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On the Benefits of Progressively Increasing
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Abstract—Many problems in signal processing and machine
learning can be formalized as weak submodular optimization tasks.
For such problems, a simple greedy algorithm (GREEDY) is guar-
anteed to find a solution achieving the objective with a value no
worse than 1 − e−1/c of the optimal, where c is the multiplicative
weak-submodularity constant. Due to the high cost of querying
large-scale systems, the complexity of GREEDY becomes prohibitive
in contemporary applications. In this work, we study the tradeoff
between performance and complexity when one resorts to random
sampling strategies to reduce the query complexity of GREEDY.
Specifically, we quantify the effect of uniform sampling strategies
on GREEDY’s performance through two metrics: (i) asymptotic
probability of identifying an optimal subset, and (ii) suboptimality
with respect to the optimal solution. The latter implies that uniform
sampling strategies with a fixed sampling size achieve a non-trivial
approximation factor; however, we show that with overwhelming
probability, these methods fail to find the optimal subset. Our
analysis shows that the failure of uniform sampling strategies with
fixed sample size can be circumvented by successively increasing
the size of the search space. Building upon this insight, we propose
a simple progressive stochastic greedy algorithm and study its ap-
proximation guarantees. Moreover, we demonstrate effectiveness
of the proposed method in dimensionality reduction applications
and feature selection tasks for clustering and object tracking.

Index Terms—Weak submodular optimization, greedy
algorithms, randomized algorithms, subset selection.

I. INTRODUCTION

W E STUDY the problem of maximizing non-decreasing
weak submodular functions under a cardinality con-

straint in large-scale settings. The well-known GREEDY algo-
rithm [2] selects the solution set by sequentially identifying
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elements with the largest marginal contribution; the algorithm
achieves a 1− 1/eworst-case approximation for monotone sub-
modular functions [2], the tightest guarantee for any algorithm
that can evaluate the objective function on only polynomially
many inputs. Although GREEDY achieves the optimal approxi-
mation factor, the computational cost of doing so is expensive for
large-scale problems. This motivates the search for approxima-
tion schemes capable of accelerating the optimization without
significant sacrifice of accuracy.

Recently, greedy algorithms that utilize random sampling
while restricting size of the searched set to a fixed value have
been proposed; for a problem with cardinality constraint k and
the ground set of size m, such methods incur complexity of
only O(m log 1

ε ) [3]–[6]. In expectation, the fixed search size
methods achieve a constant factor approximation of 1− 1/e−
ε, nearly matching the worst-case performance guarantee of
GREEDY while providing a computational gain ofO( k

log 1
ε
). Mo-

tivated by the success of greedy search schemes in practical set-
tings, in this paper we investigate the impact of the search space
size on their performance and study performance-complexity
tradeoffs in maximizing a (weak) submodular function. To this
end, we consider two criteria: (1) the ability of greedy algorithms
with uniform sampling to exactly identify the optimal solution to
a (weak) submodular maximization problem, and (2) the degree
of suboptimality of the selected solution with respect to the
optimal value.

Our first contribution, formalized in Theorem 2, states that
as the size of the ground set and cardinality constraint increase,
randomized greedy schemes with a restricted search space with
overwhelming probability fail to successfully identify the op-
timal subset. This in turn implies that, while there may be
scenarios where GREEDY can identify the optimal subset with
high-probability (e.g., the task of sparse recovery), there is an
unbounded gap between the exact identification capability of
GREEDY and randomized schemes with a restricted search space.

Aiming to overcome the above limitation, as part of our
next contribution we establish that having an increasing
schedule of sampling set sizes is unavoidable. Building on
this insight, we propose a new algorithm that we refer to as
Progressive Stochastic Greedy (PSG) and analyze its achievable
performance. In particular, we show that PSG attains improved
worst-case approximation factor, both on expectation and with
high probability, compared to randomized greedy schemes with
a fixed sampling size.
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Finally, we consider the application of the proposed scheme to
two subset selection problems, namely, column subset selection
for subspace clustering and observation selection for extended
object tracking in automated driving. Our results demonstrate the
efficacy of the proposed scheme in reducing the computational
costs of subset selection with negligible performance drop.

