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Abstract—Next generation wireless schedulers will support
increasingly heterogeneous users/devices in terms of their traffic
characteristics and service requirements. Particularly challenging
is the need to deliver low latency traffic with strict deadlines in
a spectrally efficient manner. We introduce a class of wireless
schedulers, Opportunistic Guaranteed Rate (OGRS) that exploits
the temporal variability in users’ channel capacity with a view
on maintaining delay guarantees. OGRS meets the user’s delay
constraints by opportunistically allocating the user the equivalent
of a fixed service rate, which given a dual leaky bucket constraint
on its traffic will ensure the delay requirements are met. We
consider offline policies with access to future channel rates,
which establishes a bound to the wireless spectral efficiency. We
show via extensive simulations that OGRS can be within 10%-
40% of this bound for a range of delays that were considered.
These gains translate to more than a two fold enhancement in
eMBB users’ throughput, when URLLC and eMBB traffic share
resources. Finally, we propose a measurement based admission
control strategy for latency constrained URLLC users, so that
the network can guarantee QoS to all its users - existing as well
as newly admitted ones.

Index Terms—Delay deadline, Opportunistic scheduling, Low
Latency, QoS constraints, Leaky bucket, URLLC scheduling.

I. INTRODUCTION

THE support of Ultra Reliable Low Latency Communica-

tion (URLLC) is expected to be critical towards enabling

next generation [1] wireless applications such as industrial

automation, augmented and virtual reality, autonomous driv-

ing, remote diagnosis and health care. The key challenge in

supporting such applications is their stringent constraints on

Quality of Service (QoS). The latency constraints for these

applications range between 5 and 30 ms, with reliability

requirements of 99.9 to 99.9999%, see e.g., [2]. Moreover,

given the limited spectrum available and associated costs, it

is also critical to deliver such URLLC based services in a

spectrally efficient manner. In general, this is challenging, e.g.,

one must add substantial upfront redundancy to meet reliability

requirements without delays associated with re-transmissions,

or given low latency requirements one may not be able to

exploit opportunism or wait for data to achieve more efficient

modes of transmission.

In addition to dealing with the requirements of URLLC

traffic, it is also critical to devise resource allocation and

scheduling strategies that enable the support, of a mix of traf-

fic, e.g., Enhanced Mobile Broadband (eMBB) and Machine-

Type Communications (MTC) traffic, and possibly network

slices provisioned to support different classes of applications.

Our focus in this paper will be on spectrally efficient schedul-

ing of wireless user traffic with possibly heterogeneous delay

deadlines, perhaps the most challenging traffic class, yet we

aim to provide an approach that can be combined with other

scheduling policies, e.g., proportionally fair or utility maxi-

mizing schedulers used to support eMBB traffic, to manage

an assortment of services with diverse QoS requirements.

Below we provide a brief summary of related work in this

area, focused primarily on scheduling with delay based QoS

constraints. We then introduce the key contributions of this

paper.

A. Related Work

Wireless scheduling can be based on the user’s queue length,

channel quality, history of past allocations, etc., and may have

multiple objectives including Quality of Service (QoS) and

fairness. In settings where users’ queues are fully backlogged,

perhaps the best known strategies are utility maximizing, i.e.,

maximizing the sum of users’ utilities, which in turn is a

function of each user’s long term throughput. Perhaps the

most popular wireless scheduling often used in practice is the

proportionally fair scheduler, see [3], which maximizes the log

utility of users’ long term throughput. Such an approach results

in users to fair long term rates with opportunistic scheduling

in the short term when the channel rate is high. A more

sensitive resource allocation that averts short term neglect of

user allocation, see [4], maximizes the user’s utility which is a

function of the short term throughput. In general, such utility

maximizing schedulers are best suited for elastic traffic with

no hard deadlines. Several questions such as how to choose the

fairness criterion when user queues are not fully backlogged or

when there are reliability constraints for meeting strict delays

remain unanswered.

In settings where user queues are not fully backlogged

but instead driven by stochastic arrivals, various channel

state dependent throughput optimal policies (that guarantee

queue stability when feasible) have been devised, e.g., [5],

and may also achieve different types of delay objectives,

e.g., roughly minimizing the max delays across users or

overall average delays. While efficient for “best effort” type

traffic, such scheduling policies do not deliver strict delay

guarantees needed for real-time applications and/or URLLC

based services. Some of these schedulers also address other



performance objectives, such as minimizing the max user

queue length in [6], or minimizing the average delay as in [7].

