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Abstract—We consider RF-based network inference based on
channel usage. The proposed approaches rely on distributed spec-
trum sensing and are agnostic to the content and communication
protocols. We consider inference based solely on observing nodes’
channel usage and show it is equivalent to a Boolean matrix
decomposition problem, which in general does not have a unique
solution and is an NP-hard problem. We provide necessary
and sufficient conditions for the Boolean matrix decomposition
problem has a unique solution, i.e., for the network to be
recoverable. We also propose a low-complexity network recovery
algorithm that finds the unique solution under the recoverability
conditions. In addition to that we provide an analysis of the
required observation time to collect necessary channel usage data
needed for the network recovery algorithm.
Index Terms—collaborative spectrum sensing, wireless systems,

network inference

I. INTRODUCTION

With the burgeoning number of wireless applications and
services, enabling spectrum sharing and monitoring its usage
has became a growing area of interest [1], [2]. In this paper,
we go beyond simply monitoring the spectrum usage and
study inference of the network structure based on the observed
RF activities of its nodes. This has natural applications in
the policing of spectrum usage which aims to ensure com-
pliance with the industry/public policies and standards. The
inferred network structure could also pinpoint misbehaving or
misconfigured nodes, thereby informing interventional proce-
dures. Our focus is on ad-hoc networks consisting of spatially
distributed nodes organized in possibly overlapping groups.
The nodes in a group may hop in frequency over a set of
channels; the groups’ channel sets may overlap. We consider
the setting where one is unaware of the network protocol
and develop a protocol-agnostic methodology for learning
the network structure. In particular, we develop and analyze
methods for learning the network configuration from the RF
activity data collected by low-cost sensors distributed in the
monitored region.

A. Related Work

Depending on the system model and capabilities of the
sensors, different approaches for network topology inference
are proposed in literature. Some studies assume access to
the packet’s content, which is not always readily obtainable
[3], [4]. In [5], a path inference approach for wireless sensor
network is proposed; the method exploits the inter-packet
correlations of packets generated from different nodes. Several
inference techniques rely on the notions of causality and
correlation. For instance, in [6], the authors infer network

topology using spectral coherence as a measure of causality.
Network topology inference can also be formulated as the
problem of learning temporal causal structures among multiple
time series. Along these lines, Granger causality is used in
[7], [8] to model the acknowledgement mechanism of common
communication protocols and learn the topological structure of
time-multiplexed communication networks. The authors of [9]
investigate the wireless network inference problem while con-
sidering the effect of imperfections such as packet collisions,
shadowing and nodes’ mobility. A method for reconstructing
dynamic network topology from limited amounts of noisy data,
under the assumption of sparse connectivity, is introduced
in [10]; under these conditions, the superiority of the L1
optimizer is demonstrated.
In all of the above methods, network inference is performed

based on data collected from multiple sources. In [11], an
optimal activation policy for sensors collaboratively working
to minimize the number of missed events is proposed. We
take inspiration from [12], [13], where the authors proposed
techniques to utilize inexpensive hardware such as USRP
Radios for monitoring wideband spectrum.

B. Contributions
We study protocol and content-agnostic RF based inference

of wireless networks with multiple groups, where users in
each group share fixed channel sets. Moreover, the users in
each group may perform frequency-hopping on their allocated,
possibly overlapping, channel sets. We identify the conditions
for which the network can be recovered with a low-complexity
algorithm using only channel usage data. In addition to that we
provide an analysis on the required observation time to recover
the network. Our specific contributions are the following:
• We formulate network recovery from channel usage data as a

Boolean matrix decomposition problem. This decomposition
may not always admit a unique solution; even when a unique
solution exits, the problem is NP-hard (Section III).

• To provide formal performance guarantees, we identify
necessary and sufficient conditions for perfect network re-
covery; moreover, we develop an algorithm for network
recovery under these, so called distinguishability, conditions
(Theorem 1).

