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Abstract—We address the problem of distributed resource
allocation in wireless systems in the presence of dynamic user
traffic and coupling resulting from interference. We propose a
Reinforcement Learning (RL) framework based on a separation
of concerns between frequency reuse for interference mitigation
and opportunistic user scheduling. In particular we explore a
setting where a stochastic game is set up among base stations to
learn frequency reuse patterns and solved using multi-agent RL
given an underlying choice for user scheduling. We establish the
existence and convergence to a Nash equilibrium of the proposed
setting. The performance of our framework and theoretical
findings are evaluated through simulation and compared to
more aggressive oracle-aided centralized baselines. The resulting
frequency reuse policy is shown to achieve 5–25% improvements
in capacity and associated delay performance over a centralized
interference aware max weight scheduling policy across BSs.
Furthermore, a reduced physical resource utilization on the order
of 9-34% leads to a higher energy efficiency as compared to the
centralized benchmark.

I. INTRODUCTION

WIRELESS networks have undergone tremendous change
over the past decades going through various technology

generations supporting higher data rates, improved network
coverage and better user experience. A major factor enabling
this progression has been network densification. While net-
work densification improves users’ data rates, it also may lead
to reduced user traffic aggregation increasing the likelihood of
bursty interference from neighboring base stations rendering
static frequency reuse techniques less effective. This makes
a dynamic frequency reuse scheme that can self tune to the
network and traffic conditions highly desirable.

Resource allocation and power adaptation are problems
in wireless systems where Reinforcement learning (RL) has
proven to have some promise. Two key settings have been
considered: cooperative Markov games and non-cooperative
distributed games. Cooperative games typically draw on a
more centralized decision making approach based on exten-
sive information sharing posing practical limitations [1]. By
contrast non-cooperative games typically involve distributed
decision making based on local information typically leading
to sub-optimal but more scalable approaches suitable to adapt
to dynamic interference and user traffic.

A. Related work

Reinforcement Learning: There are many works proposing
an RL approach to wireless resource allocation. For example,
[2] propose a centralized learning system which periodically
updates BS’s policies (neural network model) giving it a

partially centralized learning architecture. By contrast, we con-
sider a completely distributed learning approach with variants
that do not need any information exchange across BSs in the
network. The work in [3], considers a heterogeneous network
(HetNet) with macro and femto BSs sharing the spectrum in
the same area and propose a Q-learning based algorithm for
carrier selection and power allocation, but do not account for
users’ channel variability or interference from other HetNets.
Most of the current literature based on a distributed RL
approach to resource allocation, see [4]–[7], ignores the impact
of user traffic dynamics and/or resource scheduling on the
effective network throughput. In our work we show that user
traffic dynamics can be learnt and devise resource allocation
strategies that leverage this information.

RL algorithms have also been applied to mitigate interfer-
ence in wireless networks. Techniques such as dynamic Q-
learning [8], neural network [9], actor-critic RL [10], Deep
Q-network (DQN) [11] have been used in a variety of settings
such as HetNets, Cognitive radio and vehicular communication
with the goal of resource allocation that either minimizes or
mitigates interference. However, these articles fail to acknowl-
edge and/or do not consider opportunistic scheduling, which
we believe cannot be ignored when building a solution to
distributed resource allocation.

Stochastic games and Scheduling: A centralized algorithm
to resource allocation for interference mitigation and schedul-
ing is considered in [12], but the approach results in increased
computational complexity for larger networks. In contrast, we
design autonomous learning at each BS that is scalable and
of the same complexity irrespective of the network size. A
downlink power control stochastic game between a macro BS
and it’s co-located small cell BSs has been considered in [13]
without considering the impact of inter cell interference from
other macro BSs. A resource allocation game among users
using Code-Division Multiple Access (CDMA) system, with
power and rate control for each user, has been considered
in [14]. Note that interference from neighbouring CDMA
networks has not been considered, this impacts the feasible
range of power and transmit rate values. Distributed learning
for resource selection and/or power allocation have also been
considered in [15]–[18], but one or more of the following
are not considered: interference from neighbouring BSs, user
traffic dynamics and channel uncertainity due to time varying
interference. For a more comprehensive survey of existing
distributed learning approaches, the interested reader is di-
rected to [19]. The vast majority of scheduling policy literature



on coupled queues [20]–[24] deal with the case where both
queues can be serviced by the same server. Parallel queues
with coupled service rates in the presence of channel aware
scheduling has been discussed in [25], nevertheless coopera-
tive strategies for interfering BSs has not been investigated.

