
MOHAWK: Mobility and Heterogeneity-Aware Dynamic
Community Selection for Hierarchical Federated Learning

Allen-Jasmin Farcas
allen.farcas@utexas.edu

The University of Texas at Austin
Austin, TX, USA

Myungjin Lee
myungjinle@cisco.com

Cisco Systems
San Francisco, CA, USA

Ramana Rao Kompella
rkompell@cisco.com

Cisco Systems
San Francisco, CA, USA

Hugo Latapie
hlatapie@cisco.com

Cisco Systems
San Francisco, CA, USA

Gustavo de Veciana
deveciana@utexas.edu

The University of Texas at Austin
Austin, TX, USA

Radu Marculescu
radum@utexas.edu

The University of Texas at Austin
Austin, TX, USA

ABSTRACT
The recent developments in Federated Learning (FL) focus on opti-
mizing the learning process for data, hardware, and model hetero-
geneity. However, most approaches assume all devices are station-
ary, charging, and always connected to the Wi-Fi when training
on local data. We argue that when real devices move around, the
FL process is negatively impacted and the device energy spent for
communication is increased. To mitigate such e�ects, we propose a
dynamic community selection algorithm which improves the com-
munication energy e�ciency and two new aggregation strategies
that boost the learning performance in Hierarchical FL (HFL). For
real mobility traces, we show that compared to state-of-the-art HFL
solutions, our approach is scalable, achieves better accuracy on
multiple datasets, converges up to 3.88⇥ faster, and is signi�cantly
more energy e�cient for both IID and non-IID scenarios.1

CCS CONCEPTS
•Computingmethodologies!Machine learning; Supervised
learning; • Security and privacy;

KEYWORDS
Federated Learning, Edge Devices, Data Heterogeneity, Data Pri-
vacy, Communication Cost, Energy E�ciency, Mobile Devices,
Internet-of-Things

ACM Reference Format:
Allen-Jasmin Farcas, Myungjin Lee, Ramana Rao Kompella, Hugo Latapie,
Gustavo de Veciana, and Radu Marculescu. 2023. MOHAWK: Mobility and
Heterogeneity-Aware Dynamic Community Selection for Hierarchical Fed-
erated Learning. In International Conference on Internet-of-Things Design and
Implementation (IoTDI ’23), May 09–12, 2023, San Antonio, TX, USA. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3576842.3582378

1Code is available at: https://github.com/SLDGroup/MOHAWK

This work is licensed under a Creative Commons Attribution International
4.0 License.

IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0037-8/23/05.
https://doi.org/10.1145/3576842.3582378

1 INTRODUCTION
Federated learning (FL) trains machine learning (ML) models us-
ing the local data available on edge devices and then aggregates
the updated local models in the cloud to obtain a global model.
For instance, Federated Average (FedAvg) [23] simply averages
the updated local model parameters to obtain a new global model.
Many improvements to the original FedAvg algorithm [23] have
been proposed to boost the learning in FL systems, e.g., FedProx
[17], FedMax [5], FedNova [28] to mention a few. Challenges like
hardware, model, and data heterogeneity can negatively impact
the learning and communication in FL [16] since in real-world sce-
narios all types of heterogeneity appear naturally. In particular,
the impact on communication is the most important one [16, 20],
especially since the edge devices may struggle to communicate the
trained model back and forth with the cloud. Additionally, hardware
heterogeneity impacts the devices communication with di�erent
connectivity technologies (e.g., Wi-Fi, 4G or 5G, etc.). Finally, real
data distributions can make the learning process harder to con-
verge, hence requiring more communication rounds until a certain
accuracy threshold is reached. This induces an even bigger impact
on communication as each participating device needs to download
and upload the local model multiple times.

Another line of work brings the computation even closer to
the edge by using hierarchical FL to reduce the communication
overhead of FL. Hierarchical FL (HFL), �rst pioneered in [18], uses
edge Access Points (APs) as intermediary aggregation points before
transmitting the edge models to the cloud for global aggregation.
This enables edge devices to use higher communication speeds with
local APs (instead of communicating directly with the cloud).

Previous HFL solutions [1, 18] make every device communicate
with the same pre-assigned AP during all communication rounds.
This limiting assumption does not consider the physical distance
between devices and its assigned AP, hence it directly impacts the
capacity and energy consumption spent in communication. Other
HFL solutions consider the distance between the device and the
AP to select the AP [22], but ignore the real mobility patterns of
the various devices (i.e., devices are assumed to be stationary and
uniformly distributed in a given area). Other HFL solutions consider
devices that can randomly change their current AP with one of their
neighbors [7]. Such state-of-the-art approaches consider that any
AP has only two neighboring APs to which devices can randomly
connect. This assumption is not realistic since the APs can have

249

https://doi.org/10.1145/3576842.3582378
https://github.com/SLDGroup/MOHAWK
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3576842.3582378
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576842.3582378&domain=pdf&date_stamp=2023-05-09

IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA Farcas et al.

1:00PM 2:00PM 3:00PM

100m

!"!+
!""

Figure 1: Our proposed MOHAWK framework selects at every time step dynamic communities of devices and their closest
Access Point (AP). Within 100m range of an AP the devices have Wi-Fi connection, otherwise LTE. Dynamic edge aggregation
allows devices like device C (at 2:00PM) that may disappear due to battery depletion to be reconsidered for learning the next
time they appear, as long as the global model from the cloud was not updated in the meantime. Selective global aggregation
only aggregates in the cloud the APs that aggregated at least one device since the last global aggregation (e.g., �%2 and �%3).

(a) (b) (c) (d)

Figure 2: Uniform vs. real-world distribution of 37,994 Points of Interest (PoIs) where devices can be at in an urban area. (a)
shows the uniform distribution of the 37,994 PoIs, while (b) is the heatmap of the distribution in (a) showing how uniformly
spread the PoIs are. In contrast, (c) shows a real-world distribution of the PoIs and (d) is the heatmap of (c), showing how much
non-uniformity there is, with hundreds of PoIs in the Downtown area and barely any PoIs in the outskirts of the city.

any number of neighbors and the device mobility is not dictated by
�xed probabilities, but by human behavior.

Works such as [1] consider an area that is too small to be realistic
(i.e., 750m⇥750m) for the deployment of edge devices and APs. Even
though the authors of [25] consider a larger area of 2km⇥2km, their
focus is on simulated mobility and fully cooperative learning. Even
with such solutions, there are still important problems associated
with real device mobility that remain unaddressed. As mentioned
in [20], the assumption that all data owners are willing to partici-
pate in the FL process anytime and anywhere is not realistic. We
illustrate in Fig. 1 how some device C starts training at 1PM, has
battery depleted at 2PM, and then becomes available again at 3PM.
Due to the aforementioned limitations, current methods would not
consider device C for aggregation; however, in order for devices

to be able to learn anytime and anywhere, this is one of the �rst
research questions that needs to be addressed.

Recent works consider a uniform distribution of locations the
devices can be at, i.e., Points of Interest (PoIs), and continuous avail-
ability of all participating devices in the FL process. However, this
is not realistic since, as it can be seen in Fig. 2, the real-world dis-
tribution of the PoIs looks nothing like a uniform distribution. The
presence of hubs can be seen especially in cities where Downtown
and speci�c areas are more frequented by people. Having a realistic
experimental validation is thus crucial to get us closer to learning
anytime and anywhere.