• We also identify more relaxed conditions for the partial
recovery of nodes’ group memberships or channel sets,
which is possible even if channel or node sets are not
distinguishable (Theorem 2).

• To provide insight on the required time to collect channel
usage data, we provide a rough estimate on the required
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time to collect channel activity data inside a group based
on uniform activity and observation model (Section IV).

II. SYSTEM MODEL AND NOTATION

In this section we introduce the network model and associated
notation. In particular:
• N denotes the set of all nodes participating in a network;
• G denotes the set of groups, where each group consists of

nodes communicating with each other;
• Ng denotes the set of nodes participating in group g ∈ G,

and N = {Ng : g ∈ G} denotes the set of all groups in the
network;

• C denotes the set of channels over which frequency-hopping
based communication takes place;

• Cg is the set of channels supporting group g ∈ G, i.e., the
channels over which the nodes in g communicate; moreover,
C = {Cg : g ∈ G} denotes the sets of possibly overlapping
channels supporting various groups in the network;

• Cn = ∪g:n∈NgCg denotes the set of channels used by node
n, i.e., the union over channels associated with the groups
to which node n belongs;

• The tuple (G,N , C) denotes the network.
Note that |B| denotes the cardinality of set B.
We assume that network nodes belong to one or more groups

and communicate with each other using a fixed frequency
or deploy frequency-hopping over a subset of channels. In
the sequel, we assume that the sets of nodes and channels
associated with groups are non-empty. In general, a node may
participate in several groups and the sets of channels over
which each group hops may overlap; such overlaps need to be
avoided or be very infrequent among nearby nodes.
The proposed model is quite general and describes many

types of networks. An example is the military adhoc system
where frequency hopping spread spectrum (FHSS) schemes
are favored due to their resilience to jamming and protection
from unwanted detection. In such networks, multiple opera-
tional groups might be using FHSS over different (possibly
overlapping) channels. Another system captured by our model
is the Bluetooth network. To avoid collisions, Bluetooth uses
a form of FHSS called adaptive frequency hopping. In this
case, the groups can be thought of as pairs of master and
slave Bluetooth devices which are communicating over fully
overlapping (basically, identical) channels. A third example of
a system described by our model is the WiFi network where an
access point and the devices connected to it form a group, and
groups communicate over non-overlapping WiFi subchannels.
In general, any communication system using random access
channels can be captured by our model.

III. INFERRING NETWORK GROUPS BASED ON CHANNEL
USAGE DATA

Based on the observed channel activities, we can in principle
determine if a node is active on the channel set supporting a
group and thus infer if the node is a member of that group. In
this section, we will discuss approaches to network inference
that rely only on the nodes’ channel usage information.
To highlight some of the challenges and illustrate our ap-

proach to solving the network inference problem, let us

Fig. 1: Example of a network configuration

consider the simple setting with two groups N1 and N2

communicating over channels sets C1 and C2, respectively. If
C1 = C2, it is not possible to distinguish whether the network
consists of one group of nodes N1 ∪N2 or two groups with
nodes N1 and N2. Likewise, if N1 = N2, then it is not
possible to distinguish between the setting where there are
two groups with channel supports C1 and C2 and one group
communicating over the set of channels C1 ∪ C2. Clearly,
identifying nodes in various groups using solely channel usage
information will be possible only under certain conditions.
Next, we provide a few definitions which will be useful

subsequently.

Definition 1. A sensed data set D is said to be complete if
it reveals the full set of subchannels used by each node, i.e.,
provides Cn for all n ∈ N .

Definition 2. For any group g ∈ G we denote the set
of channels used exclusively by the nodes in group g as
C̄g := Cg \∪f :f 6=gC

f , and the set of nodes which participate
exclusively in group g as N̄g := Ng \ ∪f :f 6=gN

f ; these are
referred to as the sets of distinguishable channels and nodes
of group g, respectively. If C̄g 6= ∅ for all g ∈ G, the set of
channels C is said to be distinguishable; likewise, if N̄g 6= ∅
for all g ∈ G, the set of nodes N is said to be distinguishable.
If both channel and node sets are distinguishable, the network
(G,N , C) is said to be distinguishable.