B. Our Contributions

We consider the design of a resource allocation algorithm
with dynamic user traffic for BSs coupled through interference.
We propose a novel approach based on two coupled sub
problems, which permits us to explore RL based interfer-
ence mitigation having chosen a state-of-the-art (opportunistic)
throughput optimal scheduler. This in turn reduces the state-
space of the RL resource allocation problem leading to a quick
training time (order of a couple of minutes in real time) and
a resulting improvement in system capacity and performance.
The main contributions of this work are as follows

1) We propose a systematic decomposition approach to op-
timizing frequency reuse under a predetermined dynamic
user scheduling policy geared at making distributed RL
techniques possible. To the best of our knowledge this
has not been previously considered.

2) We propose and validate a proxy metric (reward) that
enables distributed RL agents (base stations) to learn the
interference-driven coupling amongst BSs.

3) Multiagent RL is a non-stationary stochastic game, exis-
tence and convergence to a Nash Equilibrium (NE) under
specific conditions has been established in [26]. We show
that our proposed algorithm satisfies these conditions, and
hence show the existence and convergence to an NE.

4) We evaluate and compare through detailed simulation
the potential of our proposed distributed approach vs
an aggressive and more centralized baseline algorithms.
Our results exhibit capacity gains of 5-25% over full
frequency reuse as well as associated improvements in
delay performance with an improved energy efficiency
on the order of 9-34%.

II. SYSTEM MODEL

A. Network Model

We consider downlink transmissions from a set of wireless
BSs B of cardinality |B| = B, serving a set of users/devices
U such that |U| = U , as shown in Fig. 1. The dynamics of
the system evolve in discrete time, corresponding to transmis-
sion frames which are synchronized across BSs. Each frame
consists of N Resource Blocks (RBs) each corresponding to
a slice of sub carriers and slice of time (mini slot) within the
frame. Each RB can be assigned by a BS b to serve at most
one of its set of associated users U

b. Let Au(t) be a random
variable denoting the arrivals (in packets) for user u during
time slot t and thus available for transmission at t+1. We shall
assume that a user’s arrivals across time slots are independent
and identically distributed (i.i.d). Let �u = E[Au(t)] denote
the mean packet arrivals per time slot for user u and let
� = (�1, . . . ,�U ). In the sequel Qu(t) will denote the queue
length (in packets) of user u, i.e., the data available for

Fig. 1: Network Model

transmission in time slot t and Qb(t) = (Qu(t) : u 2 U
b)

the queues at BS b, while Q(t) = (Qb(t) : b 2 B) the overall
queue state of the system.

The channel gain between BS b and user u in slot t is
modelled by a random variable Gb

u(t) and assumed i.i.d across
time. Let G(t) = (Gb

u(t) : b 2 B, u 2 U) denote the gains
amongst all BSs and users, while Gb(t) = (Gb

u(t) : u 2 U
b)

denotes solely those between BS b and its associated users.
For simplicity, we will assume flat fading i.e., the gains do
not depend on the resource block/subcarriers, this can be
easily generalized. We denote the mean channel gains by
ḡbu = E[Gb

u(t)] along with associated vector notations ḡb

and ḡ. The resource allocation of RBs to users is modelled
as a two step process. First a frequency reuse decision is
made which determines the subset of RBs available for user
allocation at each BS. A set of binary decisions are made
at each base station b for an RB k on slot t: Sb

k(t) is
such that if Sb

k(t) = 1 if RB k is available for use by
the BS, and if Sb

k(t) = 0 it is not to be used. Second, a
scheduling decision is made determining which (if any) users
are scheduled to transmit on the available subset of RBs. We
let Sb(t) = (Sb

k(t) : k = 1, . . . , N) denote the frequency reuse
state of BS b at time t and S(t) = (Sb(t) : b 2 B) the overall
frequency reuse state of the network. It will be convenient
to let S

b(t) = {k : Sb
k(t) = 1}k=1,...,N denote the set of

available RBs at base station b.
In general a scheduling policy h is an assignment hb for

each BS b of the available RBs to it’s users. The assignment
may depend on the available information denoted Ib(t), so a
scheduling policy hb for BS b is a mapping,

hb( · ; Ib(t)) : Sb(t) ! U
b
[ {0} , (1)

assigning each RB made available by the frequency reuse
policy S

b(t) to one of its users U
b or none at all, represented

by user 0. Typically a BS scheduler will only have local
information such as its users’ channel gains and queue lengths,
e.g., Ib(t) = (Sb(t),Gb(t),Qb(t)). For simplicity we shall
equivalently represent the result of scheduling via binary
variables h(t) = (hb

uk(t) : b 2 B, u 2 U b, k = 1, . . . N)
where hb

uk(t) = 1 if the scheduler allocated an available RB
k 2 S

b(t) to user u 2 U
b of BS b, otherwise it is 0.

