Report. NVIDIA Corporation.

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf Version

1.0.

[26] OpenAI. 2025. ChatGPT. https://chat.openai.com

[27] Noam Shazeer. 2019. Fast transformer decoding: One write-head is all you need. arXiv preprint arXiv:1911.02150 (2019).
[28] Karl Sigman and Ronald W Wolff. 1993. A review of regenerative processes. SIAM review 35, 2 (1993), 269–288.

[29] Biao Sun, Ziming Huang, Hanyu Zhao, Wencong Xiao, Xinyi Zhang, Yong Li, and Wei Lin. 2024. Llumnix: Dynamic

Scheduling for Large Language Model Serving. In 18th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 24). USENIX Association, Santa Clara, CA, 173–191. https://www.usenix.org/conference/osdi24/

presentation/sun-biao

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems 30 (2017).
[31] Guan Wang, Sijie Cheng, Xianyuan Zhan, Xiangang Li, Sen Song, and Yang Liu. 2024. OpenChat: Advancing Open-

source Language Models with Mixed-Quality Data. arXiv:2309.11235 [cs.CL] https://arxiv.org/abs/2309.11235

[32] Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yineng Zhang, Stephanie Wang, Tianqi Chen, Baris Kasikci, Vinod

Grover, Arvind Krishnamurthy, and Luis Ceze. 2025. FlashInfer: Efficient and Customizable Attention Engine for LLM

Inference Serving. arXiv:2501.01005 [cs.DC] https://arxiv.org/abs/2501.01005

[33] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. 2022. Orca: A distributed

serving system for {Transformer-Based} generative models. In 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22). 521–538.

[34] Yilong Zhao, Shuo Yang, Kan Zhu, Lianmin Zheng, Baris Kasikci, Yang Zhou, Jiarong Xing, and Ion Stoica. 2024.

BlendServe: Optimizing Offline Inference for Auto-regressive Large Models with Resource-aware Batching. arXiv
preprint arXiv:2411.16102 (2024).

[35] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao, Christos Kozyrakis,

Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. 2024. SGLang: Efficient Execution of Structured Language

Model Programs. arXiv:2312.07104 [cs.AI] https://arxiv.org/abs/2312.07104

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

https://doi.org/10.1145/3676641.3715996
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/2310.07240
https://arxiv.org/abs/2310.07240
https://arxiv.org/abs/2310.07240
https://arxiv.org/abs/2503.07545
https://arxiv.org/abs/2503.07545
https://doi.org/10.1145/3721146.3721962
https://doi.org/10.1145/3458817.3476209
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/NVIDIA/TensorRT-LLM
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://chat.openai.com
https://www.usenix.org/conference/osdi24/presentation/sun-biao
https://www.usenix.org/conference/osdi24/presentation/sun-biao
https://arxiv.org/abs/2309.11235
https://arxiv.org/abs/2309.11235
https://arxiv.org/abs/2501.01005
https://arxiv.org/abs/2501.01005
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104

Optimal Scheduling for LLM Inference 59:25

[36] Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao Zhang. 2024. {DistServe}:
Disaggregating prefill and decoding for goodput-optimized large language model serving. In 18th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 24). 193–210.

A Other Related Work
A.1 Cluster-level Routing
Per-GPU schedulers rely on the router to provide a well-balanced stream of requests. Most produc-

tion systems still use simple strategies like round-robin or shortest-queue routing. These methods

overlook the complex relationship between request length, prompt size, and current GPU state. The

Intelligent Router for LLMWorkloads [11] addresses this by framing routing as a sequential decision

problem. It trains a workload-aware reinforcement learning agent to minimize overall latency by

predicting each request’s response length and estimating how much delay each placement would

cause.

A.2 KV-Cache Management
In transformer models, self-attention reuses all previous tokens, making KV-cache management

critical for both speed and capacity.

Memory layout. vLLM [15] uses paged attention, which divides GPU memory into fixed-size

blocks that are dynamically assigned to requests. This reduces fragmentation and allows hundreds

of requests to run in parallel. Llumnix [29] builds on this by migrating KV tensors across replicas

in real time, balancing memory usage and lowering preemption costs.

Prefix reuse and compression. Some systems try to reduce the amount of KV data stored or

recomputed. SGLang [35] introduces a radix-tree cache and orders batches to maximize prefix

reuse across multi-turn chats and speculative decoding. CacheGen [18] compresses KV blocks and

streams them on demand, while FlashInfer [32] creates custom GPU kernels that operate directly

on the compressed format. These techniques are independent of scheduling and routing and can be

used alongside paged layouts or distributed setups.

Preemption strategies.When GPU memory runs out, systems must either recompute or offload

paused requests. vLLM [15] and Sarathi-Serve [2] evict stalled requests, splice their outputs back

into the prompt, and later rebuild the KV cache. DistServe [36], on the other hand, moves the

KV tensors to host memory and resumes decoding once space is available. Each method involves

a trade-off between memory traffic and computation, and interacts closely with the scheduler’s

design.

A.3 Speculative decoding
Speculative decoding [16] offers a complementary approach that accelerates decode-phase compu-

tation by generating token drafts using a smaller auxiliary model, which are then validated by the

larger target model. While originally proposed to reduce per-request latency, this technique can

also benefit scheduling by reducing decode durations, improving GPU throughput, and enabling

more efficient batch formation under tight latency constraints.

B Upper Bound Proof
In Section B.1, we establish a lower bound on the time required for any LLM inference system to

serve a given set of requests. Building on this, Section B.2 derives a lower bound on the number of

pending requests at a given time in any system. Finally, in Section B.3, we use these results to prove

Theorem 1, showing that if the request arrival rate exceeds 𝑟/𝑇𝑅 , the number of pending requests

grows linearly over time—thereby establishing an upper bound on the system’s capacity region..

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

59:26 Agrim Bari, Parikshit Hegde, and Gustavo de Veciana

B.1 Request Set Drain Time
The first part of the proof is to consider a more powerful class of resource planners and schedulers

(as described below) and lower bound the time required by them to start and complete 𝑘 requests.

Consider a set, R = {𝑅1, . . . , 𝑅𝑘 }, of 𝑘 requests, where each request 𝑅 𝑗 ’s prompt and output

lengths are, 𝐿𝑃𝑗 , 𝐿
𝐷
𝑗 ∼ 𝑝𝐿𝑃 ,𝐿𝐷 , and are i.i.d., across requests. Further, consider a more powerful class

of resource planners and schedulers which are able to, a) commence serving of all requests at time

0, b) serve prefill and decode iterations of requests in an arbitrary order, c) serve the different

iterations of requests at any node, even simultaneously, while paying zero cost for request transfers.

Clearly, the realistic class of schedulers considered in Theorem 1 which— a) may commence serving

requests once they arrive, b) have to serve prefill and decode iterations in order according to

Definitions 1 and 2, and, c) may only transfer requests once the respective computations at the

source node are completed— are a subset of this more powerful class of systems. To develop our

bounds, we will compute the least time required by this powerful class of systems to completely

serve all the 𝑘 requests.

Consider a sequence of batches

(
B𝑚,𝑟 ′

)𝑀𝑟 ′
𝑚=1

at node 𝑟 ′, for every 𝑟 ′ ∈ {1, . . . , 𝑟 }. Let the set of
batch sequences completely serve all the 𝑘 requests. Then, the request set drain time which is the

time required to complete 𝑘 requests using all 𝑟 nodes, denoted 𝑇 (R), is given by,

𝑇 (𝑅) = max

𝑟 ′∈{1,...,𝑟 }

𝑀𝑟 ′∑︁
𝑚=1

𝑇 𝐵 (B𝑚,𝑟 ′),

≥ 1

𝑟

𝑟∑︁
𝑟 ′=1

𝑀𝑟 ′∑︁
𝑚=1

𝑇 𝐵 (B𝑚,𝑟 ′). (10)

Let 𝜏 (B) be the token count of batch B. Let S𝑃 (B) and S𝐷 (B) be the sets of prefill and decode

phase requests in the batch. For a decode-phase request 𝑅 𝑗 let 𝑖 𝑗 denote the token position of its

decode-iteration in the batch. And, similarly for a prefill-phase request 𝑅 𝑗 , let 𝑖 𝑗 and 𝑐 𝑗 denote the

starting token index and chunk size of its prefill-iteration in the batch. Let 𝑡row, 𝑡col denote the

output tile dimensions and 𝑡red denotes the reduction tile dimension for the GeMM. Recall the batch

computation time formula for a batch B,

𝑇 𝐵 (B) = 1

𝜇Lin (𝑡row, 𝑡col, 𝑡red)

