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ABSTRACT
Weak submodular optimization underpins many problems in signal
processing and machine learning. For such problems, under a cardi-
nality constraint, a simple greedy algorithm is guaranteed to find a
solution with a value no worse than 1 � e

�� of the optimal. Given
the high cost of queries to large-scale signal processing models, the
complexity of GREEDY becomes prohibitive in modern applications.
In this work, we study the tradeoff between performance and com-
plexity when one resorts to random sampling strategies to reduce the
query complexity of GREEDY. Specifically, we quantify the effect
of uniform sampling strategies on the performance through two cri-
teria: (i) the probability of identifying an optimal subset, and (ii)
the suboptimality of the solution’s value with respect to the opti-
mal. Building upon this insight, we propose a simple progressive
stochastic greedy algorithm, study its approximation guarantees, and
consider its applications to dimensionality reduction and feature se-
lection tasks.

Index Terms— submodular optimization, greedy algorithm,
subset selection, feature selection

1. INTRODUCTION

Technological advancements in various domains have enabled ac-
quisition of high-dimensional datasets and have motivated vigorous
research activities in the field of data sciences. High dimensionality
of data presents computational and memory burdens and may ad-
versely affect performance of the existing data analysis algorithms.
Thus, it is desirable to arrive at a succinct yet information-preserving
representation of the data. Submodular optimization [1] is a combi-
natorial optimization framework with desirable theoretical and prac-
tical properties; it has found applications in a number of settings in-
cluding maximumweighted matching, facility location and coverage
problems in discrete optimization [2], as well as active learning, in-
fluence maximization, and information gathering in machine learn-
ing [3–5]. In such problems, the goal is to maximize a monoton-
ically increasing submodular function subject to a cardinality con-
straint characterizing the extent of representation, e.g., the number
of features in a supervised learning task.

The objective function in some applications, e.g., sparse sup-
port selection and observation selection [6–9], is not necessarily a
submodular function; rather, one deals with weakly submodular ob-
jectives that resemble diminishing return property of submodular
functions. In many contemporary weak submodular maximization
problems, one needs to handle increasingly larger quantities of data.
The classical GREEDY algorithm for monotone �-weak submodu-
lar maximization with cardinality constraint that enjoys an optimal
1 � e

�� constant factor approximation [10] requires O(mk) func-
tion evaluations for cardinality constraint k and ground set of size

m. Therefore, in data intensive applications where function evalua-
tion is expensive, running GREEDY is infeasible. To this end, there
have been recent efforts to exploit strong theoretical guarantees of
GREEDY while improving on its complexity via resorting to either
distributed and parallel computing schemes [11, 12], or methods to
reduce the cost-per-iteration of GREEDY while remaining in central-
ized settings.

The focus of this paper is on the latter, i.e., weak submodular
maximization centralized schemes. In particular, by relying on re-
cent advances in design of uniform sampling strategies for weak sub-
modular optimization [13,14], we study the tradeoff between perfor-
mance and complexity arising from reducing the cost-per-iteration of
GREEDY via random restriction of the greedy search. Specifically,
we quantify the effect of uniform sampling strategies on the perfor-
mance of GREEDY through two criteria: (i) the probability of iden-
tifying an optimal subset, and (ii) the suboptimality of the solution’s
value with respect to the optimal. We show that although a fixed
schedule of random restricted search spaces results in a nontrivial
approximation factor with regard to the latter criterion, incremental
increase of the size of the restricted greedy search is a necessary con-
dition to identify the optimal subset in monotone weak submodular
maximization tasks. This insight gives rise to a simple progressive

stochastic greedy algorithm; we demonstrate its efficacy in dimen-
sionality reduction and feature selection tasks.

2. WEAK SUBMODULAR MAXIMIZATION

A set function f : 2X ! R is monotone if f(S)  f(T ) for all S ✓

T ✓ X , where X denotes the so-called ground set. Furthermore,
f : 2X ! R is submodular if

f(S [ {j})� f(S) � f(T [ {j})� f(T ) (1)

for all subsets S ✓ T ⇢ X and j 2 X\T . The term fj(S) =
f(S [ {j})� f(S) is the marginal value of adding element j to set
S.