Adaptations of throughput optimal schedulers to practical set-

tings, like Modified Largest Weighted Delay First (MLWDF)

[8] consider the channel state, head-of-line packet delays and

user weights reflecting QoS objectives for scheduling. Such

schedulers offer a graceful degradation of service when there

are insufficient resources to meet QoS of all users.

Another interesting line of research borrows ideas from

wireline scheduling (e.g., traffic shaping and network calculus

[9], [10]) to satisfy user QoS constraints under wireless

channel variations. Weighted round robin [11] or weighted

fair queueing [12] employ heuristic user weights or tokens

[13] based on service deficit [14] to either minimize the

average delay or provide a graceful degradation of service.

Much of the above mentioned work focuses on scheduling one

class of users, or traffic that is sensitive to packet delays. In

practice, wireless systems need to be shared by heterogeneous

user classes. Packet level deficit tracking for evaluating the

QoS service deficit has been considered for each user in

[15], however, such an approach is prohibitively expensive

in complexity when there are a large number of users. In

contrast, we employ cumulative service based techniques and

queue based scheduling, avoiding the need to track packet level

deadlines or control. Wireless scheduling for optimizing both

service regularity and mean delay is considered in [16], but

the emphasis is on graceful degradation rather than guaranteed

latency. Although [17] considers scheduling with reliability for

homogeneous user QoS requirements, it is assumed that only

one user can be scheduled every time slot which is a severe

limitation under practical scenarios.

Scheduling with guaranteed QoS is considered in [18], with

no improvement in spectral efficiency for latency constrained

users. Joint resource allocation for URLLC and eMBB traffic

is proposed in [19] but opportunistic scheduling is limited to

eMBB users. More recent literature on URLLC scheduling

[20]–[24] include reliability guarantees, however, opportunis-

tic scheduling has not been given much consideration apart

from the perspective of energy efficiency [25] or the violation

of deadline probability [26] or devising token based quality

assurance [13] which may starve weaker users until one is

forced to schedule close to their deadline. Previous research

can only be considered a first step towards a more profound

understanding of developing spectrally efficient algorithms for

delay constrained traffic. To the best of our knowledge, a

simple approach to opportunistic scheduling over temporal

channel variations for deadline constrained traffic has not

been considered in the existing literature. In this work, we

propose a new class of opportunistic scheduling algorithm

for URLLC users with heterogeneous traffic and disparate

QoS requirements, to enhance the throughput/utility for eMBB

traffic that also share the overall network resources.

Studies on QoS provisioning cannot be considered complete

without addressing the question of admission control and/or

traffic shaping/policing. A closer look at existing literature

reveals that much of the work on wireless scheduling does not

solve this problem. Given the wireless channel uncertainty, it

is infeasible to predict if a given scheduling policy will be

able to meet the user’s QoS constraints with high reliability.

Given the uncertainty and heterogeneity associated with traffic,

channels, and user requirements in a wireless system, it is

virtually impossible to devise good models that would allow

one to predict if the users’ QoS requirements will be met

under a given scheduling policy. While there have been many

works in the literature on Measurement Based Admission

Control (MBAC) [27]–[29], it has to be noted that none of

those accurately meet the packet loss targets [30] under finite

buffer sizes, which is sufficiently similar to delay violation

probability.

B. Our contributions

We propose a class of wireless schedulers that under appro-

priate assumptions can meet heterogeneous delay deadlines

and do so in a spectrally efficient manner such that the more

relaxed the constraint to more efficient. The key underlying

idea is to leverage the flexibility of wireless systems, in

terms of allocating a time varying number of Resource Blocks

(RB) to overcome/exploit variations in wireless users’ capacity

per RB. If a user’s traffic is leaky bucket constrained, one

can determine a fixed service rate that will ensure a desired

maximum delay. This permits one to devise a scheduler, the

Wireless Guaranteed Rate Service (WGRS), which will ensure

a user will see a fixed service rate even though with channels

that have stochastic variations.

In fact, any scheduler which allocates at least as much

cumulative service as the WGRS scheduler over busy periods

is GRS compliant, and will thus also meet the user’s delay

deadlines. This observation suggests the possibility of oppor-

tunistically serving a user’s data ahead of time when channel

rates are good, relative to the GRS scheduler, and/or delay such

service when channel rates are poor, as long as the scheduling

is GRS compliant. We devise a class of Opportunistic GRS

(OGRS) schedulers that take advantage of this relaxation

along with knowledge of the statistics of the users’ channel

variations, to achieve better spectral efficiency while meeting

users’ strict delay constraints.

