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Abstract— We introduce two classes of measurement-based
wireless schedulers. The Opportunistic Guaranteed Rate Sched-
uler (OGRS) meets a user’s delay constraints by opportunistically
allocating the user the equivalent of a fixed service rate, which for
a leaky-bucket constrained traffic ensures the delay requirements
are met. By contrast, the Opportunistic Guaranteed Delay Sched-
ulers (OGDS) schedules data transmissions when the current
channel is better than what is expected in the time window
before packet deadlines expire. Meeting such delay requirements
requires a complementary admission control policy. We exhibit
a simple measurement based policy, that indirectly accounts for
heterogeneity in traffic, channel, and delay constraints by moni-
toring the statistics of user’s aggregate resource usage. We show
that the spectral efficiency of our proposed approach is stochasti-
cally better than a wireless guaranteed rate scheduler. We bound
spectral efficiency by considering an optimal offline policy with
access to future channel rates and show via extensive simulations
that OGRS can be within 10%-40% of the bound whereas OGDS
is within 10% of the bound for a range of delay constraints. Addi-
tionally, we demonstrate that OGDS can exhibit better spectral
efficiency at higher delay deadlines than schedulers leveraging
neural network based predictions for future channel rates.

Index Terms— Delay deadline, opportunistic scheduling, low
latency, QoS constraints, leaky bucket, URLLC scheduling.

I. INTRODUCTION

THE support of Ultra Reliable Low Latency Communica-
tion (URLLC) is expected to be critical towards enabling

next generation [1] wireless applications such as industrial
automation, augmented and virtual reality, autonomous driv-
ing, remote diagnosis, and health care. The key challenge
in supporting such applications is their stringent constraints
on Quality of Service (QoS). The latency constraints on the
wireless downlink for these applications range between 5 and
30 ms, with reliability (percentage of error-free transmissions
in packets) requirements of 99.9 to 99.9999%, see e.g., [2].
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Moreover, given the limited spectrum available and associated
costs, it is also critical to deliver such URLLC based services
in a spectrally efficient manner. In general, this is challenging,
e.g., one must add substantial upfront redundancy to meet
reliability requirements without delays associated with re-
transmissions, or given low latency requirements one may not
be able to exploit opportunism or wait for data to achieve more
efficient modes of transmission.

In addition to dealing with the requirements of URLLC
traffic, it is also critical to devise resource allocation and
scheduling strategies that enable the support, of a mix
of traffic, e.g., Enhanced Mobile Broadband (eMBB) and
Machine-Type Communications (MTC) traffic, and possibly
network slices provisioned to support different classes of
applications. Our focus in this paper will be on spectrally
efficient scheduling of wireless user traffic with possibly
heterogeneous delay deadlines, perhaps the most challenging
traffic class, yet we aim to provide an approach that can be
combined with other scheduling policies, e.g., proportionally
fair or utility maximizing schedulers used to support eMBB
traffic, to manage an assortment of services with diverse QoS
requirements. There is a substantial literature in wireless (and
wireline) scheduling that provides different tools to address
the above challenge, yet, as discussed below, it still falls short
in many respects. Below, we briefly highlight some of that
literature and the associated shortcomings. We then introduce
the key contributions of this paper.1

A. Related Work
Many works have focused on a setting where users’ data

queues are fully backlogged. When this is the case, one
can consider devising schedulers that maximize the sum of
the users’ utility of their allocated long term rate [5]. For
example, Proportionally Fair (PF) wireless scheduling emerges
when users have log utility functions, see e.g., [6], and
results in a scheduler that realizes a good tradeoff between

1This manuscript is an extended journal version of our previous work in [3]
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opportunistically scheduling users which have good channels
versus achieving a fair long term allocation amongst the
users. Variations on these ideas have been proposed where the
users’ utility is a function of the short term throughput, see
e.g., [7]. This leads to a more responsive allocation avoiding
short term neglect of any user. In practice, PF, and other
utility maximizing schedulers, provide a simple and effective
strategy for best effort or enhanced Mobile Broadband (eMBB)
traffic with no strict delay requirements. In general, utility-
maximizing schedulers work best for elastic traffic with no
hard deadlines. When hard delay deadlines are considered,
either all users have a homogeneous or time-synchronized
traffic model [8] or the problem can only be solved if the
optimization problem is feasible, i.e., if all users are able to
meet the delay deadlines [9]. Still, questions remain as to what
happens when user queues are not fully backlogged or how to
choose the fairness criterion, i.e., utility functions when there
are delay constraints that require high reliability.

In settings where users’ queues are not fully backlogged,
researchers have focused on devising queue and channel
dependent wireless schedulers which are throughput optimal,
i.e., ensure user queues’ stability whenever feasible. These
schedulers also address performance objectives, such as Max-
Weight [10], which is delay optimal in the idealized symmetric
case, Exponential rule [11] which attempts to minimize the
max user queue, Log rule [12] which attempts to minimize
the mean delay and a variant of Exponential rule that supports
real time and non real time QoS [13]. Such schedulers have
been adapted to more practical settings, such as the Modified
Largest Weighted Delay First (MLWDF) [14] which schedules
users based on head-of-line packet delays, current channels,
and other hyperparameters (like queue lengths [15]) reflecting
user QoS and resource allocation objectives. In practice, such
schedulers do meet delay constraints (with high probability)
if sufficient resources have been provisioned, yet it is difficult
to verify when this is true, and as such provide a graceful
degradation across users when this is not the case.

Another class of wireless schedulers was born from mod-
ifying/ adapting ideas from wireline scheduling (e.g., traffic
shaping and network calculus [16], [17]) to meet QoS
requirements under wireless channel variations. For instance,
weighted round robin [18] or weighted fair queueing [19]
employ user weights drawn from heuristics or tokens [20]
based on service deficit [21] to either minimize the average
delay or provide a graceful degradation of service. Much of
the above mentioned work focuses on scheduling one class of
users, e.g., best effort users sensitive to throughput, or traffic
that is sensitive to packet delays. In practice, wireless systems
need to be shared by heterogeneous user classes.

While many schedulers in the existing literature address
delay constraints for real-time traffic, spectral efficiency is
often neglected, leading to lesser resource availability for non-
real-time traffic and higher network congestion. For instance,
there are a variety of online learning algorithms that promise
near-optimal packet scheduling for deadline-constrained algo-
rithms. However, they are often limited by either i.i.d
assumptions on user traffic [22], or assume symmetric user

channel conditions [23], ignoring heterogeneous/ dynamic user
link capacities [24] or neglecting the challenges of multi-user
scheduling [25]. More recent literature in wireless networks
that consider hard delay deadlines [26], [27], [28] either
assumes i.i.d traffic arrivals or considers a simplistic binary
link capacity instead of the more practical rate adaptive
modulation and coding considered in this paper. In this paper,
we focus on not only developing a scheduler that meets delay
constraints but one that does so in a spectrally efficient manner.

No practical wireless scheduling policy is complete without
a complementary strategy for admission control and/ or traffic
shaping. Given the uncertainty and heterogeneity associated
with traffic, channels, and user requirements in a wireless
system, it is virtually impossible to devise good models that
would allow one to predict if the users’ QoS requirements will
be met under a given scheduling policy. While there have been
many works in literature that propose Measurement Based
Admission Control (MBAC) [29], [30], [31], we note that
meeting packet delay and loss targets in buffered systems is
challenging [32]. In contrast to traditional MBAC approaches,
our approach directly measures the aggregate resource that
our delay constrained schedulers are using thus indirectly
capturing the impact of the users’ traffic, channel variability
and delay constraints. Building on [3] and [4], we provide an
in-depth analysis of proposed algorithms’ spectral efficiency
and a variety of practical considerations.

B. Our Contributions
We propose several classes of wireless schedulers which

under appropriate assumptions can meet heterogeneous delay
deadlines and do so in a spectrally efficient manner such
that the more relaxed the constraint the more efficient. A key
underlying idea is that if traffic is subject to tight deadlines,
the system does not have as much flexibility on when to
schedule a user’s packets. This in turn forces transmissions
to be scheduled when the channel rate may be poor and
thus spectrally inefficient. Therefore, it is desirable to have
more relaxed delay constraints that the scheduler can exploit
to achieve improved spectral efficiency. This permits one to
devise a scheduler, the Wireless Guaranteed Rate Service
(WGRS), which will ensure a user will see a fixed service
rate even with channels that have stochastic variations. If a
user’s traffic is leaky bucket constrained, one can determine
a minimum fixed service rate which will ensure a desired
maximum delay.