In practice a BS’s scheduler has access to Channel Quality
Indicator (CQI) as well as estimates of previously observed
interference and/or success/failure of transmissions for each



of its associated users, based on which it estimates the users’
current Signal to Interference and Noise ratio (SINR). For
simplicity we assume an adaptive modulation and coding
scheme at the transmitter that can make use of this information
to achieve a data rate close to the Shannon capacity. We
understand that the Shannon capacity serves as a rough upper
bound to the achievable rate, nevertheless, to keep things
simple we use Shannon capacity as a rate metric to compare
various algorithms in this work.

Due to possible interference from neighboring BSs, the
transmission user rate under a given resource schedule is a
complex function of all scheduled users. An idealized model
might be as follows: if hb

uk(t) = 1 the SINR for user u of BS
b on RB k is

SINRb
uk(t) =

PGb
u(t)P

b0:b0 6=b

P

u02Ub0
Phb0

u0k(t)G
b0
u (t) +N0

, (2)

where the numerator corresponds to received transmit power,
and denominator the sum of intercell interference and noise.
The downlink transmission rate to user u 2 Ub on resource k
at time t is given by,

cbuk(t) = nµ
W

2
log(1 + SINRb

uk(t)) bits, (3)

where n is the number of subcarriers per RB and µ is time
duration of an RB. Thus aggregating across the RBs of BS b
we denote the total transmissions to user u in slot t as,

cu(t) =
NX

k=1

hb
uk(t)c

b
uk(t) bits , (4)

where we suppressed the superscript b in cbu(t) since each user
is served by only one BS. Hence, under such a scheduling
policy the queue dynamics for user u are given by

Qu(t+ 1) = [Qu(t)� f(cu(t))]
+ +Au(t) , (5)

where [x]+ = max[0, x] and f(x) is an integer valued non-
decreasing function on x modeling the packet departures at a
user queue as a function of the SINR.

In the sequel we will find it useful to introduce the following
notation. Note that given a frequency reuse state S(t) = s, a
scheduler (1), channel and queue states G(t) = g, Q(t) = q,
the service to user u can be written as,

cu(t) = cu(s, g, q). (6)

Note that cellular networks can determine the interference-free

signal to noise ratio (SNR) based on the user location through
state of the art machine learning techniques [27]. For a given
user u 2 U

b, the SNR at time t is denoted,

SNRu(t) =
PGb

u(t)

N0
, (7)

and a user’s effective “interference free” capacity per RB for
a channel strength Gu

b (t) = gub is denoted,

u(g
u
b ) = nµ

W

2
log

✓
1 +

Pgbu
N0

◆
bits . (8)

The design of a performance optimal frequency reuse and
scheduling policy for this stochastic network system with
queues which are coupled through interference is an ex-
ceedingly challenging problem. In this paper we propose a
separation of concerns where the underlying BS schedulers
are fixed, e.g., to a state-of-the-art opportunistic scheduler
based on local information. Given the underlying scheduler
we propose to have BSs learn how to manage frequency reuse
so as to reduce the impact of inter-cell interference.

B. Markov Game: Learning frequency reuse policies

We formulate the problem of determining an overall fre-
quency reuse policy across BSs as a Markov game [28] where
each BS decides on it’s own reuse policy so as to either (a)
maximize its own reward, or (b) maximize a shared network
reward. The rewards are a result of the BSs’ frequency reuse
decisions, and the underlying BS scheduling policies as well
as the underlying environment/dynamics.

More formally, we consider a B-player Markov game

hS
1, . . . ,SB ;A1, . . . ,AB ; p1, . . . , pB ; r1, . . . , rBi (9)

including the following elements.
• S

b = {0, 1}N denotes the set of possible frequency reuse
states for for BS b i.e., values Sb(t) can take.