By considering oracle-aided policies that have access to

future channel capacity realizations, we show via extensive

simulations that OGRS can be within 10% to 40% of such

policies as the delay constraint is relaxed. These gains translate

to doubling the eMBB user’s throughput even for the weakest

user when URLLC and eMBB traffic share resources or an

increase of upto 57% in the number of users admitted as long

the arrival rates and channel strengths are similar for the newly

admitted users.

Finally, we propose a Measurement Based Admission Con-

trol (MBAC) strategy, that indirectly accounts for the hetero-

geneity in traffic, channel, and delay constraints by directly

tracking resource usage statistics based on the resource allo-

cation algorithm of our proposed OGRS scheduler. While this

approach may be more robust to uncertainty, it may fail from



time to time, unlike previously considered MBAC policies, and

may have to resort to prioritizing a particular class of users.

II. SYSTEM MODEL

We consider discrete time downlink scheduling for a base

station serving a set U of URLLC users with stochastic arrivals

and possibly heterogeneous QoS requirements and a set E of

backlogged eMBB users. We denote by (Au
n)n∈N the arrival

process for user u ∈ U , where Au
n is a random variable

denoting the number of bits that arrive and are available for

service in time slot n with a transmission deadline of n + d.

In general, it is not possible to ensure delay guarantees to

a user without prior knowledge of its traffic statistics or of

constraints on its traffic. A common approach for the latter

is to establish and enforce (through traffic policing/shaping)

apriori constraints on the user’s traffic that can be used to

design resource allocation mechanisms guaranteed to meet

a user’s QoS requirements. In Section III and IV of this

paper we will assume each user’s traffic satisfies dual leaky

bucket constraints [9] with parameters (ρu, σu, µu), where σu

denotes the token bucket size in bits and ρu, µu denote the

peak and mean bit arrival rate per time slot, respectively. The

user’s cumulative arrival process Au(·, ·] is thus constrained

as follows for all τ, n ∈ N,

Au(τ, τ + n] =

τ+n
∑

k=τ+1

Au
k ≤ min [ρun, σu + µun] . (1)

The base station transmit resources are modeled as a se-

quence of frames/slots each comprising multiple Resource

Blocks (RBs) which can be arbitrarily allocated to users on a

per time slot basis by the scheduling policy. Each RB denotes

a slice of time and frequency block available to the BS for

resource allocation. We let the random variable Cu
n ∈ R

+

denote the channel rate (bits per RB) that can be transmitted to

user u if it is allocated a single RB on time slot n. A user may

be allocated multiple RBs, but we assume a flat fading setting

where the rate delivered to u is the same across RBs in a

given time slot. Further, we assume (Cu
n)n∈N are independent

and identically distributed (i.i.d.) across time slots. A non zero

transmission rate Cn can be viewed as a coverage/connectivity

requirement for users.

We consider a system model where a scheduling policy,

say π, decides the number of RBs be allocated to each user in

each time slot. The decision of policy π at time n is assumed

to be causal concerning knowledge of the current and past

channel rates (Cu
τ )

n
τ=0, arrivals and queue lengths, allowing

for opportunistic scheduling, i.e., taking advantage of capacity

variations across time. In particular, we let Mu,π
n ∈ R

+ denote

the number of RBs allocated to user u on slot n by a policy

π given the observed history. Such an allocation provides an

overall service rate Su,π
n (total bits transmitted with potentially

multiple RBs allocated) to the user u on time slot n given by,

Su,π
n = Mu,π

n Cu
n ,

and we define the cumulative service over an interval (τ, τ+n]
as follows,

Su,π(τ, τ + n] =

τ+n
∑

k=τ+1

Su,π
k . (2)

A user’s data queue (in bits) is modeled as a First Come First

Serve (FCFS) discrete time queue with arrivals Au
n and service

rate Su,π
n as shown in Fig. 1. We let Qu,π

n+1 denote the number

of bits in the user’s queue at the start of slot n+ 1, then

Qu,π
n+1 = [Qu,π

n − Su,π
n ]+ +Au

n+1 . (3)

Au
n Su,π

n

(ρu, σu, µu)
Constrained arrivals

User queue Qu,π
n

Service rate

Fig. 1: Leaky bucket constrained arrivals to a discrete time

queue with a service rate controlled by scheduling policy π.