Any scheduler which allocates at least as much cumulative
service as the GRS scheduler over busy periods is GRS
compliant, and will thus also meet the user’s delay deadlines.
This observation suggests the possibility of opportunistically
serving a user’s data ahead of time when channel rates are
good, relative to the GRS scheduler, and/ or delaying such
service when channel rates are poor, as long as the scheduling
is GRS compliant. We devise a class of Opportunistic GRS
(OGRS) schedulers that take advantage of this relaxation
along with knowledge of the statistics of the users’ channel
variations, to achieve better spectral efficiency while meeting
users’ strict delay constraints. While OGRS is opportunistic
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Fig. 1. Illustration of deadline-constrained user traffic with heterogeneous link rates across URLLC users.

and meets the delay constraints, the underlying requirement
to provide a minimum rate for each time slot is limiting.
We propose an alternative approach, denoted Opportunistic
Guaranteed Delay Scheduling (OGDS) that schedules data
opportunistically based on the statistics of its channel’s tempo-
ral variations and the remaining time window until its deadline
expires.

First, we establish a stochastic ordering between the
resource requirements of OGRS and WGRS scheduling algo-
rithms. Next, by considering offline policies with access to
future channel capacity realizations, we derive a bound on the
spectral efficiency that any delay constrained schedulers could
achieve. We show via extensive simulations that OGRS can
be within 10% to 40% of the bound as the delay constraint
is relaxed. Meanwhile, OGDS is within 10% of the bound
for a range of delays that we have simulated so far, up to
10 ms. These gains translate to doubling the eMBB user’s
throughput even for the users with the weakest wireless
channels when URLLC and eMBB traffic share resources.
We also observe an increase of up to 57% in the number
of users that can be supported. This paper further explores
the impact of various additional issues critical to wireless
scheduling including transmission errors, Hybrid Automatic
Repeat Request (HARQ), user mobility, and the time scales
on which to estimate the empirical distribution of channel
variations, to show how our proposed approach would fare
in practice. Finally, we also compare the spectral efficiency of
OGRS and OGDS with delay constrained schedulers leverag-
ing neural network based forecasts of future channel rates.
We demonstrate regimes where the spectral efficiency of
schedulers using empirical statistics (OGRS, OGDS) is higher
than those that employ neural network predictions and vice
versa.

This paper is organized as follows. Section II describes the
system model for our work. Section III describes our pro-
posed algorithms for delay constrained scheduling. Section IV
presents the main theoretical results of our work. Section V
provides extensive simulations for some practical wireless
network settings, and also evaluates the spectral efficiency of

a natural class of delay constrained schedulers that use neural
network based channel rate predictions. Finally, Section VI
includes some concluding remarks.

II. SYSTEM MODEL

We consider discrete time downlink scheduling for a base
station serving a set U of URLLC users with stochastic arrivals
and possibly heterogeneous QoS requirements and a set E of
backlogged eMBB users. We denote by (Au

n
)n→N the arrival

process for user u → U , where A
u
n

is a random variable
denoting the number of bits that arrive and are available for
service in time slot n with a transmission deadline of n + d

u,
where d

u is the delay constraint for user u. In general, it is
not possible to ensure delay guarantees to a user without prior
knowledge of its traffic statistics or constraints on its traffic.
A common approach for the latter is to establish and enforce
(through traffic policing/ shaping) apriori constraints on the
user’s traffic that can be used to design resource allocation
mechanisms guaranteed to meet a user’s QoS requirements.
Fig. 1 illustrates our high level system model with stochastic
arrivals for URLLC users, where the delay deadlines are
heterogeneous across users and the instantaneous wireless
channel rates (Cu)u→U are non-identically distributed across
users. Note that the leaky bucket parameters for each user are
different and selected based on the specific traffic character-
istics of the user. Also, resources are first allocated to delay
constrained URLLC users with priority, and leftover resources,
if any, are assigned to eMBB users.

We will assume each user’s traffic satisfies dual leaky
bucket constraints [16] with parameters (ωu

, ε
u
, µ

u), where
ε

u denotes the token bucket size in bits and ω
u, µ

u denote
the peak and mean bit arrival rate per time slot, respectively.
The leaky bucket algorithm is used in data networks to regulate
the traffic that a user can send/ receive on a network based on
pre-agreed parameters that can be viewed as a service level
agreement between the user and service provider reflecting
the user’s requirements. Enforcement of such constraints is
achieved through the leaky bucket algorithm where the users’
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arriving data draws on tokens that arrive at a fixed rate to a
finite capacity bucket. When traffic satisfies such constraints,
one can determine the fixed service rate needed to meet a fixed
delay deadline. Note that the leaky bucket parameters should
be chosen to represent the users’ traffic characteristics.

Remark: Note that while OGRS (introduced in the next
section) exploits information on the traffic shaping parameters
to design an opportunistic scheduling rule, such strict traffic
shaping is not required for the OGDS policy, which only
requires the peak bit arrival rate of the user be bounded.

The user’s cumulative arrival process A
u(·, ·] is thus con-

strained as follows for all ϑ, n → N,

A
u(ϑ, ϑ + n] =

ω+n∑

k=ω+1

A
u

k
↑ min [ωu

n, ε
u + µ

u
n] . (1)

The base station’s transmit resources are modeled as
a sequence of frames/ slots comprising multiple Resource
Blocks (RBs), which the scheduler can allocate arbitrarily
to users on a per slot basis. The BS has access to m RBs
for user resource allocation. We consider a system where
enough resources are available at the base station for both
URLLC and eMBB users, such that the total requirement of
all URLLC users under our scheduling policy is less than the
fixed number of resources m available to the BS. This will
be ensured by appropriate admission control on URLLC users
and prioritizing URLLC traffic over eMBB traffic as needed.
This is a fairly reasonable assumption considering the large
data rate requirements of eMBB users and the short packet
sizes of URLLC users. For each RB, i.e., slice of time and
frequency, we let the random variable C

u
n
→ R+ denote the

channel rate (bits per RB) that can be transmitted to user u

if it is allocated a single RB on time slot n. While Cn can
be small we assume that each RB has a non-zero effective
transmission rate:

Assumption 1 (Connectivity Assumption): The BS can
transmit data over an RB at a non-zero channel rate
C

u
n

> 0 with probability 1.
Remark: This can viewed as a coverage/ connectivity

requirement for URLLC users which is met using sufficiently
strong coding and/ or multiple antennas which is either met
with probability 1 or with a probability sufficiently high to
far exceed the desired reliability associated with users’ QoS
guarantees.

A user may be allocated multiple RBs, but we assume a
flat fading setting where the rate delivered to user u is the
same across RBs in a given time slot. Note that one can also
address the frequency selective case as follows. To that end,
one can adopt a model for frequency selective fading (for
URLLC users) where each sub-band is assumed to experience
flat fading, see e.g., [33]. The algorithm we proposed in this
paper can easily be extended to address frequency-selective
channels by empirically tracking the rate distributions across
subbands, and resources can in turn be allocated based on the
thresholds calculated using the overall empirical distribution.
Additionally, a single RB may be allocated to only one
user in a given time slot. Further, we assume (Cu

n
)n→N are

independent and identically distributed (i.i.d.) across time

Fig. 2. Leaky bucket constrained arrivals to a discrete time queue with a
service rate controlled by scheduling policy ω.

slots. Additionally, we also assume that a sufficiently large
number of RBs are available every time slot to meet each
user’s QoS requirements. In the sequel, we propose admission
control techniques that will limit the total number of users in
the system and thus ensure resource availability.