A. Related Work

Submodularity is a property of set functions with desirable
theoretical and practical implications relevant to many prob-
lems in combinatorial optimization. For instance, submodular
maximization applies to many well-known problems such as
facility location, coverage problems, and maximum weighted
matching in discrete optimization [7] as well as active learning,
influence maximization, and information gathering in machine
learning [8]–[10]. In such problems, the goal is to maximize
a monotonically increasing submodular function subject to a
linear matroid, or a cardinality constraint.

The objective function in some applications, e.g., sparse
support selection and observation selection [4], [11]–[13], is
not necessarily a submodular function; rather, one deals with
weakly submodular objectives that resemble diminishing return
property of submodular functions.

Recent advances in information systems have brought forth
unprecedented amounts of data in many settings, including
contemporary weak submodular maximization problems. Given
a cardinality constraint k and a ground set of sizem, the classical
GREEDY algorithm for monotone weak submodular maximiza-
tion that enjoys an optimal 1− 1/e constant factor approxima-
tion [2] requires O(mk) function evaluations. Therefore, in data
intensive applications where function evaluation is expensive,
running GREEDY may be infeasible. To this end, there have been
recent efforts to exploit strong theoretical guarantees of GREEDY

while improving on its complexity via resorting to either dis-
tributed and parallel computing schemes, or methods for reduc-
ing the cost-per-iteration of GREEDY. Among the former, there
is a growing line of work to design algorithms with sublinear
adaptivity [14]–[17]. The concept of adaptivity is heavily studied
in computer science and optimization; informally, adaptivity
characterizes efficiency of parallel computation of an algorithm.
The focus of this paper, however, is on the latter, i.e., centralized
schemes – distributed weak submodular maximization methods
are complementary to our study. Nevertheless, our analysis
and the proposed algorithm may be deployed to aid distributed
methods that rely on GREEDY, potentially extending their utility.

The LAZY-GREEDY algorithm [18] exploits the notion of sub-
modularity to decrease the number of function evaluations of
each iteration of GREEDY without sacrificing its performance.
However, similar to GREEDY, LAZY-GREEDY incurs O(mk)
function evaluations. Moreover, it cannot be employed in weak
submodular maximization problems. More recently, Badani-
diyuru and Vondrak [19] proposed a randomized scheme that
achieves a worst case approximation factor of 1− 1/e− εwhile
using O(mε log m

ε ) evaluations. Motivated by this work, Mirza-
soleyman et al. [3] proposed STOCHASTIC-GREEDY that achieves
a worst case approximation factor of 1− 1/e− ε while using

O(m log 1
ε ) function evaluations. Further discussion on greedy

algorithms with random sampling is deferred to Section II-D. To
our knowledge, no prior works study the effect of the sampling
size on the success probability of the greedy algorithms with
random sampling.

Sparse reconstruction and sparse support selection tasks be-
long to a class of cardinality-constrained weak submodular
maximization problems where the exact identification of the
optimal subset is of critical importance. In sparse support se-
lection, the goal is to identify the support of a high dimensional
vector (e.g., an image or a signal), i.e., the collection of nonzero
components of the data, from a relatively small number of
measurements. In such settings, GREEDY satisfies a general
constant factor approximation guarantee as shown by [2], [13].
However, by exploiting the underlying structural properties of
the measurement model in sparse support selection, one can
establish conditions under which GREEDY exactly identifies the
optimal subset. To this end, necessary and sufficient conditions
for exact identification via GREEDY have been established by
relying on various analysis techniques including those based on
restricted isometry [20]–[22] and mutual incoherence [23]–[25]
properties. In particular, when the measurements are randomly
generated, Tropp and Gilbert [11] show that GREEDY enjoys an
optimal sample complexity bound outlined by [26]. In the sup-
plementary, we explore an application of the proposed algorithm
to this task.