• A
b denotes the set of all possible actions BS b can take.

• pb(s
0b
|sb,ab) models the transition probabilities to the

next state s0 2 S , given that the current state and action
pair given by (sb,ab).

• rb(s, g, q) corresponds to a reward associated with users
scheduled at BS b on a given time slot conditional on the
overall frequency reuse state S(t) = s, channel gains
G(t) = g and user queues Q(t) = q.

Below we describe several approaches to defining the re-
wards and action space for this game. Note that the frequency
reuse game is such that BSs do not have access to the
entire network state, in particular to the frequency reuse state,
channels and queues of other BSs.

C. Actions and Rewards: Non cooperative Markov game

An action ab
2 A

b determines the next frequency reuse
state for BS b. We consider two possible models for the
action space A

b, {0, 1}N or {1, . . . , N}, depending on the
admissible action state complexity. When A

b = {0, 1}N , the
frequency reuse state for the next frame is deterministically
set to s0b = ab. In the second model where the action space is
A

b = {1, . . . , N}, an action ab = k corresponds to a decision
to transmit only on k RBs in the subsequent frame, with the
RB positions chosen uniformly at random.

We design the per slot reward for each BS b to capture both
the amount of data transmitted and the “efficiency” of such
transmissions. In particular, given a frequency reuse state s,
and the scheduling decisions associated with channel gains g
and queue lengths q, the reward at BS b is modeled by,

rb(s, g, q) =
X

u2Ub

cu(s, g, q)

u(g)
, (10)



where cu(·), defined earlier in (6) is the overall bits delivered
to user u and u defined in (8) is the effective interference

free capacity of user u. This rewards the transmission of data
to users at the BS, but penalizes transmissions experiencing
excessive interference. Note that each agent in the Markov
Game only sees its own frequency reuse state sb, whence it
sees a reward rb((sb, s�b), g, q) that depends on the frequency
reuse actions of other players denoted s�b, the stationary
distribution of the networks channel gains G(t) and possibly
not stationary distribution of the network queues Q(t).

We consider a non cooperative Markov game where each
BS learns a policy based on rewards either generated by its
own users or all users in the network. The learned frequency
reuse policy ⇡ , (⇡b, b 2 B) induces a set of transition
probabilities on the frequency reuse states (Sb, b 2 B) such
that the expected long term rewards are maximized. We
consider three different game settings based on the rewards
and/or action space.

(G1) Global reward game: Each BS trains on the sum
reward

P
b2B rb(s, g, q) generated by all BSs. Each

BS b has an action space A
b = {0, 1}N .

(G2) Local reward game: Each BS trains on its own
local reward rb(s, g, q). Each BS has an action
space A

b = {0, 1}N .
(G3) Random action game: Each BS trains on its own

local reward rb(s, g, q). Each BS has an action
space A

b = {1, . . . , N}.

We can thus model the frequency reuse state transitions as
a Markov chain induced on the frequency reuse state space
by policy ⇡ and scheduling rule h. With a slight abuse
of notation, we use (⇡b(s) : s 2 S

b) to also denote the
steady state distribution of the induced Markov chain at BS
b. Note that the frequency reuse policy ⇡ in conjunction
with a scheduling rule h determines the users’ queue length
distributions.

III. PROPOSED SOLUTION: PROBABILISTIC FREQUENCY
REUSE (PFR)

Given a traffic load �, one would like to pick a set of
frequency reuse policies ⇡ from the set of all feasible policies
P for interference mitigation and scheduler h 2 H that can
either stabilize the user queues or maximize some network
utility. Consider the B-player Markov game summarized in
(9), we fix the scheduler h at each BS and learn interference
management policies ⇡ using one of three game settings (G1),
(G2) or (G3) based on our carefully chosen proxy metric (10).

We propose that each BS use an efficient algorithm to learn
it’s own frequency reuse policy in a distributed manner. Multi
agent Q learning [26] is a model free learning algorithm for
non cooperative Markov games. A schematic representation of
our learning algorithm is depicted in Fig. 2. An agent at each
BS b learns1 its frequency reuse policy ⇡b using the rewards

1After a random initialization of the reuse policy, the rewards generated by
the scheduler is used to iteratively improve the policy.