In simple terms, distinguishability means that for each group
g there exists a subset of channels C̄g which are used only
by the nodes in that group, and there is a subset of nodes N̄g

which are participating only in group g. For example, if the
groups hop over disjoint sets of channels, the hopping sets are
distinguishable.
A. Binary matrıx representation of network (G,N , C)
For convenience, we use a Boolean matrix A ∈ {0, 1}|C|×|N |

to summarize information about channel usage by different
network nodes. The (c, n) entry in A is defined as

Ac,n =

{
1 if c ∈ Cn,
0 otherwise.

(1)

We refer to A as the activity matrix.
Similarly, we define the channel assignment matrix S ∈
{0, 1}|C|×|G| and the node assignment matrix M ∈
{0, 1}|G|×|N | with entries

Sc,g =

{
1 if c ∈ Cg

0 otherwise
and Mg,n =

{
1 if n ∈ Ng

0 otherwise
, (2)

2
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respectively. Note that S and M together specify the network
(G,N , C). Further note that the activity matrix A can be
expressed as

SM = A, (3)

where the matrix multiplication is under the Boolean algebra
(i.e., summation is the logical or operation, multiplication is
the logical and operation). For any binary matrix K, we let
rankB(K) denote the Boolean rank of K.
Remark: Boolean matrix representations have been used

in a variety of settings including the Role Mining Problem
[14], Set Basis Problem [15], Minimum Tiling Problem [16]
and determining the minimum number of complete bipartite
subgraphs [17]. Unfortunately, calculating the Boolean rank of
a matrix, as well as finding the minimal product decomposition
of a Boolean matrix, are NP-complete problems [15]–[17].
Note that a complete activity matrix A (i.e., with no missing

entries) represents a complete data set. If A can be decom-
posed into S and M uniquely, then the network (G,N , C) is
recoverable based on the activity matrix.
Figure 1 shows a Venn diagram representing a network with

4 groups and 6 nodes. The color-coded sets represent groups,
while dots represent the nodes in each group. The node
assignment matrix M for this network is

M =

 1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 1 1 0 1 0

 ,
where the color-coded rows indicate different groups and
columns indicate nodes (ordered according to the node labels,
1–6). It is easy to see that M is a full Boolean rank matrix.
However, the node set does not satisfy the distinguishability
condition since the “black group” does not have a distinguish-
able node, i.e., one that belongs solely to that group. Con-
tinuing with this example, the associated channel assignment
matrix S and the corresponding activity matrix A are

S =

 0 1 0 1
1 1 1 0
0 0 1 1
1 0 0 0

 and A =

 0 1 1 1 1 0
1 1 1 1 1 1
0 1 1 0 1 1
1 1 0 0 0 0

 .
Note that although S is a full Boolean rank matrix, since
the 2nd, 3rd, and 5th columns of A are linear combinations
of the 1st, 4th and 6th columns of A, the Boolean rank
of A is not 4. By the minimal product decomposition [14],
A can be decomposed into two matrices, each of smaller
dimension than S and M . Additionally, although Node 3 and
Node 5 do not belong to the same group, the columns of A
corresponding to Node 3 and Node 5 are equal – therefore,
determining group memberships of these two nodes is not
possible and the network is not uniquely recoverable from
A. This example motivates study of conditions on node and
channel assignments that should be satisfied for the network
to be recoverable from A. Below, we state the necessary and
sufficient conditions for network recovery from activity matrix.

Lemma 1. A necessary condition for network inference from
activity matrix A is that the Boolean rank of the activity
matrix equals the number of groups, and channel and node

assignment matrices are full Boolean rank, i.e., rankB(S) =
rankB(M) = rankB(A) = |G|.