We consider a system model where a scheduling policy, say
ϖ, decides the number of RBs to be allocated to each user in
each time slot. The decision of policy ϖ at time n is assumed
to be causal concerning knowledge of the current and past
channel rates (Cu

ω
)n
ω=0, arrivals and queue lengths, allowing

for opportunistic scheduling, i.e., taking advantage of capacity
variations across time. In particular, we let M

u,ε
n

→ R+ denote
the number of RBs allocated to user u on slot n by a policy
ϖ given the observed history. Such an allocation provides an
overall service rate S

u,ε
n

(total bits transmitted with potentially
multiple RBs allocated) to the user u on time slot n given by,

S
u,ε

n
= M

u,ε

n
C

u

n
,

and we define the cumulative service over an interval (ϑ, ϑ+n]
as follows,

S
u,ε(ϑ, ϑ + n] =

ω+n∑

k=ω+1

S
u,ε

k
. (2)

A user’s data queue (in bits) is modeled as a First Come First
Serve (FCFS) discrete time queue with arrivals A

u
n

and service
rate S

u,ε
n

as shown in Fig. 2. We let Q
u,ε

n+1 denote the number
of bits in the user’s queue at the start of slot n + 1, then

Q
u,ε

n+1 = [Qu,ε

n
↓ S

u,ε

n
]+ + A

u

n+1 . (3)

III. OPPORTUNISTIC DELAY CONSTRAINED SCHEDULERS

In this section, we will introduce several delay constrained
wireless schedulers. For the sake of brevity, we will drop the
user index (marked by superscript u) as we consider per-
user schedulers. The user index will be reintroduced in the
sequel when we consider admission control. We propose a
scheduler that evaluates the rate required for each user’s QoS
requirements and provision resources such that delay deadlines
can be met. To do so, the scheduler needs information on
each user’s queue length and the distribution of the wireless
channel realizations. Catering to strict delay deadlines requires
a disciplined approach to resource allocation with a certain
level of regularity in service. We use leaky bucket traffic con-
straints to perform a worst-case delay analysis that provides a
minimum rate of service required to satisfy latency constraints.
The assumed traffic shaping serves to constrain the peak
burstiness of the arrival process. We show that it is feasible
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Fig. 3. Temporal channel variations and opportunistic service based on bits
in the queue.

to schedule opportunistically over temporal variations in the
wireless channel without compromising on QoS guarantees.

A. Opportunistic Guaranteed Rate Schedulers
Definition 1 (Threshold-Based Opportunistic GRS(s)):

The basic principle underlying a threshold-based OGRS(s)
scheduling policy ϖ is as follows: if on time slot n the
channel rate Cn exceeds a threshold ϱ

ε
n

, then a sufficient
number of RBs are allocated by the scheduler to clear the
queue backlog, i.e, M

ε
n

= Q
ε
n
/Cn. Otherwise, a minimal

number of RBs are allocated to ensure the cumulative service
allocated keeps up with that of the GRS(s) scheduler over its
busy cycles.

OGRS(s) schedulers ensure that the user will see a fixed
service rate of s or better. If s is chosen appropriately based
on the user’s leaky bucket parameters and desired delay
constraint, this will ensure the QoS requirements are met. Such
schedulers exploit the freedom to decide when to allocate RBs
to the user and in particular, to do so when the channels are
particularly good. Note, that the threshold ϱ

ε
n

can be time/ state
dependent and controls how the algorithm exploits channel rate
fluctuations – this will be explained in the sequel.

Fig. 3 exhibits the perspective underlying Opportunistic
GRS scheduling. The key idea is to exploit temporal channel
rate variability to improve spectral efficiency without impact-
ing delay guarantees. We observe that at times n1 and
n3 the user’s channels are particularly good, and the user
has queued data significantly higher than s. Our proposed
scheduler chooses to exploit these good user channels, by serv-
ing much more data at those times than the minimal service
rate required by GRS(s) scheduling, see the blue dash-dotted
curve in Fig. 3. In principle, since the user’s channel is
good at those times, the number of RBs allocated by the

wireless scheduler would be much lesser as compared to
the WGRS(s) scheduler (introduced in the previous section).
Next, we formally introduce a class of Opportunistic GRS(s)
scheduling policies.

Algorithm 1 exhibits the details of the threshold based
OGRS(s) scheduler which operates with respect to the cumu-
lative service a virtual GRS scheduler would provide for the
same arrival process. To start with, consider a GRS(s) busy
cycle that without loss of generality begins at 0. Then one can
express the user queue length and service for the GRS(s) at
time n as follows,

Q
GRS
n

= [QGRS
n↑1 ↓ s]+ + An,

S
GRS
n

= min[QGRS
n

, s].

Therefore, the cumulative service provided by GRS(s) over an
interval (0, n] can be expressed as,

S
GRS(0, n] = S

GRS(0, n↓ 1] + min[QGRS
n

, s] .

Next, we have the OGRS policy which needs a metric that
can measure the amount of service provided in excess of the
guaranteed minimum rate s per time slot. Let O

ε
n

denote the
amount of data that has been (opportunistically) sent ahead of
time n relative to the GRS(s) scheduler, i.e.,

O
ε

n
= S

ε(0, n↓ 1]↓ S
GRS(0, n↓ 1].

We initialize O
ε
0 = 0 at the start of a busy cycle. Note

that the duration of a busy cycle of a GRS(s) compliant
scheduling policy with leaky bucket constrained arrivals is
upper bounded [16] by bmax(s) = ϑ

s↑µ
, which bounds O

ε
n

and guarantees it will eventually return to 0. Note that any
amount of opportunism O

ε
n

gained translates to the scheduler
being ϑn =

⌈
O

ω
n

s

⌉
time slots ahead of the service deadline,

see o
ε
n2

and ϑn2 as marked in Fig. 3.
As mentioned in the policy Definition 1 above, if Cn > ϱ

ε
n

then ϖ serves all the data in the user queue, i.e., S
ε
n

= Q
ε
n
.

Clearly, the metric O
ε
n

must be positive if Q
ε
n↑1 > s, because

ϖ has served all the traffic that has entered the queue since the
start of the busy cycle, while GRS(s) only the bare minimum
service it guarantees.

When the channel rate is not so good, i.e., if Cn ↑ ϱ
ε
n

then
OGRS can choose to not schedule any RBs if at least s bits
had been transmitted in advance. Specifically, if the amount
of excess service at time n ↓ 1 falls short of s then ϖ only
serves the minimum number of bits to ensure it keeps up with
the GRS(s) scheduler, i.e.,

S
ε

n
= [min[s, Qε

n
]↓O

ε

n
]+ .

B. OGRS Threshold Selection

In this section, we propose various ways to design the
thresholds (ϱε

n
)n driving the behavior of the threshold-based

OGRS scheduler. We shall assume that the scheduler has
access to FC(·), the CDF for the users’ channel rate variations.
We also assume that F

↑1
C

(·) is an appropriately defined inverse
CDF. As explained in the sequel, in practice the CDF can be
inferred, as in [34] to possibly adapt to changes over time.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Texas at Austin. Downloaded on February 03,2025 at 18:32:05 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE/ACM TRANSACTIONS ON NETWORKING

Algorithm 1 Guaranteed Rate Scheduling With Oppor-
tunism Over Temporal Variations

1 initialize O
ε
0 = 0, S

ε
0 = 0, S

GRS
0 = 0 ;

2 while n > 0 do
3 if Cn > ϱ

ε
n

then
4 S

ε
n

= Q
ε
n

;
5 else
6 S

ε
n

= [min[s, Qε
n
]↓O

ε
n
]+ ;

7 end
8 M

ε
n

= S
ε
n
/Cn;

9 S
GRS
n

= min[s, QGRS
n

] ;
10 Q

GRS
n+1 = Q

GRS
n
↓ S

GRS
n

+ An+1 ;
11 Q

ε
n+1 = Q

ε
n
↓ S

ε
n

+ An+1 ;
12 O

ε
n+1 = S

ε(0, n]↓ S
GRS(0, n] ;

13 end

1) ST(ς): Static Threshold: Our first threshold design is
a static percentile, i.e., ϱ

ε
n

= ϱ
ε corresponding to the ς-

percentile of the channel rate CDF, where ς → (0, 1), so,

FC(ϱε) = ς =↔ ϱ
ε = F

↑1
C

(ς). (4)

For example, with a choice of ς = 0.8 the OGRS(s) triggers
an opportunistic scheduling of the user’s queued data only
if the current channel rate has exceeded the 80th percentile,
i.e., cn > ϱ

ε
. Note that the choice percentile ς is a design

parameter that can in principle be optimized to minimize the
mean resources (RBs) allocated by the associated OGRS(s)
scheduler.