III. GUARANTEED RATE SCHEDULING

In this section, we will assume user traffic is leaky bucket

constrained, whence assuming a user’s data queue served

in FCFS order, it’s delay requirement will be met through

a sufficiently high fixed service rate per slot. Note that in

practice wireless capacity varies over time, yet we will start

by introducing this example where the user’s rate is fixed and

later consider how to address user’s channel variability across

time. Without loss of generality, we shall henceforth present

the analysis for a single user with traffic shaping parameters

(ρ, σ, µ) and delay requirement d. Referring to the network

calculus literature [9], the minimal service rate s required to

meet the user’s delay constraint d must satisfy,

d ≤
[ρ− s]+

ρ− µ

σ

s
=⇒ s =

ρσ

(ρ− µ)d+ σ
. (4)

where [x]+ = max[x, 0]. As long as a user is allocated

enough resources to meet the service rate of s, it will meet

the packet level delay requirement owing to leaky bucket

constrained traffic. This is easily visualized, see Fig. 2. The

red curve is the worst case cumulative arrivals for leaky bucket

constrained traffic, the blue line a fixed rate service, and the

green interval the worst case delay a bit must wait until service.

Definition 1. GRS(s) We let the Guaranteed Rate Scheduler

with service rate s, GRS(s), be the scheduling policy that

guarantees a user data queue a service rate of at least s per

slot whenever it is sufficiently backlogged.

The above definition matches with that of a strict service

curve in Deterministic Network Calculus [9].

Definition 2. WGRS(s) A wireless GRS(s) scheduler for a

user with time varying channel rate Cn bits per RB allocates

a time varying number of RBs Mn to the user such that at

time n,

Mn = min

[

s

Cn

,
Qn

Cn

]

, (5)
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Fig. 2: Leaky bucket constrained flow arrival and service

curves for deterministic service rate.

where Cn is the channel rate at time n and Qn denotes the

number of bits in the user’s queue, resulting in an overall

service rate Sn = MnCn.

Under these policies, as long as the user’s queue is suffi-

ciently backlogged the user will see a service rate s. Since the

GRS(s) scheduler satisfies the user’s delay constraints for the

appropriately selected s, so will the wireless version, although

it may require the allocation of a large number of RBs if the

user’s channel capacity is low. Recall we consider a setting

where there is a sufficiently large number of RBs available to

users, and they are unlikely to require a lot of resources at the

same time. Further note that although the scheduler is designed

based on worst case analysis, resources are only be allocated

if needed, i.e., only if the user queue is backlogged, hence no

resources would be wasted, indeed they will be allocated to

other users.

IV. OPPORTUNISTIC GRS SCHEDULERS

Following the setting in Section III, we shall propose a new

class of wireless schedulers that we refer to as Opportunistic

GRS(s) schedulers that have additional flexibility to exploit

temporal variations in users channel capacity, yet are guaran-

teed to meet the user’s delay requirements. To that end, we first

formally define a property that ensures the policy will meet

the same delay requirements as GRS(s) when users’ traffic is

leaky bucket constrained.

Definition 3. GRS(s) compliant A scheduling policy π is

GRS(s) compliant if when subject to the same arrivals process

for any busy cycle of the GRS(s) scheduler, say (0, b], the cu-

mulative service of π over the interval (0, τ ] for τ = 1, 2, . . . , b
is greater than or equal to that of the GRS(s) scheduler. It

follows that the user queue under GRS(s) compliant policy will

empty out whenever that under the GRS(s) scheduler empties.

Since a GRS(s) compliant policy’s cumulative service (de-

partures) is greater than that of the GRS(s) policy on any

busy cycle, it is clear that it can only speed up departures

and thus reduce delays in FCFS user queues. We note that

GRS(s) compliance differs from the traditional service curve

definition, see e.g., [9], [10]), in that it is defined via a coupling

of π to the GRS(s) policy on busy cycles, and in particular

it is not shift invariant, i.e., under π it is possible to have

an interval in which queues are backlogged and there are no

departures. Fig. 3 exhibits a sample realization. In the figure,

the red curve shows the cumulative arrivals to a GRS(s) busy

cycle beginning at time 0 – corresponds to the worst case

cumulative arrivals associated with a dual leaky bucket. The

dotted line represents the cumulative service at a fixed rate s.