Fig. 2: Block diagram representation of our proposed system
architecture at base station b.

generated by the underlying BS scheduler. The scheduler then
allocates RBs made available by the frequency reuse policy
to users based on their channel quality and queue length.
Finally the learning agent at each BS trains on the reward
metric for each resource selection configuration sb based on
which the reuse policy is updated to maximize discounted
future rewards. We will refer to this distributed method of
learning as Probabilistic frequency reuse where each BS learns
the fraction of time it should spend on a particular frequency
reuse state to alleviate interference.

Let ⇡ be the multi agent frequency reuse policy learnt by
the distributed algorithm, then for a given initial state sb, the
learning agent at each BS maximizes it’s value function v⇡

b

(·)

v⇡
b

(sb) =
1X

k=1

�kE⇡,�
⇥
rb(Sb

t+k,Gt+k,Qt+k)|⇡,S
b
t = sb

⇤
.

(11)
Note rb(·) is the reward of BS b at time t and k is time
step to capture future rewards. We start training with Q0 = 0
and after sufficiently long training time, the frequency reuse
policy converges to a stationary distribution ⇡b which induces
a distribution � on the queue length. Also, each BS has access
to the reward of other BSs either directly (as in global reward
setting) or indirectly through the interference that each BS
sees. Furthermore, the actions of each BS in the network are
either indirectly observable at each BS through interference
or irrelevant if there is no interference. We will use v⇡(s) to
denote the sum of the value functions of all BSs under the
frequency reuse policy ⇡.

Definition 1. In a stochastic game a Nash equilibrium (NE) is

a set of policies ⇡⇤ = (⇡⇤1, . . . ,⇡⇤b, . . . ,⇡⇤B) such that for

all s 2 S, 8⇡b
2 P

b
(P

b
is the set of all feasible frequency

reuse policies for BS b) and b = 1, . . . , B,

v⇡
⇤
(s) � v⇡

0
(s), where ⇡0 = (⇡⇤1, . . . ,⇡b, . . . ,⇡⇤B). (12)

We will next establish the existence of and convergence
to a Nash equilibrium for our non cooperative Markov game
among the BSs.

A. Existence of and convergence to a Nash equilibrium for

our proposed non cooperative Markov game

Theorem 1. Consider a non cooperative Markov game where

each BS in the network is autonomously learning a frequency



reuse policy to mitigate interference. There exists a Nash

equilibrium, possibly not unique, for the game under all three

reward modes (G1), (G2) and (G3), with each BS’s agent

converging to an NE frequency reuse policy.

Proof. We have a non cooperative Markov game where each
BS agent determines its optimal policy in response to the
either the sum reward as in (G1) or a proxy as in (G2), in
(G3) that reflects the reward of all BSs in the network. This
is an B-player general sum stochastic game known as the
Nash Q learning algorithm [26]. The convergence of Nash
Q learning has been established in [26, Sec 3.2], when the
following three conditions are satisfied: (i) each action state is
visited infinitely often, (ii) the learning rate step size satisfies
0  ↵t < 1,

P
↵t = 1,

P
↵2
t < 1 and (iii) the game

has either a global optimum or a saddle point. While the
first two conditions can be easily satisfied by the choice of
learning hyper parameters, the last condition follows from the
fact that an n-player game with finite actions has at least one
Nash equilibrium with mixed strategy [29]. Note that both
(G2) and (G3) use the relative downlink rate in (10) as the
training reward which indirectly reflects on how well other
BSs in the network are doing. Specifically, a smaller relative

downlink rate over a prolonged time duration implies that the
neighboring BSs are causing more interference due to their
users’ queues being active. ⌅

IV. MAIN RESULTS

We shall first introduce a few definitions needed to present
our main theoretical results. Next we define a notion of the
capacity region of our proposed Probabilistic Frequency Reuse
(PFR) for the non cooperative Markov game. By capacity

region we refer to the set of all user arrival rate vectors that
the network is able to support with stable queues. Next we
establish a capacity order among the three game settings (G1),
(G2) and (G3) according to their learnt value functions.

A. Network stability under interference mitigation polices

We begin by defining a notion of capacity for the network
given a frequency reuse policy ⇡ = (⇡b, b 2 B) which char-
acterizes the set of possible long term downlink transmission
rates which are achievable under two assumptions (a) all users’
transmit queues are backlogged, and (b) all BSs make use of
the all resources made available by their respective frequency
reuse policies, and thus offer the worst case interference
according to their frequency reuse policy.

