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Abstract—Next generation wireless schedulers will support
increasingly heterogeneous devices/applications in terms of their
traffic characteristics and service requirements. Particularly
challenging is the need to deliver traffic subject to delay and
reliability constraints in a spectrally efficient manner. We propose
a new measurement-based Opportunistic Guaranteed Deadline
Scheduler (OGDS) that meets strict delay deadlines on users’
packets. This is achieved by scheduling packet transmissions
when the current channel rate is better than that expected in the
time window before packet deadlines expire. In order to meet
such requirements one must have a complementary admission
control policy. We exhibit a simple, once again measurement
based policy, that indirectly accounts for heterogeneity in traffic,
channel and delay constraints by monitoring statistics of OGDS’s
resource usage. We show via extensive synthetic and trace driven
simulations that OGDS requires at most 10−25% more resources
compared to an optimal offline scheduling policy with complete
knowledge of future channel rates, and performs much better
than standard baselines including the state-of-the-art MLWDF
scheduler. Finally, we propose a modification to OGDS that
enables one to control the jitter at a possible loss in spectral
efficiency.

Index Terms—Wireless resource allocation, Delay deadline,
Opportunistic scheduling, Low Latency, QoS constraints

I. INTRODUCTION

Each generation of wireless technology has pushed down-
link/uplink data rates higher to support ever increasing num-
bers of devices and applications with higher data requirements.
In particular, 5G/6G standards have sought to not only deliver
high data rates but also manage users’ heterogeneous Quality
of Service (QoS) in terms of delay, reliability, jitter, spectral
efficiency and throughput. There is a substantial literature in
wireless (and wireline) scheduling that provides different tools
to address the above challenge, yet, as discussed below, it still
falls short in many respects. Below, we briefly highlight some
of that literature and the associated shortcomings.

A. Related work

Many works have focused on a setting where users’ data
queues are fully backlogged. When this is the case, one
can consider devising schedulers that maximize the sum of
the users’ utility of their allocated long term rate [1]. For
example, Proportionally Fair (PF) wireless scheduling emerges
when users have log utility functions, see e.g., [2], and
results in a scheduler that realizes a good tradeoff between
opportunistically scheduling users which have good channels
versus achieving a fair long term allocation amongst the users.

Variations on these ideas have been proposed where the users’
utility is a function of the short term throughput, see e.g.,
[3]. This leads to a more responsive allocation avoiding short
term neglect of any user. In practice, PF, and other utility
maximizing schedulers, provide a simple and effective strategy
for best effort or enhanced Mobile Broadband (eMBB) traffic
with no strict delay requirements. Still, questions remain as
to what happens when user queues are not fully backlogged
or how to choose the fairness criterion, i.e., utility functions
when there are delay constraints that require high reliability.

In settings where users’ queues are not fully backlogged,
researchers have focused on devising queue and channel
dependent wireless schedulers which are throughput optimal,
i.e., ensure user queues’ stability whenever feasible. These
schedulers also address performance objectives, such as Max-
Weight [4], which is delay optimal in the idealized symmetric
case, Exponential rule [5] which attempts to minimize the max
user queue, and Log rule [6] which attempts to minimize the
mean delay. Such schedulers have been adapted to more practi-
cal settings, such as the Modified Largest Weighted Delay First
(MLWDF) [7] which schedules users based on head-of-line
packet delays, current channels, and other hyperparameters
reflecting user QoS/allocation objectives. In practice, such
schedulers do meet delay constraints (with high probability)
if sufficient resources have been provisioned, yet it is difficult
to verify when this is true, and as such provide a graceful
degradation across users when this is not the case.

Another class of wireless schedulers was born from mod-
ifying/adapting ideas from wireline scheduling (e.g., traffic
shaping and network calculus [8], [9]) to meet QoS re-
quirements under wireless channel variations. For instance,
weighted round robin [10] or weighted fair queueing [11]
employ user weights drawn from heuristics or tokens [12]
based on service deficit [13] to either minimize the average
delay or provide a graceful degradation of service. Much of
the above mentioned work focuses on scheduling one class of
users, e.g., best effort users sensitive to throughput, or traffic
that is sensitive to packet delays. In practice, wireless systems
need to be shared by heterogeneous user classes.