Meanwhile the blue cumulative service curve corresponds to

a policy π. As can be seen, from the start of the busy cycle at

time 0 to the end at time b, the cumulative service of policy π
exceeds that of the fixed rate service and so GRS(s) compliant.

Fig. 3 also exhibits the perspective underlying Opportunistic

GRS scheduling. The key idea is to exploit temporal channel

rate variability to improve spectral efficiency without impact-

ing delay guarantees. We observe that at times t1 and t3 the

user’s channels are particularly good, and the user has queued

data significantly higher than s. The scheduler chooses to

exploit these good user channels, by serving much more data at

those times than the minimal service rate required by GRS(s)

scheduling. In principle, since the user’s channel is good at

those times, the number of RBs the wireless scheduler would

be allocating by doing so would be reduced as compared to

the WGRS(s) scheduler introduced in the previous section.

Next, we formally introduce a class of Opportunistic GRS(s)

scheduling policies.

t
0

Arrivals
st

t

C
t

γ

t3t1

t3t2t1

Opportunistic service

oπt2

τt2

Fig. 3: Temporal channel variations and opportunistic service

based on bits in queue. Note that continuous time data rate

has been used for ease of understanding the theory.

Definition 4. OGRS(s) An Opportunistic GRS(s) scheduling

policy π subject to an arrival process (An)n simulates the

GRS(s) scheduler and allocates RBs and thus service Sπ(·, ·]
to the user such that for any GRS(s) busy cycle, say (0, b], we

have

A(0, τ ] ≥ Sπ(0, τ ] ≥ SGRS(0, τ ] for τ = 1, 2, . . . , b,

where A(0, τ ] denotes the cumulative arrivals and SGRS(0, τ ]
the cumulative service allocated by GRS(s) since the beginning

of the busy cycle.



By definition, OGRS(s) schedulers are GRS(s) compliant,

and thus will satisfy the user’s delay requirements if s is

chosen appropriately, relative to the arrival processes’ leaky

bucket parameters. However, such schedulers have the addi-

tional freedom to decide when to allocate RBs to the user and

in particular, to do so when the channels are particularly good.

Definition 5. Threshold-based Opportunistic GRS(s) The ba-

sic principle underlying a threshold-based OGRS(s) schedul-

ing policy π is as follows: if on time slot n the channel rate

Cn exceeds a threshold γπ
n , then a sufficient number of RBs

are allocated by the scheduler to clear the queue backlog,

i.e, Mπ
n = Qπ

n/Cn. Otherwise, a minimal number of RBs

are allocated so as to ensure the cumulative service allocated

keeps up with that of the GRS(s) scheduler over its busy cycles.

Note, that the threshold γπ
n can be time/state dependent and

controls how the algorithm exploits channel rate fluctuations

– this will be explained in the sequel.

Algorithm 1 exhibits the details of the threshold based

OGRS(s) scheduler which operates with respect to the cumu-

lative service a virtual GRS scheduler would provide for the

same arrival process. To start with, consider a GRS(s) busy

cycle that without loss of generality begins at 0. Then one can

express the user queue length and service for the GRS(s) at

time n as follows,

QGRS
n = [QGRS

n−1 − s]+ +An,

SGRS
n = min[QGRS

n , s].

Therefore, the cumulative service provided by GRS(s) over an

interval (0, n] can be expressed as,

SGRS(0, n] = SGRS(0, n− 1] + min[QGRS
n , s] .

Next, we have the OGRS policy which needs a metric that

can measure the amount of service provided in excess of the

guaranteed rate s per time. slot. Let Oπ
n denote the amount

of data that has been (opportunistically) sent ahead of time n
relative to the GRS(s) scheduler, i.e.,

Oπ
n = Sπ(0, n− 1]− SGRS(0, n− 1].

We initialize Oπ
0 = 0 at the start of a busy cycle. Note that

the duration of a busy cycle of a GRS(s) compliant scheduling

policy with leaky bucket constrained arrivals is upper bounded

[9] by bmax(s) = σ
s−µ

, which bounds Oπ
n and guarantees it

will eventually return to 0.