To address these limiting factors, we propose a Mobility and
Heterogeneity-Aware Dynamic Community Selection (MOHAWK)
framework for Hierarchical Federated Learning that combines a

250

MOHAWK IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA

dynamic community selection algorithm with real device mobility
under heterogeneous environments using two new aggregation
techniques which are essential for energy e�ciency and scalability.
As shown in Fig. 1, we provide a solution to adapt the learning pro-
cess to missing and reappearing devices (such as device C at 2PM)
which we shall refer to as dynamic edge aggregation. We also pro-
pose a selective global aggregation technique which only aggregates
the model weights from the APs that aggregated any devices since
the last global aggregation. Our dynamic edge aggregation enables
more devices to participate with their local updates in the learning
process, while the selective global aggregation results in a faster
global convergence and scales to any number of APs. Our solution
enables devices to learn continuously during the day, whenever they
are available, spending less energy for communication, converging
faster, and achieving better accuracy than other state-of-the-art
HFL solutions.

The contributions of the paper are as follows:
• Mobility and Heterogeneity-Aware Dynamic Commu-
nity Selection (MOHAWK): A framework that combines a
dynamic community selection algorithm for energy-e�cient
communication in mobile FL systems with two new aggrega-
tion strategies (i.e., dynamic edge aggregation and selective
global aggregation) that boost the learning performance un-
der heterogeneous scenarios.

• Federated Learning using Real Devices Mobility: MO-
HAWK aims to include as many devices in the learning pro-
cess as possible, thus providing a more inclusive (i.e., fair) en-
vironment which guarantees that less energy will be wasted
on training models that are ultimately not aggregated. To
the best of our knowledge, this paper is the �rst to account
for real devices mobility for FL.

• Empirical Validation: We show that MOHAWK converges
up to 3.88⇥ faster and is more scalable than state-of-the-art
HFL solutions on MNIST, EMNIST, CIFAR10 and CIFAR100,
while being more energy e�cient.

• A Hardware Prototype: We provide real energy measure-
ments on a hardware prototype with 36 Raspberry Pi devices
that show up to 2.24⇥ less average energy wasted per device
for training local models compared to state-of-the-art HFL
solutions.

To summarize, we provide a new energy-e�cient solution for
HFL which considers real mobility and availability of edge devices.
The remainder of the paper is organized as follows: Section 2 dis-
cusses relevant prior work. In Section 3, we present our proposed
approach. Section 4 shows our experimental results (both simu-
lation and hardware prototype), while Section 5 summarizes our
main contributions and outlines directions for future work.

2 RELATEDWORK
2.1 Hierarchical Federated Learning
HierFAVG [18] considers a scenario with 50 devices and 5 APs,
optimistically assuming that at every communication round every
AP will handle exactly 5 devices. Looking at Fig. 2, this is a strong
limitation. Abad et al. [1] consider 28 users uniformly distributed
across a circular area with radius 750m; they �x 7 APs, each having
4 devices during each communication round. No device mobility is

considered, and the results are provided only for CIFAR10 under the
IID scenario with FedAvg used for aggregation. Hier-local-QSGD
[19] is proposed for HFL with quantization using 20 clients and 4
edge servers, each server having 5 devices during each communi-
cation round. Hierarchical Federated Edge Learning (HFEL) [22]
addresses resource allocation optimization and edge association
problem solving. The authors consider up to 60 devices distributed
randomly over a 500m x 500m area with up to 25 edge servers. How-
ever, HFEL does not consider any device mobility and thus their
solution is purely a resource allocation optimization. We call the
methods above stationary since all devices have a pre-assigned AP
to communicate with. As mentioned in [2], the methods proposed
in [1, 22] are appealing for computation o�oading, but have limited
applicability in the context of real mobile devices where there is
almost no possibility to organize them.

Mobility-Aware Cluster FL (MACFL) [7] tries to relax the station-
ary scenario by allowing devices to move to a neighboring AP based
on a �xed probability, and assuming each AP has only two neigh-
bors. MACFL also uses 50 devices and 5 APs for their experiments
on MNIST, just like HierFAVG [18]. We call MACFL pseudo-mobile
because it allows some devices to change their APs, but has the
same assumption as HierFAVG, i.e., all devices are available at every
communication round. In Federated Attentive Message Passing
(FedAMP) [12], the authors propose a heuristic version of FedAMP
called HeurFedAMP which considers a self-attention hyperparame-
ter to control the weight of each message sent from a client to the
cloud. This self-attention hyperparameter uses the cosine similar-
ity between the local model and the global model and adjusts the
weight of the local model in the aggregation based on how di�erent
the local model is from the global model. Inspired by HeurFedAMP,
MACFL [7] uses the same attention scheme for every device and
edge aggregation to help the learning process with clients randomly
changing their APs.

To address the limitations of stationary and pseudo-mobile state-
of-the-art solutions, we are the �rst to consider real mobility data
for HFL together with realistic setups of devices and APs. Unlike
[1, 7, 18, 19, 22], we do not assume that all devices are available at
every communication round, as they get disconnected due to issues
like battery depletion or temporary loss of signal.

2.2 Mobility Models and Scalability
Ochiai et al. [25] propose a fully distributed cooperative FL system
organized by nodes that are physically nearby, i.e., nodes commu-
nicate with other nodes if they are within the radio range, thus
producing opportunistic contacts for learning. The authors of [25]
simulate mobility using Random Waypoint (RWP) mobility [3] and
Community Structured Environment (CSE) mobility [24]. In RWP
the nodes are devices that walk around a given area, spending
some time at di�erent locations, while in CSE the nodes are de-
vices assumed to be part of a few communities and they move from
one community to another. For RWP, the authors in [25] use an
area as large as 2km⇥2km and assume 100m as the radio range
for communication. Ochiai et al. also show in [25] that the large
area for RWP requires a longer time for more contacts among the
nodes to obtain enough accuracy. Another realistic approach in
[27] takes into account the real-world vehicle trace dataset to create

251

IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA Farcas et al.

Figure 3: Device availability and normalized device availability during the month of May 2020. We observe a clear increase in the
number of devices available for aggregation since our solution (i.e., the green line) is always on top, while other (state-of-the-art)
methods consider fewer devices for aggregation. Also, we note cases with no devices available (e.g., May 3, 4, 5, etc.).

a FL system that considers the delay as a learning parameter, due
to high mobility of vehicles. The authors use the Mobile Century
Dataset [9] which contains 77 vehicles and traces approximately
20 miles of Interstate 880, but only 10 agents are selected during
every communication round.

In contrast to [25], instead of using simulated mobility, we use
the Foursquare real-mobility dataset [8]. We consider the top 1,000
devices that appear most times during the month of May 2020
within the metropolitan area of interest based on Foursquare data.
The devices are smartphones associatedwith peoplemoving around,
e.g., walking or driving. From these 1,000 devices for any given time
step, there are about 76 devices present on the map, almost the
same as the total number of devices used by [27]; this shows the
scalability of our work.

