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Abstract—Adapting video data rate during streaming can effec-
tively reduce the risk of playback interruptions caused by channel
throughput fluctuations. The variations in rate, however, also
introduce video quality fluctuations and thus potentially affects
viewers' Quality of Experience (QoE). We show how the QoE of
video users can be improved by rate adaptation and admission
control. We conducted a subjective study wherein we found
that viewers' QoE was strongly correlated with the empirical
cumulative distribution function (eCDF) of the predicted video
quality. Based on this observation, we propose a rate-adaptation
algorithm that can incorporate QoE constraints on the empirical
cumulative quality distribution per user. We then propose a
threshold-based admission control policy to block users whose
empirical cumulative quality distribution is not likely to satisfy
their QoE constraint. We further devise an online adaptation
algorithm to automatically optimize the threshold. Extensive sim-
ulation results show that the proposed scheme can reduce network
resource consumption by 40% over conventional average-quality
maximized rate-adaptation algorithms.
Index Terms—Quality of experience, video transport, rate adap-

tation, admission control, wireless networks.

I. INTRODUCTION

V IDEO traffic is currently a rapidly growing fraction of
the data traffic on wireless networks. As reported in [3],

video traffic accounted for more than 50% of the mobile data
traffic in 2012. Efficiently utilizing network resources to satisfy
video users' expectations regarding their Quality of Experience
(QoE) is an important research topic. In this paper, we study
approaches to share wireless down-link resources among video
users via QoE-based rate adaptation and admission control.
We focus on a setting in which stored video content is

streamed over wireless networks. When a video is streamed,
the received video data is first buffered at the receiver and then
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played out to the viewer. Because the throughput of a wireless
channel generally varies over time, the amount of buffered
video decreases when the channel throughput falls below the
current video data rate. Once all the video data buffered at
the receiver has been played out, the playback process stalls,
significantly affecting the viewers QoE [4]. To address this
problem, various video rate-adaptation techniques based on
scalable video coding or adaptive bitrate switching have been
proposed to match the video data rate to the varying channel
capacity [5]–[9]. Although these rate adaptation techniques
can effectively reduce the risk of playback interruptions, the
variable bitrate causes quality fluctuations, which, in turn, af-
fect viewers' QoE. In most existing rate-adaptation algorithms
such as [10]–[15], the average video quality is employed as
the proxy for QoE. The average quality, however, does not
reflect the impact of quality fluctuations on the QoE, i.e., two
videos with the same average quality can have significantly
different levels of quality fluctuation. In this paper, we propose
to characterize and predict the users' QoE using the second
order empirical cumulative distribution function ( -order
eCDF) of the delivered video quality; this is defined as

(1)

where represents the predicted quality [16] of the
second of the video and is the video length. Note that

if and only if , so the -order
eCDF captures for how long and by how much the predicted
video quality falls below . If we interpret as the threshold
below which users judge the video quality to be unacceptable,
then the -order eCDF reflects the impact of the unacceptable
periods on the QoE. Since it has been recognized that the worst
parts of a video tend to dominate the overall quality of an entire
video [17]–[21], the -order eCDF can be used to predict the
QoE.
The efficacy of the -order eCDF in capturing QoE can

be validated through subjective experiments. In [1] and [2],
we reported a subjective study of this type. For each of the
15 quality-varying videos involved in the subjective study, we
asked 25 subjects to score its quality. We computed the linear
correlation coefficients (LCCs) between various QoE metrics
and the subjects' Mean Opinion Scores (MOSs) in Table I. The

-order eCDF achieves the strongest linear correlation (0.84).
In comparison, the average video quality only achieves a corre-
lation of 0.57. This lends strong support for eCDF as a good
proxy for video QoE.
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TABLE I
THE LINEAR CORRELATION COEFFICIENTS (LCCS) OF SEVERAL
METRICS WITH QOE. THE METRICS AND

ARE THE AVERAGE VALUE, THE MAXIMUM VALUE AND
THE VARIANCE OF THE TIME SERIES , WHERE

IS THE PREDICTED VIDEO QUALITY AT TIME

In this paper, we design adaptive video streaming algorithms
that incorporate QoE constraints on the -order eCDFs of the
video qualities seen by users. In particular, we consider a wire-
less network in which a base station transmits videos to multiple
users. The user population is dynamic, i.e., users arrive and de-
part from the network at random times. When a new user joins
the network, the base station starts streaming a video to the user.
A rate adaptation algorithm is employed to control the video
data rate of all active video streams according to varying wire-
less channel conditions.
When the base station is shared by too many users simulta-

neously, the QoE served to each user can be poor. Instead of
serving every user with poor QoE, it is preferable to satisfy the
QoE constraints of existing users by selectively blocking new-
comers. Therefore, in addition to rate adaptation algorithms, we
introduce a new admission control strategy that is designed to
maximize the number of video users satisfying the QoE con-
straints on their -order eCDFs. As will be shown in the paper,
although the admission control strategy damages the QoE of the
blocked users, the overall percentage of users satisfying the QoE
constraints among both admitted and blocked users can be sig-
nificantly improved. The contributions of our work are twofold:
• An online rate-adaptation algorithm aimed at meeting
QoE constraints based on the -order eCDFs of users'
video qualities.
Since the -order eCDF is determined by the overall
spatio-temporal pattern of video, simply maximizing
the video quality all the times is not sufficient to sat-
isfy the QoE constraints. Instead, we propose an online
rate-adaptation algorithm that jointly considers the channel
conditions, the video rate-quality characteristics, and the

-order eCDFs of all video users. We show significant
performance gains over conventional average-quality
optimized algorithms.