⌈
𝜏 (B)
𝑡col

⌉
+ 1

𝜇nLin
𝜏 (B) + 𝑁

∑︁
𝑗 :𝑅 𝑗 ∈S𝐷 (B)

𝑇𝐷,𝑆𝐴 (𝑖 𝑗)

+ 𝑁

𝑠𝜇 (𝑡row, 𝑡col, 𝑡red)
∑︁

𝑗 :𝑅 𝑗 ∈S𝑃 (B)

(⌈
𝑖 𝑗 + 𝑐 𝑗 − 1

𝑡row

⌉ ⌈
𝑐 𝑗

𝑡col

⌉
𝑑

𝑡red
+ 𝑑

𝑡row

⌈
𝑐 𝑗

𝑡col

⌉ ⌈
𝑖 𝑗 + 𝑐 𝑗 − 1

𝑡red

⌉)
,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

Optimal Scheduling for LLM Inference 59:27

Then,

𝑇𝐵 (B)
(𝑎)
≥ 1

𝜇Lin (𝑡row, 𝑡col, 𝑡red)
𝜏 (B)
𝑡col
+ 1

𝜇nLin
𝜏 (B) + 𝑁

∑︁
𝑗 :𝑅 𝑗 ∈S𝐷 (B)

𝑇𝐷,𝑆𝐴 (𝑖 𝑗)

+ 𝑁

𝑠𝜇 (𝑡row, 𝑡col, 𝑡red)
∑︁

𝑗 :𝑅 𝑗 ∈S𝑃 (B)

(
𝑖 𝑗 + 𝑐 𝑗 − 1

𝑡row

𝑐 𝑗

𝑡col

𝑑

𝑡red
+ 𝑑

𝑡row

𝑐 𝑗

𝑡col

𝑖 𝑗 + 𝑐 𝑗 − 1

𝑡red

)
,

(𝑏)
≥ 1

𝜇Lin (𝑡∗row, 𝑡∗
col
, 𝑡∗
red
)
𝜏 (B)
𝑡∗
col

+ 1

𝜇nLin
𝜏 (B) + 𝑁

∑︁
𝑗 :𝑅 𝑗 ∈S𝐷 (B)

𝑇𝐷,𝑆𝐴 (𝑖 𝑗)

+ 𝑁

𝑠𝜇 (𝑡∗
row
, 𝑡∗
col
, 𝑡∗
red
)

∑︁
𝑗 :𝑅 𝑗 ∈S𝑃 (B)

(
𝑖 𝑗 + 𝑐 𝑗 − 1

𝑡∗
row

𝑐 𝑗

𝑡∗
col

𝑑

𝑡∗
red

+ 𝑑

𝑡∗
row

𝑐 𝑗

𝑡∗
col

𝑖 𝑗 + 𝑐 𝑗 − 1

𝑡∗
red

)
, (11)

where (a) follows by simply removing the ceiling function, and (b) follows from Assumption 1.

Consider request 𝑅 𝑗 . Let 𝑡
∗
lcm

= LCM(𝑡∗
row
, 𝑡∗
col
, 𝑡∗
red
). By Assumption 3, 𝐿𝑃𝑗 is a multiple of 𝑡∗

lcm
.

Therefore, the optimal set of chunk positions and chunk size to complete the self-attention in the

prefill phase in minimal time is,

I𝑗 =
{
(1, 𝑡∗

lcm
, (𝑡∗

lcm
+ 1, 𝑡∗

lcm
), . . . , (𝐿𝑃 − 𝑡∗lcm, 𝑡

∗
lcm
)
}
.

Then, define its “optimal effective completion time” as,

𝑇𝑅∗ (𝑗) =
1

𝜇Lin (𝑡∗row, 𝑡∗
col
, 𝑡∗
red
)
𝐿𝑃𝑗 + 𝐿𝐷𝑗
𝑡∗
col

+ 1

𝜇nLin
(𝐿𝑃𝑗 + 𝐿𝐷𝑗) + 𝑁

𝐿𝑃
𝑗
+𝐿𝐷

𝑗∑︁
𝑖=𝐿𝑃

𝑗
+1

𝑇𝐷,𝑆𝐴 (𝑖)

+ 𝑁

𝑠𝜇 (𝑡∗
row
, 𝑡∗
col
, 𝑡∗
red
)

∑︁
(𝑖 𝑗 ,𝑐 𝑗) ∈I𝑗

(
𝑖 𝑗 + 𝑐 𝑗 − 1

𝑡∗
row

𝑐 𝑗

𝑡∗
col

𝑑

𝑡∗
red

+ 𝑑

𝑡∗
row

𝑐 𝑗

𝑡∗
col

𝑖 𝑗 + 𝑐 𝑗 − 1

𝑡∗
red

)
, (12)

=
1

𝜇Lin (𝑡∗row, 𝑡∗
col
, 𝑡∗
red
)
𝐿𝑃𝑗 + 𝐿𝐷𝑗
𝑡∗
col

+ 1

𝜇nLin
(𝐿𝑃𝑗 + 𝐿𝐷𝑗) + 𝑁

𝐿𝑃
𝑗
+𝐿𝐷

𝑗∑︁
𝑖=𝐿𝑃

𝑗
+1

𝑇𝐷,𝑆𝐴 (𝑖)

+ 𝑁𝑑

𝑠𝜇 (𝑡∗
row
, 𝑡∗
col
, 𝑡∗
red
)𝑡∗
row
𝑡∗
col
𝑡∗
red

𝐿𝑃𝑗

(
𝐿𝑃𝑗 + 𝑡∗lcm

)
. (13)

Then, we have the following alternate lower bound for the request set drain time.

Proposition 1. 𝑇 (R) ≥ 1

𝑟

∑𝑘
𝑗=1
𝑇𝑅∗ (𝑗).

Proof. From (10) we have,

𝑇 (R) ≥ 1

𝑟

𝑟∑︁
𝑟 ′=1

𝑀𝑟 ′∑︁
𝑚=1

𝑇 𝐵
(
B𝑚,𝑟 ′

)
,

where recall that

(
B𝑚,𝑟 ′ : 𝑟 ′ ∈ {1, . . . , 𝑟 },𝑚 ∈ {1, . . . , 𝑀𝑟 ′ }

)
is a set of batches that complete all the

prefill and decode iterations of all the 𝑘 requests in R. The batch execution time of a batch is

lower-bounded in (11). By rearranging the terms in the summation of batch execution times, and

using (12), we obtain the result. □

Then, the following limit follows by the strong law of large numbers.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

59:28 Agrim Bari, Parikshit Hegde, and Gustavo de Veciana

Proposition 2. For any 𝑘 ∈ N, let the set of 𝑘 requests 𝑅1, . . . , 𝑅𝑘 have prompt and output lengths
distributed according to 𝑝𝐿𝑃 ,𝐿𝐷 , and let these lengths be i.i.d., across requests. Then,

lim

𝑘→∞

1

𝑟

∑𝑘
𝑗=1
𝑇𝑅∗ (𝑗)
𝑘

=
𝑇𝑅

𝑟
,

where 𝑇𝑅 is as in Theorem 1.

B.2 A lower bound on the pending requests in the system
Let

(
Acont. (𝑡)

)
𝑡≥0

denote the arrival process of requests to the system, whereAcont. (𝑡) denotes the
set of requests that have arrived by time 𝑡 . Let, 𝐴(𝑡) ≜

��Acont. (𝑡)
��
denote the number of arrivals

by time 𝑡 . Then, recall that by the premise of the theorem, (𝐴(𝑡))𝑡≥0
is a Poisson point process of

rate 𝜆, and each request has prompt and output lengths distributed according to 𝑝𝐿𝑃 ,𝐿𝐷 i.i.d., across

requests. Finally, recall that 𝑄 (𝑡) denotes the number of pending requests in the system at time 𝑡 .

Consider the worst-case amount of time, 𝑇max
, required to complete a request. This is when

the prompt and output lengths are the longest possible, i.e., 𝑙𝑃,max
and 𝑙𝐷,max

. Moreover, in this

worst case, the scheduler schedules prefill-iterations with chunk size 1 at a time without batching

to complete the prefill-phase, and schedules all the decode-iterations as well without batching.

Therefore, we have,

𝑇max = max

(𝑡row,𝑡col) ∈Tout, 𝑡red∈Tred


𝑙𝑃,max + 𝑙𝐷,max

𝜇Lin (𝑡row, 𝑡col, 𝑡red)
+ 𝑙

𝑃,max + 𝑙𝐷,max

𝜇nLin
+ 𝑁

𝑙𝑃,max+𝑙𝐷,max∑︁
𝑖=1

𝑇𝐷,𝑆𝐴 (𝑖)
 . (14)

Then, we can prove the following lower bound on the number of pending requests in the system.