2) DTP(φ): Dynamic Threshold Based on Probability:
Next, we consider thresholds based on a dynamic percentile
of the channel rate CDF FC(·). Recall that O

ε
n

= o
ε
n

denotes
the amount of data that our OGRS(s) policy has delivered
ahead of time as compared to GRS(s) at time n. Given that
the GRS(s) must serve at least s bits per slot, an OGRS(s)
policy could in principle wait for ϑn =

⌊
o

ω
n
s

⌋
time slots before

the GRS(s) scheduler catches up and is forced to schedule at
time ϑn +1. Ideally, the data should be scheduled on slot n if
the current rate realization cn is better than that to be observed
in the next ϑn + 1 time slots with high probability, i.e.,

P
(

cn > max
i=1,...,ωn+1

Cn+i

)
↗ φ. (5)

The following lemma translates the above requirement to a
threshold on cn. Note that φ is a design parameter that needs to
be carefully chosen to minimize the number of RBs required.

Lemma 1: Let (Cn)n be i.i.d random variables with the
same marginal distribution FC(·) and appropriately defined
inverse F

↑1
C

(·). If cn exceeds the threshold F
↑1
C

(
φ

1
εn+1

)
then

(5) is satisfied.
Proof: The current channel rate realization cn is consid-

ered good for opportunistic scheduling if,

max
i=1,...,ωn+1

Cn+i < cn,

↘↔ FC

(
max

i=1,...,ωn+1
Cn+i

)
(a)
< FC(cn),

↘↔ max
i=1,...,ωn+1

FC (Cn+i)
(b)
< FC(cn),

↘↔ max
i=1,...,ωn+1

Ui

(c)
< FC(cn). (6)

where step (a) follows from the monotonicity of the cumulative
distribution function (CDF) FC(·) of the wireless channel
strength and step (b) follows from the commutative property
of the max function with CDF FC(·). Step (c) follows from
the fact that FC(Cn+i) ≃ Ui are i.i.d. Uniform[0, 1].

One could design a dynamic threshold to ensure that the
probability of not seeing a better channel rate realization in the
next ϑn+1 time slots is greater than a pre-specified φ → (0, 1).
Such a design criterion would lead to the following,

P
(

max
i=1,...,ωn+1

FC (Cn+i) < FC(cn)
)
↗ φ ,

P
(

max
i=1,...,ωn+1

Ui < FC(cn)
)
↗φ ,

(FC(cn))ωn+1
(a)
↗ φ ,

(ϑn + 1) log FC(cn) ↗ log φ ,

=↔ FC(cn) ↗ φ
1

εn+1 (7)

where step (a) follows from the CDF of the maximum of
ϑn + 1 independent uniformly distributed random variables.
Consequently, the threshold is chosen to be,

ϱ
ε

n
= F

↑1
C

(
φ

1
εn+1

)
. (8)

↭
3) DTE: Dynamic Threshold Based on Expectation: A user

with a current channel rate cn might choose not to schedule
transmissions on the current slot in the hope of seeing a better
channel in the next ϑn slots. The previous threshold design
was based on the inequality in (5) being satisfied with high
probability. Alternatively, the current channel rate cn might
be considered good if one can ensure the inequality holds
on average. Taking the expectation of the inequality on the
right hand side and computing the expectation of the max of
uniform random variables in (6) gives,

FC(cn) > E
[

max
i=1,...,ωn+1

Ui

]
= 1↓ 1

ϑn + 2
.

Under this rough approximation an associated threshold on cn

depends on ϑn which can be set to,

ϱ
ε

n
= F

↑1
C

(
1↓ 1

ϑn + 2

)
. (9)

This captures the key insight that with a larger number of slots
ϑn, an OGRS(s) scheduler can choose to wait until the channel
rate exceeds the 1 ↓ 1/(ϑn + 2) percentile. Furthermore, this
threshold selection mechanism does not have any design
parameter which makes it easier to implement in practice.

C. Opportunistic Guaranteed Deadline Scheduling
Suppose we start with an empty user queue at t = 0, then

the arrival process A(0, ϑ ] delayed by d would be such that
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Fig. 4. Delay compliant cumulative service along with worst case delayed
service curve.

A(↓d, ϑ ↓ d] = A(0, ϑ ↓ d]. Fig. 4 depicts the cumulative
arrivals A(0, ϑ ] in blue and the corresponding delayed version
in red A(0, ϑ ↓ d]. The delayed arrivals curve represents the
worst case cumulative service that a server could provide
without violating the delay constraint on each packet. Any
cumulative service curve that lies within the arrivals and worst
case departures curve will be delay compliant.

Definition 2: GDS(d) We let the Guaranteed Deadline
Scheduler with parameter d, GDS(d), be a scheduling policy
that guarantees each bit in the user data queue be serviced
within a delay of d since its arrival. Clearly,

A(0, ϑ ] ↗ S
GDS(0, ϑ ] ↗ A(↓d, ϑ ↓ d].

Definition 3 (Opportunistic GDS(d)): A threshold based
OGDS(d) scheduling policy ϖ is as follows: whenever the
channel rate Cn exceeds a threshold ϱ

ε
n

, a sufficient number
of RBs are allocated by the scheduler to completely clear the
queue backlog, i.e, M

ε
n

= Q
ε
n
/Cn. Otherwise, a minimal num-

ber of RBs are allocated so as to ensure that the cumulative
service of ϖ at slot n exceeds or matches that of the d delayed
cumulative arrival curve.

At each time slot, the number of slots ϑn over which there
is flexibility to pick when to serve the data in the user queue
depends on the residual time until the earliest deadline. Note
that any data whose deadline is due to expire at a given time
slot will be allocated resources in the same time slot. In case
the current channel rate is expected to be better than those
in the next ϑn time slots (i.e., the current rate exceeds the
threshold ϱ

ε
n

), the entire queue backlog is cleared.

Algorithm 2 Guaranteed Deadline Scheduling With
Opportunism Over Temporal Variations

1 initialize S
ε
0 = 0;

2 while n > 0 do
3 ϑn = min [k : k ↗ n, A(0, k ↓ d] ↗ S

ε(0, k]];
4 if Cn > ϱ

ε
n

then
5 S

ε
n

= Q
ε
n

;
6 else
7 S

ε
n

= [A(0, n↓ d]↓ S
ε(0, n↓ 1]]+ ;

8 end
9 M

ε
n

= S
ε
n
/Cn;

10 Q
ε
n+1 = Q

ε
n
↓ S

ε
n

+ An+1 ;
11 end

Fig. 5. Illustration of the slack available to schedule cumulative arrivals based
on the worst case service curve. The bottom figure shows the time varying
nature of the wireless channel rates with a fixed threshold ε to determine the
channel quality.

Algorithm 2 details the steps involved in OGDS(d) schedul-
ing. When the channel rate is above a certain threshold Cn >

ϱ
ε
n

, the OGDS policy ϖ serves all data in the user queue,

S
ε

n
= Q

ε

n
.

Otherwise, the scheduler ϖ allocates only the minimum num-
ber of RBs required to meet the worst case delayed service
curve, i.e.,

S
ε

n
= [A(0, n↓ d]↓ S

ε(0, n↓ 1]]+ .

Specifically, if the cumulative service provided by ϖ until time
n↓1 is greater than that of the worst case delayed cumulative
service at time n, then policy ϖ can completely refrain from
allocating any resources at time n if the channel rate is below
the threshold.

OGDS Threshold selection: Define ϑn as the slack avail-
able to the scheduler before it is forced to schedule data to
maintain delay guarantees, i.e.,

ϑn = min [k : k ↗ n, A(0, k ↓ d] ↗ S
ε(0, k]] . (10)

The threshold selection is illustrated in Fig. 5. At the time
n1, the OGDS scheduler has a slack of ϑn1 time slots before it
is forced to start servicing the user queue. Therefore, for any
particular channel rate realization cn, the channel condition is
considered good for opportunistic scheduling if,

E
[

max
i=1,...,ωn+1

Ui

]
< FC(cn) . (11)

The left hand side is a maximum of ϑn+1 i.i.d uniform random
variables which can be shown to be (see proof of Lemma 1),

E
[

max
i=1,...,ωn+1

Ui

]
= 1↓ 1

ϑn + 2
< FC(cn).
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With this rough approximation an associated threshold on cn

depends on ϑn which can be set to,

ϱ
ε

n
= F

↑1
C

(
1↓ 1

ϑn + 2

)
. (12)

This captures the key insight that with a larger number of slots
ϑn where ϖ is not going to be forced to schedule user data,
an OGRS(s) scheduler might choose to wait unless indeed it
currently has a channel rate in the 1↓ 1/(ϑn + 2) percentile.
Furthermore, the current threshold selection does not have any
design parameter which makes it highly convenient for usage
in practice. In the discussion above, we have assumed that the
user’s channel rate CDF is available. Typically, the serving BS
tracks the user’s Channel State Information (CSI) for adaptive
modulation and coding, therefore, it is reasonable to assume
that we can empirically estimate the channel rate CDF using
CSI [34]. Also note that when the channel rates are discrete,
we could use linear interpolation to invert the empirical CDF
and compute the percentiles for the channel rate threshold.