• An admission control strategy, which blocks video users
who will likely be unable to meet the constraints on their

-order eCDFs.
Specifically, we propose an algorithm that predicts the
video quality experienced by each user who is new to
the network. We then employ a threshold-based admis-
sion control policy to block those users whose estimated
qualities fall below the threshold. An online algorithm is
proposed to adjust the threshold to its optimal value. The
proposed admission control strategy further improves the
performance of our rate-adaptation algorithm, especially
when the network resources are limited.

The remainder of this paper is organized as follows:
Section II discusses related work. In Section III, we give
an overview of the structure of the video streaming system
studied in this paper. In Section IV, we explain our system

model and the QoE constraints. The proposed rate adaptation
algorithm and the admission control strategy are introduced
in Sections V and VI. We demonstrate their performance via
extensive simulation results. Section VII concludes the paper
with discussions on future work.

II. RELATED WORK

Let us first review related work in QoE assessment, rate adap-
tation, and admission control.

A. QoE Metrics for Rate-Adaptive Video Steaming

Most existing rate-adaptation algorithms such as [10]–[15],
[22], [23] employ average video quality as the proxy of QoE
due to its simplicity in analysis. As shown in Table I, however,
average quality does not efficiently capture the impact of quality
fluctuations. To address this problem, temporal quality pooling
has been studied [17]–[21]. The pooling algorithms, however,
have only been designed and validated for short videos that are
a few seconds long. Furthermore, they are too complicated to
be incorporated into a tractable analytical framework for the de-
sign of rate-adaptation algorithms. The authors of [24] propose
a simple QoE metric, which is the weighted sum of the time-av-
erage and the standard deviation of the predicted video quality.
As shown in Table I, this metric achieves a better correlation
of 0.73 than the time-average quality. The QoE metric that we
propose here achieves an even higher correlation of 0.84. More-
over, because the -order eCDF is simply a temporal average
of the function , its analysis is just as simple
as for average video quality.

B. Rate Adaptive Video Streaming

Extensive research efforts have been applied to the problem
of rate adaptation for wireless video streaming. Most existing
work employs the time-average video quality as the QoE metric
due to its simplicity [10]–[15], [22], [23]. In [25], a rate adapta-
tion algorithm is proposed to optimize the QoE metric of [24].
Although the proposed algorithm mitigates video quality varia-
tions, it assumes a fixed set of users and thus does not incorpo-
rate the impact of user arrival and departure on video quality. In
[26], the quality fluctuations caused by user arrival and depar-
ture are analyzed for large wireless links shared by many video
streams. The algorithms proposed here do not rely on such as-
sumptions and can be applied to small wireless cells such as
Wi-Fi networks. In [27], a distributed flow control algorithm is
presented to achieve the utility max-min fair bandwidth alloca-
tion if the slope of the utility function is lower-bounded by a cer-
tain positive value. Note that the -order eCDF is the time-av-
erage of the utility function , whose minimum
slope is 0. Thus the algorithm proposed in [27] is not applicable.

C. Admission Control for Video Streaming

Admission control for variable bitrate videos has been studied
in [28]–[30]. In [28], an admission control algorithm is pro-
posed for variable bitrate videos stored on disk arrays and trans-
mitted over cable television networks. In contrast to wireless
networks, the transmission bottleneck of cable television net-
works is the buffer at the disk array. The admission control
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Fig. 1. The wireless network considered here: The video is stored at the con-
tent delivery network. The proxy for rate adaptation and admission control is
colocated with the base station. The base station serves both video users and
high-priority users.

algorithm is designed to ensure that the buffer does not over-
flow while the video is played back continuously. In [29] and
[30], threshold-based admission control algorithms for video
streams delivered over packet-switch networks are studied. In
[29], thresholds are applied to the number of video users. The
heterogeneity in the data rate of the video streams is not con-
sidered. In [30], the threshold is applied to the aggregated data
rate requested by admitted videos. In both [29] and [30], a sta-
tistical model of the video traffic is necessary to optimize the
admission threshold. In practice, however, modeling the video
traffic is difficult. Our proposed admission control strategy does
not rely on the a priori knowledge of the traffic statistics. The
threshold is learned online and optimized automatically.

III. SYSTEM OVERVIEW

We first discuss the architecture of the wireless networks con-
sidered in this paper. Then, we explain how the proposed online
rate adaptation algorithm and threshold-based admission con-
trol strategy fit into the existing network architecture.

A. Architecture of the Wireless Network
We consider a wireless network where video users share

the down-link with high-priority traffic (e.g., voice traffic) and
thus video users will need to adapt their rates accordingly.
(see Fig. 1). All users arrive to and depart from the network at
random times. A high-priority user requires a random amount
of wireless resource (e.g., transmission time in TDMA systems)
per unit time throughout its sojourn in the system. The trans-
mission resources not used by the high-priority users can be
allocated to video users. When a video user arrives, it requests a
video that is stored at a content delivery network (CDN) and is
streamed to the user via the base station. When a video is being
streamed, the video data is first delivered to a receive buffer
and then decoded for display. Paralleling prior work such as
[15], [25], [31], we assume a proxy is colocated with the base
station. We treat the high-priority users as background traffic,
and the proxy is only used to control the video streams.