Lemma 1. Consider a system with any resource planner and scheduler. Let Acont. (𝑡) denote the set
of requests that have arrived by time 𝑡 . Let the “optimal request completion time” function 𝑇𝑅∗ (·) be as
in (13). Let 𝑇max be as in (14). Then, the number of pending requests in the system at any time 𝑡 is
lower bounded as,

𝑄 (𝑡) ≥
(

1

𝑟

∑
𝑗≤𝐴(𝑡) 𝑇

𝑅
∗ (𝑗) − 𝑡

)
𝑇max

.

Proof. The proof is by contradiction. Suppose there is a time time 𝑡 when,

𝑄 (𝑡) <
(

1

𝑟

∑
𝑗≤𝐴(𝑡) 𝑇

𝑅
∗ (𝑗) − 𝑡

)
𝑇max

.

If
1

𝑟

∑
𝑗≤𝐴cont. (𝑡) 𝑇

𝑅
∗ (𝑗) ≤ 𝑡 , this immediately leads to a contradiction since it implies 𝑄 (𝑡) < 0.

The number of pending requests in the system has to be non-negative.

Consider
1

𝑟

∑
𝑗≤𝐴cont. (𝑡) 𝑇

𝑅
∗ (𝑗) ≤ 𝑡 . In this case, the worst-case amount of time taken to complete

the 𝑄 (𝑡) requests happens is, a) the prompt and output lengths are the longest possible, b) none of

the requests have started processing by time 𝑡 , and c) the iterations of each request are scheduled

without batching. Due to (14), the worst-case amount of time taken to complete the 𝑄 (𝑡) requests
is𝑄 (𝑡)𝑇max

. This implies that the amount of time it took to complete all the requests inAcont. (𝑡) is,
𝑇 (Acont. (𝑡)) ≤ 𝑡 +𝑄 (𝑡)𝑇max,

< 𝑡 +
(

1

𝑟

∑
𝑗≤𝐴(𝑡) 𝑇

𝑅
∗ (𝑗) − 𝑡

)
𝑇max

𝑇max,

<
1

𝑟

∑︁
𝑗≤𝐴(𝑡)

𝑇𝑅∗ (𝑗).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

Optimal Scheduling for LLM Inference 59:29

This is a contradiction to Proposition 1 which lowers bound the time to complete a set of requests

for any pair of resource planner and scheduler.

This completes the proof by contradiction. □

B.3 Proof of Theorem 1
Recall that

(
Acont. (𝑡)

)
𝑡≥0

denotes the arrival process of requests to the system, where Acont. (𝑡)
denotes the set of requests that have arrived by time 𝑡 . And, 𝐴(𝑡) ≜

��Acont. (𝑡)
��
denotes the number

of arrivals by time 𝑡 . By the premise of the Theorem, 𝐴(𝑡) is a Poisson point process of rate 𝜆.

Therefore, by the strong law of large numbers,

lim

𝑡→∞
𝐴(𝑡)
𝑡

= 𝜆, almost surely. (15)

Consider the sequence of requests (𝑅 𝑗)∞𝑗=1
, such that 𝐿𝑃𝑗 , 𝐿

𝐷
𝑗 ∼ 𝑝𝐿𝑃 ,𝐿𝐷 i.i.d., across requests. Then,

again by the strong law of large numbers,

lim

𝑘→∞

1

𝑘

𝑘∑︁
𝑗=1

𝑇𝑅∗ (𝑗) = E
[
𝑇𝑅∗ (1)

]
, almost surely,

(𝑎)
= 𝑇𝑅,

where (a) follows from the formula for 𝑇𝑅∗ () in (13) and the expression for 𝑇𝑅 in Theorem 1.

For any 𝑡 ≥ 0, requests

(
𝑅 𝑗

)𝐴(𝑡)
𝑗=1

arrive by time 𝑡 . Moreover, since 𝐴(𝑡) is a Poisson point process,

𝐴(𝑡) → ∞ almost surely as 𝑡 →∞. Therefore,

lim

𝑡→∞
1

𝐴(𝑡)
∑︁
𝑗≤𝐴(𝑡)

𝑇𝑅∗ (𝑗) = 𝑇𝑅, almost surely. (16)

Combining (15) and (16), we get,

lim

𝑡→∞
1

𝑡

∑︁
𝑗≤𝐴(𝑡)

𝑇𝑅∗ (𝑗) = lim

𝑡→∞
©­« 1

𝐴(𝑡)
∑︁
𝑗≤𝐴(𝑡)

𝑇𝑅∗ (𝑗)
ª®¬
(
𝐴(𝑡)
𝑡

)
,

=
©­« lim

𝑡→∞
1

𝐴(𝑡)
∑︁
𝑗≤𝐴(𝑡)

𝑇𝑅∗ (𝑗)
ª®¬
(

lim

𝑡→∞
𝐴(𝑡)
𝑡

)
,

= 𝜆𝑇𝑅 . (17)

From Lemma 1 we have,

1

𝑡
𝑄 (𝑡) ≥

(
1

𝑟
1

𝑡

∑
𝑗≤𝐴(𝑡) 𝑇

𝑅
∗ (𝑗) − 1

)
𝑇max

.

Taking the limit and substituting (17), we get,

lim

𝑡→∞
1

𝑡
𝑄 (𝑡) ≥

(
1

𝑟

(
lim𝑡→∞

1

𝑡

∑
𝑗≤𝐴(𝑡) 𝑇

𝑅
∗ (𝑗)

)
− 1

)
𝑇max

,

=

𝜆𝑇𝑅

𝑟
− 1

𝑇max
, almost surely.

Since, 𝜆𝑇𝑅 > 𝑟 , the right hand side of the above equation is positive. Therefore, substituting

𝛼 =
𝜆𝑇𝑅

𝑟
−1

𝑇max
completes the proof of Theorem 1.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

59:30 Agrim Bari, Parikshit Hegde, and Gustavo de Veciana

C Throughput Optimality Of RAD Proof
This section contains the proof of Theorem 2. The outline of the proof is as follows:

(1) In Section C.1, we construct a discrete-time process that tracks the number of pending

requests at a node at the start of cycles of RAD. We show that this forms a discrete-time

Markov chain (DTMC).

(2) In Section C.2, we bound the expected cycle times for RAD when there are at least 𝑛 pending

requests at the start of the cycle.

(3) Building on this, in Section C.3, we show that under the conditions in Theorem 2, the DTMC

tracking the number of requests at the start of cycles is positive-recurrent.

(4) Finally, in Section C.4 we show that the number of pending requests at any node forms a

positive-recurrent regenerative process by showing that the expected cycle time is bounded.

C.1 The Discrete Time Markov Chain (DTMC) Model
Here, we analyze the discrete-time process that tracks the number of pending requests at a node at

the start of cycles. To do so, we introduce some stochastic processes. Consider node 𝑟 ′.

(1) Let

(
Acont.

𝑟 ′ (𝑡)
)
𝑡≥0

denote the arrival process at the node. The arrival times form a Poisson

point process of rate 𝜆/𝑟 , and the 𝑗 th request arrival to this node, 𝑅 𝑗 , has prompt and output

lengths, 𝐿𝑃𝑗 , 𝐿
𝐷
𝑗 ∼ 𝑝𝐿𝑃 ,𝐿𝐷 , independent of other requests.

(2) Let (F𝑟 ′ (𝑡))𝑡≥0
denote the corresponding filtration with F𝑟 ′ (𝑡) = 𝜎 (Acont.

𝑟 ′ (𝑡 ′) : 0 ≤ 𝑡 ′ ≤ 𝑡).
(3) Let 𝐶−1

𝑟 ′ [𝑐] denote the start time of the 𝑐 th cycle of the RAD scheduler, for a cycle 𝑐 ∈ N.
Since the RAD scheduler only uses causal information, it can be easily shown that 𝐶−1

𝑟 ′ [𝑐] is
a stopping-time with respect to (F𝑟 ′ (𝑡))𝑡≥0

for any 𝑐 .

(4) Let 𝐶𝑟 ′ (𝑡) denote the cycle that the RAD scheduler is in at time 𝑡 , i.e., 𝐶𝑟 ′ (𝑡) = max{𝑐 ∈ N :

𝐶−1

𝑟 ′ [𝑐] ≤ 𝑡}.
(5) Let Xcont.

𝑟 ′ (𝑡) denote the set of pending requests at time 𝑡 .

(6) Let X𝑟 ′ [𝑐] ≜ Xcont.

𝑟 ′ (𝐶−1

𝑟 [𝑐]) denote the set of pending requests at the start of cycle 𝑐 .