Proof of Lemma 1. If network (G,N , C) is recoverable, the
corresponding activity matrix A can be uniquely decomposed
via matrices S and M . Recall that the dimensions of S and
M are |C|×|G| and |G|×|N |, respectively. Thus, A is of
dimension |C|×|N |.
Given the dimension of A, its Boolean rank satisfies

rankB(A) ≤ min(|C|, |N |). (4)

We shall consider two cases: (1) |G|> rankB(A), and (2)
|G|≤ rankB(A).
First, suppose |G|> rankB(A) = K. Then either |C|< |G| or
|N |< |G|, and one can find another pair of matrices S′ and M ′

of dimension |C|×K and K×|N | such that S′M ′ = A. These
can be obtained via the minimal product decomposition [14].
Note that the network represented by S′ and M ′ is different
than the one given by S and M , which contradicts the network
recoverability assumption.
Now, suppose |G|≤ rankB(A). Due to (4), both |G|≤ |C|

and |G|≤ |N | hold. Thus, rankB(S) ≤ |G| and hence
rankB(M) ≤ |G|. Consequently, the following Boolean rank
inequality [18] holds,

rankB(A) = rankB(SM) (5)
≤ min{rankB(S), rankB(M)} (6)
≤ |G|. (7)

Note that, assuming |G|≤ rankB(A), (6) holds only if |G|=
rankB(A). By the same inequality (6), |G|= rankB(S) =
rankB(M), which completes the proof.

Theorem 1 provides a sufficient condition for recoverability.

Theorem 1. Consider network (G,N , C) with channel and
node assignment matrices S and M , and activity matrix A.
A sufficient condition for the network to be recoverable from
A is that the channels and nodes satisfy the distinguishability
condition.

Proof of Theorem 1. Assume that (G,N , C) is distinguish-
able, i.e., the channel and node sets satisfy the distinguishabil-
ity condition. Then for each group g ∈ G there is at least one
node which does not participate in any other group, and at least
one channel which is not used by any other group. Therefore,
through proper reordering of groups, nodes and channels, the
channel and node assignment matrices can be rewritten as

S′ =

[
I

S̃′

]
, M ′ =

[
I M̃ ′

]
. (8)

This special form with the identity submatrices of dimension
|G|×|G| is possible because each group has at least one
channel/node which is solely used by/belongs to that group.
It follows that the activity matrix of (G,N , C) can also be
rewritten in the special form,

S′M ′ = A′ =

[
I M̃ ′

S̃′ S̃′M̃ ′

]
. (9)

3
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Note that S′ and M ′ are not known a priori – only A is
known and it is not necessarily in the from given in (9).
However, since the network (G,N , C) is distinguishable, one
can identify distinguishable node-channel pairs in each group.
Thus by properly reordering nodes and channels, the activity
matrix can be rewritten as in (9), where the entries of the
identity submatrix correspond to the distinguishable node-
channel pairs of groups.
As indicated by (9) and (8), the node and channel assignment

matrices are readily obtained from submatrices of appropri-
ately reordered activity matrix.

There are cases in which the node sets are recoverable while
the channel sets are not, or vice versa. Theorem 2 below
provides sufficient conditions for these cases where partial
recoverability is possible.

Theorem 2. Consider a network (G,N , C) with channel and
node assignment matrices S and M , and activity matrix A.
If the channel sets satisfy the distinguishability condition and
the node assignment matrix M is of full Boolean rank with
rankB(M) = |G|, then the node sets are recoverable. Simi-
larly, if the node sets satisfy the distinguishability condition
and the channel assignment matrix S is of full Boolean rank,
then sets of channels are recoverable.