B. Video Streaming Proxy
The function of the proxy is twofold (see Fig. 2). First, when a

video user arrives, the proxy decides whether the user should be
admitted to share the channel or not. Second, for admitted video
users, the proxy adapts the transmission data rates according to
the varying channel conditions. The admission control strategy

Fig. 2. The proposed QoE-constrained video streaming system: Admission
control only affects newly arrived video users and the rate adaptation algorithm
does its best to satisfy the QoE constraints of all admitted video users.

only acts on newly arrived video users, and the rate adapta-
tion algorithm does its best to satisfy QoE constraints for all
admitted video users. The rate adaptation algorithm accompa-
nies the admission control algorithm by feeding back necessary
information (see Section V-B for more detail) regarding the cur-
rent status of the admitted users.
We assume the proxy operates in a time-slotted manner where

the duration of each slot is seconds. The admission control
and the rate adaptation actions are conducted at the beginning of
every time slot. Note that, in a video stream, the video frames are
partitioned in Groups of Pictures (GoPs) and the video data rate
can only be adapted at the boundary of GoPs [32], [33]. Because
the duration of a GoP is usually configured to be larger than one
second to achieve high compression efficiency, we assume
is at least 1 second.

IV. SYSTEM MODEL

Before proceeding further, we introduce the notation used in
the paper. Then, we describe the channel model and the video
rate-quality model. At the end of this section, we explain the
QoE constraints considered in our problem formulation.

A. Notation
In the rest of the paper, the time slots are indexed with

. The notation denote a discrete time
series. Lower-case symbols such as denote scalar variables
and boldface symbols such as denote vectors. Random vari-
ables are denoted by uppercase letters such as . Calligraphic
symbols such as denote sets, while is the cardinality of
. The set of positive integers is denoted . The set of real

numbers is denoted . Finally, the function .

B. Wireless Channel Model
We label users (including both video users and high-priority

users) according to their arrival times, i.e., user is the user
to arrive to the network. For each user , we let and
be random variables denoting the arrival and departure times,
respectively. The time spent by a user in the network is denoted
by .
We let by be the set of high-priority users in the net-

work at slot . For each high-priority user , we let
the random variable represent the amount of data re-
ceived in slot . The data rate is thus .
We denote by the set of video users that would be in
the network at slot if all were admitted. The set of video
users in who are actually admitted to share the wireless
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channel is denoted by . We assume that an admission de-
cision is made upon the arrival of each video user. Once ad-
mitted, the video user shares the channel until it leaves the net-
work. For an admitted video user , we denote by

the amount of received video data in slot . The video
data rate delivered to the user is thus .
We call the video rate vector at
time . Because high-priority users are treated as background
traffic, the proxy only controls the video rate vector and regards

as exogenous variables.
We assume the set of video rate vectors that can be supported

by the wireless channel is given by

(2)

where is a time-varying multivariate
convex function. The specific form of depends on the
multiuser multiplexing techniques used in the wireless net-
work. For example, in a time-division multiple access (TDMA)
system [15], [25], the channel is occupied by a single user at
any moment. Denote by the peak transmission rate of
user , i.e., the transmission rate at which user can be served
during slot . Then, in slot , video user spends

seconds to download video. Similarly, each high-pri-
ority user expends seconds downloading
data. Since the total transmission across all users is less than

, we have .
Because and ,
we have .
Therefore, for TDMA systems, we have

.
In rate-adaptive video streaming systems such as [7]–[9], the

video data rate can only take values in a finite and discrete set.
In our problem formulation, we relax the constraint and allow

to take values in a compact interval ,
where and denote the minimum and maximum
data rate available for user , respectively. Letting

, we have

(3)

In our algorithm implementation, we round up the optimal video
data rate obtained under this relaxed constraint to the nearest
available data rate.

C. Video Rate-Quality Model

We assume that the quality of the video downloaded in
each slot is represented by a Difference Mean Opinion Score
(DMOS) [34], which ranges from 0 to 100 where lower values
indicate better quality. To represent video quality more natu-
rally, so that higher numbers indicate better video quality, we
deploy a Reversed DMOS (RDMOS). Denote by the
DMOS of the video delivered to user at slot , the RDMOS
is given by . We employ the
following rate-quality model to predict using the
video data rate :

(4)

Fig. 3. The performance of the rate-quality model on one second of a video ran-
domly chosen from the database [1]. The rate-quality characteristics are shown
in circles while the fitted rate-quality model (4) is the solid line.

where is the predicted RDMOS. The model parameters
and can be determined by minimizing the pre-

diction error between and . For stored video
streaming, the video file is stored at the CDN. Thus, the model
parameters in (4) can be obtained before transmission. Here,
we assume the parameters and are known a priori.
We validated this model on a video database that includes

twenty-five different pristine and representative videos [1]. The
rest of the database is created by encoding and decoding each
video at different rates with the widely used H.264 codec [35].
Then, we predict the RDMOSs for each second of the decoded
videos using the high-accuracy ST-RRED (Spatial-Temporal
Reduced Reference Entropic Difference) index [36]. In Fig. 3,
we show the rate-RDMOS mapping of one second of a video
randomly chosen from the database. It may be observed that the
model (4) can accurately predict the RDMOSs. On the whole
database, the mean prediction error of (4) is less than 1.5, which
is visually negligible. Thus, in the following, we shall refer to

as the video quality.