As mentioned in the policy Definition 5 above, if Cn > γπ
n

then π serves all the data in the user queue, i.e., Sπ
n = Qπ

n.
Clearly, the metric Oπ

n must be positive if Qπ
n−1 > s, because

π has served all the traffic that has entered the queue since the

start of the busy cycle, while GRS(s) only the bare minimum

service it guarantees.

When the channel rate is not so good, i.e., if Cn ≤ γπ
n then

OGRS can choose to not schedule any RBs if at least s bits

had been transmitted in advance. Specifically, if the amount

of excess service at time n − 1 falls short of s then π only

serves the minimum number of bits to ensure it keeps up with

the GRS(s) scheduler, i.e.,

Sπ
n = [min[s,Qπ

n]−Oπ
n]

+ .

Algorithm 1: Guaranteed Rate Scheduling with Op-

portunism Over Temporal variations

1 initialize O0 = 0, Sπ
0 = 0, SGRS

0 = 0 ;

2 while n > 0 do

3 if Cn > γπ
n then

4 Sπ
n = Qπ

n ;

5 else

6 Sπ
n = [min[s,Qπ

n]−Oπ
n]

+ ;

7 end

8 Mπ
n = Sπ

n/Cn;

9 SGRS
n = min[s,QGRS

n ] ;

10 QGRS
n+1 = QGRS

n − SGRS
n +An+1 ;

11 Qπ
n+1 = Qπ

n − Sπ
n +An+1 ;

12 Oπ
n+1 = Sπ(0, n]− SGRS(0, n] ;

13 end

A. OGRS Threshold selection

In this section, we propose various ways to design the

thresholds (γπ
n)n driving the behavior of the threshold-based

OGRS scheduler. We shall assume that the scheduler has

access to FC(·), the CDF for the users’ channel rate variations.

We also assume that F−1

C (·) is an appropriately defined inverse

CDF. As explained in the sequel, in practice the CDF can be

inferred, as in [31] to possibly adapt to changes over time.

1) ST(α): Static threshold: Our first threshold design is

a static percentile, i.e., γπ
n = γπ corresponding to the α-

percentile of the channel rate CDF, where α ∈ (0, 1), so,

FC(γ
π) = α =⇒ γπ = F−1

C (α). (6)

For example, with a choice of α = 0.8 the OGRS(s) triggers

an opportunistic scheduling of the user’s queued data only

if the current channel rate has exceeded the 80th percentile,

i.e., cn > γπ. Note that the choice percentile α is a design

parameter that can in principle be optimized to minimize the

mean resources (RBs) allocated by the associated OGRS(s)

scheduler.

2) DTP(δ): Dynamic threshold based on probability: Next

we consider thresholds based on a dynamic percentile of the

channel rate CDF FC(·). Recall that Oπ
n = oπn denotes the

amount of data that our OGRS(s) policy has delivered ahead

of time as compared to GRS(s) at time n. Given that the

GRS(s) must serve at least s bits per slot, an OGRS(s) policy

could in principle wait for τn =
⌊

oπ
n

s

⌋

time slots before the

GRS(s) scheduler catches up and is forced to schedule at time

τn + 1. Ideally the data should be scheduled on slot n if the

current rate realization cn is better than that to be observed in

the next τn + 1 time slots with high probability, i.e.,

P

(

cn > max
i=1,...,τn+1

Cn+i

)

≥ δ. (7)



The following lemma translates the above requirement to a

threshold on cn. Note that δ is a design parameter that needs

to be carefully chosen so as to minimize the number of RBs

required.

Lemma 1. Let (Cn)n be i.i.d random variables with the same

marginal distribution FC(·) and appropriately defined inverse

F−1

C (·). If cn exceeds the threshold F−1

C

(

δ
1

τn+1

)

then (7) is

satisfied.

Proof. Since FC(·) is non-decreasing and recalling that

FC(Ci) ∼ Ui are i.i.d. Uniform[0, 1] we have that

cn > max
i=1,...,τn+1

Cn+i ⇐⇒ FC(cn) > max
i=1,...,τn+1

Ui, (8)

and it follows (7) can be rewritten

P

(

FC(cn) > max
i=1,...,τn+1

Ui

)

=⇒ FC(cn) > δ
1

τn+1 , (9)

giving the desired threshold cn > F−1

C

(

δ
1

τn+1

)

.