Proof of Theorem 2. If the channel sets are distinguishable,
by the distinguishability condition each group g ∈ G has at
least one channel which is not used by any other group. Let
eg be a unit row vector with 1 for its gth coordinate. The
distinguishability of channel sets also can be interpreted as
indicating that the corresponding channel assignment matrix
S has at least one row vector eg for each g = 1 . . . |G|.
Therefore, by re-ordering groups and channels, the channel

assignment matrix can be put in the following form

S′ =

[
I

S̃′

]
(10)

This form is special due to the identity submatrix with dimen-
sion |G|×|G|, corresponding to distinguishable channels of
each group. Note that in this case node sets are not necessarily
distinguishable but M ′ is a full Boolean rank matrix with
rankB(M ′) = |G|.
The product of S′ and M ′ yields

S′M ′ = A′ =

[
M ′

S̃′M ′

]
. (11)

Since M ′ is full Boolean rank, the rows of M ′ are linearly
independent. Thus, the upper submatrix of A′ with |G| rows
are also linearly independent. The rows of lower submatrix of
A′ are the linear combinations of rows of M ′, since A′k,· =
S′k,·M

′ and S′k,·, ∀k > |G| is either one of unit row vectors
eg or contained more than 1’s in its entries.
Having said that, an activity matrix A is not necessarily in

the from given in (11). To recover the node sets, one needs
to identify |G| linearly independent rows of A, where the rest
of the rows are linear combinations of them. These linearly
independent rows comprise M .

The proof for the case that the node sets satisfy the dis-
tinguishability condition and S is full Boolean rank with
rankB(S) = |G| is similar.

Under the distinguishability condition, we propose an efficient
algorithm for finding unique factorization of the activity matrix
A into the product of matrices S and M . Let A·,n denote
the column vector of A corresponding to channels used by
node n, and likewise let S·,g be the column vector of S
corresponding to channels used by group g. In addition to
this, let x � y denote the component-wise inequality between
vectors x and y, i.e., xi ≥ yi for every index i. If node
n is a member of group g, then A·,n � S·,g . Note that in
general node n can participate in more than one group; if n
is a distinguishable node of group g, then A·,n = S·,g . Also
note that the activity vectors of distinguishable nodes (columns
of matrix A) are linearly independent and all other activity
vectors can be formed as their linear combinations.

Algorithm 1 Activity Matrix Factorization

1: Input: Activity matrix A.
2: Initialize S, M matrices to 0; number of groups γ = 0
3: Preprocessing: Calculate hn = ‖A·,n‖1,∀n = 1, . . . , |N |
4: Relabel channels such that n < n′ if hn ≤ hn′

5: for n = 1, · · · , |N | do
6: for g = 1, · · · , γ do
7: if A·,n � S·,g then Mg,n = 1

8: if all prior comparisons fail then
9: define a new group with γ = γ + 1

10: S·,g = A·,n
11: Mg,n = 1

Due to distinguishability condition on channels, each group
has at least one channel that other groups do not use.
Hence, the channel set of a distinguishable node cannot
include the channel set of another distinguishable node, i.e.,
A·,n1 � A·,n2 , where nodes n1 and n2 are distinguishable
and belong to different groups. Therefore, we conclude that
among the nodes of a group, the nodes that are active on
a minimal number of channels are distinguishable. We use
this observation in our iterative algorithm to decompose A
corresponding to a distinguishable network.
Starting from the node using the smallest number of channels,

Algorithm 1 processes columns of A sequentially. Since each
group has at least one distinguishable node, the column of
A with the smallest norm corresponds to one of the distin-
guishable nodes. The channel set of this node specifies the
unique group that the node belongs to. The algorithm adds
this column to matrix S and sets the corresponding entry of
M to 1 in order to reflect the group membership of the node.
In the next iterations, the channel sets of the remaining nodes
are compared with the detected channel sets of distinguishable
nodes, i.e., the columns of S. If the channel set vector of a
node is componentwise greater than a column of S then it
means that it is a member of a previously detected group. If
not, then the node is a distinguishable node of a new group,
and channel set of this node is added to S. Based on these

4
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comparisons, 1’s are added to the proper entries of the matrix
M . When all the columns of A are processed, both S and M
are obtained.
The complexity of the algorithm is driven by two steps:

calculating the column norms (hn), and the comparison of
vectors in the for loop. Although hn’s are computed by a
vector multiplication, they can actually be found by counting
1’s in A·,n, which incurs complexity O(|C|)). Each iteration
of the outer for loop goes through |C|-dimensional vectors
|G| times. Thus, the complexity of one iteration is O(|C||G|),
and the overall complexity of the loop is O(|C||G||N |). This
dominates the time complexity of the algorithm.
In summary, although the binary decomposition problem is

generally NP-complete, under the distinguishability condition
it can be solved in O(|C||G||N |) time.