D. Constraints on the Quality of Experience
We capture video users' QoE using the -order eCDF

, which was defined in (1). As illustrated in Fig. 4(a),
for a given , the right-hand side of (1) is proportional to the
area where falls below . If falls below for a long
while, the QoE is poor and is large. Otherwise, the
QoE is good and is small.
To justify the use of the as the QoE metric,

we conducted a subjective study following the guidelines
of [34]. The study involved twenty-five subjects and fifteen
quality-varying long videos (for more details, see [1] and [2]).
Based on the subjects' feedback, we obtained the Mean Opinion
Scores (MOSs) of each video's overall quality. Given an , we
computed for all the videos in the database and then
calculated the linear correlation coefficient (LCC) between the
computed s and the MOSs. In Fig. 4(b), we plot the
absolute value of the LCCs as a function of . We found that,
at achieves a strong correlation of 0.84
with the MOSs. Since is determined by the area
where falls below , we interpret as the users' video
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Fig. 4. (a) An example of at ; (b) The absolute value of the
linear correlation coefficient (LCC) between and the mean opinion
scores.

quality expectation, which is used by the users as a threshold in
judging whether the video quality is acceptable or not. In our
subjective study, all subjects viewed the videos in a controlled
environment and every subject viewed the videos on the same
device. Broadly speaking, the video quality expectation can
be environment-dependent. For example, viewers tend to have
higher expectation for videos shown on a laptop than videos
shown on a smartphone. Therefore, in a practical wireless
network, may vary across users. In the following, we denote
by the video quality expectation of user and study the
following two cases:
Case I: Users' video quality expectation is unavailable. If
user is in the system from to and sees video qualities

, according to (1), its -order eCDF is
given by

(5)

If the users' video quality expectation is not known a priori,
we may impose constraints on all and for all video users. In
particular, we consider the following QoE constraints:

(6)

TABLE II
NOTATION SUMMARY

where is a function of . In practice, we cannot apply con-
straints on all values of . Therefore, we consider a
relaxed version of (6) as follows:

(7)

Here, is a discrete set of points on . The following
property of -order eCDFs shows that (7) will approximate
(6) if is dense. Its proof is given in Appendix A.
Theorem 1: Let be the piece-wise linear function that

connects the points . The constraint (7)
is equivalent to .
Case II: Users' video quality expectation is known. We also
consider the case where users' video quality expectation is
known or specified by the service provider. For example, users
with different viewing devices tend to have different quality ex-
pectations. Desktop users usually watch high-definition televi-
sion programs on large screens and smartphone users usually
watch low resolution videos. Thus, we may conduct subjective
studies on different devices. Based on the results of the studies,
the users' typical video quality expectations on each type
of device can be deduced. Then, we can categorize video users
according to their respective devices and provide differentiated
QoE guarantees.
We define a finite set that represents dif-

ferent video quality expectations and assume
. Let denote the

video users whose quality expectation is . We consider the
following constraints:

(8)

where is the QoE constraint for users with quality expectation
.
In sum, the goal of the admission control strategy and the

rate adaptation algorithm is to maximize the number of users
satisfying constraints (2)–(4), (7), or (8). In Section V, we in-
troduce our rate adaptation algorithm and the admission control
strategy when users' quality expectations are unknown. Then, in
Section VI, we extend our rate adaptation and admission control
algorithms to the case where each user's video quality expecta-
tion is known. For ease of reading, a summary of the notation
used in this paper is given in Table II.
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V. RATE ADAPTATION AND ADMISSION CONTROL WITH
UNKNOWN VIDEO QUALITY EXPECTATION

If the quality expectations of video users are not known, we
apply the same constraint on the second-order eCDFs of all
video users. We first propose a rate adaptation algorithm and
a corresponding admission control strategy. Then, we evaluate
their performance via numerical simulation.

A. Rate Adaptation Algorithm
To clarify the design of our rate adaptation algorithm, we

present an off-line problem formulation in which the future
channel conditions and admission decisions are assumed to be
known. Then, based on the analysis of this offline problem, we
propose a new on-line rate adaptation algorithm.
If we consider a finite horizon and assume that the real-

izations of channel conditions are known, the
rate adaptation algorithm should solve the following feasibility
problem:

find (9a)
subject to: (9b)

(9c)

(9d)

The constraint (9b) is associated with the achievable rate re-
gion (2) and the available video source rates in (3). The con-
straint (9c) is because of the rate-quality model (4). The con-
straints (9d) are the QoE constraints (7) that were discussed
in Section IV.D. For each admitted user, a series of QoE con-
straints are applied to the -order eCDF at discrete points in

. Since the rate-quality function (9c) is con-
cave, according to [37], the problem (9) is equivalent to the fol-
lowing convex optimization problem:

maximize (10a)
subject to: (10b)