(7) LetA𝑟 ′ [𝑐] denote the set of arrivals that happen during cycle 𝑐 . That is, it is the set of arrivals

in

(
Acont.

𝑟 ′ (𝑡)
)
𝑡≥0

between times

[
𝐶−1

𝑟 ′ [𝑐],𝐶−1

𝑟 ′ [𝑐 + 1]
)
.

(8) Let R𝑟 ′ [𝑐] denote the set of requests that complete in cycle 𝑐 .

(9) Let 𝑄𝑟 ′ (𝑡) ≜
��Xcont.

𝑟 ′ (𝑡)
��
denote the number of pending requests at the node at time 𝑡 .

(10) Let 𝑋𝑟 ′ [𝑐] = |X𝑟 ′ [𝑐] | denote the number of pending requests at the node at the start of cycle

𝑐 .

We prove the following.

Lemma 2. (𝑋𝑟 ′ [𝑐])∞𝑐=1
is a DTMC. That is,

𝑃 (𝑋𝑟 ′ [𝑐 + 1] = 𝑥 [𝑐 + 1] |𝑋𝑟 ′ [𝑐] = 𝑥 [𝑐], 𝑋𝑟 ′ [𝑐 − 1] = 𝑥 [𝑐 − 1], . . .) =
𝑃 (𝑋𝑟 ′ [𝑐 + 1] = 𝑥 [𝑐 + 1] |𝑋𝑟 ′ [𝑐] = 𝑥 [𝑐]),

for any 𝑐 ∈ N and 𝑥 [0], . . . , 𝑥 [𝑐 + 1] ∈ N.

The result will hold true due to the following three reasons,

(1) The arrivals follow a Poisson point process, making future arrivals independent of past

arrivals.

(2) The RAD scheduler is “memoryless” across cycles. It does not use information about past

cycles in order to schedule the requests in the latest cycle.

(3) The prompt and output lengths are i.i.d., across requests, and the RAD scheduler chooses

requests in FCFS. Therefore, after knowing the number of requests at the start of the latest

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

Optimal Scheduling for LLM Inference 59:31

cycle, the prompt and output lengths of these requests are independent of the number of

requests in previous cycles.

We provide a formal proof below.

Proof. Since 𝐶−1

𝑟 ′ [𝑐] is a stopping time, by the strong Markov property of the Poisson point

process, we have, (
Acont.

𝑟 ′ (𝑡)
)
𝑡>𝐶−1

𝑟 ′ [𝑐]
⊥⊥ F𝑟 ′ (𝐶−1

𝑟 ′ [𝑐]), ∀𝑐 ∈ N, (18)

where ⊥⊥ denotes statistical independence. Since RAD is a causal scheduler, we have that Xcont.

𝑟 ′ (𝑡)
is causal, i.e., it is measurable in F𝑟 ′ (𝑡). This is denoted as Xcont.

𝑟 ′ (𝑡) ∈𝑚 F𝑟 ′ (𝑡). Therefore, we have,

X𝑟 ′ [𝑐] ∈𝑚 F𝑟 ′ (𝐶−1

𝑟 ′ [𝑐]), ∀𝑐 ∈ N, (19)

In the 𝑐 th cycle, the set of requests completed by the RAD scheduler is a function of the

set of requests at the start of the cycle, X𝑟 ′ [𝑐], and arrival pattern after the start of the cycle,(
Acont.

𝑟 ′ (𝑡)
)
𝑡>𝐶−1

𝑟 ′ [𝑐]
. Therefore, the start time of the (𝑐 + 1)th cycle, 𝐶−1

𝑟 ′ [𝑐 + 1], the sets of arrived
and completed requests in the 𝑐 th cycle, A𝑟 ′ [𝑐] and R𝑟 ′ [𝑐], are all measurable functions of,

(1) the set of requests at the node at the start of the 𝑐 th cycle X𝑟 ′ [𝑐],
(2) the arrival process after the start of the 𝑐 th cycle,

(
Acont.

𝑟 ′ (𝑡)
)
𝑡>𝐶−1

𝑟 ′ [𝑐]
.

Moreover, X𝑟 ′ [𝑐 + 1] = X𝑟 ′ [𝑐]
⋃A𝑟 ′ [𝑐] \ R𝑟 ′ [𝑐]. So, for some function, 𝑓 , that is measurable with

respect to 𝜎

(
X𝑟 ′ [𝑐],

(
Acont.

𝑟 ′ (𝑡)
)
𝑡>𝐶−1

𝑟 ′ [𝑐]

)
,

X𝑟 ′ [𝑐 + 1] = 𝑓
(
X𝑟 ′ [𝑐],

(
Acont.

𝑟 ′ (𝑡)
)
𝑡>𝐶−1

𝑟 ′ [𝑐]

)
. (20)

Recall, 𝑋𝑟 ′ [𝑐] = |X𝑟 ′ [𝑐] |. From (19), for any 𝑐′ < 𝑐 , we have 𝑋𝑟 ′ [𝑐′] ∈𝑚 F𝑟 ′
(
𝐶−1

𝑟 ′ [𝑐]
)
. Therefore,

from (20) and the strong Markov property in (18), we can establish the following property,

𝑃 (𝑋𝑟 ′ [𝑐 + 1] = 𝑥 [𝑐 + 1] | X𝑟 ′ [𝑐] = S, 𝑋𝑟 ′ [𝑐 − 1] = 𝑥 [𝑐 − 1], . . .) =
𝑃 (𝑋𝑟 ′ [𝑐 + 1] = 𝑥 [𝑐 + 1] | X𝑟 ′ [𝑐] = S),

for any 𝑐 ∈ N and 𝒙 [0], . . . , 𝒙 [𝑐 + 1] ∈ N and any set of requests S. Also, since 𝑃 (𝑋 = 𝑥 |𝑌 =

𝑦,𝑔(𝑌) = 𝑔(𝑦)) = 𝑃 (𝑋 = 𝑥 |𝑌 = 𝑦) for any random variables 𝑋 and 𝑌 and measurable function 𝑔(·),
we can add 𝑋𝑟 ′ [𝑐] = |S| to the conditioning on both sides,

𝑃 (𝑋𝑟 ′ [𝑐 + 1] = 𝑥 [𝑐 + 1] | X𝑟 ′ [𝑐] = S, 𝑋𝑟 ′ [𝑐] = |S| , 𝑋𝑟 ′ [𝑐 − 1] = 𝑥 [𝑐 − 1], . . .) =
𝑃 (𝑋𝑟 ′ [𝑐 + 1] = 𝑥 [𝑐 + 1] | X𝑟 ′ [𝑐] = S, 𝑋𝑟 ′ [𝑐] = |S|),

(21)

Since RAD chooses requests FCFS, given 𝑋𝑟 ′ [𝑐] = 𝑥 , X𝑟 ′ [𝑐] is simply the set of the last 𝑥 requests

in

(
Acont.

𝑟 ′ (𝑡)
)
𝑡≤𝐶−1

𝑟 ′ [𝑐]
. Given the cardinality of X𝑟 ′ [𝑐], which is 𝑋𝑟 ′ [𝑐], the prompt and output

lengths of the requests in X𝑟 ′ [𝑐] is i.i.d., by the premise of the Theorem. Therefore, we have,

𝑃 (X𝑟 ′ [𝑐] = S |𝑋𝑟 ′ [𝑐] = |S|) =
∏
𝑗 :𝑅 𝑗 ∈S

𝑝𝐿𝑃 ,𝐿𝐷

(
𝑙𝑃𝑗 , 𝑙

𝐷
𝑗

)
(22)

where 𝑙𝑃𝑗 and 𝑙𝐷𝑗 denotes the prompt and output length realizations of request 𝑅 𝑗 .

Again, since given 𝑋𝑟 ′ [𝑐] = 𝑥 ,X𝑟 ′ [𝑐] is simply the set of the last 𝑥 requests in

(
Acont.

𝑟 ′ (𝑡)
)
𝑡≤𝐶−1

𝑟 ′ [𝑐]
,

we have that X𝑟 ′ [𝑐] is independent of the number of requests at the start of previous cycles.