Recall that ⇡(s) denotes the probability that the frequency
reuse policy across all the BSs is in state s. Further, given the
frequency reuse and channel states of the network s,g and
sbk = 1 (resource k is available at base station b), �b

uk(s, g)
denotes the fraction of time resource k is allocated to user u 2

U
b, and thus under the assumption (b) in the paragraph above,

we have that
P

u2Ub �b
uk(s, g) = 1. This corresponds to a

static splitting resource allocation policy across the network

when the network is in state s 2 S, g 2 G. Let F denote the
set of such feasible splittings for all possible network states,

F =

8
<

:� : 8b 2 B, 8s, g, if sbk = 1 then
X

u2Ub

�b
uk(s, g) = 1

9
=

; .

(13)
Suppose � is a feasible static splitting, then one could come
up with a lower bound on the downlink rate under a frequency
reuse ⇡ for each user u 2 U

b given by,

µ1
u (⇡,�) = E⇡,�

"
NX

k=1

�b
uk(S,G)cuk(S,G)

#
. (14)

where ⇡ and � correspond to the distributions of the network’s
frequency reuse and channel states S and G respectively. We
further let µ1(⇡,�) = (µ1

u (⇡,�), u 2 U).

Definition 2. Given a frequency reuse policy ⇡, we define the

saturated network capacity region C
1
⇡ as follows

C
1
⇡ , {r : 0 � r � µ1(⇡,�), � 2 F} .

Notation: C1,b
⇡ denotes the saturated capacity region for BS

b, (·)� denotes interior of a set and �b denotes the user arrival
rate vector of the arrival rate for BS b. ��b denotes the arrival
rate vector of users at all BSs in the network except BS b.

We further define the capacity region for saturated networks
under all possible Markovian frequency reuse polices P as

C
1 =

[

⇡2P
C
1
⇡ . (15)

Remark. It is easy to show that C1
⇡ is convex owing to the

convexity of the set of all possible static splits F . However,
C
1 need not be convex. Indeed one could design ⇡1, (⇡2)

which allocate resources only to b1, (b2), respectively. In this
case it is not feasible to achieve a convex combination of
C⇡1 and C⇡2 as that calls for a scheduler aware frequency
reuse policy which goes against our separation of concerns
paradigm.

Lemma 1. Consider a network where the users’ queues across

the BSs have iid arrivals with mean � such that there exists

a ⇡ and � such that � < µ1(⇡,�) 2 C
1

, then the network

is stable under the reuse policy ⇡ with static splitting rule �.

Proof. For a frequency reuse policy ⇡ and static split
rule � consider the standard Lyapunov function V (Q) =P

b2B(q
b)Tqb. Note that the Lyapunov drift of this network

is at least as the large as that of the case where all user queues
in the network are infinitely backlogged. One can easily check
for Foster’s stability criterion (in the infinitely backlogged
users case) to show that V (Q) has a negative drift when
9µ(⇡,�) 2 C

1 such that � < µ(⇡,�). ⌅

Lemma 2. For a given frequency reuse policy ⇡, if the arrival

rate �b
at BS b is such that �b

2 (C1,b
⇡ )�, then assuming base

station b employs max weight scheduling while all other BSs

are saturated, the system is stable.



Proof. Max weight scheduling algorithm [30] is throughput,
i.e., stabilizes the user queue lengths, whenever feasible.
Stability of max weight scheduler for a single base station
has been established for iid arrivals and Markovian channel
variations in [31]. The channel variations as seen at BS b
in our setting are iid across all BSs in the network and the
frequency reuse policy ⇡ which determines the availability of
resources at each BS is Markovian. Therefore, the channel
variations seen at BS b are Markovian. Furthermore arrivals at
user queues are assumed independent throughout the network,
allowing us to invoke result [31], to show stability. ⌅

Intuitively from a BS’s perspective, saturation of neighbor-
ing BSs’ users’ queues corresponds to a worst case in terms
of interference and thus the capacity that can be achieved
for its users. One would expect if one relaxes the saturation
assumption that one would still achieve stability. The following
result shows that this is the case for a network where the
arrivals at all BS/users lie in the interior of C1.

Theorem 2. For a given frequency reuse policy ⇡, if the

arrivals to the user queues in the network satisfy � 2 (C1
⇡ )�,

then max weight schedulers at each BS will stabilize it’s users’

queues.