(10c)

(10d)

where are virtual variables introduced here to make the
constraint (10c) convex. Note that the right-hand side of con-
straint (10c) equals . For any satisfying (10c), we
have . Since is decreasing in , if
satisfies (10d), the constraint is satisfied
as well.
By the definition in (5), the -order eCDF in constraint

(10d) is determined by the entire process .
Due to the constraints (10b) and (10c), depends on
the rate and thus also depends on the rate region .
Therefore, the solution of (10) depends on the entire process

. In practice, the future channel conditions are
unavailable to the rate-adaptation algorithm. In the following,

we transform problem (10) to a simpler form that inspires our
online rate adaptation algorithm.
Since (10) is a convex problem, if it is feasible, there exists

a set of Lagrange multipliers for the constraints in
(10d) such that a solution of (10) can be obtained by solving the
following problem (see [38]):

maximize

(11a)
subject to: (11b)

(11c)
If we define a function as

if
otherwise

(12)

the term in (11a) can be rewritten as

(13)

Thus, indicates to what extent the variable violates
the constraint in each slot. Substituting
(13) in (11a) and changing the order of summation, the opti-
mization in (11) becomes

maximize

subject to:

(14)

Note that, except for the Lagrange multipliers, the optimiza-
tion in (14) does not involve variables that depend on the en-
tire process . Thus, (14) can be solved
by minimizing the weighted sum
in every slot. That is, if it is possible to estimate the Lagrange
multiplier , then (10) can be solved by greedily choosing the
rate vector at each time slot as the solution of the following
problem:

maximize

subject to:

(15)

We introduce a method to approximate the Lagrange multi-
plier . We know that the Lagrange multiplier indicates
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the difficulty in satisfying the constraint
[37]. Inspired by prior work in [39] and [40], we employ a vir-
tual queue to capture this difficulty. For each admitted user
and each , define the virtual queue as

if
otherwise

(16)

From (13) it follows that, if the summation of is large,
then it is difficult to satisfy the constraint .
The virtual queue captures the cumulative summation of
up to slot . Hence, the virtual queue reflects the level of dif-
ficulty in satisfying . Actually, for the
special case where user set is fixed for all , it can be
proved that the virtual queue asymptotically approaches as

[39]. Hence, we replace the Lagrange multipliers in
(15) with virtual queue and our online rate adaptation
algorithm is summarized in Algorithm 1. In every slot, we max-
imize the weighted sum of , where the weight is given by

. Thus users with larger virtual queues tend to be al-
located more network resources. This helps users satisfy their
QoE constraints.
Next, we introduce an admission control policy that is com-

bined with our rate-adaptation algorithm to further improve
performance.

Algorithm 1 Online algorithm for video data rate
adaptation

1: for do
2: Choose rate vector that solves the problem

maximize

subject to:

(17)

where .
3: , update virtual queues with

4: end for

B. Admission Control Strategy
Since a video stream typically has high data rate and thus con-

sumes a large amount of resources, the arrival and departure
of a single video user can have a significant impact on other
video users' QoE. Our admission control strategy is designed to
identify and block those video users who may consume exces-
sive network resources. As has been discussed in Algorithm 1,
resource allocation in each slot is determined by the solution
of the optimization problem (17). Therefore, it is possible to
estimate the QoE of a newly arrived user by solving (17) as
if the user had already been admitted. Based on this idea, we
propose a threshold-based admission control strategy, which is
summarized in Algorithm 2. For each newly arrived video user
, we first estimate its video quality by solving the optimiza-

tion problem (20), which is similar to the optimization problem

(17). Then, we compare with a threshold . If is larger than
, it is admitted to the network. Otherwise, it is rejected.

Algorithm 2 Admission control when video quality
expectation is not known.

Inputs: Threshold , admitted users , new user
1: Initialize video user set
2: Estimate mean rate-quality parameters for all

:

(18)

3: Initialize virtual queue for a new user :

(19)

4: Define variables

Find the solution of the
optimization problem

maximize

subject to:
(20)

where the sets

and

5: Estimate the video quality delivered to new user via
(21)

6: If , admit the new user; otherwise, reject it.

The optimization problem (20) is different from (17) in the
following three aspects. First, to predict the long-term QoE
of users, we replace the instantaneous rate-quality parameters

and in (17) with the average rate-quality parame-
ters and (see the second step in Algorithm 2):

(22)
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Second, we replace the instantaneous rate region with a rate
region estimated by

(23)

Similarly, we replace the set of available video source rate
by

(24)

where . Third, for a newly arrived user
, we initialize its virtual queue with the average virtual queues

of the existing users (see the third step in Algorithm 2), i.e.,

(25)

In (22), the rate-quality parameters and are
needed. For stored video streaming systems, the videos are
pre-encoded. Thus, we assume the rate-quality parameters for
the entire video stream are known. Also, the rate region in (23)
can be estimated using the time-average of the previous channel
conditions. For example, in TDMA systems, we have

(see Section IV-B).