Given a monotone non-decreasing set function f : 2X ! R
with f(;) = 0, we are interested in solving the combinatorial opti-
mization problem

maximize
S

f(S)

subject to S ⇢ X , |S|  k,

(2)

which we denote by P(m, k), where |X | = m. By a reduction to
the well-known set cover problem, the combinatorial optimization
(3) can be shown to be NP-hard [2,15]. It has been shown in [10] that
if f(·) is monotone and submodular, a simple greedy algorithm that
iteratively selects an element with the highest marginal gain satisfies
the optimal 1� 1/e worst case approximation ratio.



In many problems, the objective function is not submodular but
under certain conditions it behaves similarly. Such functions are
called weakly submodular and the extent of their proximity to sub-
modularity is captured by the submodularity ratio [8, 9]. The sub-
modularity ratio of a normalized and monotone non-decreasing func-
tion f with respect to set T and parameter k � 1 is defined as

�T ,k = minimize
L,S2X

P
j2S f(L [ {j})� f(L)

f(L [ S)� f(L)

subject to L ✓ T , |S|  k,S \ L = ;,

(3)

i.e., it captures how much more can f increase by adding any subset
S of size k to L compared to the combined benefits of adding its
individual elements to L. Note that a set function f is submodular if
and only if �T ,k � 1. Formally, a set function f is weak submodular
if 0 < �T ,k < 1. It is worth pointing out other weak submodularity
notions, such as those in [16,17], which depending on the application
may simplify the derivation of approximation bounds (see e.g., [18–
20]).

By relying on the submodularity ratio, one can extend the theo-
retical results of [10] for GREEDY to the case of weak submodular
functions [8], yielding

f(Sg) �
�
1� e

��Sg,k
�
f(S?), (4)

where Sg is the subset selected when solving (2) approximately via
GREEDY, �Sg ,k denotes the submodularity ratio defined in (3), and
S

? with |S?
| = k denotes the optimal subset.

The approximation result (4) implies that if the objective func-
tion is monotone and weak submodular, the greedy selection scheme
which in each iteration selects an element with the highest marginal
gain finds a solution that is close to the optimal.

Finally, since we further aim to study conditions for the exact
identification of S?, we formally state the following definition.

Definition 1. Let ALG be an approximation algorithm for the weak

submodular optimization problem (2) with a unique solution S?
. Let

Salg be the output of ALG. Then, ALG successfully identifies S
?

if Salg = S
?
. Furthermore, the probability of success of ALG is

defined as Pr (Salg = S
?).

3. PERFORMANCE-COMPLEXITY TRADEOFFS

Running GREEDY can be computationally expensive for large
datasets. This is because if |X | = m, in each of k iterations of
GREEDY one needs to find the marginal gain of O(m) elements.
Although computational costs can be reduced using the so-called
lazy evaluations [1], the worst case number of function evaluations
of GREEDY is O(mk). The prohibitive complexity of GREEDY
for large-scale datasets has motivated the design of more efficient
schemes for weak submodular maximization. A simple strategy to
reduce the number of function evaluations is to restrict the search
domain in each iteration of the greedy selection procedure using
uniform random sampling (see Algorithm 1). Specifically, in the ith

iteration, instead of evaluating marginal gains of all elements, one
restricts the evaluation to a smaller subsetR(i) of cardinality ri. The
simplest variants of such a strategy use a fixed schedule of the search
space sizes ri = r in every iteration [13, 14, 19]. In this section, we
aim to quantify the impact of ri on the performance of Algorithm 1.
To this end, we first establish a lower bound on the expected worst
case performance of Algorithm 1 in terms of the suboptimality of

Algorithm 1 GREEDY with restricted uniform search space

1: Input: Weak submodular function f , ground set X , number of
elements to be selected k, search space schedule {ri}k�1

i=0 .
2: Output: Subset S(k)

✓ X with |S
(k)

| = k.
3: Initialize S(0) = ;

4: for i = 0, . . . , k � 1 do
5: Form R

(i) by sampling min(ri,m) elements from X uni-
formly at random.