2.3 Hardware Validation
Real hardware experiments are rarely reported in the FL literature.
For instance, Luo et al. [21] use 20 Raspberry Pi 4 and 10 NVIDIA
Jetson Nano devices and measure the average computation and
communication time, without power or energymeasurements. Clus-
terFL [26] uses a prototype built with 7 NVIDIA Jetson TX2 and 3
NVIDIA Jetson AGX to evaluate the impact of dynamic network
conditions concluding that the real-world 4G LTE has substan-
tially lower and more unstable bandwidth compared to Wi-Fi and
Ethernet. Our proposed hardware prototype is equipped with 36
Raspberry Pi 3B+ devices, each of them having its own dedicated
Smart Power 2 device to measure energy consumption.

3 METHODOLOGY
3.1 Device Availability and Distribution
Previous works [1, 7, 18, 19, 22] consider a uniform (random) distri-
bution of devices that are always available for all their experiments.

However, as shown in Fig. 2, it is unrealistic to assume a uniform
distribution of PoIs over the entire area of interest. Besides consid-
ering unrealistically small areas of deployment (e.g., 500m⇥500m
[22]), the uniform distribution of devices also limits the usefulness
of hierarchical approaches. We observe in all cities, a higher concen-
tration of clients and their devices in some areas (e.g., Downtown),
and a sparser distribution of devices on the outskirts of a city. In
Fig. 2 we show 37,994 PoIs where users may go, e.g., McDonald’s,
Starbucks, parks, shopping malls to name a few. We consider all
PoIs to be APs since all of them have at least one private Wi-Fi
network available. So, it is natural when a client goes to such a
PoI to not rely on its own cellular data and connect to the Wi-Fi
network available at that location. Thus, for HFL we use dynamic
connection between every device and its closest AP every time the
device is available.

Device availability is also a big issue for FL systems, yet it is even
less discussed in the literature. In Fig. 3, we show the availability of
the top 1,000 devices that appear most times during the month of
May 2020 from a total of 12,866 devices. As it can be seen, we have
the lowest number of devices active at night and peak numbers
of active devices during the afternoon. For both PoIs and device
availability, we use data collected from Foursquare [8] over an area
of 17.5km⇥17.5km. Previous HFL solutions consider that, at any
given time, all APs have a �xed number of devices connected, i.e.,
all devices are available at any time. As seen in Fig. 3, from 1,000
devices, we may end up having at most 76 devices present at the
same time: sometimes, we may not have any devices available at all.
To enable HFL anytime and anywhere, solutions should be robust
to such dramatic variations in availability.

Since current FL solutions are oblivious to device availability
issues, they typically aggregate at time C + 1, all devices that have
been trained at C , assuming they are all still available. However, not

252

MOHAWK IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA

Table 1: Data transfer power model parameters [11].

Connection type UD [mW/Mbps] U3 [mW/Mbps] V [mW]

LTE 438.39 51.97 1288.04
Wi-Fi 283.17 137.01 132.86

Table 2: 4G LTE per user throughput ranges for di�erent
carriers [4]. We consider a mixed range from all carriers.

Carrier Verizon T-Mobile AT&T Sprint C<8= C<0G

CD [Mbps] 15 16-17 11-12 7-8 7 17
C3 [Mbps] 36 23-24 25-26 12-30 12 36

only that some particular devices may not be present at C + 1, but
they may come back at a later time (e.g., C + 2), case in which the
device will not be considered for aggregation. This implies such a
device wastes energy training a model that is ultimately not used
for aggregation. We show in Section 4.4 howmuch energy is wasted
on such devices that start training at time C and do not aggregate
since they are not present at C +1, but reappear at some other future
times. We alleviate this issue by considering for edge aggregation
all devices that started training since the last global aggregation.

In Fig. 3, we show how our solution considers up to 39.78% more
devices than state-of-the-art solutions. For the normalized device
availability, we consider 1.0 as the maximum number of devices
available for aggregation at every time. We note that quite a few
times all the plot lines go to zero, denoting times when no device
out of a total of 1,000 devices considered is actually available.

3.2 Communication Model
Recent �ndings in [29] show that even in 2022, traditional tech-
nologies like 4G LTE and Wi-Fi 4/5 are still used by the majority
of mobile users due to their more mature deployment and stable
performance. This is why we use for modeling the power charac-
teristics of LTE and Wi-Fi taken from [11]. The data transfer power
model (best �t) parameters from [11] are summarized in Table 1.
Assuming the upload throughput is CD [Mbps] and the download
throughput is C3 [Mbps], we have the power level [mW] for upload
as %D = UDCD + V and for download %3 = U3C3 + V (as shown in
[11]), where UD and U3 are the power model parameters and V is
the base power when throughput is 0 (see Table 1). Considering
` the model size [Mb] and �2><< [Mb] the extra bits required
for communication using the FL framework, we compute the total
communication energy [mJ] for a device as in Eq. 1 for a complete
communication round, i.e., when the device receives the model and
uploads the updated model back to the AP:

⇢C>C0; = %D ⇤ (` + �2><<)/CD + %3 ⇤ (` + �2><<)/C3 (1)

Due to availability variations, a device may only download the
model at time C and upload it at a later time C + _ when it becomes
available again. The total energy spent for communication at time
C is ⇢C>C0; = %3 ⇤ (` + �2><<)/C3 when the device only downloads
the global model, while it becomes ⇢C>C0; = %D ⇤ (` + �2><<)/CD
at time C + _ when the device is only uploading the local model.

Figure 4: Sequence diagram showing the device-AP-cloud
communication, with :1 local epochs, :2 = 2 dynamic edge
aggregations, and one selective global aggregation at di�er-
ent time steps.

For realistic LTE connection throughputs, we consider the popu-
lar mobile carriers for their upload and download speeds, as sum-
marized in Table 2. To set the minimum and maximum CD and C3 ,
we consider the distance X8, 9 between an AP 8 and a device 9 . Given
a random selection of 100 APs, we compute for the entire month
of May 2020, the mean X<40= and standard deviation XBC3 distance
between all devices and their selected APs. If a device is further
than 100m from its AP, we select C3 and CD based on Eq.2, where
C<8= and C<0G are taken from Table 2:

C3 , CD =

8>>><
>>>:

C<0G if X8, 9 < X<40= � XBC3
C<8= if X8, 9 > X<40= + XBC3
<0? (X8, 9 ; C<0G , C<8=) otherwise

(2)

where<0? : [X<40= � XBC3 , X<40= + XBC3] ! [C<0G , C<8=] is a func-
tion thatmaps linearly the distanceswithin the range of X<40=±XBC3
to the throughput speeds [C<0G , C<8=]. If a device is within 100m
of its selected AP, we use a Wi-Fi speed of CD = C3 = 1000 [Mbps].
We use the communication model during simulation to compute
the energy consumption for communication (see Section 4.2).

3.3 MOHAWK Framework
In FL, we want to solve an optimization problem of the form:

min
l

5 (l) = 1
|D|

|D |’
8=1

58 (l,⇡8) (3)

where 58 is the loss function of device 8 evaluated on the local dataset
⇡8 , D is the set that contains all devices and | · | denotes the number
of elements of a set.