While many schedulers in the existing literature address
delay constraints for real time traffic, spectral efficiency is
often neglected, leading to lesser resource availability for non
real time traffic. In this paper, we place such interplay front
and center, with a focus on not only developing a scheduler
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that meets delay constraints but one that does so in a spectrally
efficient manner.

No practical wireless scheduling policy is complete without
a complementary strategy for admission control and/or traffic
shaping. Given the uncertainty and heterogeneity associated
with traffic, channels, and user requirements in a wireless
system, it is virtually impossible to devise good models that
would allow one to predict if the users’ QoS requirements will
be met under a given scheduling policy. While there have been
many works in literature that propose Measurement Based
Admission Control (MBAC) [14]–[16], it has to be noted that
none of those accurately meet the packet loss targets [17]
under finite buffer sizes, which is sufficiently similar to delay
violation probability.

B. Our contributions

In this paper, we propose and evaluate a new wireless sched-
uler, Opportunistic Guaranteed Deadline Scheduler (OGDS),
that meets packet deadline and/or jitter constraints. We develop
measurement based adaptive thresholds on channel rate that
drive scheduling decisions in a manner that is sensitive to
users’ heterogeneous channel, traffic, and packet delay dead-
lines. The key idea is to track recent channel rate variations

to predict if the current channel state gives the best pos-

sible rate to transmit a packet before its deadline expires.

When coupled with an effective admission control policy,
our scheduling policy provides excellent spectral efficiency
as compared to the spectral efficiency of any optimal offline
delay constrained scheduler. Moreover, the performance and
flexibility of our algorithm are significantly better than state-
of-the-art scheduling policies such as MLWDF [7]. We further
propose a modification of OGDS that would allow service
providers to control both packet delay and jitter at a possible
cost in spectral efficiency.

We demonstrate the performance and robustness of our
scheduler on key performance metrics through extensive syn-
thetic and trace driven simulations, i.e., based on 3GPP
channel models as well as real world wireless channel time
series [18]. Our simulations show that under OGDS, for a fixed
set of delay constrained users, one can achieve significantly
improved spectral efficiency than MLWDF, in turn allowing
one to achieve higher throughput for best effort traffic shar-
ing the same resources. Finally, we propose a measurement
based admission control strategy, which captures the traffic
dynamics, channel variations, and the scheduler’s resource
allocation strategy. This circumvents the need for a model for
QoS prediction, but not unlike previously considered MBAC
or other admission control policies may occasionally fail to
meet requirements and have to resort to prioritizing a graceful
degradation of users’ QoS.

II. SYSTEM MODEL

We consider discrete time downlink scheduling for a base
station serving a variety of users with either real time or
best effort traffic. We denote by set U the delay constrained
users with stochastic arrivals and possibly heterogeneous QoS

requirements. The base station also serves a set E of infinitely
backlogged best effort traffic users. We denote by (Au

n)n∈N the
arrival process for user u ∈ U , where Au

n is a random variable
denoting the number of bits that arrive and are available
for service in time slot n with a transmission deadline of
n + du, where du is the delay constraint for user u. In
general, it is not possible to ensure delay guarantees to a
user without prior knowledge of its traffic statistics or of
constraints on its traffic. A common approach for the latter
is to establish and enforce (through traffic policing/shaping)
apriori constraints on the user’s traffic that can be used to
design resource allocation mechanisms guaranteed to meet a
user’s QoS requirements. In this paper, we devise a scheduler
that meets packet delay constraints without directly relying on
traffic shaping constraints, but assuming admission control is
in place.