6: js 2 argmaxj2R(i)fj(S
(i))

7: S
(i+1) = S

(i)
[ {js}

8: end for

the returned value (Theorem 1), and then study the probability of
exact identification of the optimal subset (Theorem 2).1

Theorem 1. Let S
(k)

denote the random subset selected by Algo-

rithm 1 using schedule {ri}, and let �S(k),k be the submodularity

ratio of the set function objective in (2) with respect to S
(k)

. Then

E[f(S(k))] �
⇣
1� e

��S(k),k � �S(k),ke
� r̄k⌘

m

⌘
f(S?), (5)

where r̄ = mini ri and ⌘ = 1 +O(1/k).

Theorem 1 establishes that Algorithm 1, up to a negligible term
�S(k),ke

� r̄k⌘
m , enjoys an approximation factor that is nearly identi-

cal to that of GREEDY (see (4)); the latter requires evaluation of all
elements in X in each iteration. To see this, assume the objective
function in (2) is submodular (i.e., �S(k),k = 1) and ⌘ ⇡ 1. Then,
we may approximately write

E[f(S(k))] �

✓
1�

1
e
� e

� r̄k
m

◆
f(S?), (6)

where e
� r̄k

m is the cost of reducing the complexity via restricted
uniform search spaces. Furthermore, note that a larger schedule {ri}
evidently improves the approximation factor in (5). This analysis
thus suggests the use of Algorithm 1 to reduce the cost of GREEDY.

At first glance, Theorem 1may appear to suggest that any variant
of Algorithm 1 with a restricted uniform search space could perform
similarly to GREEDY. However, in Theorem 2 below we show that,
somewhat surprisingly, for large-scale problems some variants with
overwhelming probability fail to successfully identify the optimal
subset.

Theorem 2. Consider a sequence of optimization problemsP(m, k)
in (2) under an increasingly higher dimensional settings, i.e., the

setting where m, k ! 1, m > k. Let ALG denote a variant of

GREEDY with a restricted uniform search space R ⇢ [m] having
cardinality r, i.e., r denotes the number of oracle calls in each

iteration of ALG. The following claims hold:

1. If there exists ↵ 2 (0, 1) such that r  k
↵�1

m, then the

probability that ALG succeeds on P(m, k) goes to zero, i.e.,

lim supm,k!1 Pr
⇣
S

(k)
alg = S

?
⌘
= 0. (7)

2. If there exists ↵1 2 (0, 1) such that r  ↵1m, then the prob-

ability that ALG succeeds on P(m, k) satisfies

lim supm,k!1 Pr
⇣
S

(k)
alg = S

?
⌘
2 (�1, �2), (8)

1The proofs are omitted for brevity and can be found in the extended
version of the paper [21].



where �1 and �2 are positive constants that depend on ↵1

such that 0 < �1 < �2 < 0.63.2

Theorem 2 establishes upper bounds on the probability that a
variant of GREEDY with a restricted search space constructed uni-
formly at random identifies S? exactly in two scenarios: (i) If the
size of the search space remains fixed in each iteration of ALG and
the algorithm makes O(mk

↵) oracle calls for some ↵ 2 (0, 1),
then the probability of the exact identification approaches zero as
the problem dimension grows. (ii) If the size of the search space re-
mains fixed in each iteration of ALG and strictly less than [m], and
the algorithm makes O(mk) oracle calls, then although the prob-
ability of the exact identification does not approach zero, it is not
asymptotically one either. Note that in many applications, including
sparse reconstruction and sparse learning [22,23], an arbitrarily high
success probability is a condition required to establish any nontrivial
sample complexity results, i.e. the minimum number of data points
for successful recovery and prediction. Therefore, the two parts of
Theorem 2 collectively imply that having an increasing schedule of
search spaces which ultimately reaches m is a necessary condition
to exactly identify the optimal support S? with high probability.

4. PROGRESSIVE STOCHASTIC GREEDY

Based on the insights of Theorem 2, we propose a simple variant of
Algorithm 1, referred to as progressive stochastic greedy (PSG). PSG
is designed following the idea that in order to identify the optimal
support S⇤ exactly, the number of oracle calls in each iteration of
Algorithm 1 need not be equal. Specifically, in the early iterations
the search space can be drastically reduced to a small subset which
with high probability contains at least one index from S

⇤. However,
in the subsequent iterations, assuming that the algorithm has been
accurately identifying elements of S⇤, the search domain needs to
be as large as O(m) to allow the possibility of including an element
from S

⇤. That is, since the goal is to identify exactly all the elements
of S?, one should progressively increase the size of the search set
thus improving the probability of success.