We solve the optimization problem in Eq. 3 over time. We show
in Fig. 4 how the main steps of MOHAWK are performed at di�erent
time steps. We assume that device 8 selects AP U at time C = 0. The
�rst step is to download the global model weights l from the cloud
on AP U . Then, the AP model weights (at time C = 0) denoted by
lU (C = 0) are downloaded by the device 8 connected to AP U . The
device 8 performs :1 local epochs of stochastic gradient descent
(SGD) on its local dataset. We assume the time it takes edge devices
to train a model takes much longer than the communication of
the model between the devices, APs, and the cloud. At C = 1 we

253

IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA Farcas et al.

Algorithm 1Mobility and Hardware-Aware Dynamic Community Selection (MOHAWK)

1: Initialize global weights l with random weights and download them on all APs lU l,8U 2 A
2: Initialize time C = 0, set of APs for aggregation A = ; and set of devices that trained)A = ;
3: for communication round 2 = 1, 2,..., ⇠ do
4: for each device 8 2 D(C) in parallel do ù For every device 8 available at time C
5: if 2 == 1 then
6: Select U8 using Eq. 4 ù Dynamic community selection
7: end if
8: Download model lU8 (C) from AP U8
9: l8 Train(lU8 , :1) ù Train for :1 local epochs
10: end for
11:)A =)A [D(C) ù Save devices available at time C as trained, but not aggregated
12: (U = ;,8U 2 A
13: C = C + 1 ù Proceed to the new time step C + 1
14: for each device 8 2 D(C) in parallel do ù For every device 8 available at the new time C
15: Select U8 using Eq. 4 ù Dynamic community selection
16: (U8 = (U8 [8 ù Save device 8 to aggregate at its selected AP U8
17: A = A [U8 ù Save all APs that have devices to aggregate
18: end for
19: for each U 2 A in parallel do
20: if U 2 A then
21: lU (C) = Õ

82)A
82(U

?U8 l8 ù Dynamic edge aggregation

22:)A =)A \ (U ù Remove all aggregated devices 8 from)A
23: else
24: lU (C) lU (C � 1) ù Save the AP model weights
25: end if
26: end for
27: if 2 mod :2 = 0 then
28: l =

Õ
U2A

@UlU (C) ù Selective global aggregation

29: A = ;,)A = ;
30: lU (C) l,8U 2 A ù Download global model on all APs
31: end if
32: end for

assume device 8 selects the same AP U . Then, device 8 sends to AP
U the updated local model weights l8 at the next time step C = 1.
The AP then performs one dynamic edge aggregation to update
its own weights and then sends the updated weights lU (C = 1) to
device 8 . The device 8 performs again :1 local epochs of SGD. At
the next time step C = 2, the AP receives the updated local weights
l8 and performs another dynamic edge aggregation, i.e., :2 = 2.
Since :2 = 2, the AP U sends the updated model to the cloud for a
selective global aggregation. The cloud sends the updated global
model weights l back to AP U , which sends the updated AP model
weights lU (C = 2) to device 8 and then the process repeats itself.
Dynamic Community Selection At every time C , we have only a
subset of devices D(C) ⇢ D available; due to real device mobility
and availability, we have |D(C) | ⌧ |D|. Thus, we need to adapt
the AP selection process to work dynamically for all APs U 2 A,
where A is the set containing all APs. As seen in Line 6 in Alg. 1,
the �rst communication round begins with the dynamic community
selection for each available device 8 2 D(C) by solving the following

optimization problem:

U8 = argmin
U2A

d(U, 8) (4)

where 3 (U, 8) =
q
(UG � 8G)2 + (U~ � 8~)2 is the Euclidean distance

between AP U and device 8 , and U8 is the selected AP for device
8 . We denote with (U the set of all devices connected at AP U .
Except the �rst communication round, at each new time step (Line
13 in Alg. 1), we perform for the available devices the dynamic
community selection based on Eq. 4 (see Line 15 in Alg. 1). In other
words, at every time step, each device selects its closest AP. This
selection is performed locally on the device with the location of
nearby APs known beforehand, since APs are assumed to be at
�xed locations.
Dynamic Edge Aggregation Another implication of having D(C)
devices available at time step C is that we may haveD(C�1)\D(C) =
;, thus the problem of how to perform edge aggregations in this
context arises. We propose dynamic edge aggregation, which allows
devices that started training their model at time C to aggregate their
updates when they become available again, at C + _, if only edge

254

MOHAWK IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA

aggregations were performed during the time _ that has passed.
Simply put, when a device becomes available, it selects an AP and
that AP receives the last communication round when the device
was available, i.e., the last communication round during which the
device received a model for local training. If this communication
round occurred before a global aggregation, then the AP will con-
sider the local model for dynamic edge aggregation. We implement
the dynamic edge aggregation using a set)A which contains all
devices that have started training since the last global aggregation
(Line 11 in Alg. 1). Thus, we perform dynamic edge aggregation as
follows:

lU (C) =
’
82)A
82(U

?U8 l8 , where ?U8 =
4�f cos(lU (C�1) , l8)Õ

82(U
4�f cos(lU (C�1) , l8)

(5)

where f is a hyperparameter and cos(G,~) = <G,~>
| |G | |2 | |~ | |2 is the co-

sine similarity function. Inspired by FedAMP [12], we use a weight-
ing based on the cosine similarity function to better address the
mobile nature of the devices which may lead them to change the AP
they connect to at every communication round they are available,
see [7]. After a device 8 gets aggregated, it is removed from)A (Line
22 in Alg. 1) and)A gets reset every global aggregation (Line 29 in
Alg. 1).
Selective Global Aggregation Finally, the device availability issue
propagates to the AP level, since some APs, at certain time steps
may not have any devices to aggregate; hence, we ask how we
can perform the global aggregation in such a scenario. Since some
APs will not have any update for the cloud, it makes sense to not
aggregate them, preventing any communication with the cloud and
thus saving energy and capacity for communication. We name this
aggregation strategy selective global aggregation and we implement
it using the subset of APs A ✓ A that performed at least one
edge aggregation since the last global aggregation. We perform a
selective global aggregation after :2 dynamic edge aggregations. In
Line 17 from Alg. 1, we save the APs that will be aggregated in the
cloud, while in Line 28 we perform the selective global aggregation
as follows:

l =
’
U2A

@UlU (C), where @U =
4�f cos(l , lU (C))Õ

U2A
4�f cos(l , lU (C)) (6)

wherel are the global model weights,f is the same hyperparameter
from Eq. 5, and 2>B is the cosine similarity function. Some APs (e.g.,
from a dense area such as Downtown) may have aggregated many
devices, while others may have aggregated very few devices. In
order to not diverge too far from the global model, we weight the
contributions of each AP based on the cosine similarity with the
current global model weights. The cloud requests from all APs their
updates, but, in the end, only the APs that performed at least one
dynamic edge aggregation will actually send their updated models
to the cloud for aggregation.

To summarize, we start with dynamic community selection and
local training for :1 local epochs. Then, we go to the next time step
C +1, and since all devices changed their position and/or availability,
we perform dynamic community selection for the available devices.
On their newly selected APS, we run dynamic edge aggregation.
We repeat this process :2 times. Finally, we perform selective global

aggregation with the APs that did at least one dynamic edge ag-
gregation since the last selective global aggregation and send the
updated global model to all APs U .