Proof. Suppose � 2 (C1
⇡ )�, by Lemma 2 we know that each

base station operating under max weight with the neighbors
saturated would be stable, as shown by defining a quadratic
Lyapunov function [32, Section 5] and showing it has negative
drift outside a finite set of queue states. We note that if neigh-
boring BSs are not saturated the drift at the base station would
only be larger, because this would reduce the interference seen
at the base station. To prove stability of the overall network
we can consider a sum of the Lyapunov functions across BSs,
since the state of the network as a whole is Markovian. Note
that the sum of the Lyapunov functions has a larger service
rate and thus a larger negative drift as compared to that of the
same network with infinitely backlogged users. Thus it should
be clear that user queues at each BS are stable even when the
neighboring BSs are not saturated. ⌅
Remark. Local reward based (as in (G2), (G3)) distributed
learning of frequency reuse policy ⇡ is effective only when
the metric represents the relative performance of each user
with reference to the no interference scenario.

Theorem 3. For a given scheduling policy h, let ⇡⇤
g , ⇡⇤

l
denote possibly not unique frequency reuse policies which are

Nash Equilibria learnt using the global (G1) and local (G2)

reward games, respectively. For every local frequency reuse

policy ⇡⇤
l there exists a global frequency reuse policy ⇡⇤

g such

that v⇡
⇤
g (s) � v⇡

⇤
l (s).

Proof. Suppose we can pick a specific local Nash Equilibrium
frequency reuse policy ⇡l for our network, let us choose a
particular BS in the network. This selected BS is then allowed
to learn a frequency reuse policy based on the global reward of
the network. Clearly, this can only improve the rewards of the
BS and hence the overall network, since the BS agent is now

able to learn a policy based on rewards for it’s actions using
the overall network reward, i.e., v⇡

⇤
g (s) � v⇡

⇤
l (s). Therefore,

for every ⇡⇤
l one can construct a global policy ⇡⇤

g that achieves
better rewards. ⌅

V. SIMULATIONS

A simple network as in Fig. 3 with four BSs is considered.
Each BS serves 5 users and has access to 5 resources (3.5-
3.55 GHz with RB bandwidth 10 MHz). Users are dropped
uniformly at random over each square region and associated to
the nearest BS. For all three game settings (G1), (G2) and (G3)
a DQN is employed at each BS to learn its frequency reuse
policy ⇡b based on the rewards generated. The DQN learns a
Q table [33] which keeps track of the mean discounted reward
as a function of the (state, action) pair of each BS. The state

of every BS agent is given by the binary vector corresponding
to the frequency reuse state. The action corresponds to the
resources selected by each BS for transmission for the next
time slot, with 1(0) to denote whether a resource can be
(cannot be) assigned to a user. During the training phase
each DQN performs exploration and exploitation to learn a
policy ⇡b that maximizes the long term discounted rewards.
The Keras Adam optimizer [34] was used to implement the
DQN with the following hyperparameters: exploration rate
✏ 2 [1, 0.01], exploration decay factor 0.995, a learning rate
of 0.001 and a reward discount factor � = 0.95. Algorithm
1 gives the DQN training logic used at each of the BSs.
Open AI gym [35] was used to simulate the wireless network
environment for multi-agent RL.

Fig. 3: The network configuration used for simulations with
four BSs (triangles), each associated with 5 users (dots).

The SINR of a user scheduled to transmit, is calculated
using (2). The transmit power of the BS (user) is 2 W (100
mW) with noise power set to -104 dB. ĉu is the estimated data
rate for user u per RB, based on channel quality (fading and
path loss). We use bounded standard path loss max[1, r�↵]
with exponent ↵ = 3 to model channel gains. Note that
we use |hi|

2 = 1 for the simulations, since we assume
that the Channel State Information (CSI) is available at the



transmitter. This is a reasonable assumption given that the BSs
can evaluate the CSI for each of its associated users and hence
the channel fading |h|2 is not an unknown quantity under flat
fading with CSI.