To this end, PSG employs an intuitive progression of the search
set size. Specifically, in the ith iteration the proposed scheme sam-
ples ri = m

k�i log
1
✏ elements uniformly at random from [m] to con-

struct the search set R(i)
psg . Here ✏, selected such that e�k

 ✏ 

e
� k

m , is a parameter that allows one to strike a desired balance be-
tween the performance and complexity. It should be noted that in
practice the sampling may be with or without replacement. Addi-
tionally, since it should hold that ri  m for all i = 0, . . . , k � 1,
for any iteration i such that i � k � log 1

✏ we set ri to its maximum
value,m.

Remark 1. A schedule of search spaces with cardinality ri =
m
k�i log

1
✏ , explored by PSG, satisfies the necessary condition to

exactly identify the optimal support S
?
with high probability and

hence the result of Theorem 2 does not apply there.

5. VERIFYING THE THEORY

In this section, we verify our theoretical results by comparing them
to the empirical ones obtained via Monte Carlo (MC) simulations.
Specifically, we consider the task of sparse support selection [22,23]
where we are given a linear measurement model y = Ax where
x 2 Rm is a k-sparse unknown vector, i.e., a vector with at most k

2Note that S(k)
alg and S? are quantities that depend onm.

non-zero components, y 2 Rn denotes the vector of measurements,
A 2 Rn⇥m is the coefficient matrix assumed to be full rank, and
⌫ 2 R

n denotes the additive measurement noise vector. The search
for a sparse approximation of x leads to the NP-hard cardinality-
constrained least-squares problem

minimize
x

ky �Axk22 subject to kxk0  k, (9)

which can be interpreted as an instance of (2) [8, 19].
We consider a setting with increasing support size k (varied from

10 to 100) and set the dimension of the signal and the number of
measurements to m = 2k1.5 and n = 6k log(m/k

6
p
4�), respec-

tively, for three different values of � = 0.1, 0.05, 0.01. In each trial,
we select locations of the nonzero elements of x uniformly at ran-
dom and draw those elements from a normal distribution. Entries of
the coefficient matrixA are also generated randomly fromN (0, 1

n ).
The results are averaged over 1000 MC trials. Note that, as we show
in the extended version of the paper [21], in the above settings PSG
is able to recover x exactly.

First, we investigate the exact performance of PSG with the
schedule

ri =
m

k � i
log

1
✏
, ✏ =

�

k
(10)

for � = 0.1, 0.05, 0.01, and show the results in Fig. 1(a). As can
see from the figure, the empirical exact recovery rate of PSG is very
close to one; this coincides with the theoretical lower bound of 1 �

2� established in the extended manuscript [21] that builds upon the
insights of Theorem 2 (i.e, the achieved rate is 0.8, 0.9, 0.98 for � =
0.1, 0.05, 0.01, respectively).

Next, we empirically verify the results of Theorem 2 wherein we
established an upper bound on the success probability of a variant
of Algorithm 1, named ALG, with a restricted uniform search space.
Fig. 1 compares this theoretical result with the empirical success rate
for r = m/

p
k and r = m/2, which correspond to instances of

the two settings considered in Theorem 2. Fig. 1(b) shows that for
r = m/

p
k the success rate goes to zero as k increases, as predicted

by the first part of Theorem 2.3 In Fig. 1(c) we see that the success
rate does not go to zero for r = m/2; however, it is always bounded
by 1� e

�0.5
⇡ 0.39, as claimed by the second part of Theorem 2.

6. APPLICATION: COLUMN SUBSET SELECTION

In this section, we present results of an empirical evaluation of the
proposed PSG scheme; specifically, the performance of PSG is com-
pared to several baselines on the task of dimensionality reduction
via column subset selection (CSS) [24] for sparse subspace cluster-
ing (SSC) [25, 26] .