4 PERFORMANCE EVALUATION
4.1 Experimental Setup
We perform experiments using the Foursquare dataset [8] for the
entire month of May 2020. Time C starts at May 1BC 2020, 12:00AM
UTC and ends at May 31BC 2020 11:00PM UTC; we consider every
hour from the month of May, summing up to 744 total time steps,
thus having 744 communication rounds in total (i.e., 31 days, each
with 24 hours). We consider the di�erence between two consecutive
time steps C and C + 1 to be 1 hour. From 12,866 available devices,
we select the top 1,000 that appear most times and from 37,994
APs we randomly select only 100 APs. We run each experiment
three times with di�erent seeds and report average values. All
experiments are run using two GPU servers with 4⇥A6000 GPUs, 64
core AMD Threadripper PRO 3995WX CPU and 512GB RAM each.
On each device, we use a simple convolutional model composed
of one convolutional layer with 32 �lters and MaxPooling, two
convolutional blocks, each with two convolutional layers with 64
�lters followed by MaxPooling and, �nally, a fully connected layer
with 512 neurons.

We use both independent and identically distributed (IID) and
non-IID settings, similar to [10, 15], by controlling the U parameter
from the Dirichlet distribution. We set U = 100 for the IID scenario
and U = 0.1 for the non-IID scenario. We randomly sample from
each class the number of images dictated by the Dirichlet distribu-
tion. Similar to [10, 15], we use 500 images per device for MNIST
[14], CIFAR10 [13] and EMNIST [6] and we use 2500 images per
device for CIFAR100 [13]. This enables in the IID case around 50
images per class for MNIST and CIFAR10, around 8 images per class
for EMNIST and approximately 25 images per class for CIFAR100.

ForHierFAVG,we consider (for all time steps) the same device-AP
con�guration, i.e., we �x all devices with a pre-assigned AP. This
forces every device to connect only to its pre-assigned AP irrespec-
tive of the distance between them (just as in [18]). For MACFL, at
every time step, a device has a 50% probability of moving to one of
the “neighboring” APs. We create a neighborhood of APs to match
the setup from [7]. We connect�%8 to�%8±1 such that every AP has
two neighbors. Since APs are randomly selected for three di�erent
runs from approximatively 37,994 possibilities, �%8 could end up
very far from �%8±1. Since MACFL does not consider the real dis-
tance between the APs, the “virtual” assignment of APs is indeed
matching the experimental setup provided in [7]. We consider the
following hyperparameter values: f = 0.1 (from Eq. 5 and Eq. 6)
and learning rate 0.01. Following some ablation studies discussed in
Section 4.3, we choose batch size 8 and :1 = 5 for all experiments.

4.2 Empirical Results
Learning performance. The design choices of MOHAWKmake

our method better than other state-of-the-art HFL approaches. As
shown in Table 3, for all four datasets running HFL (every hour
for an entire month) we achieve very similar accuracy values for
MNIST and better accuracy for all other datasets. We observe in
some cases that the drop between IID and non-IID scenarios is

255

IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA Farcas et al.

Table 3: Accuracies for IID and non-IID settings. MOHAWK obtains very similar or higher accuracy values in both settings.

Dataset IID (U = 100) Non-IID (U = 0.1)
:2 2 5 10 2 5 10

MNIST
HierFAVG 99.12 ± 0.02 99.08 ± 0.09 99.06 ± 0.0 98.7 ± 0.04 98.69 ± 0.07 98.58 ± 0.03
MACFL 99.12 ± 0.06 99.14 ± 0.01 99.16 ± 0.02 98.73 ± 0.08 98.72 ± 0.05 98.72 ± 0.03

MOHAWK 99.13 ± 0.06 99.17 ± 0.06 99.13 ± 0.0 99.15 ± 0.01 99.02 ± 0.06 98.88 ± 0.06

EMNIST
HierFAVG 78.45 ± 0.16 78.26 ± 0.21 76.66 ± 0.48 77.07 ± 0.24 78.12 ± 0.23 76.6 ± 0.45
MACFL 78.45 ± 0.033 78.5 ± 0.19 76.99 ± 0.47 77.43 ± 0.39 78.44 ± 0.24 76.98 ± 0.46

MOHAWK 78.76 ± 0.22 78.81 ± 0.22 78.02 ± 0.64 78.17 ± 0.24 78.64 ± 0.17 77.75 ± 0.4

CIFAR10
HierFAVG 72.65 ± 0.61 69.69 ± 3.27 71.81 ± 0.44 67.09 ± 2.85 64.08 ± 0.12 63.28 ± 0.18
MACFL 72.93 ± 0.58 72.91 ± 0.5 5 72.65 ± 0.53 65.36 ± 0.23 65.02 ± 0.33 64.65 ± 0.52

MOHAWK 78.69 ± 0.71 77.36 ± 0.62 75.8 ± 0.7 74.09 ± 0.66 70.82 ± 0.4 68.55 ± 0.76

CIFAR100
HierFAVG 46.13 ± 0.25 45.74 ± 0.98 46.36 ± 0.73 45.67 ± 0.91 45.94 ± 0.37 45.88 ± 0.26
MACFL 46.5 ± 0.07 46.61 ± 0.62 47.14 ± 0.5 46.19 ± 0.62 45.9 ± 0.23 46.67 ± 0.69

MOHAWK 46.81 ± 0.66 47.27 ± 1.00 47.55 ± 0.52 46.52 ± 0.32 47.16 ± 0.42 47.79 ± 0.56

Table 4: Number of communication rounds required to achieve a threshold accuracy (Acc. thresh.) for both IID and non-IID
settings. Overall, MOHAWK uses up to 3.88⇥ less communication rounds.

Dataset IID (U = 100) Non-IID (U = 0.1)
:2 2 5 10 2 5 10

MNIST
Acc. thresh. 97%

HierFAVG 46 50 70 162 185 210
MACFL 42 45 50 142 165 180

MOHAWK 12 20 30 40 75 110
Avg. improvement 3.67⇥ 2.38⇥ 2⇥ 3.8⇥ 2.33⇥ 1.77⇥

EMNIST
Acc. thresh. 75%

HierFAVG 162 190 455 338 200 470
MACFL 150 165 335 330 170 410

MOHAWK 44 85 160 118 145 210
Avg. improvement 3.55⇥ 2.09⇥ 2.47⇥ 2.83⇥ 1.28⇥ 2.1⇥

CIFAR10
Acc. thresh. 60%

HierFAVG 212 288 220 358 500 530
MACFL 192 210 210 428 455 510

MOHAWK 52 100 150 138 240 330
Avg. improvement 3.88⇥ 2.49⇥ 1.43⇥ 2.85⇥ 1.99⇥ 1.58⇥

CIFAR100
Acc. thresh. 45%

HierFAVG 502 605 500 614 590 620
MACFL 422 455 390 524 595 520

MOHAWK 142 215 280 214 330 360
Avg. improvement 3.25⇥ 2.47⇥ 1.59⇥ 2.66⇥ 1.8⇥ 1.58⇥

smaller for MOHAWK than for HierFAVG or MACFL. For CIFAR10
and :2 = 2, the drop in accuracy between IID and non-IID for
HierFAVG is 7.89%, for MACFL is 7.73%, while for MOHAWK is
only 4.77%. This shows that MOHAWK has a better robustness
against data heterogeneity. In our experiments, we observe that, for
the same hyperparameters, when we increase :2, the performance
degrades for both baselines and MOHAWK. This con�rms that even
for real mobility and availability of devices, the �ndings from [7, 18]
still hold: frequent edge aggregations (e.g., :2 = 2) are bene�cial to
the learning performance in HFL.