The transmit resources are modeled as a sequence of
frames/slots each comprising multiple Resource Blocks (RBs)
which can be arbitrarily allocated to users on a per time slot
basis by the scheduling policy. Each RB denotes a slice of
time and frequency block available to the BS for resource
allocation. We let the random variable Cu

n ∈ R+ denote the
channel rate (bits per RB) that can be transmitted to user u
if it is allocated a single RB on time slot n. A non zero
transmission rate Cn can be viewed as a coverage/connectivity
requirement for users, which is required to provide high levels
of reliability to delay constrained traffic. A user may be
allocated multiple RBs, but we assume a flat fading setting
where the rate delivered to u is the same across RBs in a given
time slot. Further, we assume (Cu

n)n∈N are independent and
identically distributed (i.i.d.) across time slots. We will con-
sider more general settings such as non identically distributed
or correlated channels in the simulations section.

A scheduling policy π, decides the number of RBs to
be allocated to each user in each time slot. For ease of
exposition, we will assume that there are enough RBs to
provision service to all users in the system, and in the sequel,
we will introduce admission control to limit the number of
users as needed. The decision of policy π at time n is assumed
to be causal with respect to knowledge of the current and past
channel rates (Cu

τ )
n
τ=0, arrivals and queue lengths, allowing

for opportunistic scheduling, i.e., taking advantage of capacity
variations across time. In particular, we let Mu,π

n ∈ R+ denote
the number of RBs allocated to user u on slot n by a policy
π, given the observed history. Such an allocation provides an
overall service rate Su,π

n (total bits transmitted with potentially
multiple RBs allocated) to the user u on time slot n given by,

Su,π
n = Mu,π

n Cu
n .

The cumulative service over an interval (τ, τ+n] is as follows,

Su,π(τ, τ + n] =
τ+n
∑

k=τ+1

Su,π
k . (1)

We let Au
n, Qu,π

n , and Su,π
n denote the user’s arrivals, queue

length, and service rate, respectively, at time n. A user’s data
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queue (in bits) is modeled as a First Come First Serve (FCFS)
discrete time queue. Then the number of bits in the user’s
queue at the start of slot n+ 1, then

Qu,π
n+1 = [Qu,π

n − Su,π
n ]+ +Au

n+1 . (2)

III. OPPORTUNISTIC GUARANTEED DEADLINE

SCHEDULING

In this section, for the sake of brevity, we will drop the
user index (marked by superscript u) as we consider per user
scheduler. The user index will be reintroduced in the sequel
when we introduce admission control. Suppose we start with
an empty user queue at t = 0, then the arrival process A(0, τ ]
delayed by d would be such that A(−d, τ − d] = A(0, τ −
d]. Fig. 1 depicts the cumulative arrivals A(0, τ ] in blue and
the corresponding delayed version in red A(0, τ − d]. The
delayed arrivals curve represents the worst case cumulative
service that a server could provide without violating the delay
constraint on each packet. Any cumulative service curve that
lies within the arrivals and worst case departures curve will
be delay compliant.

τ

Cumulative arrivals
Delayed

cumulative
arrivals

t0

Delay
compliant service

Fig. 1: Delay compliant cumulative service along with worst
case delayed service curve.

Definition 1. GDS(d) We let the Guaranteed Deadline

Scheduler with parameter d, GDS(d), be a scheduling policy

that guarantees each bit in the user data queue be serviced

within a delay of d since its arrival. Clearly,

A(0, τ ] ≥ SGDS(0, τ ] ≥ A(−d, τ − d].

Definition 2. Opportunistic GDS(d). A threshold based

OGDS(d) scheduling policy π is as follows: whenever the

channel rate Cn exceeds a threshold γπ
n , a sufficient number

of RBs are allocated by the scheduler to completely clear the

queue backlog, i.e, Mπ
n = Qπ

n/Cn. Otherwise, a minimal num-

ber of RBs are allocated so as to ensure that the cumulative

service of π at slot n exceeds or matches that of the d delayed

cumulative arrival curve.

At each time slot, the number of slots τn over which there
is flexibility to pick when to serve the data in the user queue
depends on the residual time until the earliest deadline. Note
that while any data whose deadline is due to expire at a given
time slot will need to be allocated resources if the current
channel rate is expected to be better than those in the next τn+

1 window (exceeds the threshold), the entire queue backlog is
cleared.