1) Modified OGDS: While most scheduling policies for
delay constrained traffic focus on improving key performance
metrics such as energy efficiency [35], reliability [36], and
delay, jitter is often neglected. It is a particularly impor-
tant metric when transmitting periodic updates to networked
real-time control and/ or interactive AR/ VR gaming appli-
cations. Disparate transmission delays across users can be
undesirable/ intolerable, especially in scenarios that need syn-
chronization of updates across all users. There are multiple
ways to measure the variability of transmission delay. In this
work, we define jitter in terms of the standard deviation of
delay for data transmissions that are periodic.

We propose an elementary modification to the OGDS
algorithm that provides a way to trade off between spectral
efficiency, delay, and jitter, by carefully selecting a trans-
mission window over which resources are allocated to the
user. One could either wait for a predetermined number of
transmit instants, say ↼, or artificially advance the targeted
delay deadline to d ↓ ↼ to reduce packet jitter. A shorter
window for transmission reduces the number of opportunities
available for a user to be efficient, nevertheless, it reduces the
variability in delay. Specifically, in Algorithm 2, step 10, the
user queue update equation could be modified as follows,

Q
ε

n+1 = Q
ε

n
↓ S

ε

n
+ An+1+ϖ , (13)

where S
ε
n

denotes the service provided at time n, and An+1+ϖ

stands for the arrivals at time n+1+ ↼. In the sequel, we will
refer to the parameter ↼ as the jitter control parameter and
demonstrate how the modified OGDS policy performs in terms
of spectral efficiency and jitter.

IV. MAIN RESULTS

A. Lower Bound on Spectral Efficiency
In this subsection, we state the theorem on a lower bound

on the minimum number of resource blocks required by any
wireless scheduler meeting the delay deadlines. The lower
bound is based on considering an offline policy with complete
knowledge of the future channel realizations and thus not
achievable in an online setting, yet a good benchmark.

Consider a user with an arrival process (An)n and a time
varying channel rate (Cn)n per resource block, whose traffic
is subject to a delay constraint of at most d slots.

Theorem 1: For any scheduling policy ϖ meeting the delay
constraint, let N

ε
n

denote the (possibly fractional) number of
resource blocks used to serve the arrivals An, these RBs may
be allocated at the earliest on slot n, but no later than the
deadline n + d. Similarly, we let M

ε
n

denote the total number
of RBs allocated on slot n. It then follows that,

N
ε

n
↗ An min

0↓j↓d

[
1

Cn+j

]
a.s. . (14)

Furthermore, if the arrivals and channel rate processes are
stationary and independent of each other and the policy ϖ is
such that,

lim
n↔↗

1
n

n∑

ω=1

N
ε

ω
= N̄

ε
,

then the time average of (Mε
n
)n also converges to a limit M̄

ε ,
which satisfies

M̄
ε = N̄

ε ↗ E[A1] E



 1
max

0↓j↓d

C1+j



 . (15)

Proof: See proof of [4, Theorem 1]. ↭

B. Stochastic Dominance
Consider a user with an arrival process (An)n and a time

varying channel rate (Cn)n per resource block, whose traffic
is subject to a delay constraint of at most d slots. The arrivals
An are leaky bucket constrained (ω, µ,ε) where bits arrive
and are available for service at time n. Then the following
theorem establishes how the number of RBs required for a
given user by the WGRS policy stochastically dominates that
of OGRS-DTE.

Theorem 2: For a system in steady state, the mean RBs
required by OGRS per time slot is stochastically dominated
by that required by WGRS.

E[MWGRS]↗E[MOGRS]. (16)
Proof: See Appendix for proof and Section V-C for

simulation based results of the above theorem. ↭
The above theorem establishes the superiority of the OGRS-

DTE policy over the strict sense service policy WGRS in
the ergodic sense, which directly implies that the OGRS-
DTE enables the overall network scheduler to support existing
eMBB users at a higher data rate than the WGRS policy.

V. SIMULATION RESULTS

We consider a BS serving a set of URLLC and eMBB
users with each user’s channel rate Cn per RB determined
by the corresponding received Signal to Noise Ratio (SNR).
The received SNR was modelled using the 3GPP Urban-
Micro path loss model [1], with Rayleigh distributed small
scale fading. We assume bounded channel realizations, where
the SNR lies between ↓6.934 dB ↑ SNR ↑ 20 dB.
For simplicity, we shall use the 3GPP MCS table (see
[37, Table 5.2.2.1-2]) to determine the rate obtained per RB
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TABLE I
LEAKY BUCKET PARAMETERS FOR MULTIPLE USERS

Cn, where each RB is a time frequency slice of duration
1ms with bandwidth B = 10 KHz. The traffic model is
stochastic arrivals with a packet size of 1024 bits that arrive
each time slot shaped by the leaky bucket with parameters
(in packets per time slot) ε = 50, ω = 10, µ = 5, unless
otherwise specified. Finally, to determine the channel quality
thresholds, we need the CDF FC(·) for the channel rate per
RB on a given slot, for each user. We used the last 100 channel
SNR realizations to determine the empirical CDF of the user’s
SNR at any given instant. Note that all plots in this section
were generated over 106 slots, resulting in a ±0.1 error for
the estimated mean number of allocated RBs per slot M̄

ε

with 99% confidence interval. Additionally, we will use the
WGRS policy as a baseline and also other benchmark policies
such as the multicarrier version of the MLWDF [14] policy
and schedulers that use neural network based forecasts of
future channel rates to evaluate the promise of our proposed
algorithms.

A. Performance of Opportunistic Scheduling Policies
1) Improvement in eMBB Throughput: In this subsection,

we demonstrate the throughput improvement for eMBB users
where the BS supports multiple heterogeneous users, 3
URLLC, and 5 eMBB users. We consider ON-OFF bursty
arrivals for URLLC users, where packets arrive at a peak rate
ω during the ON period. The ON, OFF cycles are of duration

ϑ

ϱ↑µ
,

ϑ

ϱ
, respectively. Distance from the BS and leaky bucket

parameters for the 3 URLLC users are tabulated below:
The eMBB users are located at distances 250, 560, 650, 720,

and 800 meters from the BS. Note that we assume that
eMBB users are infinitely backlogged and do not have any
stringent deadlines. A total of 6000 RBs are available to
all the users connected to the BS and the URLLC users
are allocated resources with priority. Furthermore, all leftover
RBs after assignment to URLLC users are allocated through
proportionally fair scheduling to one eMBB user during each
time slot. The throughput performance of the oracle-aided
policy is also included to provide a bound on the best feasible
spectral efficiency for URLLC users, which translates to higher
throughput for eMBB users.

Fig. 6 showcases the throughput gains for eMBB users
for the various algorithms. When compared to the baseline
and benchmark scheduling policies, OGDS policy is indeed
closer to the throughput gain bound set by the oracle-aided
scheduling policy with access to future channel rates.