A related task of column subset selection (CSS) has received
considerable attention in recent years due to its broad appli-
cability, interpretability, and provably-guaranteed performance
[27]–[29]. CSS is a constrained low-rank-approximation prob-
lem that seeks to approximate a data matrix (e.g., a matrix having
data points in its rows and features in its columns) by projecting
it onto a space spanned by only a few of its columns. While
similar to the general low-rank approximation problem, CSS
possesses certain distinguishing characteristics. First, since CSS
is an unsupervised method and does not require labeled data, it
can be applied efficiently to the scenarios where labeled data
is sparse while unlabeled data is abundant. Second, to learn
interpretable models in applications where the decision is made
via a data-driven algorithm (e.g., hiring and education), it is of
critical importance to keep the semantic interpretation of the
features intact. This can be ensured by selecting a subset of
available features as opposed to generating new features via
an arbitrary function of the input features. Finally, compared
to PCA or other methods that require a matrix-matrix multi-
plication to project input features into a reduced space during
inference time, solution of CSS feature selection problem can
be applied efficiently during inference as CSS only requires
selecting a subset of feature values from a new instance vector.

An efficient approach to CSS relies on a greedy algorithm that
selects the most representative subset of columns in an iterative
fashion by greedily optimizing the reconstruction error [30],
[31]. The iterative procedure of the greedy scheme is readily
implemented in practice, and its often strong performance is
complemented with rigorous theoretical guarantees [32], [33].
However, running the greedy scheme can be computationally
expensive for large datasets. This is because if the goal is to
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select k out of them available columns, in each of k iterations of
the greedy scheme one needs to evaluate marginal contribution
of O(n) columns. Although computational costs can be reduced
using the so-called lazy evaluations [34], the worst case number
of function evaluations of the greedy scheme is O(nk). In our
work, we apply the proposed PSG algorithm to improve the
computational efficiency of greedy CSS schemes.

B. Organization

The rest of the paper is organized as follows. In Section II,
we introduce the notation and review relevant concepts from
weak submodular maximization. In Section III, we study the
conditions for successful identifications of the optimal subset via
uniform sampling strategies. In particular, we present our first
contribution which establishes the failure of methods with a fixed
sampling size to exactly identify the optimal subset, and argue
the necessity of having an increasing schedule of sampling sizes;
this insight leads to the proposed PSG algorithm. Section IV
presents the analysis of PSG and provides bounds on its subop-
timality performance. In Section V, we consider applications of
PSG in subset selection problems. Finally, concluding remarks
are provided in Section VI.

II. BACKGROUND

In this section, we introduce the notation and provide an
overview of relevant concepts from submodular optimization
as well as the GREEDY algorithm and methods with uniform
sampling.

A. Notation

Italic letters represent scalars and numerical constants, e.g.,
α and C. We use calligraphic letters to denote sets, e.g., S . Bold
capital letters denote matrices, e.g., A, while bold lowercase
letters represent column vectors, e.g., a. Finally, I(.) denotes
the indicator function of its argument.

B. Submodular Maximization

Definition 1: Set functionf : 2X → R is monotone iff(S) ≤
f(T ) for all S ⊆ T ⊆ X .

Definition 2: Set function f : 2X → R is submodular if

f(S ∪ {j})− f(S) ≥ f(T ∪ {j})− f(T ) (1)

for all subsets S ⊆ T ⊂ X and j ∈ X\T . The term fj(S) =
f(S ∪ {j})− f(S) is the marginal value of adding element j
to set S .