Algorithm 1 details the steps involved in OGDS(d) schedul-
ing. When the channel rate is above a certain threshold
Cn > γπ

n , the OGDS policy π serves all data in the user
queue,

Sπ
n = Qπ

n.

Otherwise, the scheduler π allocates only the minimum num-
ber of RBs required to meet the worst case delayed service
curve, i.e.,

Sπ
n = [A(0, n− d]− Sπ(0, n− 1]]+ .

Specifically, if the cumulative service provided by π until time
n−1 is greater than that of the worst case delayed cumulative
service at time n, then policy π can completely refrain from
allocating any resources at time n if the channel rate is below
the threshold.

OGDS Threshold selection: Define τn as the slack avail-
able to the scheduler before it is forced to schedule data to
maintain delay guarantees, i.e.,

τn = min [k : k ≥ n,A(0, k − d] ≥ Sπ(0, k]] . (3)

At the time n, the OGDS scheduler has a slack of τn time slots
before it is forced to start servicing the user queue. Therefore,
the current channel rate realization cn is considered good for
opportunistic scheduling if,

cn > max
i=1,...,τn+1

Cn+i,

⇐⇒ FC(cn)
(a)
> FC

(

max
i=1,...,τn+1

Cn+i

)

,

⇐⇒ FC(cn)
(b)
> max

i=1,...,τn+1
FC (Cn+i) ,

⇐⇒ FC(cn)
(c)
> max

i=1,...,τn+1
Ui.

(4)

Step (a) follows from the monotonicity of the cumulative
distribution function (CDF) FC(·) of the wireless channel rate

Algorithm 1: Guaranteed Deadline Scheduling with
opportunism over temporal variations.

1 initialize Sπ
0 = 0;

2 while n > 0 do

3 τn = min [k : k ≥ n,A(0, k − d] ≥ Sπ(0, k]];

4 if Cn > γπ
n then

5 Sπ
n = Qπ

n ;

6 else

7 Sπ
n = [A(0, n− d]− Sπ(0, n− 1]]+ ;

8 end

9 Mπ
n = Sπ

n/Cn;

10 Qπ
n+1 = Qπ

n − Sπ
n +An+1 ;

11 end
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and step (b) follows from the commutative property of the
max function with CDF FC(·). Step (c) follows from the fact
[19] that FC(Cn+i) ∼ Ui are i.i.d. Uniform[0, 1]. Since the
expectation of the maximum of τn+1 independent uniformly
distributed random variables is 1− 1

τn+2 , a reasonable thresh-
old to determine if cn is better than the next τn channel rate
realizations is given by,

γπ
n = F−1

C (1− 1/(τn + 2)) . (5)

In the discussion above, we have assumed that the user’s
channel rate CDF is available. Typically, the serving BS
tracks the user’s Channel State Information (CSI) for adaptive
modulation and coding, therefore, it is reasonable to assume
that we can empirically estimate the channel rate CDF using
CSI [20]. Also note that when the channel rates are discrete,
we could use linear interpolation to invert the empirical CDF
and compute the percentiles for the channel rate threshold.

A. Modified OGDS

While most scheduling policies for delay constrained traffic
focus on improving key performance metrics such as energy
efficiency [21], reliability [22] and delay, jitter is often ne-
glected. It is a particularly important metric when transmitting
periodic updates to networked real-time control and/or in-
teractive AR/VR gaming applications. Disparate transmission
delays across users can be undesirable/intolerable, especially
in scenarios that need synchronization of updates across all
users. There are multiple ways in which one could measure
the variability of transmission delay. In this work, we define
jitter in terms of the standard deviation of delay for data
transmissions that are periodic in nature.

We propose an elementary modification to the OGDS algo-
rithm that provides a way to trade off between spectral effi-
ciency, delay and jitter, by carefully selecting a transmission
window over which resources are allocated to the user. One
could either wait a predetermined number of transmit instants,
say ζ, or artificially advance the targeted delay deadline to d−ζ
for reducing packet jitter. A shorter window for transmission
reduces the number of opportunities available for a user to
be efficient, nevertheless, it reduces the variability in delay.
Specifically, in Algorithm 1, step 10, the user queue update
equation could be modified as follows,

Qπ
n+1 = Qπ

n − Sπ
n +An+1+ζ , (6)

where Sπ
n denotes the service provided at time n, and An+1+ζ

stands for the arrivals at time n + 1 + ζ. In the sequel, we
will refer to the parameter ζ as the jitter control parameter
and demonstrate how the modified OGDS policy performs in
terms of spectral efficiency and jitter.