Thus, we can estimate and using
the previous observations of the peak rate and the high-pri-
ority users' data rate . The estimated rate region is therefore

.
As was discussed in Section V-A, the virtual queue

captures the difficulty for an admitted video user to satisfy the
QoE constraints. Thus, users with large virtual queues tend to
be allocated more network resources. In other words, the virtual
queues drive the priorities in resource allocation. Because it is
difficult to estimate the length of a virtual queue before a new
user is admitted, we simply initialize the virtual queue of the
newly arrived user with the average virtual queues of all existing
video users. In this way, we actually estimate the video quality
when an average priority is assigned to the new user. Next, we

introduce an approach to optimize the admission threshold in
Algorithm 2.

C. Online Algorithm for Threshold Optimization

Denote by the probability that a video user's QoE con-
straints are satisfied when the threshold is . Also, denote by

the probability that a video user is admitted into the net-
work but its QoE constraints are not satisfied. Our goal is to find
the threshold that maximizes . We have conducted ex-
tensive simulations under different channel conditions and QoE
constraints. From all the simulation results, we observed that the
optimal threshold maximizes if

(26)

Fig. 5. The two plots show (i) the percentage of video users who satisfy the
QoE constraints and (ii) the percentage of video users who are admitted into the
network but do not satisfy the QoE constraints under different admission control
thresholds.

This means that is maximized if is just large enough to
make all the admitted users satisfy the QoE constraints. As an
example, using the same simulation configurations that are de-
tailed later in Section V-D, we simulated and plotted the func-
tions and in Fig. 5. It is seen that satisfies (26)
and is also maximized at . Therefore, to find the optimal
threshold , it is sufficient to find a threshold that satisfies (26).
We propose an iterative algorithm that automatically adjusts

the threshold to . This is summarized in Algorithm 3. In
each iteration, the algorithm observes the -order eCDFs of
video users who have been admitted into the network since

the end of the last iteration. Then the algorithm updates the
threshold via

(27)

where denote the admission control threshold in the iter-
ation. The value determines whether to increase
or to decrease the threshold. The quantity is an up-
dating step size. If the algorithm observes a video user whose

-order eCDF violates the QoE constraints, then it is prob-
able that and . Therefore, the algorithm
increases the threshold by setting . Otherwise, if all the
video users satisfy the constraints, the threshold is possibly

larger than . Thus the algorithm decreases the threshold by
setting . The updating step size is

(28)

where counts the number of sign changes in the series
(see step 8) and is the initial step-size. Here,

is introduced to accelerate the convergence of the algorithm.
The reason is as follows: If is far from , the sign of
does not change frequently and increases slowly. Thus, the
step-size stays large and moves towards quickly.
When is moved to a small neighborhood of , the sign of

changes frequently and thus increases rapidly. Therefore,
the step-size decreases to zero quickly, which makes
converge.
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Algorithm 3 The threshold optimization algorithm when
the video quality expectation is unknown.

Inputs: , initial threshold , initial step-size
, and initial counter

1: for do
2: Observe the -order eCDFs of admitted video

users.
3: if there exits a user that does not satisfy the QoE

constraints then
4:
5: else
6:
7: end If
8: If .
9: Update threshold with

(29)

where .
10: end for

In the following, we analyze the convergence of Algorithm 3.
Based on our observations from the simulations, we make the
following assumption:
Assumption 1: The function is a continuous function and

is strictly decreasing on .
We define as the probability that all the admitted

video users in an iteration satisfy the QoE constraints. Since in-
creasing the threshold would block more users and thus re-
serve more network resources to the admitted users, we assume
that is a continuously increasing function of . Also, ac-
cording to Assumption 1, when , all the admitted users
satisfy the QoE constraints and thus . Thus, we have
the following assumption on :
Assumption 2: The function is a continuous and in-

creasing function of . For all , we have .
Furthermore, assume that there exists a constant such
that for all and .
The following theorem assures that if is sufficiently large,
converges to an arbitrarily small neighborhood of as
. Its proof is given in Appendix B.
Theorem 2: Let be an arbitrarily small number. If

Assumptions 1 and 2 are satisfied and , then
converges as and .

D. Simulation Results
Below, we evaluate our rate-adaptation algorithm and the ad-

mission control strategy via numerical simulations. We assume
the duration of a time slot is . The high-priority
users' arrivals follow a Poisson process with average arrival rate
of users/second. The time spent by a high-priority user in
the network is exponentially distributed with a mean value of

seconds. Video users also arrival as a Poisson process with
a average arrival rate of users/second. Since video streams
are typically more than tens of seconds long, we assume the
time spent by a video user in the network is at least 40 seconds.
In particular, for all video users, we set ,
where is exponentially distributed with a mean value of

seconds.
To simulate variations of the rate-quality characteristics

in each video stream, we assume the rate-quality parameters
of each slot are independently sampled from the

rate-quality parameters in the video database [1]. We assume
the minimum and maximum available data rate for video users
in (3) are and ,
which are the minimum and maximum rate of the videos in the
database [1]. For high-priority users, the downloading data rate

is assumed to be uniformly distributed in .
We assume the wireless system is a TDMA system. The rate

region is that introduced in Section IV.B. We model the
peak transmission rate as the product of two independent
random variables, i.e., . The random
variable is employed to simulate the heterogeneity of
channel condition across users and remains constant during a
user's sojourn. We assume that is uniformly distributed on