B. Admission Control
We consider a set of 100 users with ON-OFF bursty traffic

and leaky bucket constrained arrivals. The ON OFF duration

Fig. 6. Long term throughput distribution for eMBB users.

is set to ϑ

ϱ↑µ
,

ϑ

ϱ
, with parameters (in packets per time slot)

ε = 50, ω = 10, µ = 5. The delay deadline and user location
(distance from the BS) are drawn uniformly random from
the sample spaces {200, 250, . . . , 800} and {2, 3, . . . , 10},
respectively. The arrivals and channel variations are generated
over 106 time slots to simulate the number of users that
can be admitted for various system capacities m (the total
number of RBs available in the system). If Y ≃ N (µ̂, ↽̂)
denotes the random resource requirement of a new user,
then the probability that the total Xu + Y will exceed m is
approximated using the following inequality, see [38],

P (Xu + Y ↗ m) ↑ exp
(
↓m↓ µ

2↽

)
, (17)

where Xu ≃ N (µ, ↽), µ = µu + µ̂ and variance ↽ = ↽u + ↽̂.
Note that the inequality in (17) provides a computationally
reasonable expression that can be used to decide if the
new user can be admitted without exceeding the reliability
requirement φ. Therefore, for the same set of users, we also
use the Gaussian approximation for the aggregate resource
requirement Xu to determine the number of users that can
be admitted, shown as dashed lines in Fig. 7.

It can be seen in Fig. 7 that the Gaussian approximation
provides a conservative estimate of the number of users that
can be admitted into the system for both the OGRS and WGRS
scheduling policies. For OGDS, there is a cross-over point
where the CLT estimate is above the simulation based users
admitted until a system capacity of 3500 RBs, after which the
CLT estimate becomes conservative. This can be attributed to
the more bursty nature of OGDS scheduling as compared to
the other scheduling policies, making the CLT approximation
for OGDS reasonable only at higher system capacities than
OGRS/ WGRS. Also interesting to note is that both OGRS
and OGDS scheduling policies admit more users as compared
to the WGRS policy, which is interesting given that WGRS
is more deterministic in resource provisioning, whereas the
others are more bursty.

C. Stochastic Dominance of WGRS Policy

Through extensive simulations, we were able to observe
first-order stochastic dominance of the number of resource
blocks allocated during a WGRS busy cycle over both
OGRS-DTE policy and OGDS. We observed that on average
OGRS-DTE required lesser resources than WGRS during a

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Texas at Austin. Downloaded on February 03,2025 at 18:32:05 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 7. Admission control assuming CLT approximation on the total RBs
required for all admitted URLLC users.

WGRS busy cycle, i.e., 27%, 47%, 22% for strong, medium,
and weak users, respectively. Similarly, OGDS required fewer
resources than WGRS during a WGRS busy cycle, i.e.,
43%, 62%, 54% for strong, medium, and weak users, respec-
tively.

D. Practical Considerations

In this section, we consider some additional practical
considerations affecting our proposed schedulers including
HARQ, user mobility, and how confidence levels on the
measured resource usage statistics impact the effectiveness of
our proposed admission control strategy.

1) Transmission Error: So far we have discussed delay
constrained scheduling based on the connectivity assumption
that a user’s packet transmissions are successful at all times.
In practice, user transmissions are bound to see errors due
to the nature of wireless channel uncertainty. The probability
with which errors in wireless transmission occur depends
on the size of the data packets, channel strength, and the
amount of redundancy added to the original data for error
detection and/ or correction. In this subsection, we evaluate the
probability of error for all algorithms over various transport
block lengths (which is higher for larger packets).

Fig. 8 shows the packet transmission error probability of
our proposed algorithms for various user channel strengths
as a function of the transport block length. The probability
of transmission error ⇀ was modeled based on the Polyanski
bound [39], [40]. For transmission of block length m, coding

rate r and channel SNR ϱ, the error bound is given by,

⇀ = Q






m

(log2 e)2
(
1↓ 1

1+ς2

) (log2(1 + ϱ)↓ r)



 . (18)

Recall that the modulation and coding scheme is chosen
using the 3GPP MCS table ( [37, Table 5.2.2.1-2]) based
on the instantaneous channel strength. It can be seen that
the performance of all our proposed algorithms results in a
ten-fold decrease in the probability of transmission errors as
compared to the WGRS, with the OGDS algorithm being the
best among all feasible (future agnostic) algorithms consid-
ered. The proposed algorithms schedule transmissions when
the channel has a higher probability of being better than future
channels before the deadline expires, which in turn leads to a
lower probability of transmission errors.

2) HARQ: Wireless networks typically use automatic
retransmit requests whenever there are transmission errors
that lead to packet losses. A one-shot retransmission would
typically suffice if the modulation and coding scheme were
carefully chosen so as to maximize the likelihood of successful
retransmission. So a simple modification to the proposed
algorithms is to reduce the target delay deadline by one
slot and perform a one-shot retransmission of packets lost
due to transmission error. Note that the proposed modifica-
tion assumes that the delay constraints exceed several time
slots (more than 2 slots). Incorporating the modified target
deadline to allow for HARQ one-shot retransmissions leads
to successful packet deliveries for all types of users with
an associated loss in spectral efficiency. Setting an earlier
deadline for strong, medium, and weak users leads to a loss in
spectral efficiency of at most 9%, 14%, and 15%, respectively.

3) User Mobility: The adaptive rate thresholds (refer to
Equation (9)) depend on the accuracy with which the dis-
tribution of the channel rate variations can be empirically
estimated. A sufficient number of past channel values are
required to estimate the channel variation statistics, but short
enough to track non stationary changes and exclude obsolete
channel data. This calls for selecting the number of past
channel samples that are used to determine the channel rate
distribution, which could potentially depend upon the user’s
mobility speed.

To evaluate this we use the Random Way Point model
(RWP) to model user mobility with a constant speed in the
range of 5↓ 40m/s. Using the user’s location given by RWP
model, the wireless channel variations are modeled based on
the 3GPP channel model with correlated log-normal Shadow
fading based on the distance traveled. Specifically, the correla-
tion factor for shadowing is given by, Rx(·) = exp

(
↓ distance

dcorr

)
,

where the parameter dcorr depends on the presence or absence
of Line of Sight (LoS) signal, i.e.,

1) LoS shadowing : Log N (0, 4), dcorr = 10m.
2) nLoS shadowing: Log N (0, 7.82), dcorr = 13m.
Fig. 9 shows the resource requirement for various algo-

rithms as a function of the number of past samples used to
estimate the CDF. We find that for various mobility speeds
in the range of 5-40 m/s, the number of samples (channel
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Fig. 8. Probability of packet transmission error for various user types.

Fig. 9. Resource requirement for a mobile user moving at a speed of 40 m/s.

history) required to efficiently track the user’s nonstationary
channel distribution is 5. As can be seen, using more samples
leads to obsolete channel information being included in the
empirical estimate, resulting in the adaptive rate threshold
being irrelevant to the current wireless channel – and hence a
loss in spectral efficiency.

4) Delay Constrained Schedulers Based on Based Channel
Prediction: Recall that in Section IV-A we proposed an
offline/ genie based policy that given perfect knowledge of
future channel realizations achieved the best possible spectral
efficiency subject to the packet delay constraints. It is thus
natural to attempt to implement such a policy based on
predicted future channel rates given the observed channel his-
tory. To explore the potential of this approach we considered
various possible predictors introduced in [41] and followed
their methodology for training our predictions for the wireless
channel data sets2 in [42] and [43] using Adam/ Stochastic
Gradient Descent optimization based Feed-forward Neural
Networks (FNN) and state-of-the-art machine learning archi-
tectures including Long Short-Term Memory (LSTM) [44],
Recurrent Neural Network (RNN) [45], Convolutional Neural
Network (CNN) [46]. We evaluated the spectral efficiency of
the prediction based delay constrained schedulers, for traffic
having deadlines from 2 to 10ms. In this study, bursty traffic

2Data trace of wireless channel strength in terms of SINR captured for
vehicular users in cities Berlin and Austria.

Fig. 10. Resource requirement across proposed scheduling algorithms for
non-stationary wireless trace data in [42] marked as “Berlin data” and in [43]
marked as “Austria data”.

arrivals with packets of size 1024 bits were considered, which
arrive according to an ON and OFF process with a duration
of 10 and 5 time slots respectively, with an ON rate of
10 pkts/slot.

Fig. 10 shows the spectral efficiency (as measured by the
mean resource requirements to support the delay constrained
traffic) that the prediction based schedulers and our proposed
schedulers achieve for the wireless trace data in [42] and [43].
The normalized Root Mean Square Error (RMSE) for neural
network predictions lies in the range of 0.081 ↓ 0.137 for
“Berlin data” in [42] and 0.057 ↓ 0.127 for “Austria data”
in [43]. Later on, we will see how this small difference in
prediction accuracy leads to large variations in performance.