B. Lower Bound on Spectral Efficiency

In this subsection, we develop a lower bound on the
minimum number of resource blocks required by any wireless
scheduler meeting the delay deadlines. The lower bound is
based on considering an offline policy with complete knowl-

edge of the future channel realizations and thus not achievable
in an online setting, yet a good benchmark.

Consider a user with an arrival process (An)n and a time
varying channel rate (Cn)n per resource block, whose traffic
is subject to a delay constraint of at most d slots.

Theorem 1. For any scheduling policy π meeting the delay

constraint, let Nπ
n denote the (possibly fractional) number of

resource blocks used to serve the arrivals An, these RBs may

be allocated at the earliest on slot n, but no later than the

deadline n+ d. Similarly, we let Mπ
n denote the total number

of RBs allocated on slot n. It then follows that,

Nπ
n ≥ An min

0≤j≤d

[

1

Cn+j

]

a.s. . (7)

Furthermore, if the arrivals and channel rate processes are

stationary and independent of each other and the policy π is

such that,

lim
n→∞

1

n

n
∑

τ=1

Nπ
τ = N̄π,

then the time average of (Mπ
n )n also converges to a limit M̄π ,

which satisfies

M̄π = N̄π ≥ E[A1]E





1

max
0≤j≤d

C1+j



 . (8)

Proof. For any policy π satisfying the delay constraint d, it
must be the case that the An bits arriving to the user queue at
time n are served within the next d slots. Thus, in particular,
if we let Sπ,n

n+j denote the number of bits of An that are served
on slot n+ j, we have that the possibly fractional number of
resource blocks required must satisfy,

Nπ
n =

d
∑

j=0

Sπ
n+j

Cn+j
, where

d
∑

j=0

Sπ
n+j = An,

≥ An min
0≤j≤d

[

1

Cn+j

]

a.s.

(9)

It is easy to establish the following inequalities,

1

n

n−d
∑

τ=1

Nπ
τ ≤

1

n

n
∑

τ=1

Mπ
τ ≤

1

n

n
∑

τ=1

Nπ
τ , (10)

because on the one hand, the total RBs allocated across
the first n time slots is lower bounded by the total number
that was allocated to serve the traffic that arrived within
(0, n − d]; indeed given the delay constraint, all such traffic
should be served prior to time n. On the other hand, the
total number of RBs allocated in the first n time slots can at
most be the total RBs used to serve all the traffic that arrived
within (0, n]. Taking the limit as n → ∞ in (10) and the
additional assumptions stated in the theorem, it is clear that
the time average of (Mπ

n )n converges to M̄π and M̄π = N̄π .
The lower bound in (8) then follows from (7) under the
assumptions on arrivals and channels being stationary and
independent.
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IV. SIMULATION RESULTS

We consider a BS serving a set of URLLC users and eMBB
users. The received SNR was modeled using the 3GPP Urban-
Micro path loss model [23], with Rayleigh distributed small
scale fading. We use 3GPP Modulation and Coding Scheme
(MCS) to find the coding rate Cn per RB based on quantized
SNR values in the range −6.934 dB ≤ SNR ≤ 20 dB refer
[24, Table 5.2.2.1-2]. To determine the channel rate thresholds,
we estimate the rate CDF FC(·) on a given slot for each
user using the last 100 channel realizations. Please note that
using fewer channel rate samples can lead to errors in CDF
estimation, however, we found that the impact on the spectral
efficiency was less than 5%. Furthermore, we assume error-
free transmissions to users (simulation results for performance
under channel transmission errors were not included to space
limitation). Finally, all plots in this section were generated
over 106 slots, resulting in a ±0.1 error for the estimated mean
number of allocated RBs per slot M̄π with 99% confidence
interval.