, where the parameter is used to scale
the channel capacity in our simulations. The random variable

is employed to simulate channel variation across time
slots. We assume that is an i.i.d. process
with being uniformly distributed on . In our
simulations, we set . Correspond-
ingly, for , and 70, we let the constraints

and 15.0, respectively.
We first evaluate the performance of the rate-adaptation algo-

rithm when admission control is not applied. We set the scaling
parameter and simulate Algorithm 1 until 100 users
have arrived and departed the network. We plot the -order
eCDFs of the video users in Fig. 6(a). It may be seen that, using
Algorithm 1, the -order eCDFs of the video users all satisfy
the constraints. By comparison, if we adapt the rate vector to
maximize the sum of the average-quality of all users1, the QoE
constraint is violated by many users (see Fig. 6(b)).
Next, we evaluate the proposed admission control strategy. In

Fig. 7(a), we fix the channel scaling parameter to be and
plot the threshold at every iteration of the online threshold
optimization algorithm. Recall that the optimal threshold is

(see Fig. 5). Fig. 7(a) shows that converges to
after 200 video user arrivals. We have assumed that the average
arrival rate of video users is users/seconds. Thus, 200
video user arrivals require about seconds .
Since our goal is to optimize the performance of the network in
the long run, this convergence speed is acceptable.
We scale the channel scaling parameter from to
. The percentage of video users whose video qualities sat-

isfy the QoE constraints is shown in Fig. 7(b). When compared
with the average-quality-maximized rate-adaptation algorithm,
the percentage of video users who satisfy the QoE constraints is
improved significantly even if no admission control is applied.
The admission control policy further improves the performance
especially when the channel condition is poor. For example, at

, the proposed algorithms satisfy the QoE constraints of
70% of the video users while the average-quality-maximized
rate-adaptation algorithm only satisfies the constraints of 20%
of the video users. At a moderate channel condition of ,
about 77% of the video users satisfy the QoE constraints when
the average-quality maximizing algorithm is applied. The pro-
posed algorithms achieve the same performance at , re-
ducing the consumption of resources by %.

1This is achieved by maximizing in each slot.
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Fig. 6. Simulation results of rate-adaptation algorithms when admission
control is not applied. (a) The -order eCDFs of the video users when the
proposed rate-adaptation is used. (b) The -order eCDFs of the video users
when the rate vector is adapted to maximize the sum of users' video qualities.
(a) Proposed rate-adaptation algorithm, (b) Average-quality maximized rate
adaptation.

VI. RATE ADAPTATION AND ADMISSION CONTROL WITH
KNOWN VIDEO QUALITY EXPECTATION

In this section, we extend the rate adaptation algorithm and
the admission control strategy to the case where the video
quality expectation of each user is known. We first explain the
extended algorithms and then evaluate their performance via
simulation.

A. The Extended Rate Adaptation and Admission Control
Algorithms

In Section IV-D, we defined the finite set
to represent different video quality expectations among video
users. In the following, we call users with the
Type- users. Each Type- video user needs only satisfy one
QoE constraint, i.e.,

(30)

Fig. 7. (a) The performance of the proposed admission control strategy when
the scaling parameter is . (b) Simulation results of the proposed algo-
rithms under different channel scaling parameters. Each data point on the figure
is obtained by simulating 2000 video user arrivals.

Thus, we extend the rate adaptation method in Algorithm 1 by
maintaining one virtual queue for each user. In particular, the
virtual queue of a Type- user is defined as

if
otherwise

(31)

where

if
otherwise

(32)

In each slot, the rate vector is adapted by solving

maximize

subject to:

(33)

For admission control, we extend Algorithm 2 by applying
different thresholds to different types of users. In particular, for a



32 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 9, NO. 1, FEBRUARY 2015

newly arrived Type- video user , we initialize its virtual queue
by averaging the virtual queues of all existing video users i.e.,

(34)

Letting , we define variables
, and

. We then find the solution
of the following problem:

maximize

subject to:

(35)

where , and are given by (22), (23), and (24), re-
spectively. Finally, we estimate the video quality of the new user
by and compare with a threshold to
make the admission decision.
Next, we discuss how to optimize the threshold for Type-

users.

B. The Extended Threshold Optimization Algorithm

Denote by the vector of thresholds
for all types of video users. Define to be the proba-
bility that a video user satisfies the QoE constraints when the
threshold vector is . Also, define as the probability
that a Type- video user's QoE constraint is not satisfied. To
determine the optimal threshold vector that maximizes ,
we ran simulations under a variety of relevant channel condi-
tions and QoE constraints. We found that a threshold vector

maximizes if

(36)

Here, the partial order indicates that and
. The partial order indicates that .