In Table 4, we show how much faster MOHAWK converges to
a certain accuracy threshold when compared to the baselines. As
highlighted in Table 4, for any given :2 values MOHAWK manages
to speedup convergence at least by 1.43⇥ and up to 3.88⇥. The
reason for such good convergence rates against state-of-the-art
HFL solutions is the adaptation to real mobility and availability. By
using dynamic edge aggregation and selective global aggregation,
MOHAWK has the upper hand in every scenario. This also shows
how real-world mobility and availability of devices impacts the
current state-of-the-art HFL. Thus, we show the importance and
need for mobility-aware HFL solutions like MOHAWK.

256

MOHAWK IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA

Figure 5: Accuracy results using IID and non-IID settings for :2 = 5. MOHAWK converges faster and obtains a higher accuracy
value in both IID and non-IID scenarios, for all datasets.

Figure 6: Global test loss for MOHAWK and various baselines. We observe that for very small :2 values, i.e., :2 = 2, the global
test loss may have a bigger variability since the number of aggregated APs is very low. The baselines aggregate all 100APs, even
those that did not train at all, at the expense of a slower, but more stable convergence.

257

IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA Farcas et al.

Table 5: Number of devices available at every time step and the average distance between devices and their selected APs.
MOHAWK improves the device-AP distance by 7.74⇥, while including up to 39.78% more devices in the learning process.

Metric :2 HierFAVG MACFL MOHAWK Avg. Improv.

Avg. number of devices
available at every time step

2 15 15 18 +12.84%
5 15 15 22 +29.69%
10 15 15 26 +39.78%

Avg. distance [km] - 7.08 ± 3.92 7.01 ± 3.83 0.91 ± 0.75 7.74⇥

Table 6: Average energy spent for communication per client to achieve a certain accuracy threshold on MNIST and CIFAR10 (in
simulation) for both IID and non-IID settings. Overall, MOHAWK uses up to 3.87⇥ less energy for communication to achieve a
given accuracy threshold, i.e., 97% for MNIST and 60% for CIFAR10.

Dataset Data type Model :2
2 5 10

MNIST
Acc. thresh. 97%

IID
(U = 100)

HierFAVG 602.97 ± 3.23 J 654.56 ± 3.72 J 892.31 ± 3.84 J
MACFL 575.13 ± 1.8 J 588.46 ± 1.9 J 653.37 ± 2.74 J

MOHAWK 152.41 ± 2.91 J 263.47 ± 2.83 J 389.22 ± 4.11 J
Avg. improvement 3.86⇥ 2.36⇥ 1.99⇥

CIFAR10
Acc. thresh. 60%

IID
(U = 100)

HierFAVG 2,659.61 ± 21.07 J 3,606.83 ± 25.54 J 2,764.25 ± 22.0 J
MACFL 2,416.3 ± 8.79 J 2,629.54 ± 8.29 J 2,629.54 ± 8.29 J

MOHAWK 655.16 ± 6.13 J 1,250.28 ± 13.19 J 1,881.72 ± 17.53 J
Avg. improvement 3.87⇥ 2.49⇥ 1.43⇥

MNIST
Acc. thresh. 97%

Non-IID
(U = 0.1)

HierFAVG 2,051.28 ± 18.4 J 2,330.4 ± 19.64 J 2,633.58 ± 21.17 J
MACFL 1,787.82 ± 4.53 J 2,087.03 ± 7.42 J 2,259.74 ± 8.49 J

MOHAWK 502.73 ± 5.44 J 943.85 ± 8.53 J 1,374.2 ± 12.45 J
Avg. improvement 3.82⇥ 2.34⇥ 1.78⇥

CIFAR10
Acc. thresh. 60%

Non-IID
(U = 0.1)

HierFAVG 4,461.25 ± 34.07 J 6,242.22 ± 43.11 J 6,629.33 ± 44.98 J
MACFL 5,325.98 ± 11.64 J 5,665.64 ± 12.3 J 6,356.33 ± 7.43 J

MOHAWK 1,704.53 ± 16.8 J 2,974.56 ± 29.87 J 4,143.05 ± 37.7 J
Avg. improvement 2.87⇥ 2⇥ 1.57⇥

In Fig. 5, we show the global test accuracy for both IID and
non-IID scenarios (:2 = 5 for all datasets). Overall, we can see
higher accuracy levels and faster convergence over all datasets and
data heterogeneity scenarios. In Fig. 6, for all :2 values and data
heterogeneity scenarios, we show the global test loss for MNIST
and CIFAR10.We observe that for very small :2 values there is more
variability in the global test loss for MOHAWK due to the selective
global aggregation. Since at night there are very few to no devices
available, we aggregate just a few devices and then update the global
model based on a small number of APs (since only a few of them
do edge aggregations). This issue disappears with higher :2 values
since we allow more time for APs to perform edge aggregations
(and hence, be considered for the selective global aggregation). The
faster convergence due to the selective aggregation is also clearly
visible for all :2 values in Fig. 6.

Communication e�ciency. For simulation, we estimate the
energy consumption for communication using themodels described
in Section 3.2. In Table 5, we observe the increase in device avail-
ability compared to existing methods. When real-world mobility
and device availability are present, our dynamic edge aggregation

considers up to 39.78% more devices for aggregation (:2 = 10). We
can also see the dynamic community selection reduces the average
distance between APs and the devices that connect to them by
7.74⇥. This forms communities of tightly grouped devices and their
AP, thus allowing for faster communication between them. As it
can be seen in Table 6, compared to state-of-the-art HFL solutions,
MOHAWK improves the communication e�ciency for HFL under
mobile and heterogeneous environments by up to 3.87⇥. In Fig. 7,
we show that to achieve a given accuracy threshold, the amount
of energy spent for communication is drastically reduced (up to
3.87⇥) compared to current state-of-the-art approaches.

4.3 Ablation studies
Batch size variation. We perform an ablation study with :2 = 5

to determine the best batch size to run MOHAWK with. For this,
we �x :1 = 1 to run the ablation experiments faster. We evaluate
four di�erent batch sizes on all datasets. As can be seen in Table 7,
the best batch size by far, for all datasets, is the batch size of 8.

Variation of :1 and :2. Using :1 = 1 results in lower accuracies
for CIFAR10 and CIFAR100 so we followed up with another ablation

258

MOHAWK IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA

Figure 7: Average energy spent for communication [Joules] until reaching an accuracy threshold of 97% on MNIST and 60% on
CIFAR10, with di�erent :2 values under data heterogeneity constraints. For MNIST, IID with :2 = 2, MOHAWK achieves the
required accuracy threshold A using up to 3.87⇥ less energy for communication compared to the baselines B and C. Similar
considerations for CIFAR10 IID (D) and non-IID (E).

Table 7: Ablation study for MOHAWK accuracy [%] using di�erent batch sizes for :1 = 1 and :2 = 5. We observe that the best
results over all datasets are for batch size 8.