Therefore we have,

𝑃 (X𝑟 ′ [𝑐] = S |𝑋𝑟 ′ [𝑐] = |S| , 𝑋𝑟 ′ [𝑐 − 1] = 𝑥 [𝑐 − 1], . . .) =
∏
𝑗 :𝑅 𝑗 ∈S

𝑝𝐿𝑃 ,𝐿𝑅 (𝑙𝑃𝑗 , 𝑙𝐷𝑗), (23)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

59:32 Agrim Bari, Parikshit Hegde, and Gustavo de Veciana

Then, multiplying (22) on the right-hand-side of (21) and multiplying (23) on the left-hand-size,

and integrating over all sets S of size 𝑥 [𝑐], we obtain the desired Markov property,

𝑃 (𝑋𝑟 ′ [𝑐 + 1] = 𝑥 [𝑐 + 1] |𝑋𝑟 ′ [𝑐] = 𝑥 [𝑐], 𝑋𝑟 ′ [𝑐 − 1] = 𝑥 [𝑐 − 1], . . .) =
𝑃 (𝑋𝑟 ′ [𝑐 + 1] = 𝑥 [𝑐 + 1] |𝑋𝑟 ′ [𝑐] = 𝑥 [𝑐]),

□

C.2 Cycle Times
The RAD scheduler in Algorithm 1 proceeds in cycles. We will bound the expected time of a cycle

given that there are at least 𝑛 requests at the start of the cycle whose prompt and output lengths

are distributed according to 𝑝𝐿𝑃 ,𝐿𝐷 . Recall that in this case RAD starts and completes 𝑛 requests

chosen in FCFS manner in the cycle.

Let the set of𝑛 chosen requests be denoted byR = {𝑅1, . . . , 𝑅𝑛} (where the indexing is without loss
of generality). Consider a request𝑅 𝑗 ∈ R. Recall that, due toAssumption 3, 𝑡∗

lcm
= LCM(𝑡∗

row
, 𝑡∗
col
, 𝑡∗
red
)

divides the prompt length 𝐿𝑃𝑗 . In this case, the RAD scheduler schedules chunks of size 𝑡∗
lcm

for the

request, 𝑅 𝑗 alone in a batch. Let,

I𝑗 =
{
(1, 𝑡∗

lcm
), (𝑡∗

lcm
+ 1, 𝑡∗

lcm
), . . . , (𝐿𝑃𝑗 − 𝑡∗lcm, 𝑡

∗
lcm
)
}

denote the set of chunk positions and chunk sizes scheduled to complete the prefill-phase. Then,

required time to complete its prefill-phase, once scheduled, is,

𝑇 𝑃𝑗 =
1

𝜇Lin (𝑡∗row, 𝑡∗
col
, 𝑡∗
red
)
𝐿𝑃𝑗

𝑡∗
col

+ 1

𝜇nLin
𝐿𝑃𝑗

+ 𝑁

𝑠𝜇 (𝑡∗
row
, 𝑡∗
col
, 𝑡∗
red
)

∑︁
(𝑖 𝑗 ,𝑐 𝑗) ∈I𝑗

(
𝑖 𝑗 + 𝑐 𝑗 − 1

𝑡∗
row

𝑐 𝑗

𝑡∗
col

𝑑

𝑡∗
red

+ 𝑑

𝑡∗
row

𝑐 𝑗

𝑡∗
col

𝑖 𝑗 + 𝑐 𝑗 − 1

𝑡∗
red

)
,

Taking the sum and the expectation, the expected amount of time to complete the prefill-phases of

all the 𝑛 requests can be expressed as,

E
[
𝑇 𝑃𝑀 (R)

]
= 𝑛 ·

[
1

𝜇Lin (𝑡∗row, 𝑡∗
col
, 𝑡∗
red
)
E

[
𝐿𝑃

]
𝑡∗
col

+
E

[
𝐿𝑃

]
𝜇nLin

+ 𝑁𝑑

𝑠𝜇 (𝑡∗
row
, 𝑡∗
col
, 𝑡∗
red
)𝑡∗
row
𝑡∗
col
𝑡∗
red

E
[
𝐿𝑃 (𝐿𝑃 + 𝑡∗

lcm
)
]]
.

(24)

Next, we will focus on bounding the effective execution time of decode-iterations. For this,

consider the set of batch indices,M𝐷
, where only decode-iterations are scheduled, and denote the

batches by

(
B𝐷𝑚

)
𝑚∈M𝐷 . Moreover, letM𝐷

∗ denote the subset of these batch indices that contain

exactly 𝑡∗
col

decode-iterations. In other words, these batches are optimally tiled. Therefore, for

𝑚 ∈ M𝐷
∗ we have the batch execution time given as,

𝑇 𝐵∗ (B𝐷𝑚) =
1

𝜇Lin (𝑡∗row, 𝑡∗
col
, 𝑡∗
red
)
𝑡∗
col

𝑡∗
col

+ 1

𝜇nLin
𝑡∗
col
+ 𝑁

∑︁
𝑗 :𝑅 𝑗 ∈S𝐷 (B𝐷

𝑚)

𝑇𝐷,𝑆𝐴 (𝑖 𝑗).

where recall that 𝑖 𝑗 is the token position corresponding to the decode-iteration of request 𝑅 𝑗 in the

batch.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

Optimal Scheduling for LLM Inference 59:33

For all other batches𝑚 ∈ M𝐷 \M𝐷
∗ , the batch execution times are upper bounded as,

𝑇 𝐵 (B𝐷𝑚) ≤ max

(𝑡row,𝑡col) ∈Tout,𝑡red∈Tout

1

𝜇Lin (𝑡row, 𝑡col, 𝑡red)

⌈ ��B𝐷𝑚 ��
𝑡col

⌉
+ 1

𝜇nLin

��B𝐷𝑚 �� + 𝑁 ∑︁
𝑗 :𝑅 𝑗 ∈S𝐷 (B𝐷

𝑚)

𝑇𝐷,𝑆𝐴 (𝑖 𝑗).

Let R∗ denote the set of requests whose every decode iteration is scheduled in an optimally tiled

batch. For 𝑅 𝑗∗ ∈ R∗, denote the “effective completion time” it took to complete its decode-phase as,

𝑇𝐷∗ (𝑗∗) =
1

𝜇Lin (𝑡∗row, 𝑡∗
col
, 𝑡∗
red
)
𝐿𝐷
𝑗∗

𝑡∗
col

+ 1

𝜇nLin
𝐿𝐷𝑗∗ + 𝑁

𝐿𝑃
𝑗∗+𝐿

𝐷
𝑗∗∑︁

𝑖=𝐿𝑃
𝑗∗+1

𝑇𝐷,𝑆𝐴 (𝑖).

For all other requests, 𝑅 𝑗 ′ ∈ R \ R∗, their “effective completion times” can be bounded as,

𝑇𝐷,max (𝑗 ′) ≤ max

(𝑡row,𝑡col) ∈Tout,𝑡red∈Tout

1

𝜇Lin (𝑡row, 𝑡col, 𝑡red)
𝐿𝐷𝑗 ′ +

1

𝜇nLin
𝐿𝐷𝑗 ′ + 𝑁

𝐿𝑃
𝑗 ′+𝐿

𝐷
𝑗 ′∑︁

𝑖=𝐿𝑃
𝑗 ′+1

𝑇𝐷,𝑆𝐴 (𝑖).

Due to Assumption 3,

𝑇𝐷,max (𝑗 ′) ≤ 𝑇max, almost surely,

where 𝑇max
is as defined in Theorem 2.

The condition in Line 6 of Algorithm 1 ensures that when 𝑛 requests are being processed in the

cycle, i.e., |R | = 𝑛, then all the decode-iterations of at least 𝑛 − 𝑡∗
col
+ 1 requests are optimally tiled,

i.e., |R∗ | ≥ 𝑛 − 𝑡∗
col
. Therefore, |R \ R∗ | ≤ 𝑡∗

col
− 1.

The amount of time required to complete the decode-phase of requests in this cycle can thus be

bounded as,

𝑇𝐷𝑀 =
∑︁

𝑚∈M𝐷

𝑇 𝐵 (B𝐷𝑚),

=
∑︁

𝑚∈M𝐷
∗

𝑇 𝐵 (B𝐷𝑚) +
∑︁

𝑚∈M𝐷\M𝐷
∗

𝑇 𝐵 (B𝐷𝑚),

≤
∑︁

𝑗∗:𝑅 𝑗∗ ∈R∗
𝑇𝐷∗ (𝑗∗) +

∑︁
𝑗 ′ :𝑅 𝑗 ′ ∈R\R∗

𝑇𝐷,max (𝑗 ′),

≤
∑︁
𝑗 :𝑅 𝑗 ∈R

𝑇𝐷∗ (𝑗) +
∑︁

𝑗 :𝑅 𝑗 ′ ∈R\R∗
𝑇𝐷,max (𝑗 ′),

≤
∑︁
𝑗 :𝑅 𝑗 ∈R

𝑇𝐷∗ (𝑗) + (𝑡∗col − 1)𝑇max.