Given a monotone non-decreasing set function f : 2X → R
with f(∅) = 0, we are interested in solving the combinatorial
optimization problem

maximize
S

f(S)

subject to S ⊂ X , |S| ≤ k, (2)

which we denote byP(m, k), where |X | = m. By a reduction to
the well-known set cover problem, the combinatorial optimiza-
tion (2) can be shown to be NP-hard [7], [35]. It has been shown

in [2] that if f(·) is monotone and submodular, a simple greedy
algorithm that iteratively selects an element with the highest
marginal gain (see Algorithm 1) satisfies the optimal 1− 1/e
worst case approximation ratio.

C. Weak Submodularity

In many problems, the objective function is not submodular
but under certain conditions it behaves similarly. Such functions
are called weakly submodular and the extent of their proximity
to submodularity is captured using the following parameters.

Definition 3: The multiplicative weak-submodularity con-
stant of a monotone non-decreasing function f is defined as

cf = max
(S,T ,i)∈X̃

fi(T )/fi(S), (3)

where X̃ = {(S, T , i)|S ⊆ T ⊂ X , i ∈ X\T }.
The multiplicative weak-submodularity constant [36]–[38]

is a closely related concept to submodularity and essentially
quantifies how close the set function is to being submodular. It
is worth noting that a set function f(S) is submodular if and
only if its multiplicative weak-submodularity constant satisfies
cf ≤ 1 [4], [13], [39].

A similar notion of weak submodularity is the additive weak-
submodularity constant defined below [36]–[38].

Definition 4: The additive weak-submodularity constant of a
monotone non-decreasing function f is defined as

εf = max
(S,T ,i)∈X̃

fi(T )− fi(S), (4)

where X̃ = {(S, T , i)|S ⊆ T ⊂ X , i ∈ X\T }.
Note that when f(S) is submodular, its additive weak-

submodularity constant satisfies εf ≤ 0.
For a monotone function with bounded additive and multi-

plicative weak-submodularity constants (WSCs) we have the
following proposition (see, e.g., [38]).

Proposition 1: Let cf and ef be the multiplicative and addi-
tive weak-submodularity constants of f(S), a monotone non-
decreasing function with f(∅) = 0, respectively. Let S and T
be any subsets such that S ⊂ T ⊆ X with |T \S| = r. Then, it
holds that

f(T )− f(S) ≤ 1

r
(1 + (r − 1)cf )

∑

j∈T \S

fj(S), (5)

and

f(T )− f(S) ≤ (r − 1)ef +
∑

j∈T \S

fj(S). (6)

It is worth pointing out other weak submodularity notions such
as those in [4], [13], [36], [39] that depending on the application
may simplify the derivation of the approximation bounds (see
e.g., [37], [38], [40]–[42]).

Using notion of weak-submodularity, one can extend the theo-
retical results of [2] for GREEDY to the case of weak submodular
functions [13]. In particular, the following proposition holds
(see, e.g. [38]).
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Algorithm 1: GREEDY.
1: Input: Weak submodular function f , ground set X ,

number of elements to be selected k.
2: Output: Subset Sg ⊆ X with |Sg| = k.
3: Initialize S(0)

g = ∅
4: for i = 0, . . . , k − 1 do
5: js ∈ argmaxj∈X fj(S

(i)
g )

6: S(i+1)
g = S(i)

g ∪ {js}
7: end for
8: return Sg = S(k)

g .

Theorem 1: Let cf and ef be the multiplicative and addi-
tive weak-submodularity constants of f(S), a monotone non-
decreasing function with f(∅) = 0. Let Sg ⊆ X with |Sg| ≤ k
be the subset selected when maximizing f(S) subject to a car-
dinality constraint via the greedy observation selection scheme,
and let S" denote the optimal subset. Then

f(Sg) ≥
(
1− e−

1
c

)
f(S"), (7)

where c = max{cf , 1}1 and

f(Sg) ≥
(
1− 1

e

)
(f(S")− (k − 1)ef ) . (8)

The approximation results in Proposition 1 imply that if the
objective function is monotone and weak submodular, the greedy
selection scheme which in each iteration selects an element with
the highest marginal gain finds a solution that is close to the
optimal.