We shall use Guaranteed Rate Scheduler (GRS) as a base-
line policy that meets delay deadlines by providing a fixed
data rate every time slot. This baseline is analogous to a strict
service curve in Deterministic network calculus [8]. One can
determine the minimum fixed service rate s for leaky bucket
constrained arrivals using the formula [8],

s =
ρσ

(ρ− µ)d+ σ
, (11)

where ρ is the peak arrival rate, µ is the mean arrival rate,
σ is the token buffer size and d is the delay constraint. We
also use the multicarrier version of MLWDF [7] policy as a
benchmark for scheduling URLLC users.

A. Improvement in eMBB throughput

In this subsection, we demonstrate the throughput improve-
ment for eMBB users where the BS supports 8 different users,
3 URLLC and 5 eMBB users. The five eMBB users are located
at distances 520, 560, 650, 720, 800 meters from the BS. The
URLLC users are located at distances 300, 500, 700 meters
from the BS. Users are located at different distances from
the BS to capture a realistic, heterogeneous setting. While
different settings were considered in terms of the number of
users, for simplicity we show results for the 3 URLLC users
and 5 eMBB users. We consider ON-OFF bursty arrivals where
packets arrive at a peak rate ρ during the ON period. The ON,
OFF cycles are of duration σ

ρ−µ
, σ
ρ

, respectively. Note that
we assume that eMBB users are infinitely backlogged and
do not have any stringent QoS requirements, i.e. best effort
traffic. Furthermore, we use proportionally fair scheduling [2]
at each time slot to select the eMBB user that will be served.
The leaky bucket parameters for URLLC users are provided
in TABLE I.

A total of 6000 RBs are available to all the users served
by the BS, where URLLC users are allocated resources with
priority. The RBs that remain unused after allocating resources
to all active URLLC users are then used to serve eMBB users.

User distance (m) Delay(ms) ρ µ σ
1 300 5 10 5 50
2 500 3 20 10 50
3 700 7 10 5 50

TABLE I: URLLC user parameters.

Fig. 2: Long term throughput distribution for eMBB users.

Fig. 2 showcases the throughput gains for eMBB users
under various scheduling algorithms for URLLC users. Note
that the arrivals (for URLLC users) and the channel rate
realizations for all the users are the same while evaluating each
of the algorithms. Clearly, OGDS outperforms the baseline
GRS policy and the benchmark MLWDF which was designed
[7] for QoS provisioning in wireless links. It is indeed very
close to the throughput gain bound set by the optimal policy.

B. Improvement in Reliability

Fig. 3 illustrates the improvement in resource allocation by
having more transmissions scheduled when the channel rate
is higher than the threshold. We plot a weighted distribution
of the channel strength per channel use, where the weights
are directly proportional to the number of bits scheduled
for transmission at that channel strength. This enables us to
compare and contrast all the proposed scheduling policies
according to the efficiency with which each policy is able
to identify the best time slot for data transmission in terms
of channel rate. Fig. 3 validates the superior performance
of OGDS policy across all users, irrespective of the average
channel strength (weak/medium/strong) of the received signal.
Furthermore, OGDS policy schedules traffic at a relatively
better channel strength – which translates to better reliability
as the transmission error rate is a decreasing function of SNR.

C. Network jitter performance

We consider real time video streaming applications to
evaluate the jitter performance of our modified OGDS policy.
Let traffic arrivals be periodic, with 50 payloads of size 1
KB each that arrive once every 10 milliseconds (ms), over a
duration of 106 ms for a total rate of 5 Mbps. A range of
4 − 10 ms delay deadlines are considered for each payload.
Fig. 4(b) exhibits how jitter reduces for each user with higher
ζ at the cost of lower spectral efficiency as shown in Fig.
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(a) Strong user. (b) Medium user. (c) Weak user.

Fig. 3: The weighted distribution of channel strength per channel use for data transmission under all three policies.

4(a). The plots for modified OGDS are labeled as “ζ-OGDS”,
where ζ is the jitter control parameter. Also, note that as the
delay deadline increases we see a fall in the total number of
RBs required for all policies.