Since each request has prompt and output length distributed according to 𝑝𝐿𝑃 ,𝐿𝐷 , the expected time

to complete the decode-phase of all the requests in the cycle can be upper bounded as,

E
[
𝑇𝐷𝑀

]
≤ 𝑛 ©­« 1

𝜇Lin (𝑡∗row, 𝑡∗
col
, 𝑡∗
red
)
E

[
𝐿𝐷

]
𝑡∗
col

+ 1

𝜇nLin
E

[
𝐿𝐷

]
+ 𝑁E


𝐿𝑃+𝐿𝐷∑︁
𝑖=𝐿𝑃+1

𝑇𝐷,𝑆𝐴 (𝑖)
ª®¬

+ (𝑡∗
col
− 1)𝑇max .

(25)

Therefore, the expected cycle time is upper bounded as,

E
[
𝑇 cycle

]
= E

[
𝑇 𝑃𝑀

]
+ E

[
𝑇𝐷𝑀

]
,

≤ 𝑛𝑇𝑅 + (𝑡∗
col
− 1)𝑇max, (26)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

59:34 Agrim Bari, Parikshit Hegde, and Gustavo de Veciana

where the upper bound is obtained by combining (24), (25), and the definition of 𝑇𝑅 from Theorem

1.

C.3 Positive recurrence of the DTMC
Lemma 3. Under the same conditions as in Theorem 2, (𝑋𝑟 ′ [𝑐])∞𝑐=1

is positive recurrent.

Proof. Consider a state 𝑋𝑟 ′ [𝑐] with 𝑋𝑟 ′ [𝑐] ≥ 𝑛. Denote 𝐴𝑟 ′ [𝑐] = |A𝑟 ′ [𝑐] | to be the number of

request arrivals that happen during the 𝑐 th cycle of RAD. Then, 𝑋𝑟 ′ [𝑐 + 1] = 𝑋𝑟 ′ [𝑐] − 𝑛 + 𝐴𝑟 ′ [𝑐],
since RAD completes exactly 𝑛 requests in a cycle if there are at least 𝑛 requests at the start of the

cycle.

Since there are already at least 𝑛 requests at the start of the cycle, and RAD chooses requests in

a FCFS manner, the set of requests completed in the cycle is a subset of these requests. That is,

R𝑟 ′ [𝑐] ⊂ X𝑟 ′ [𝑐] and |𝑅𝑟 ′ [𝑐] | = 𝑛, if 𝑋𝑟 ′ [𝑐] ≥ 𝑛.
Therefore, in this case, the duration of this cycle is independent of the arrivals after the cyle starts,

i.e.,

𝐶−1

𝑟 ′ [𝑐 + 1] −𝐶−1

𝑟 ′ [𝑐] ⊥⊥
(
Acont.

𝑟 ′ (𝑡)
)
𝑡>𝐶−1

𝑟 ′ [𝑐]
, if 𝑋𝑟 ′ [𝑐] ≥ 𝑛.

Requests arrive according to a Poisson point process of rate 𝜆/𝑟 . Therefore, by the independence

of the cycle duration to the arrival process, we have the expected number of arrivals during the

cycle given as,

E [𝐴𝑟 ′ [𝑐]] = 𝜆E
[
𝐶−1

𝑟 ′ [𝑐 + 1] −𝐶−1

𝑟 ′ [𝑐]
]
, if 𝑋𝑟 ′ [𝑐] ≥ 𝑛.

From the upper bound on the expected duration of the cycle in (26), we have,

E [𝐴𝑟 ′ [𝑐]] ≤
𝜆

𝑟

(
𝑛𝑇𝑅 + (𝑡∗

col
− 1)𝑇max

)
, if 𝑋𝑟 ′ [𝑐] ≥ 𝑛.

Then the drift for all the states 𝑥 with 𝑥 ≥ 𝑛 is,

E
[
𝑋𝑟 ′ [𝑐 + 1] − 𝑋𝑟 ′ [𝑐]

��𝑋𝑟 ′ [𝑐] = 𝑥] = 𝑛 (
𝜆

𝑟
𝑇𝑅 − 1

)
+ 𝜆(𝑡∗

col
− 1)𝑇max,

(𝑎)
≤ −𝑛𝜀 + (𝑡∗

col
− 1)𝜆𝑇max,

(𝑏)
< 0, ∀𝑐 ∈ N.

(a) follows by the premise, 𝜆𝑇𝑅 ≤ 𝑟 (1 − 𝜀), and (b) follows from the choice of 𝑛 in Theorem 2.

And clearly E
[
𝑋𝑟 ′ [𝑐 + 1]

��𝑋𝑟 ′ [𝑐] = 𝑥] < ∞ for any 𝑥 ∈ N.
Therefore, by Foster’s Theorem[6], (𝑋𝑟 ′ [𝑐])∞𝑐=1

is positive recurrent. □

C.4 Proof of Theorem 2
First we show that the expected cycle times are finite.

Lemma 4. Under the same conditions as Theorem 2, for any cycle index 𝑐 ∈ N:

E
[
𝐶−1

𝑟 ′ [𝑐 + 1] −𝐶−1

𝑟 ′ [𝑐]
]
≤ 𝑟

𝜆
+ 𝑛𝑇max.

Proof. Consider 𝑋𝑟 ′ [𝑐] > 0. Then, the RAD scheduler completes at most 𝑛 requests in this cycle.

The worst case time that a scheduler may take to complete 𝑛 requests is when, a) the prompt and

output lengths of all requests are the longest possible, and, b) the scheduler processes the requests

one after the other. 𝑇max
bounds the worst-case time required to complete a request. Therefore, the

worst-case cycle time of the RAD scheduler is bounded by 𝑛𝑇max
.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

Optimal Scheduling for LLM Inference 59:35

Consider 𝑋𝑟 ′ [𝑐] = 0. In this case, the RAD scheduler waits for a request to arrive, which takes

expected time 𝑟/𝜆. Then, similar to above, the RAD scheduler may complete up to 𝑛 requests (in

the case where more requests arrive before RAD proceeds to the next cycle). We know that that

worst-case cycle time to complete 𝑛 requests is 𝑛𝑇max
. Therefore, in this case, the expected cycle

time is bounded as 𝑟/𝜆 + 𝑛𝑇max
. □

Finally, we using the previous Lemmas proved in this section, we present the proof of Theorem

2.

Proof of Theorem 2. By definition, 𝑄𝑟 ′
(
𝐶−1 [𝑐]

)
= 0, if and only if 𝑋𝑟 ′ [𝑐] = 0. And, by Lemma

3, (𝑋𝑟 ′ [𝑐])∞𝑐=1
is positive-recurrent. And, by Lemma 4, for any 𝑐1, 𝑐2 ∈ N such that 𝑐1 < 𝑐2,

E
[
𝐶−1

𝑟 ′ [𝑐2] −𝐶−1

𝑟 ′ [𝑐1]
]
≤ (𝑐2 − 𝑐1)𝑟

𝜆
+ (𝑐2 − 𝑐1)𝑛𝑇max.

We know the systems starts empty: 𝑄𝑟 ′ (0) = 0. Define, 𝑇 regen = min{𝑡 > 0 : 𝑄𝑟 ′ (𝑡) = 0}. Then
by the above results, E [𝑇 regen] < ∞. Moreover, RAD starts a new cycle whenever 𝑄𝑟 ′ (𝑡) = 0.

Therefore,𝑇 regen
is aligned with the start of a new cycle:𝑇 regen = 𝐶−1 [𝐶 (𝑇 regen)]. Since (𝑋𝑟 ′ [𝑐])∞𝑐=0

is a DTMC, this implies that (𝑄𝑟 ′ (𝑡))𝑡>𝑇 regen is independent of (𝑄𝑟 ′ (𝑡))𝑡≤𝑇 regen . Therefore, (𝑄𝑟 ′ (𝑡))𝑡≥0

is a regenerative process, with regeneration point 0. Further it is positive recurrent sinceE [𝑇 regen] <
∞. □

D Another Throughput-Optimal Scheduler
Another throughput-optimal scheduler is presented in Algorithm 2. It has the same high level

design principle as the RAD scheduler. It proceeds in cycles, where in each cycle it starts and

completes up to 𝑛 requests. This scheduler differs from RAD in the order in which it schedules

prefill and decode iterations.

Algorithm 2 first completes up to 𝑛 prefill-phase requests (if enough are available) with optimal

tiling (see Lines 3-13). Then it moves to the decode mode, where it first chooses the first 𝑡∗
col

of the

decode phase requests, D, and marks them as active, denoted Dactive. It then proceeds to schedules

batches of decode-iterations of each request in Dactive. After each request it removes requests that

sampled their stop token, and replaces them with remaining requests in D, if there are any. This

proceeds until all the requests in this cycle have completed.