D. GREEDY with Random Sampling

If |X | = m, in each of k iterations of GREEDY one needs to
find the marginal gain ofO(m) elements. This is a computation-
ally intensive procedure when the involved datasets are large.
Although the computational costs can be reduced using the so-
called lazy evaluations [34], the worst case number of function
evaluations of GREEDY is O(mk). The prohibitive complexity
of GREEDY for large-scale datasets has motivated the design
of more efficient schemes for weak submodular maximization.
A body of work typically referred to as STOCHASTIC-GREEDY

algorithms, aims to reduce the number of function evaluations
by restricting the search domain in each iteration of the greedy
selection procedure [3]–[6] (see Algorithm 2 for a general
template). Specifically, instead of evaluating the marginal gain
of O(m) elements, in the ith iteration of greedy-with-random-
sampling one selects a subset R(i) ⊆ X by uniformly at random
sampling ri elements and only evaluates marginal gains of the
elements in R(i). References [3]–[6] explore the case where
R(i) = R is fixed and ri = rm

k log 1
ε , where the parameter

ε, 0 < e−k ≤ ε ≤ e−
k
m < 1, determines the size of the search

1Henceforth, we assume cf ≥ 1 to emphasize that the objective function is
typically weak submodular.

Algorithm 2: GREEDY With Random Sampling.
1: Input: Weak submodular function f , ground set X ,

number of elements to be selected k, search space
schedule {ri}k−1

i=0 .
2: Output: Subset S(k) ⊆ X with |S(k)| = k.
3: Initialize S(0) = ∅
4: for i = 0, . . . , k − 1 do
5: Form R(i) by sampling min(ri,m) elements from

X\S(i) uniformly at random.
6: js ∈ argmaxj∈R(i)fj(S(i))

7: S(i+1) = S(i) ∪ {js}
8: end for

domain R(i) and thus controls the number of function evalu-
ations in each iteration.2 It turns out that with this choice, the
complexity of greedy-with-random-sampling isO(m log 1

ε ) and
that it selects a subset Ssg such that

E[f(Ssg)] ≥ (1− 1/e− ε) f(S"), (9)

given that f in (2) is submodular [3]. This approximation ratio
is derived under the simplifying assumption that the sequence
of random subsets {R(i)

sg }k−1
i=0 is constructed via sampling with

replacement. Khanna et al. [41] analyze STOCHASTIC-GREEDY

for weak submodular functions and show that it achieves an
expected 1− e−1/c − ε worst case approximation ratio. For
the setting where {R(i)

sg }k−1
i=0 are constructed via sampling

without replacement, this approximation ratio is improved to
1− e−1/c − εβ/c, where β = 1 +O(1/k) [5]. Under a specific
set of assumptions on the marginal gain of elements selected in
each iteration, [6] have shown that a similar result holds not only
on expectation, but with high probability.

III. ANALYSIS OF SUCCESS PROBABILITY

We start the analysis by studying the probability of success-
fully identifying the optimal subsetS". This notion is formalized
in the following definition.

Definition 5: Let ALG be an approximation algorithm for
the weak submodular optimization problem (2) with a unique
solution S". Let Salg be the output of ALG. Then, ALG success-
fully identifies S" if Salg = S". Furthermore, the probability of
success of ALG is defined as Pr(Salg = S").