The goal of CSS is to identify a subset S, |S| = k, of the set of
m columns of a data matrix A 2 Rn⇥m that best approximate the
entire data matrix. Formally, the task of identifying S can be cast as
the optimization problem

minimize
S

kA�PSAk
2
F s.t. |S| = k, (11)

where PS = ASA
†
S is the projection operator onto the span of

columns of AS and A†
S =

�
A>

SAS
��1

A>
S denotes the Moore-

Penrose pseudo-inverse ofAS . SinceA = PSA+(I�PS)A and
kAk

2
F = kPSAk

2
F + k(I � PS)Ak

2
F by properties of projection

3Note that, in this setting, for k � 20 ALG failed in all of the trials;
however, for illustration purposes (i.e., to be able to show the plot in the
logarithmic scale) we set the success rate of ALG for k � 20 to 10�10.
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Fig. 1: Empirical evaluation of the theoretical bounds established by Theorem 2.
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Fig. 2: Performance comparison of SSC with various CSS-based dimensionality reduction schemes on EYaleB dataset consisting of face images under 64
different illumination conditions.

matrices, (11) can equivalently be written as an instance of the weak
submodular maximization task in (2) [27, 28].

Here we aim to use Algorithm 1 as a CSS-based dimensionality
reduction technique to reduce the cost of performing clustering via
SSC [25, 26]. That is, using a lower dimensional data matrix ASg

obtained via CSS, we learn the representation matrixC by solving

minimize
C

kASg �ASgCk
2
F + �kCk1, (12)

and then employ spectral clustering [29] on W = |C| + |C|
> to

segment the data points.
We consider the proposed PSG scheme with two values of ✏:

✏ = 0.1 and ✏ = 0.01. We consider GREEDY and random col-
umn subset selection as the benchmarking schemes. Additionally,
we use the best rank-k approximation of a matrix (i.e., top-k SVD)
to serve as an upper bound on the achievable performance; note that
this scheme explicitly minimizes the Forbenius reconstruction cri-
teria. We compare performance of the above algorithms using the
real EYaleB dataset [30] which contains frontal face images of 38
individuals under 64 different illumination conditions. There are
m = 2414 columns (i.e., features) in this dataset; we select k out
of m = 2414 columns, where k varies from 100 to 1000, and ap-
ply the SSC method of [26] to cluster the data points based on the
selected features.

Fig. 2 shows the performance of various column subset selection
schemes as well as the top-k SVD approach. In Fig. 2(a) we observe
that the reconstruction errors of GREEDY and the proposed scheme
are nearly identical, and that as we increase the number of selected
columns the reconstruction error decreases; this is consistent with

the fact that f(S) is a monotone function. Fig. 2(b) shows a sig-
nificant computational complexity improvement that the proposed
scheme provides over the greedy CSS method. Since the complexity
of Algorithm 1 increases logarithmically in k, the cost of selecting
more columns is relatively small compared to the greedy approach.
Note that we observe ✏ = 0.1 achieves the best tradeoff between
computational costs and performance. Furthermore, depending on
the amount of data available, the value epsilon can be tuned with
cross-validation. Finally, in Fig. 2(c) we compare the clustering
accuracy of SSC applied to a subset of features selected by differ-
ent schemes. As the figure shows, clustering performance of SSC
combined with the proposed CSS method is nearly identical to that
of greedy; moreover, both achieve superior accuracy compared to
schemes that randomly select subsets of columns.

7. CONCLUSION

In this paper, we studied the problem of large-scale monotone weak
submodular maximization that comes up in many modern signal pro-
cessing and machine learning applications including sparse recon-
struction, dimensionality reduction, observation gathering, and sen-
sor selection. Motivated by the desire to reduce complexity of the
celebrated greedy scheme, we theoretically studied fundamental per-
formance limits of restricting the size of the greedy search space by
means of uniform sampling strategies. We showed that an increasing
schedule of the search space size satisfies a necessary condition for
the exact identification of the optimal subset in large-scale problems.
Following this insight, we proposed a progressive stochastic greedy
algorithm and demonstrated its efficacy in the applications to sparse
subset selection and dimensionality reduction.
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