D. Spectral efficiency under nonstationary environment

Our design of the dynamic threshold that triggers packet
scheduling was based on the assumption that channel rate
variations are i.i.d across time slots. However, in practice,
wireless channel rates are often nonstationary, depending on
user mobility and other propagation dynamics. To evaluate
the performance of our scheduler on non-stationary wireless
channels we used a trace [18] driven simulation for all three
policies. In our simulation, we used 15 samples of past channel
realizations to track the empirical CDF of the wireless channel.
Fig. 4(c) demonstrates that OGDS is very close to the offline
lower bound in a practical real world wireless environment.

E. Admission Control

We consider a set of 100 users with ON-OFF bursty traffic
as described in IV-B with parameters (in packets per time
slot) σ = 50, ρ = 10, µ = 5. Each user’s delay deadline and
distance from the BS were drawn uniformly random from their
respective range of values as shown in TABLE II. The channel
and traffic dynamics were generated over 106 time slots. We

denote the total resource requirement of users 1, . . . , u that are
admitted into the system by the random variable Xu.

Parameter Range of values

Distance {200, 250, . . . , 800}
Delay Deadline {2, 3, . . . , 10}

TABLE II: URLLC user delay and traffic parameters sample
space for simulation.

Fig. 5: Admission control using large deviation bounds on the
total RBs required for all admitted URLLC users.

Fig. 5 shows the number of users that can be admitted into

Medium user

Strong user

Weak user

(a) Spectral efficiency. (b) Jitter performance. (c) Non-stationary environment.

Fig. 4: Spectral efficiency, packet jitter of a single user as a function of the delay and jitter control parameter ζ.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on December 08,2023 at 15:40:58 UTC from IEEE Xplore.  Restrictions apply. 



the system as a function of the system capacity m. The solid
lines denote the number of users u that could be admitted
such that the probability of Xu exceeding m is less than
δ = 10−3. For the same set of users, we also use the Gaussian
approximation Xu ∼ N (µu,σ2

u), where the aggregate mean
and variance, denoted µu =

∑u
i=1 µi,σ2 =

∑u
i=1 σ

2
i , are

directly measured by observing the resource allocation to
admitted users under OGDS. Let Y ∼ N (µ̂, σ̂2) model the
random resource requirement for a new user. The probability
that the total resource requirement Xu + Y will exceed m is
approximated using the following inequality, see [25],

P (Xu + Y > m) ≤ e−
(m−µ)2

2σ2 , (12)

where µ = µu+ µ̂ and σ2 = σ2
u+ σ̂2. Note that the inequality

in (12) provides a computationally reasonable expression that
can be used to decide if the new user can be admitted without
exceeding δ.

Typically, Y is unknown, so we use the mean µ̂ = 1
u
µu

and variance σ̂2 = 1
u
σ2
u as a proxy for a typical new user.

Note that one could also use the worst case user statistics
(of currently admitted users) as a proxy for the new user,
specifically, µ̂ = max

1≤i≤u
µi and σ̂2 = max

1≤i≤u
σ2
i . It can be seen

in Fig. 5 that as long as the system capacity is large enough,
one can use Gaussian approximation to model the aggregate
resource requirement for admission control.

V. CONCLUSION

We have developed a new measurement based opportunistic
scheduler for delay and jitter constrained traffic and demon-
strated its efficiency by showing how close its spectral effi-
ciency is to the optimal offline scheduler. An optimal offline
scheduler can be designed if complete information on future
channels is known with high accuracy. One could consider
applying machine learning techniques to predict future chan-
nels to help reduce the efficiency gap (with respect to the
optimal). While state-of-the-art ML predictors are accurate
over a smaller horizon, research on accurate prediction over
a much longer time scale is still in progress, especially when
the wireless environment is non-stationary. Finally, we have
also demonstrated the robustness of our proposed scheduler
in tracking past channel variations to identify good trans-
mission opportunities despite nonstationary wireless channel
variations. An interesting future research direction is to model
user mobility and identify the optimal window of past channel
samples to best estimate the empirical CDF of the user.
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