IV. SAMPLING THE ACTIVITY MATRIX

In this section, we briefly consider the time required to
collect a complete data set under a given sensing and node
activity model. This is tied to the well known coupon collector
problem. Indeed, under random frequency hopping, one needs
to observe the activity in all of each node’s channels — collect
all the coupons. We will study this under a uniform activity
and observation model.

A. Uniform Activity and Observation Model
To capture activities of nodes and observations, we consider

a discrete time system. In each time slot, either one of the
nodes in group g is active at one of the channels in Cg or
no node is active in group g. Meanwhile, the sensor system
takes observations in a finer granularity, such that it observes
one of the channels in C in each mini time slots. We denote
the number of mini time slots in a time slot as γ, where
γ ∈ N+. The duration of a mini time slot is set to be δ,
and consequently, the duration of a time slot equals to γδ.
The activity of node n at channel c in time slot t is detected,
if the channel c is observed by the sensor system in any of
the mini time slots of time slot t. The underlying assumption
used here is that spectrum monitoring is an easier task than
transmitting in a frequency hopping scheme. In other words,
the rate of channel sweeping is higher than the rate of the
frequency hopping. Note that a more capable sensor system
would have a larger γ. For example, a perfect sensor system
detecting every activity with probability 1, would have γ = |C|
and sweep all channels during a time slot to detect any activity.
The activity of nodes in a group g is denoted by an IID

discrete time process Φg = (Φgt )t. Φgt is either IDLE state
or a two-tuple state (Kg

t , F
g
t ), where Kg

t and F gt denote the
active node and channel in time slot t, and Kg

t ∈ Ng and
F gt ∈ Cg .
Under the uniform activity model, nodes in a group are active

with the same probability and the channel used for the activity
is selected uniformly. Therefore, Kg

t and F gt are set to be
independent i.i.d random variables. We assume that the group
g is in IDLE state (no node is active) with probability πgIDLE .
When the group is not IDLE, a node n becomes active at
a channel c with equal probability, i.e., P(Kg

t = n | Φgt 6=
IDLE) = 1

|Ng| and P(F gt = c | Φgt 6= IDLE) = 1
|Cg| . Thus,

for all n ∈ Ng and c ∈ Cg , the probability density function
of Φgt is

P(Φgt = φ) =

{
1−πg

IDLE

|Ng||Cg| , φ = (Kg
t = n, F gt = c),

πgIDLE , φ = IDLE.
(12)

We denote the observed channels by an IID discrete time
process Ψ = (Ψt,τ )t,τ , and {Ψt,τ = c} is the event that
channel c is observed in mini slot τ of time slot t, where
Ψt,τ ∈ C.
Under the uniform observation model, in each mini slot, the

sensor system randomly chooses a channel to observe. Thus,
we assume P(Ψt,τ = c) = 1

|C| for all t > 0 and 1 ≤ τ ≤ γ.
In Figure 2, we show sample paths for activity and observa-

tion processes, where γ = 2. As can be seen in the figure, the
first activity is not detected since observed channels c1 and
c5 are different than the active channel c2. On the other hand,
the activity in the third slot is detected since c3 is observed in
one of the mini time slots.