The condition in (36) means that if is an optimal threshold
vector and we increase all entries of , the QoE constraints
of all the admitted users can still be satisfied. Conversely, if
we decrease all the entries of , the QoE constraints of all
types of users will be violated with a non-zero probability. To
illustrate this, we considered two types of video users who ar-
rive to the network with equal probability and simulated the
function , and using the same setting as in
Section V-D. From Figs. 8(a) and 8(b), it can be seen that the s
in satisfy the condition (36) because they lie on
the boundary of the region where and .
From Fig. 8(c), it is seen that the function is also maxi-
mized on the region .
We devise an iterative algorithm to find the threshold vector
satisfying (36). Denote by the threshold vector at the

Fig. 8. (a) The probability of admitted Type-1 video users whose QoE con-
straints are violated. (b) The probability of admitted Type-2 video users whose
QoE constraints are violated. (c) The probability of video users whose QoE con-
straints are satisfied. All results are shown in percentages. We assume these two
types of user have and 60, respectively. The QoE constraint in (30) is
assumed to be . The channel scaling parameter is set as .
(a) , (b) , (c) .

iteration, the algorithm observes the -order eCDFs of ad-
mitted video users and updates the threshold vector using

(37)
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Fig. 9. Simulation results of the proposed admission control policy under dif-
ferent channel scaling parameters. Three cases are simulated. (1): rate adaptation
is applied to maximize the average video quality and all users are admitted; (2):
the proposed rate adaptation are applied and all users are admitted; (3): both the
proposed rate adaptation and admission control algorithm are applied.

where is the diagonal matrix with diagonal entries
being . In (37), is a -di-
mensional vector where is the updating direction
for . The vector is the corresponding up-
date step-size. Among the video users, if a Type- video user's
QoE constraint is not satisfied, the algorithm sets . Other-
wise, if all the Type- video users' QoE constraints are satisfied,
the algorithm sets . The step-size is given by

, where counts the sign changes in and
is the initial step-size. Next, we show the performance of our

rate adaptation algorithm and the admission control strategy via
simulation.

C. Simulation Results

In our simulations, we assume that there are two types of
video users. Both types of video users arrive as a Poisson
process with arrival rate users/second. We assume that
Type-1 users have while Type-2 users have .
We also set . In Fig. 9, we plot the percentage of
video users whose video qualities satisfy the QoE constraint
(8). It can be seen that, for all tested channel scaling parameters,
our rate adaptation algorithm outperforms the average-quality
maximizing algorithm. The percentage of video users who
satisfy the QoE constraints improved significantly even when
the admission control strategy was not applied. At ,
about 71% of video users satisfied the QoE constraints when
the average-quality maximizing algorithm was applied. The
proposed algorithms achieve the same performance at .
Thus, the proposed algorithms reduce the consumption of
resources by %.
In Fig. 10, we plot the threshold vectors in the proposed

threshold optimizing algorithm when the channel scaling pa-
rameter is fixed at . We set the initial updating step-size

. It is apparent that the threshold vector converges
quickly to the area where is maximized.

Fig. 10. The updated threshold vector s of the proposed threshold optimiza-
tion algorithm are shown in (a). The dashed box is shown blown up in (b) to
illustrate more detail. The contours of are also shown on the figure for ref-
erence. (a) Convergence performance of the admission control strategy, (b) A
zoom-in view.

VII. CONCLUSIONS AND FUTURE WORK

We created a new QoE metric based on the second-order em-
pirical cumulative distribution function (eCDF) of time-varying
video quality. We then proposed an online rate adaptation algo-
rithm to maximize the percentage of video users who satisfy
the QoE constraints on the second-order cumulative distribu-
tion function. Furthermore, we devised a threshold-based ad-
mission control strategy that blocks new video users whose QoE
constraints cannot be satisfied. Simulation results showed that
combining the proposed approaches leads to a 40% reduction in
wireless network resource consumption.
The users' video quality expectation play a critical role in our

QoE metric. It is important to observe that our subjective study
was conducted in a controlled environment. In reality, however,
users' expectations for video quality may depend on various fac-
tors in the environment (e.g., user mobility, device type, lighting
conditions). In the future, we plan to conduct subjective study in
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more diversified, “worldly” environments to obtain a better un-
derstanding of and an improved ability to predict users' quality
expectations.

APPENDIX A
PROOF OF THEOREM 1

Proof: Since is a convex function of
is a linear combination of and is thus also

a convex function of . Without loss of generality, assume func-
tion is also convex2. Let , where . If (7)
is satisfied, then and .
For any and , we have

. Because
is a compact set, the convexity of implies its

continuity. Therefore, can be approximated by piece-wise
linear functions to arbitrary accuracy.

APPENDIX B
PROOF OF THEOREM 2

Proof: Note that Algorithm 3 can be viewed as a stochastic
approximation algorithm [41] with an associated mean ordinary
differential equation (ODE)

(38)

where is a random variable that denotes the updating di-
rection when the threshold is , we have

(39)

According to Assumption 2, there exists a unique such that
and . By the monotonicity of ,

we have and . If we
define a function , then

For all , we have . For all
. In sum, we have

By Theorem 5.4.1 in ([41], p.145), we have .
Next, we prove that .
We define a binary random variable such that

if video user satisfies the QoE constraints
. Otherwise, we define . Denote by

2Otherwise, we can simply replace with another function whose epi-
graph is the convex hull of 's epigraph.

the indices of the admitted video users in an
iteration of Algorithm 2. Let be the joint distribution of the
variables when the admission threshold is .
Then, we have

(40)

Since the users are competing with each other for network re-
sources, if the QoE constraints of a video user are satisfied, the
probability of satisfying other users' QoE constraints is reduced.
Thus,

(41)

Substitute (41) into (40) yields

(42)

Since , it follows that
. Because of the monotonicity of

, we know that . Moreover, because
, we have .
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