3) DTE: Dynamic threshold based on expectation: A user

with current channel rate cn might choose not to schedule

transmissions on the current slot in the hope of seeing a better

channel in the next τn slots. The previous threshold design

was based on the inequality in (7) being satisfied with high

probability. Alternatively, the current channel rate cn might

be considered good if one can ensure the inequality holds on

average. Taking the expectation of the inequality on the right

hand side of and computing the expectation of the max of

uniform random variables in (8) gives,

FC(cn) > E

[

max
i=1,...,τn+1

Ui

]

= 1−
1

τn + 2
.

Under this rough approximation an associated threshold on cn
depends on τn which can be set to,

γπ
n = F−1

C

(

1−
1

τn + 2

)

. (10)

This captures the key insight that with a larger number of slots

τn, an OGRS(s) scheduler can choose to wait until the channel

rate exceeds the 1 − 1/(τn + 2) percentile. Furthermore, this

threshold selection mechanism does not have any design

parameter which makes it easier to implement in practice.

V. SIMULATION RESULTS

We consider a BS serving a set of URLLC and eMBB

users with each user’s channel rate Cn per RB determined by

the corresponding received Signal to Noise Ratio (SNR). The

received SNR was modelled using the 3GPP Urban-Micro path

loss model [1], with Rayleigh distributed small scale fading.

We assume bounded channel realizations, where the SNR lies

between −6.934 dB ≤ SNR ≤ 20 dB. For simplicity, we

shall use Shannon capacity B log2(1 + SNRn) to calculate

the rate per RB Cn, where each RB is a time frequency slice

of duration 1ms with bandwidth B = 10 KHz. We initially

use Shannon capacity B log2(1 + SNRn) to calculate the rate

per RB Cn, where each RB is a time frequency slice of

duration 1ms with bandwidth B = 10 KHz. Later on, we

demonstrate our performance using realistic 3GPP modulation

and coding scheme [1] taking one of 15 quantized values

in −6.934 dB ≤ SNR ≤ 20 dB. Finally, to determine the

channel quality thresholds, we need the CDF FC(·) for the

channel rate per RB on a given slot, for each user. We used the

last 100 channel SNR realizations to determine the empirical

CDF of the user’s SNR at any given instant. Note that all plots

in this section were generated over 106 slots, resulting in a

±0.1 error for the estimated mean number of allocated RBs per

slot M̄π with 99% confidence interval. Additionally, we will

use the WGRS policy as a baseline and also the multicarrier

version of MLWDF [8] policy as a benchmark for evaluating

the performance of our proposed algorithm.

A. Performance of opportunistic scheduling policies

1) URLLC spectral efficiency: For this subsection we con-

sider three different URLLC users that are at distances 300,

500 and 700 meters and which we refer to as strong, medium

and weak users, respectively. Also, we assume each URLLC

user has stochastic arrivals with packet size of 1024 bits

that arrive each time slot shaped by the leaky bucket with

parameters (in packets per time slot) σ = 50, ρ = 10, µ = 5.

The guaranteed packet rate s per time slot is then determined

using (4) for a common delay deadline of d = 4 ms for all

the users. The efficiency of our proposed scheudling policy is

measured in terms of the average number of RBs required to

serve the user, subject to its delay deadline. Henceforth, we

shall refer to the proposed OGRS scheduling policy by the

threshold method that we employ to determine the channel

rate quality.
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Fig. 4: Percentage reduction in RB usage for ST(α) with

respect to (w.r.t) that of WGRS.

Fig. 4 shows the percentage reduction in the average number

of RBs required to serve all three types of users with ST(α)

relative to that needed by WGRS under the same arrival and

channel rate processes. It is interesting to note that the weak

user sees the best gain, which can be attributed to the higher

range of channel strength variations that a typical weak user

would observe. Higher temporal variability should lead to

higher opportunistic gains for such users. Also, it is clear that



the percentile α that maximizes the spectral efficiency gain

depends on the arrival pattern and user channel strength.
%

 R
B

 u
s
a
g
e
 r

e
d
u
c
ti
o
n

weak

medium

strong

Fig. 5: Resource reduction percent for DTP(δ) w.r.t. WGRS.

Finally, we also evaluated the efficiency gains of DTE

vs WGRS(s) and the results were as follows: the per-

centage reduction in the number of resources required

for each type of strong, medium, and weak, users were

26.79%, 37.47%, 37.67% for the strong, medium and weak

user, respectively. The DTE policy achieves at most 5% loss

in efficiency as compared to DTP(δ) policy, thus providing a

reasonable approach as it requires no parameter fine tuning.