Algorithm 1: Training DQN of each agent
initialize policy ⇡b;
while training do

generate random arrivals;
schedule resources using policy ⇡b;
save training data (state, action, reward, next state) to

batch;
if batch memory full, train DQN using batch data ;
update policy ⇡b, choose action with max Q-value ;
if iterations > maxIterations then

done = True;
end

end

At each BS the DQN provides a list of available resources
to the scheduler that can be allocated to users. Each BS
uses a Max weight scheduler (predetermined scheduler h) to
determine the users to be assigned available RBs. The weight
for each user is calculated based on both the current user queue
size Nu and the estimated downlink rate ĉu as, wu = Nuĉu.
A BS assigns RBs iteratively to its users as follows. The user
with maximum weight is assigned the best channel available
and then user weights are reevaluated based on updated queue
size accounting for potential packet transmissions. Specifically,
suppose user u was assigned a channel with rate ĉu for
transmission, then the user weight wu is calculated with an
updated queue size Nu = Nu � f(ĉu), where f(·) is a
non decreasing function that denotes the number of packets
transmitted as a function of the downlink rate ĉu. We use a
piece wise linear function f(x) = blog2(1 + x)c to determine
the number of packets transmitted, as a function of the
rate, blog2(1 + SINR)c, where b·c is the floor operator. The
minimum SINR threshold below which no packets can be
reliably transmitted is set to 0dB.

The training algorithm for the DQN agent at each BS is
shown in Algorithm 1. We use batch training for the DQNs,
hence, a single iteration in the DQN training is equivalent
to multiple time steps in real time resource scheduling. We
use max-weight scheduling with frequency reuse 1 as a
bench mark to gauge the performance of our multi agent RL
framework. In order to find the “best” that one could do with
a greedy strategy, we also include plots for an oracle-aided

centralized benchmark where each BS completely knows the
interference that will be seen as resources are allocated in the
network. For the centralized benchmark, we use full frequency
reuse at each BS in the network and a sequential scheduling
order, wherein the nth BS uses max weight scheduling of
resources but is completely aware of the exact interference
caused by the scheduling of the previous n� 1 BSs.
Remark: We observed that the frequency reuse states learned

across BSs based on ⇡g are more strongly correlated than
those for ⇡l. This can be attributed to the fact that the
global reward reflects complete information about the network
performance as compared to local rewards. Consequently,
resource selection patterns learnt using the global reward (G1)
better mitigate interference as compared to (G2) or (G3).

Fig. 4: User mean rate CDF for all policies.

The empirical CDF of the users’ mean rate is shown in Fig.
4. It can be seen that even the simplest and most practical
random action game (G3) results in better mean rate for users.
Specifically, the global reward, local reward and random action
games show a 4.8%, 14.8% and 25% improvement in the total
rate delivered to all users, when compared to the baseline.

Fig. 5: Fraction of resources used on average across the
network, as a function of the arrival rate per user

Fig. 5 shows the mean fraction of resources selected for
downlink transmission in the network as a function of the
arrival rate at each of the users’ queues. Observe that when
compared to the random action game, the global and local
reward based policies learn to use a better frequency reuse
strategies, which helps them achieve better throughput Fig.
4. Also, note that in all three settings considered, initially
the fraction of resources allocated to users increases with an
increase in the user packet arrival rate. However, beyond a
critical level, the fraction of resources used almost saturates
to a constant which is not 100%. While the global (G1)



and local reward (G2) games demonstrate a 32% and 34%
improvement in energy efficiency through better resource
utilization (resource positioning), the random action game
(G3) still shows a 9% improvement in energy efficiency.

A further interesting result from experimenting with our
proposed architecture is as follows. When all the BSs in the
network except one, say BS 1, were configured to act greedily,
that is employ frequency reuse 1, then using the proxy metric
in (10) to train the DQN of BS 1 results in the agent to learn
not to backoff but simply use all its RBs (frequency reuse 1).
This behaviour demonstrates that our proposed algorithm is
capable of learning the right policy in an adversarial setup.
Another experiment to test the proposed architecture involved
moving the BSs further away from each other (including their
user locations), and it was observed that the DQN agents at
each of the BS learn to use frequency reuse 1 as expected.
Additional simulation results were not included due to lack of
space.

VI. CONCLUSION

We have proposed two key concepts: First a separation
of concerns where one fixes the base station scheduler and
optimizes a frequency reuse policy for the given scheduler.
Second, the use of a proxy reward metric that accounts for the
interference coupling among base stations during the learning
process. Also, the learning algorithm requires no information
regarding the network topology, interference graph or user
traffic dynamics. Furthermore, the training duration can be
substantially reduced by a simplified action space in the
random action game. Interesting future research directions
include understanding the system behavior in the presence of
user mobility and being able to manage delay sensitive traffic
with finite queue size.
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