Fig. 2: Active channels and observed channels under uniform
activity and observation models, γ = 2.
By the uniform activity and observation model, we have that

P(Ψt,ø = c) = 1/|C|, ∀t, ø and P(Φg
t = (Kg

t ,F
g
t = c) | Kg

t =
n) = 1/|Cg|, ∀t. Consequently, the probability that an activity
at time slot t is detected, denoted by qg becomes

qg = P({Ψt,τ = c : ∃j ∈ [1, γ]} | F gt = c)

= (1− (1− 1

|C|
)γ) ≈ γ

|C|
Note that, in general, depending on the activity and observa-

tion model qg can take values between 0 and 1.
For example, the aforementioned perfect sensing system with
γ = |C|, that deterministically observes every channel in each
time slot. In this case, since every activity is detected with
probability one, and qg = 1 for all g ∈ G.
Under the uniform activity and observation model to capture

the complete dataset for group g, all node-channel pairs of the
group should be detected. In group g, there are |Ng||Cg| node-
channel pairs and the probability that one of them gets detected
is qg . Given these and probability of being idle πgIDLE , we
can bound the required time to capture a complete data of a
group as follows:

Theorem 3. To capture all possible node-channel activity
pairs for group g under the uniform activity and observation
model with a probability higher than (1 − ε), the total
observation time required is

γδR(ε) ≥ γδ|Cg||Ng|
qg(1− πgIDLE)

ln(
|Cg||Ng|

ε
)

≈ δ |C
g||C||Ng|

(1− πgIDLE)
ln(
|Cg||Ng|

ε
),

where R(ε) denotes the required number of time slots and γδ
is the duration of a time slot.

5
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Proof of Theorem 3. Under uniform activity and observation
model, the node-channel pairs are observed with the same
probability 1−πg

IDLE

|Cg||Ng| . Thus, the probability that a certain node-

channel pair is detected is 1−πg
IDLE

|Cg||Ng| qg .
Let Zg,rn,c denote the event that the node-channel pair (n.c) in

group g is not detected in the first r time slots. The probability
of this event is given by

P(Zg,rn,c) =

(
1−

1− πgIDLE
|Cg||Ng|

qg

)r
≤ exp

(
−
rqg(1− πgIDLE)

|Cg||Ng|

)
.

Let T g denote the number of time slots to detect all node-
channel pairs in the group. We can write a tail estimate for
T g based on Zg,rn,c’s.

P(T g > r) = P
( ⋃

(n,c)

Zg,rn,c

)
≤ |Cg||Ng|exp

(
−
rqg(1− πgIDLE)

|Cg||Ng|

)
≤ ε

By substituting r with R(ε) and after some mathematical
manipulations on the last inequality, for large |Cg||Ng|, we
obtain a bound on the required number of time slots to detect
all node-channel pairs with probability higher than (1 − ε),
R(ε) as follows:

R(ε) ≥ γδ|Cg||Ng|
qg(1− πgIDLE)

ln(
|Cg||Ng|

ε
) (13)

By using the approximation for qg ≈ γ
|C||Cg| , and multiplying

the number of time slots R(ε) with the duration of a slot γδ,
we obtain the expression in the Theorem 3.

By the Theorem 3, we see that required duration to collect
complete data of a group is proportional to |Cg||C|≥ |Cg|2.
Other than that, the number of nodes in the group and the
probability of being active affects the duration linearly. The
accuracy parameter ε has an effect in order of ln(1/ε), which
is not much costly. Note that, under another activity and
observation model, in general qg can be as high as 1. However,
in a model that the nodes active non-uniformly, the duration to
detect all the node-channel pairs in a group would be longer,
since detecting the less active nodes would take longer.

V. CONCLUSION

We have characterized and presented approaches for network
inference of ad-hoc networks, with overlapping node groups.
Our characterization includes necessary and sufficient condi-
tions, called distinguishability conditions, for network recov-
ery from channel usage data, thereby enabling the efficient
inference of the network configuration. We also provide an
analysis for the required observation time to collect channel
usage data which is necessary to recover the network. As
should be clear network inference based solely on channel
usage is quite difficult, however one can also exploit the
dynamics (activity correlation) among nodes sharing frequen-
cies to construct a correlation matrix, which can further be

incorporated in the inference process. We plan to explore this
ıdea in our future work.
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