The overall improvement in spectral efficiency saturates
beyond a certain delay deadline (see Fig. 10) due to the
diminishing value of the flexibility that each additional time
slot provides. Further, to exploit the additional flexibility of
more relaxed deadlines, one needs to have accurate predictions
of the channel capacity over longer horizons, which in practice
is not possible. To see this clearly, we provide the prediction
accuracy results for neural network prediction for both “Berlin
data” and “Austria data”. Figures 11, 12 show the Root Mean
Square Error (RMSE) and 95% confidence interval for channel
rate predictions for the wireless trace data given in [42]
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Fig. 11. RMSE across various neural network architectures for channel rate
prediction [42].

Fig. 12. RMSE across various neural network architectures for channel rate
prediction [43].

and [43], respectively. As one would expect, the architecture
delivering the lowest prediction error, FNN-Adam for “Berlin
data” in [42] and LSTM for “Austria data” in [43], leads to
the most spectrally efficient scheduling for prediction based
delay constrained schedulers. Our proposed measurement-
based scheduler, OGDS outperforms all the prediction based
schedulers for “Berlin data”, with OGRS only slightly worse
than FNN-Adam based scheduler when delay deadlines are
less than 2 ms. However, for “Austria data”, a higher prediction
accuracy for shorter delays (↑ 6 ms) leads to better spectral
efficiency for prediction based schedulers than both OGDS and
OGRS. It appears that the proposed ML-based schedulers are
more sensitive to prediction errors when deadlines are relaxed
(> 6ms), resulting in lesser spectral efficiency than OGDS.

As one would expect, the architecture delivering the low-
est prediction error, FNN-Adam for “Berlin data” in [42]
and LSTM for “Austria data” in [43], leads to the most
spectrally efficient scheduling for prediction based delay
constrained schedulers. Our proposed measurement-based
scheduler, OGDS outperforms all the prediction based sched-
ulers for “Berlin data”, with OGRS only slightly worse than
FNN-Adam based scheduler when delay deadlines are less
than 2 ms. However, for “Austria data”, a higher prediction
accuracy for shorter delays (↑ 6 ms) leads to better spectral
efficiency for prediction based schedulers than both OGDS and
OGRS. It appears that the proposed ML-based schedulers are
more sensitive to prediction errors when deadlines are relaxed
(> 6ms), resulting in lesser spectral efficiency than OGDS.

Fig. 13. Confidence interval for the mean and standard deviation of the total
number of RBs required for heterogeneous users.

It should be noted that all neural networks were trained
using thousands of samples of data before being deployed on
test data. This would mean the neural network has adequate
training on actual rate variations in the wireless environment
and a prediction phase where the user remains stationary,
which is unrealistic! One could in principle use a “meta”
scheduler that uses neural network prediction-based schedulers
for low delay deadlines and utilizes OGRS/ OGDS algo-
rithms for higher delay deadlines. However developing such a
framework is outside of the scope of this paper, but could
perhaps draw on the ideas of a meta scheduler discussed
in [47]. In summary, we have proposed measurement-based
schedulers that appear robust for real-world traces and have
much lower computational complexity than schedulers that
use NNs. Online time series predictors that can learn to
predict with fewer learning samples and quickly adapt to
non-stationary variations could be a promising avenue for
improving spectral efficiency.

5) Measurement Error: The admission control strategies
discussed in [3] and [4], rely on accurate knowledge of the
users’ aggregate resource usage statistics. In practice, however,
one would need to measure the system’s resource usage –
which could potentially evolve based on the overall network
traffic and user channel dynamics. Consequently, it is of inter-
est to know the measurement errors in the mean and variance
of aggregate resource usage that would impact performance.

We estimate the measurement error for the mean and
standard deviation of the resources required by constructing
a confidence interval based on 100 samples of the total RBs
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required for servicing the heterogeneous users. We determine
the confidence interval for the mean, using the Gaussian
confidence interval, CI = µ̂±zφε̂, where zφ → R is the value
such that P(X ↗ zφ) ↑ ς. The confidence interval for the true
standard deviation εtrue was obtained using the formula,


(k ↓ 1)ε̂2

⇁2
φ/2

↑ εtrue ↑


(k ↓ 1)ε̂2

⇁2
1↑φ/2

(19)

where k is the number of samples used to obtain the sample
variance and ⇁

2
φ

= x : P(X ↗ x) = ς, with X being
⇁

2 distributed with k ↓ 1 degrees of freedom.
Fig. 13 shows the confidence interval for the mean and

standard deviation for a 99.9999% confidence interval on the
resource requirement based on all three scheduling policies.
The confidence interval around the mean is quite narrow and
re-emphasizes the certainty equivalence of the measured mean.
As for the standard deviation, Fig. 13 shows that one needs to
account for the confidence interval of the variance to provide
robust admission control to URLLC users.

VI. CONCLUSION

We have proposed two classes of opportunistic delay con-
strained wireless schedulers, which can meet heterogeneous
users’ strict delay deadlines while being spectrally efficient,
i.e., minimizing the resources required, thus permitting the
system to achieve additional eMBB user throughput. The
underlying design principle for OGRS policies is to ensure that
the wireless scheduler meets or exceeds the service that a fixed
rate scheduler designed based on leaky bucket constrained
delay analysis would assign. Thus by design, OGRS policies
can also be used to efficiently deliver a Guaranteed Bit Rate
(GBR) service. Our proposed OGDS policies allow for more
aggressive opportunistic scheduling which depending on the
delay constraints can achieve within 10% of the spectral
efficiency of optimal offline scheduling. Both policies use
dynamic opportunistic thresholds to leverage the knowledge
of the user’s marginal channel quality rate distribution which
in practice would be measured and/ or tracked, based on a
limited number, say 10, of the previous channel realizations.
In this study, it was considered that channels were independent
and identically distributed (i.i.d.) over time. Consequently, the
potential for enhancing spectral efficiency through statistical
prediction of forthcoming channel realizations could be inves-
tigated when there is a correlation across channels over time.

APPENDIX

Let M
WGRS
n

and M
OGRS
n

denote the (possibly fractional)
number of resource blocks used to serve the user queue at time
n, under WGRS(s) and OGRS(s)-DTE scheduling policies,
respectively. Without loss of generality, let the system start
with an empty queue and let (0, N ] denote a busy cycle of the
WGRS policy. We compare the performance of WGRS and
OGRS schedulers under a coupled queueing system, where
both queues see the same arrival and channel rate processes
but one is serviced by scheduling policy and the other by
OGRS. First, we will show that in any WGRS busy cycle, the

resource requirement for WGRS stochastically dominates that
of OGRS, i.e.,

N∑

n=1

M
WGRS
n

↗st

N∑

n=1

M
OGRS
n

. (20)

Then we will prove that in a steady state, the average resource
requirement under WGRS is greater than that required by
OGRS using the stochastic dominance result.

As long as the user queue is sufficiently backlogged, WGRS
provides a deterministic service rate s throughout it’s busy
cycle. The only nondeterministic part of the WGRS scheduling
policy is at the end of it’s busy cycle N when there might not
be enough data in the queue to utilize service rate s fully. Let
us partition the interval (0, N ] based on time instants when
the channel rate exceeds the adaptive threshold. Define T1 →
(0, N ] as the first time the channel rate exceeds the threshold
ϱT1 of the OGRS policy, i.e.,

T1 = min
(

N, min
t>0

(t : Ct > ϱt)
)

, (21)

where ϱ is the OGRS-DTE threshold as previously defined
in III-B.3. Note by definition, the user queue length and the
number of RBs utilized to schedule data under both WGRS
and OGRS policies will be the same until T1, i.e.,

M
WGRS
n

= M
OGRS
n

a.s. , ⇐n → (0, T1), and
Q

WGRS
n

= Q
OGRS
n

a.s. , ⇐n → (0, T1]. (22)

Consider a particular realization of T1 = t1. Denote by Qt1

(same for WGRS and OGRS) the amount of data available to
be transmitted at time t1 and note that this is the same for
both policies.