2) Improvement in eMBB throughput: In this subsection,

we demonstrate the throughput improvement for eMBB users

where the BS supports multiple heterogeneous users, 3

URLLC and 5 eMBB users. We consider ON-OFF bursty

arrivals for URLLC users, where packets arrive at a peak rate

ρ during the ON period. The ON, OFF cycles are of duration
σ

ρ−µ
, σ
ρ

, respectively. Distance from the BS and leaky bucket

parameters for the 3 URLLC users are tabulated below:

TABLE I: Leaky bucket parameters for multiple users.

User distance (m) Delay(ms) ρ µ σ
1 300 5 10 5 50

2 500 3 20 10 50

3 700 7 10 5 50

The eMBB users are located at distances

250, 560, 650, 720, 800 meters from the BS. Note that

we assume that eMBB users are infinitely backlogged and

do not have any stringent deadlines. Furthermore, we use

proportionally fair scheduling to select one eMBB user from

the set of eMBB users at each time slot that gets allocated

all the leftover RBs.

A total of 6000 RBs are available to all the users connected

to the BS and the URLLC users are allocated resources with

priority. After allocating resources to all active URLLC users,

the leftover RBs are used to serve eMBB users. The throughput

performance of the oracle-aided policy is also included to

provide a bound on the best feasible spectral efficiency for

URLLC users, which translates to higher throughput for eMBB

users.

Fig. 6 showcases the throughput gains for eMBB users for

the various algorithms. Clearly, when compared to the baseline

and benchmark scheduling policies, OGRS policy is indeed

closer to the throughput gain bound set by the oracle-aided

scheduling policy with access to future channel rates.

Fig. 6: Long term throughput distribution for eMBB users.

3) Sensitivity to history: We observed that for as little as

10 samples of the past channels, we were within a 5% of

the spectral efficiency when using 100 samples for estimating

the CDF. Clearly, a short history such as ten past samples

is sufficient to track the wireless channel variations without

significant loss in the efficiency of our scheduling algorithms.

B. Admission Control

We consider a set of 100 users with ON-OFF bursty traffic

and leaky bucket constrained arrivals. The delay deadline and

user location (distance from the BS) are drawn uniformly

random from the sample spaces {200, 250, . . . , 800} and {2,

3, . . . , 10}, respectively. The arrivals and channel variations

are generated over 106 time slots to simulate the number of

users that can be admitted for various system capacities m,

the total number of RBs available in the system. For the same

set of users, we also use the Gaussian approximation for the

aggregate resource requirement Xu to determine the number

of admitted users, shown as dashed lines in Fig. 7. If Y is

the random variable that denotes the resource requirement

of a new user, then the probability that the total resource

requirement Xu + Y will exceed m is approximated using

the following inequality,

P (Xu + Y > m) ≤ exp

(

−
(m− µ)2

2σ2

)

, (11)

where µ = µu+ µ̂ and σ2 = σ2
u+ σ̂2. Note that the inequality

in (11) provides a computationally reasonable expression that

can be used to decide if the new user can be admitted without

exceeding the reliability requirement δ.

It can be seen that the Gaussian approximation provides

a conservative estimate of the number of users that can be

admitted into the system for both the OGRS and WGRS



Fig. 7: Admission control using Gaussian approximation on

the total RBs required for all admitted URLLC users.

scheduling policies. Note that OGRS scheduling policy is able

to admit more users when compared to the WGRS policy,

which is interesting given that WGRS is more deterministic

in resource provisioning, whereas the others are more bursty,

as a function of the channel quality and arrivals.

VI. CONCLUSION

We have proposed a measurement based opportunistic wire-

less scheduler, which can meet heterogeneous users’ hard de-

lay deadlines while being spectrally efficient, i.e., minimizing

the resources required, thus permitting the system to achieve

additional throughput for other traffic sharing the network

resources. The underlying design principle for OGRS policies

is to ensure that the wireless scheduler meets or exceeds the

service that a guaranteed rate scheduler with rate s would

assign. Thus by design, OGRS policies can also be used

to efficiently deliver a Guaranteed Bit Rate (GBR) service.

Our proposed policy uses dynamic opportunistic thresholds to

leverage the knowledge of the user’s marginal channel quality

rate distribution, which in practice would be measured and/or

tracked based on a limited number, say 10, of the previous

channel realizations.
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