IID (U = 100) Non-IID (U = 0.1)
Batch size 64 32 16 8 64 32 16 8

MNIST 98.49 98.85 98.86 99.08 97.88 98.41 98.7 98.89
EMNIST 75.70 76.56 78.83 79.46 72.71 74.78 76.83 77.84
CIFAR10 50.67 64.93 68.88 60.7 44.55 47.95 52.13 55.88
CIFAR100 15.68 17.5 19.69 22.06 16.46 18.76 23.4 26.48

Table 8: Ablation study for MOHAWK accuracy [%] using
di�erent :1 and :2 values with batch size 64. We observe a big
jump in accuracy from :1 = 1 to :1 = 5, hence we use :1 = 5
in the main experiments for both MNIST and CIFAR10.

Dataset IID (U = 100) Non-IID (U = 0.1)
:2 2 5 10 2 5 10

MNIST
:1 = 1 98.74 98.49 98.32 98.4 97.9 97.45
:1 = 5 98.86 98.83 98.91 98.69 98.45 98.35
:1 = 10 98.91 98.79 98.69 98.75 98.44 98.39

CIFAR10
:1 = 1 55.43 50.67 48.24 49.86 44.55 41.31
:1 = 5 73.76 68.36 64.97 64.22 57.62 53.85
:1 = 10 76.74 74.29 71.96 69.6 64.13 60.69

study. We explore for MNIST and CIFAR10 di�erent :1 local epochs
and :2 dynamic edge aggregations to see which values work better.
The jump in accuracy improvement from :1 = 1 to :1 = 5 proves
to be much larger than the jump in accuracy between :1 = 5 and
:1 = 10 (see Table 8). Since we consider real edge devices and the

Table 9: Ablation study on MOHAWK scalability for larger,
more realistic numbers of devices and APs on CIFAR10 with
:1 = 5 and :2 = 5. Overall, we observe MOHAWK provides
similar performance in all scenarios, while other approaches
have large performance reductions.

Data Devices APs HierFAVG MACFL MOHAWK

IID (U = 100)

1,000 100 72.4 73.67 78.22
1,000 500 58.24 58.61 76.88
1,000 1,000 52.2 52.34 76.82
10,000 1,000 56.53 57.21 77.95

Non-IID (U = 0.1)

1,000 100 62.23 65.26 71.09
1,000 500 50.85 51.0 69.78
1,000 1,000 45.22 45.5 69.29
10,000 1,000 48.47 49.62 70.88

local updates happen every hour, we assume for simulations :1 = 5
as a fair middle ground to use. Considering hardware heterogeneity,
some low-budget devices may take up to one hour to train 5 local
epochs, hence this also accounts for realistic training times.

259

IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA Farcas et al.

Table 10: Hardware prototype experiment for :2 = 5 in the IID setting using :1 = 1 for MNIST and :1 = 5 for CIFAR10. The
wasted energy is the energy a device spends training and communicating with the cloud without the cloud actually considering
the local model for aggregation. We observe MOHAWK not only uses far less energy overall, but it also wastes less energy.

Energy [Joules] MNIST IID (U = 100) CIFAR10 IID (U = 100)
HierFAVG MOHAWK Improv. HierFAVG MOHAWK Improv.

Cumulative wasted /experiment 6,893,090 J 2,690,005 J 2.56⇥ 37,021,657 J 14,969,761 J 2.47⇥
Cumulative consumed /experiment 10,563,326 J 7,707,298 J 1.37⇥ 43,893,178 J 40,041,313 J 1.1⇥

Average wasted /device 94 ± 39 J 42 ± 23 J 2.24⇥ 475 ± 112 J 243 ± 130 J 1.95⇥
Average consumed /device 137 ± 34 J 87 ± 12 J 1.57⇥ 548 ± 100 J 470 ± 23 J 1.17⇥

Average wasted /comm. round 514 ± 464 J 121 ± 135 J 4.25⇥ 2,615 ± 2,082 J 668 ± 610 J 3.91⇥
Average consumed /comm. round 727 ± 644 J 612 ± 520 J 1.19⇥ 3,165 ± 2,325 J 3,262 ± 2,445 J 0.97⇥

Figure 8:Hardware prototypewith 36Raspberry Pi 3B+ (outer
semicircle of devices) and 36 Smart Power 2 devices (inner
semicircle) used for real-time power and energy measure-
ments.

Scalability of MOHAWK. We show in Table 9, using larger
numbers of APs and devices, how scalable is MOHAWK.We observe
similar performance in terms of accuracy on CIFAR10 for both IID
and non-IID settings, while all other HFL solutions have a decrease
in accuracy as we increase the number of APs. This is because
MOHAWK uses selective global aggregation, which makes it robust
to variabilities in the number of APs considered.

4.4 Hardware Prototyping and Validation
As can be seen in Fig. 8, we designed and built a custom testbed with
36 Raspberry Pi 3B+ devices. Each of the Raspberry Pi devices is
connected to a Smart Power 2 device for real-time power and energy
measurements. We run FL using a GPU server and communicate
through wireless using a local router. We measure the total amount
of energy spent in a 36 device experiment using 20APs. We use the
GPU server to run the global server and the 20 APs.

We consider a device is wasting energy if it is training a model
which is not ultimately aggregated. Thus, such devices are not im-
proving the learning performance of the FL system, but are wasting
their already limited resources (e.g., battery, memory). To the best
of our knowledge, no current HFL state-of-the-art methods account

for this kind of wasted energy. This is why, on our hardware pro-
totype, we run only HierFAVG as a baseline. We use :1 = 1 for
MNIST and :1 = 5 for CIFAR10, running only the IID setting on
both datasets. As seen in Table 10, MOHAWK achieves up to 4.25⇥
less energy wasted (on average) per communication round and
up to 2.24⇥ less energy wasted (on average) per device. The total
energy wasted over the entire experiment is reduced up to 2.56⇥;
this shows how much more energy-e�cient MOHAWK is in real
scenarios. The energy measurements represent the energy spent
on both training and communication while performing FL.

5 CONCLUSION
We have proposed a Mobility and Heterogeneity-Aware Dynamic
Community Selection algorithm (MOHAWK) for mobile federated
learning systems. Our approach takes into consideration the real
devices mobility and selects the closest access point for every de-
vice to connect; this leads to signi�cant reduction in the energy
consumption for communication. To improve the learning perfor-
mance, we have proposed two new aggregation strategies, namely,
dynamic edge aggregation and selective global aggregation, that
increase the number of devices aggregated at every time step by up
to 39.78%; this also helps the global model learn up to 3.88⇥ faster,
while also achieving a higher accuracy, on average.

Limitations and future work. The current communication model
can be improved in several ways, e.g., by considering channel sched-
uling, and multi-hop networks of APs. For dynamic edge aggre-
gation, we currently consider all available devices regardless of
the quality and security vulnerability of their local model. A more
robust and secure selection of devices could improve the overall
performance. All these ideas are left for future work.

ACKNOWLEDGMENTS
This research was supported in part by NSF Grant CCF-2107085
and in part by Cisco Research, Inc. The work of G. de Veciana was
supported by NSF Grant No. 2148224 which is supported in part by
funds from OUSD R&E, NIST, and industry partners as speci�ed in
the Resilient & Intelligent NextG Systems (RINGS) program.