It may be shown that Algorithm 2 schedules optimally tiled batches most of the time, and also

performs dynamic optimal resource allocation between prefill and decode phase requests just

like the RAD scheduler. As such, Theorem 2 applies when the RAD scheduler is replaced by the

scheduler in Algorithm 2 as well. The proof would be very similar to the one presented in Appendix

C for the RAD scheduler. We omit the proof to avoid repetition.

The primary difference in the operation of the two schedulers would be the TTFT and TBT

observed by requests. For the scheduler in Algorithm 2, consider that the first output token of a

request is only produced when it has been moved to the active decode set, Dactive. In this case, the

decode-iterations of this request keep getting scheduled in consecutive batches until the request is

complete. Therefore, the TBT of requests will be low. However, since the scheduler has to complete

a large number, 𝑛, of requests before it starts generating the tokens for any of the requests, the TTFT

of the requests will be very high. This is complementary to the RAD scheduler, where requests

observe a hight TBT, but a relatively lower TTFT.

E Other Schedulers in the Framework
As a way of illustration, we provide a description of request-level batching, Sarathi-serve and

DistServe in our scheduler framework introduced in Section 3.1.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

59:36 Agrim Bari, Parikshit Hegde, and Gustavo de Veciana

Algorithm 2 Another Throughput Optimal Scheduler

Require: Parameter 𝑛

1: P ← ∅,D ← ∅
2: while True do

// Cycle starts in PREFILL MODE
3: 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠_𝑖𝑛_𝑐𝑦𝑐𝑙𝑒 ← 0

4: while P ≠ ∅ and 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠_𝑖𝑛_𝑐𝑦𝑐𝑙𝑒 < 𝑛 do
5: Choose a request 𝑅 first-come-first-serve from P and set 𝑖 ← 1

6: while prefill phase of the chosen request is incomplete do
7: 𝑐 = min{LCM(𝑡∗

row
, 𝑡∗
col
, 𝑡∗
red
), 𝐿𝑃 (𝑅) − 𝑖}

8: Schedule 𝑃𝐼 (𝑅, 𝑖, 𝑐) in a batch.

9: 𝑖 ← 𝑖 + 𝑐
10: end while
11: Move the request from P to D
12: 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠_𝑖𝑛_𝑐𝑦𝑐𝑙𝑒 ← 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠_𝑖𝑛_𝑐𝑦𝑐𝑙𝑒 + 1

13: end while
//Change mode to DECODE MODE

14: Dactive = ∅
15: Move min(𝑡∗

col
, |D|) requests from D to Dactive

16: while |Dactive | > 0 do
17: Schedule one DI for each request in Dactive in a batch.

18: Remove requests that sampled the "stop" token from Dactive

19: Move min(𝑡∗
col
− |Dactive | , |D|) requests from D to Dactive.

20: end while
21: end while

E.1 Request level batching
This scheduler is inspired by FasterTransformer[23], which schedules a batch of 𝑏 requests at a

time, and only proceeds to other requests after all these requests have completed. We adapt this

scheduler and express it in the “sequences of batches of iterations” framework in Algorithm 3. Here

the scheduler alternates between two modes. It starts in Prefill Mode in which it selects 𝑏 requests

from the prefill-queue in FCFS order and completes their prefill phases. It then switches to Decode

Mode where it schedules one decode iteration for all active decode-phase requests until all of them

complete. It then switches back to Prefill Mode.

E.2 Sarathi-serve
This scheduler, as shown in Algorithm 4, enforces a fixed token budget per batch and prioritizes

decode-phase requests. It firsts selects a decode iteration for each decode-phase request (the number

of these is guaranteed to be below the budget). It then fills the remaining capacity with chunked

prefill iterations. Completed prefills are transitioned to the decode queue, while completed decodes

are removed.

E.3 DistServe
This is a distributed scheduler, as shown in Algorithm 5, and runs on dedicated prefill and decode

nodes. In prefill nodes, prefill requests are handled one at a time in FCFS order, with entire prompts

processed in a single iteration. Completed requests are transferred to the decode node. At the

decode node, it continuously batches and schedules decode iterations. Here we note that it is

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

Optimal Scheduling for LLM Inference 59:37

Algorithm 3 Request-Level Batching Scheduler [23]

Require: Batch size 𝑏

1: P ← ∅, D ← ∅ // Prefill and decode phase queues
2: 𝑚𝑜𝑑𝑒 ← Decode
3: while True do
4: Update P based on arrivals

5: if 𝑚𝑜𝑑𝑒 = Prefill then
6: if D ≠ ∅ then
7: Schedule 𝐷𝐼 for each 𝑅 ∈ D in a batch with appropriate token positions

8: Remove from D any request that sampled the stop token

9: else
10: 𝑚𝑜𝑑𝑒 ← Prefill
11: end if
12: else if 𝑚𝑜𝑑𝑒 = Prefill then
13: if P ≠ ∅ then
14: Choose up to 𝑏 requests from P in FCFS order

15: for all selected requests 𝑅 𝑗 do
16: Schedule 𝑃𝐼 (𝑅, 1, 𝐿𝑃𝑗) // Full prompt in one iteration
17: Move 𝑅 from P to D
18: end for
19: end if
20: 𝑚𝑜𝑑𝑒 ← Decode
21: end if
22: end while

possible to run both prefill and decode requests with optimal tiling at the prefill and decode nodes

respectively.

F Additional experimental results
F.1 Results for the scenario of 5% split
Figure 9 presents a comparative evaluation of scheduling policies under heterogeneous TTFT and

TBT constraints, with a workload comprising 5% paying users. Figure 9a shows the median TTFT

for all requests as a function of request rate, plotted on a log-scaled y-axis to highlight differences

at low load. This view reveals how various schedulers handle contention-free versus saturated

conditions. Figure 9b reports the number of requests completed at the peak load of 1.6 requests

per second, bucketed by prompt length. Notably, SLAI (SPF, dynamic offset) serves nearly as many

requests as Sarathi-serve while achieving substantially lower median TTFT, whereas vLLM exhibits

instability and fails to maintain throughput under high load. Finally, Figure 9c plots the mean

TTFT at 1.6 requests per second as a function of prompt length. Despite favoring shorter prompts,

SPF-based schedulers yield a lower overall TTFT compared to FCFS variants, demonstrating the

benefit of prioritizing short requests even in the presence of heterogeneous job sizes.

F.2 Prioritizing prefill-phase requests of paying users over free-tier users
In this section, we evaluate an additional policy: SLAI (SPF with priority, dynamic offset). This

policy gives strict priority to prefill-phase requests from paying users over those from free-tier

users, regardless of prompt length. In other words, it always schedules a paying user’s request

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

59:38 Agrim Bari, Parikshit Hegde, and Gustavo de Veciana

Algorithm 4 Sarathi-Serve Scheduler[2]

Require: Token budget 𝜏budget // Max tokens per batch
1: P ← ∅, D ← ∅ // Requests in prefill and decode phases
2: while True do
3: Update P based on arrivals

4: B ← ∅ // Current batch and used tokens
5: for all requests 𝑅 ∈ D do
6: Add 𝐷𝐼 (𝑅, 𝑖) to batch B
7: Mark 𝑖 ← 𝑖 + 1 for 𝑅

8: end for
9: 𝜏 ← |D|
10: for all 𝑅 ∈ P in arrival order do
11: while 𝜏 < 𝜏budget do
12: 𝑐 ← min{𝜏budget − 𝜏, 𝐿𝑃𝑗 − 𝑖} // i is starting token index left to prefill
13: Add 𝑃𝐼 (𝑅, 𝑖, 𝑐) to batch B
14: 𝜏 ← 𝜏 + 𝑐
15: Mark 𝑖 ← 𝑖 + 𝑐 for 𝑅
16: end while
17: end for
18: Schedule batch B
19: for all requests 𝑅 ∈ P do
20: if prefill of 𝑅 complete then
21: Move 𝑅 from P to D
22: end if
23: end for
24: for all requests 𝑅 ∈ D do
25: if decode of 𝑅 sampled stop token then
26: Remove 𝑅 from D
27: end if
28: end for
29: end while

first. All other parameters are the same as in SLAI (SPF, dynamic offset). Figure 10 compares this

priority-based policy with other scheduling strategies. At high load (1.6 requests per second), we

observe that the mean TTFT for paying users is lower than that for free-tier users. However, the

improvement in TTFT for paying users is relatively small.

F.3 Results for the scenario of 50% and 95% split
In this section, we present additional results for scenarios with less heterogeneity in user workloads.