Now we shall compare the number of RBs that will be
used by both the policies to service Qt1 . Since the channel
rate exceeds the DTE threshold at time t1, OGRS will use
M

OGRS
t1

=
Qt1

Ct1

RBs to clear the entire queue. However, the

WGRS policy will require !1 =
⌈

Qt1
s

⌉
time slots to service

the same amount of bits in the queue Qt1 . Clearly, Qt1 ↑ s!1,
therefore, one can conclude that,

M
OGRS
t1

↑ s
!1

ϱt1

a.s. (23)

We will show that the number of RBs allocated by OGRS-DTE
policy in the interval (0, t1] is stochastically dominated by that
allocated by WGRS policy in the interval (0, t1 + !1). Since
the number of RBs utilized by both the WGRS and OGRS
policies is the same in the interval (0, t1), it is sufficient to
compare their resource allocations in the interval [t1, t1+!1).

Recall Lemma 2 to obtain,

P(Ct1 > Ct1+i|Ct1 ↗ ϱt1) ↗ P(Ct1 < Ct1+i|Ct1 ↗ ϱt1) ,

(24)

where i = 1, . . . ,!1 ↓ 1. Now consider the distribution of
the number of RBs that WGRS requires to clear the same
queue. The only way that WGRS could require fewer RBs than
s!1, 1 ↑ !1 ↑ d is if all the channel realizations between
[t1 + 1, t1 + !1) are greater than Ct1 , i.e., for any particular
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realization of the random variable !1 = k,

P


k↑1∑

n=0

M
WGRS
t1+n

↑ s
k

ϱ

 Ct1 ↗ ϱt1



= P ((Ct1+1 ↗ Ct1) ⇒ . . . (Ct1+k ↗ Ct1 |Ct1 ↗ ϱt1)) ,

=
k↑1

i=1

P (Ct1+i ↗ Ct1 |Ct1 ↗ ϱt1 ,!1 = k) ,

(a)
↑

k↑1

i=1

P (Ct1+i < Ct1 |Ct1 ↗ ϱt1 ,!1 = k) ,

(b)
= q

k↑1
< 1 = P

(
M

OGRS
t1

↑ s
k

ϱ

 Ct1 ↗ ϱt1

)
, (25)

where inequality (a) follows from equation (24). By definition
of t1 note that Ct1 ↗ ϱt1 , where the channel rate threshold is
at least as large as the median, i.e., ϱt1 ↗ F

↑1
C

(1/2) always,
since ϱt1 = F

↑1
C

(1 ↓ 1
!1+2 ) and 1

x+2 ↑
1
2 ,⇐x ↗ 0. So it

follows that each of the probabilities in the product of step
(a) has a value of q ↑ 1

2 . Therefore, based on equations (22)
and (25), we have, ⇐t > 0,

P


!1↑1∑

n=0

M
WGRS
t1+n

↑ t

 !1 = k


↑ P


M

OGRS
t1

↑ t
 !1 = k


.

(26)

Consequently, we draw the following conclusion applying
theorem [48, Theorem 1.2.15] about the preservation of the
stochastic order of two random variables, if there exists an
order when conditioned on a dependent random variable, i.e.,

M
OGRS
t1

↑st

!1↑1∑

n=0

M
WGRS
t1+n

. (27)

Note that the above equation holds for any realization t1 of
the random variable T1, so it must hold for all realizations
of T1. Moreover, recall (22) where the number of resources
utilized by both policies are equal until T1, so summarizing
the previous equation and (22) we have,

T1∑

n=0

M
OGRS
n

↑st

T1+!1↑1∑

n=0

M
WGRS
n

. (28)

Finally, note that if T1 = N , we are done with the proof.
Otherwise, we shall partition the WGRS busy cycle (0, N ]
for each of the scheduling policies based on the number of
occurrences of the channel rate exceeding the threshold,

OGRS:(0, T1], (T1, T2] . . . (TP , N ],
WGRS :(0, T1 + !1), [t1 + !1, T2 + !2) . . . [TP + !p, N ].

(29)

Here the times Ti are defined as follows,

Ti = min
(

N, min
t>Ti→1

(t : Ct > ϱt)
)

. (30)

For the subsequent WGRS cycle (t1, T2], if T2 > t1 +
!1 ↓ 1 then by OGRS algorithm design, the number of RBs

allocated by OGRS in the interval (t1, t1+!1) is zero and we
can repeat the same analysis as we did for interval (0, t1] to
establish stochastic dominance. In case T2 ↑ t1 + !1 ↓ 1,
we know that ϱt ↗ F

↑1
C

(1 ↓ 1
3 ),⇐t → [t1 + 1, t1 + !1).

Therefore we have ϱT2 > ϱt1 , and the occurrence of any
future rate realizations for WGRS to be better than CT2 will
be governed by,

q = P (CT2+i > CT2 |CT2 > ϱT2) < 1/3 , (31)

which has to be satisfied by WGRS over multiple time
slots according to !2 =

⌈
QT2

s

⌉
a.s., in order to utilize

lesser resources than OGRS-DTE. Stochastic dominance of the
number of resources allocated by WGRS over that allocated
by OGRS can be derived as in equation (25), now using q as
in (31).

Finally, to complete the proof let us define the following
random variables,

Xi =
Ti+1∑

n=1+Ti

M
OGRS
n

and Yi =
Ti+1+!i+1↑1∑

n=Ti+!i

M
OGRS
n

, (32)

where T0 = 0 and !0 = 0. We have shown that Xi↑stYi, 1 ↑
i ↑ I , where I is the number of time instances that the channel
rate exceeds the adaptive threshold over the interval (0, N ].
The result in (20) follows from [48, Theorem 1.2.17], because

I∑

i=1

Xi =
N∑

n=1

M
WGRS
n

and
I∑

i=1

Yi =
N∑

n=1

M
OGRS
n

. (33)

We provide simulation results in Sec.V-C that establish the
stochastic dominance of the number of resource blocks allo-
cated by both OGRS-DTE policy over WGRS, during a
WGRS busy cycle.

If we let the time n⇑⇓, and (Ni)i→N denote the WGRS
busy cycle lengths, then the average number of RBs per time
slot required by WGRS is given by,

E[MWGRS] = lim
n↔↗

1
n

n∑

k=1

M
WGRS
k

= lim
n↔↗

1
n

∑

i:Ni↓n

Ni∑

n=1

M
WGRS
n

↗st

1
n

∑

i:Ni↓n

Ni∑

n=1

M
OGRS
n

= E[MOGRS]. (34)

Lemma 2: For any two positive random variables X1,
X2 and a constant ϱ > median(X2), the following inequality
holds,

P(X1 ↗ X2|X1 ↗ ϱ) ↗ P(X1 < X2|X1 ↗ ϱ) , (35)

as long as X1 has a non-zero probability of taking values
higher than ϱ, i.e., P(X1 ↗ ϱ) > 0.

Proof: The Left Hand Side (LHS) of equation (35) can
be written as,

P(X1 ↗ X2|X1 ↗ ϱ) = E[1(X1↘X2)|X1 ↗ ϱ], (36)

where 1E is the indicator function of the event E. Simi-
larly expressing the right-hand side of the equation as an

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Texas at Austin. Downloaded on February 03,2025 at 18:32:05 UTC from IEEE Xplore.  Restrictions apply. 



CHANDRASEKARAN et al.: MEASUREMENT BASED DELAY AND JITTER CONSTRAINED WIRELESS SCHEDULING 15

expectation and then finding the difference yields,

P(X1 ↗ X2|X1 ↗ ϱ)↓ P(X1 < X2|X1 ↗ ϱ)
= E[1(X1↘X2)|X1 ↗ ϱ]↓ E[1(X1<X2)|X1 ↗ ϱ]
= E[1(X1↘X2) ↓ 1(X1<X2)|X1 ↗ ϱ]. (37)

Whenever a realization of X1 is below ϱ, the RHS above
is 0. Otherwise, the right hand side of (37) becomes,

E[1(x↘X2) ↓ 1(x<X2)] = E[1(x↘X2)]↓ E[1(x<X2)]
= P[(x ↗ X2)]  

↘ 1
2

↓P[(x < X2)]  
<

1
2

↗ 0.

(38)

From (37) and (38), it is clear that for any realization of X1,
the LHS of (37) is greater than or equal to 0, leading to the
result in (35). It should be noted that while we have provided
proof for only OGRS-DTE, the same proof would hold for
any fixed percentile threshold ς ↗ 0.5. ↭
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