260

MOHAWK IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA

REFERENCES
[1] Mehdi Salehi Heydar Abad, Emre Ozfatura, Deniz Gunduz, and Ozgur Ercetin.

2020. Hierarchical federated learning across heterogeneous cellular networks. In
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 8866–8870.

[2] Sawsan AbdulRahman, Hanine Tout, Hakima Ould-Slimane, Azzam Mourad,
Chamseddine Talhi, and Mohsen Guizani. 2020. A survey on federated learning:
The journey from centralized to distributed on-site learning and beyond. IEEE
Internet of Things Journal 8, 7 (2020), 5476–5497.

[3] Tracy Camp, Je� Boleng, and Vanessa Davies. 2002. A survey of mobility models
for ad hoc network research. Wireless communications and mobile computing 2, 5
(2002), 483–502.

[4] Liane Cassavoy. 2021. How Fast Is 4G LTE Wireless Service? Accessed: 2023-02-26.
[5] Wei Chen, Kartikeya Bhardwaj, and Radu Marculescu. 2021. Fedmax: mitigat-

ing activation divergence for accurate and communication-e�cient federated
learning. In Machine Learning and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2020, Ghent, Belgium, September 14–18, 2020, Proceedings,
Part II. Springer, 348–363.

[6] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. 2017.
EMNIST: Extending MNIST to handwritten letters. In 2017 international joint
conference on neural networks (IJCNN). IEEE, 2921–2926.

[7] Chenyuan Feng, Howard H Yang, Deshun Hu, Zhiwei Zhao, Tony QS Quek, and
Geyong Min. 2022. Mobility-aware cluster federated learning in hierarchical
wireless networks. IEEE Transactions on Wireless Communications 21, 10 (2022),
8441–8458.

[8] Foursquare. 2023. Independent Location Data & Location Technology Platform.
Accessed: 2023-02-26.

[9] Juan C Herrera, Daniel B Work, Ryan Herring, Xuegang Je� Ban, Quinn Jacobson,
and Alexandre M Bayen. 2010. Evaluation of tra�c data obtained via GPS-enabled
mobile phones: The Mobile Century �eld experiment. Transportation Research
Part C: Emerging Technologies 18, 4 (2010), 568–583.

[10] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. 2019. Measuring the e�ects
of non-identical data distribution for federated visual classi�cation. arXiv preprint
arXiv:1909.06335 (2019).

[11] Junxian Huang, Feng Qian, Alexandre Gerber, Z Morley Mao, Subhabrata Sen,
and Oliver Spatscheck. 2012. A close examination of performance and power char-
acteristics of 4G LTE networks. In Proceedings of the 10th international conference
on Mobile systems, applications, and services. 225–238.

[12] Yutao Huang, Lingyang Chu, Zirui Zhou, Lanjun Wang, Jiangchuan Liu, Jian Pei,
and Yong Zhang. 2021. Personalized cross-silo federated learning on non-iid data.
In Proceedings of the AAAI Conference on Arti�cial Intelligence, Vol. 35. 7865–7873.

[13] Alex Krizhevsky, Vinod Nair, and Geo�rey Hinton. 2014. The CIFAR-10 dataset.
online: http://www. cs. toronto. edu/kriz/cifar. html 55, 5 (2014).

[14] Yann LeCun. 1998. The MNIST database of handwritten digits. http://yann. lecun.
com/exdb/mnist/ (1998).

[15] Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. 2022. Federated learning
on non-iid data silos: An experimental study. In 2022 IEEE 38th International
Conference on Data Engineering (ICDE). IEEE, 965–978.

[16] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. Federated
learning: Challenges, methods, and future directions. IEEE signal processing
magazine 37, 3 (2020), 50–60.

[17] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,
and Virginia Smith. 2020. Federated optimization in heterogeneous networks.
Proceedings of Machine learning and systems 2 (2020), 429–450.

[18] Lumin Liu, Jun Zhang, SH Song, and Khaled B Letaief. 2020. Client-edge-cloud
hierarchical federated learning. In ICC 2020-2020 IEEE International Conference
on Communications (ICC). IEEE, 1–6.

[19] Lumin Liu, Jun Zhang, Shenghui Song, and Khaled B Letaief. 2022. Hierarchical
federated learning with quantization: Convergence analysis and system design.
IEEE Transactions on Wireless Communications (2022).

[20] Yi Liu, Xingliang Yuan, Zehui Xiong, Jiawen Kang, Xiaofei Wang, and Dusit
Niyato. 2020. Federated learning for 6G communications: Challenges, methods,
and future directions. China Communications 17, 9 (2020), 105–118.

[21] Bing Luo, Xiang Li, Shiqiang Wang, Jianwei Huang, and Leandros Tassiulas.
2021. Cost-e�ective federated learning in mobile edge networks. IEEE Journal on
Selected Areas in Communications 39, 12 (2021), 3606–3621.

[22] Siqi Luo, Xu Chen, Qiong Wu, Zhi Zhou, and Shuai Yu. 2020. HFEL: Joint edge
association and resource allocation for cost-e�cient hierarchical federated edge
learning. IEEE Transactions on Wireless Communications 19, 10 (2020), 6535–6548.

[23] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-e�cient learning of deep net-
works from decentralized data. In Arti�cial intelligence and statistics. PMLR,
1273–1282.

[24] Hideya Ochiai and Hiroshi Esaki. 2008. Mobility entropy and message routing in
community-structured delay tolerant networks. In Proceedings of the 4th Asian
Conference on Internet Engineering. 93–102.

[25] Hideya Ochiai, Yuwei Sun, Qingzhe Jin, Nattanon Wongwiwatchai, and Hiroshi
Esaki. 2022. Wireless ad hoc federated learning: A fully distributed cooperative
machine learning. arXiv preprint arXiv:2205.11779 (2022).

[26] Xiaomin Ouyang, Zhiyuan Xie, Jiayu Zhou, Jianwei Huang, and Guoliang Xing.
2021. Cluster�: a similarity-aware federated learning system for human activity
recognition. In Proceedings of the 19th Annual International Conference on Mobile
Systems, Applications, and Services. 54–66.

[27] Md Ferdous Pervej, Jianlin Guo, Kyeong Jin Kim, Kieran Parsons, Philip Orlik,
Stefano Di Cairano, Marcel Menner, Karl Berntorp, Yukimasa Nagai, and Huaiyu
Dai. 2022. Mobility, Communication and Computation Aware Federated Learning
for Internet of Vehicles. In 2022 IEEE Intelligent Vehicles Symposium (IV). IEEE,
750–757.

[28] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. 2020.
Tackling the objective inconsistency problem in heterogeneous federated opti-
mization. Advances in neural information processing systems 33 (2020), 7611–7623.

[29] Xinlei Yang, Hao Lin, Zhenhua Li, Feng Qian, Xingyao Li, Zhiming He, Xudong
Wu, Xianlong Wang, Yunhao Liu, Zhi Liao, et al. 2022. Mobile access bandwidth
in practice: Measurement, analysis, and implications. In Proceedings of the ACM
SIGCOMM 2022 Conference. 114–128.

261