Figures 11 and 12 show results similar to those discussed earlier, but for cases where the percentage

of paying users is 50% and 95%, respectively. As the proportion of paying users increases, the

improvement in serving capacity under SLAI (SPF, dynamic offset) compared to Sarathi-serve

(FCFS) becomes smaller. This is because a larger share of traffic now has stricter TBT constraints,

leaving fewer opportunities for SLAI to defer decode-phase requests dynamically.

Received July 2025; revised September 2025; accepted October 2025

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

Optimal Scheduling for LLM Inference 59:39

Algorithm 5 DistServe Scheduler [36]

Require: Separate compute nodes for prefill and decode phases

— Prefill Node —
1: P ← ∅ // Requests awaiting prefill
2: while True do
3: Update P based on new arrivals

4: if P = ∅ then
5: continue
6: end if
7: Choose request 𝑅 𝑗 from P in first-come-first-serve order

8: Schedule 𝑃𝐼 (𝑅 𝑗 , 1, 𝐿𝑃𝑗) // chunked prefill-iteration may be done too
9: Transfer KV-cache of 𝑅 to a Decode Node

10: Remove 𝑅 from P
11: end while

— Decode Node —
12: D ← ∅ // Requests in decode phase
13: while True do
14: Update D received from a Prefill Node

15: if D = ∅ then
16: continue
17: end if
18: Schedule 𝐷𝐼 (𝑅) for each 𝑅 ∈ D in a batch // 𝑡∗

col
requests may also be scheduled

for optimal tiling
19: Remove from D any request that sampled the stop token

20: end while

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

59:40 Agrim Bari, Parikshit Hegde, and Gustavo de Veciana

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Requests per second

10 1

100

M
ed

ia
n

TT
FT

 (s
)

 a
ll

us
er

s

SLAI (SPF, fixed offset)
SLAI (SPF, dynamic offset)
SLAI (FCFS, fixed offset)
Sarathi-serve (FCFS)
Sarathi-serve (SPF)
vLLM

(a) Median TTFT for all users as a function of request
rate, shown on a log-scaled 𝑦-axis to illustrate the gap
at lower request rates.

0 2000 4000 6000 8000
Prompt length (tokens)

0

200

400

600

800

Nu
m

be
r o

f r
eq

ue
st

s s
er

ve
d

(b) Requests served at high load (1.6 req/s) versus
prompt length.

0 1000 2000 3000 4000 5000 6000 7000 8000
Prompt length (tokens)

0

20

40

60

80

M
ea

n
TT

FT
 (s

) SLAI (FCFS, fixed offset)
SLAI (SPF, dynamic offset)
SLAI (SPF, fixed offset)
Sarathi-serve (FCFS)
Sarathi-serve (SPF)
vLLM

(c)Mean TTFT at the high load (1.6 req/s) versus prompt
length.

Fig. 9. Performance comparison of different policies under mixed user workloads with 5% paying users.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

Optimal Scheduling for LLM Inference 59:41

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Requests per second

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
ea

n
TT

FT
 (s

)
 p

ay
in

g
us

er
s SLAI (FCFS, fixed offset)

SLAI (SPF with priority, dynamic offset)
SLAI (SPF, dynamic offset)
SLAI (SPF, fixed offset)
Sarathi-serve (FCFS)
Sarathi-serve (SPF)
vLLM

(a) Mean TTFT for paying users as a
function of requests per second.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Requests per second

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
ea

n
TT

FT
 (s

)
 fr

ee
-ti

er
 u

se
rs SLAI (FCFS, fixed offset)

SLAI (SPF with priority, dynamic offset)
SLAI (SPF, dynamic offset)
SLAI (SPF, fixed offset)
Sarathi-serve (FCFS)
Sarathi-serve (SPF)
vLLM

(b) Mean TTFT for free-tier users as a
function of requests per second.

Fig. 10. Performance comparison of different policies under mixed user workloads with 5% paying users.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

59:42 Agrim Bari, Parikshit Hegde, and Gustavo de Veciana

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Requests per second

0.00

0.02

0.04

0.06

0.08

0.10

P9
9

TB
T

(s
)

 p
ay

in
g

SLAI (SPF, fixed offset)
SLAI (SPF, dynamic offset)
SLAI (FCFS, fixed offset)
Sarathi-serve (FCFS)
Sarathi-serve (SPF)
vLLM

(a) 99th percentile TBT for paying users across
different request rates for a target of 0.1 seconds.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Requests per second

0.0

0.1

0.2

0.3

0.4

0.5

P9
9

TB
T

(s
)

 fr
ee

(b) 99th percentile TBT for free-tier users across
different request rates for a target of 0.5 seconds.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Requests per second

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
ed

ia
n

TT
FT

 (s
)

 a
ll

us
er

s

22% serving capacity gain

49%
 latency reduction

SLAI (SPF, fixed offset)
SLAI (SPF, dynamic offset)
SLAI (FCFS, fixed offset)
Sarathi-serve (FCFS)
Sarathi-serve (SPF)
vLLM

(c) Median TTFT for all users as a function of request
rate. SLAI (SPF, dynamic offset) reduces TTFT from 1.5
seconds (under Sarathi-serve (FCFS)) to 0.73 seconds,
and increases peak serving capacity from 1.15 to 1.4
requests per second subject to latency constraints.

Fig. 11. Performance comparison of SLAI, Sarathi-serve, and vLLM under mixed user workloads with 50%
paying users. SLAI (SPF, dynamic offset) achieves the best latency-throughput trade-off.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

Optimal Scheduling for LLM Inference 59:43

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Requests per second

0.00

0.02

0.04

0.06

0.08

0.10

P9
9

TB
T

(s
)

 p
ay

in
g

SLAI (SPF, fixed offset)
SLAI (SPF, dynamic offset)
SLAI (FCFS, fixed offset)
Sarathi-serve (FCFS)
Sarathi-serve (SPF)
vLLM

(a) 99th percentile TBT for paying users across
different request rates for a target of 0.1 seconds.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Requests per second

0.0

0.1

0.2

0.3

0.4

0.5

P9
9

TB
T

(s
)

 fr
ee

(b) 99th percentile TBT for free-tier users across
different request rates for a target of 0.5 seconds.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Requests per second

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
ed

ia
n

TT
FT

 (s
)

 a
ll

us
er

s

13% serving capacity gain

62%
 latency reduction

SLAI (SPF, fixed offset)
SLAI (SPF, dynamic offset)
SLAI (FCFS, fixed offset)
Sarathi-serve (FCFS)
Sarathi-serve (SPF)
vLLM

(c) Median TTFT for all users as a function of request
rate. SLAI (SPF, dynamic offset) reduces TTFT from 2
seconds (under Sarathi-serve (FCFS)) to 0.75 seconds,
and increases peak serving capacity from 1.15 to 1.25
requests per second subject to latency constraints.

Fig. 12. Performance comparison of SLAI, Sarathi-serve, and vLLM under mixed user workloads with 95%
paying users. SLAI (SPF, dynamic offset) achieves the best latency-throughput trade-off.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 59. Publication date: December 2025.

	Abstract
	1 Introduction
	1.1 Related Work

	2 Background
	2.1 Transformer
	2.2 Inference on a Transformer
	2.3 Computation on a GPU

	3 LLM Inference System Model
	3.1 A General Framework for LLM Inference Schedulers
	3.2 LLM Inference Computation on the GPU

	4 A Throughput Optimal Inference System
	4.1 Throughput optimal resource planner
	4.2 RAD: A throughput optimal scheduler
	4.3 Throughput Optimality Characterization

	5 Practical Insights from Theory
	6 SLO Aware LLM Inference Scheduler
	6.1 Impact of different scheduler parameters

	7 Experimental results
	7.1 Choosing the parameters for SLAI (SPF, dynamic offset)

	8 Conclusion
	Acknowledgments
	References
	A Other Related Work
	A.1 Cluster-level Routing
	A.2 KV-Cache Management
	A.3 Speculative decoding

	B Upper Bound Proof
	B.1 Request Set Drain Time
	B.2 A lower bound on the pending requests in the system
	B.3 Proof of Theorem 1

	C Throughput Optimality Of RAD Proof
	C.1 The Discrete Time Markov Chain (DTMC) Model
	C.2 Cycle Times
	C.3 Positive recurrence of the DTMC
	C.4 Proof of Theorem 2

	D Another Throughput-Optimal Scheduler
	E Other Schedulers in the Framework
	E.1 Request level batching
	E.2 Sarathi-serve
	E.3 DistServe

	F Additional experimental results
	F.1 Results for the scenario of 5% split
	F.2 Prioritizing prefill-phase requests of paying users over free-tier users
	F.3 Results for the scenario of 50% and 95% split