Our goal in this section is to quantify the impact of ri on
the performance of Algorithm 2 by analyzing its probability
of success. To successfully identify S", in each iteration of
Algorithm 2 at least one new (not previously selected) element
of S" should be present in the randomly selected subset R(i).
More formally, ifS(i) denotes the subset of elements selected by
Algorithm 2 before executing the ith iteration, i = 0, . . . , k − 1,
the set R(i) ∩ (S"\S(i)) should be nonempty. This, however,
is not sufficient – to find the optimal solution, Algorithm 2
must in each iteration select elements from R(i) ∩ (S"\S(i)).
Since |S"| = k and since in each iteration Algorithm 2 selects

2In this paper, for simplicity of presentation we assume log 1
ε and r are

integer-valued quantities.
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one element, if there exists an i ∈ [k] such that S(i) +⊆ S",
then Algorithm 2 fails to identify S". This informal argument
underlies Lemma 1 below which will allow us to characterize
the success probability.

Lemma 1: Suppose the optimal solution of (2) is unique. Let
S(k) denote the subset selected by Algorithm 2, and let R(i)

denote the randomly selected search space of Algorithm 2 in the
ith iteration. Then, it holds that

Pr
(
S(k) = S"

)
=

k−1∏

i=0

p(i)
k−1∏

i=0

q(i), (10)

where

p(i) = Pr
(
R(i) ∩ (S"\S(i)) += ∅|S(i) ⊂ S", |S(i)| = i

)
,

(11)
and

q(i) = Pr
(
S(i+1) ⊂ S"|R(i) ∩ (S"\S(i)) += ∅, |S(i)| = i

)
.

(12)
Proof: Let A(i) denote the event {S(i+1) ∩ S(i) +=

S(i),S(i+1) ⊆ S"}. Then the probability of success of
Algorithm 2 can be expressed as

Pr
(
S(k) = S"

)
= Pr

(
A(k)

)

=
k−1∏

i=0

Pr
(
A(i)|A(i−1)

)
. (13)

Note that A(i) can equivalently be written as

A(i) = {R(i) ∩ (S"\S(i)) += ∅,S(i+1) ⊆ S"}. (14)

To see this, recall A(i) denotes the event {S(i+1) ∩ S(i) +=
S(i),S(i+1) ⊆ S"}. For this to happen, the sampling set at
iteration i should have at least one element from S" that is not
in S(i). Conversely, if S(i+1) ∩ S(i) += S(i) and S(i+1) ⊆ S",
then, there must have been an element from S" in the sampling
set which is new. By further conditioning, this can be re-written
as

Pr
(
S(k) = S"

)
=

k−1∏

i=0

p(i)
k−1∏

i=0

q(i), (15)

where p(i) and q(i) are given by (11) and (12), respectively. !
Lemma 1 demonstrates that the probability of success of

Algorithm 2 is product of two terms: (i) p =
∏k−1

i=0 p
(i) that

characterizes the likelihood of the event E1 that R(i) contains
at least one new element of S" for all i = 0, . . . , k − 1, (ii)
q =

∏k−1
i=0 q

(i) that characterizes the likelihood of the event E2
of selecting one of the elements in the nonempty intersection of
search spaceR(i) andS"\S(i). The eventsE1 andE2 collectively
are necessary and sufficient conditions for exact identification
of the optimal subset.

The first probability, p =
∏k−1

i=0 p
(i), is of particular interest

as it can be thought of as being a general upper bound on the
probability of success. Following this idea, next we establish an
upper bound on the asymptotic probability of success for large-
scale problems and show that some variants with overwhelming
probability fail to successfully identify the optimal subset.

Theorem 2: Consider a sequence of optimization problems
P(m, k) in (2) with increasingly higher dimensions, i.e., the
setting where m, k → ∞, m > k. Let ALG denote a vari-
ant of Algorithm 2 with a restricted uniform search space
R(i) ⊂ [m] having cardinality ri such that maxi ri < m− k
and lim supm,k→∞ ri/m = 0, for all i. Then the probability that
ALG succeeds on P(m, k) goes to zero, i.e.,3

lim sup
m,k→∞

Pr
(
S(k)
alg = S"

)
= 0. (16)

Proof: First, assume ALG uses sampling with replacement to
construct R(i)

alg . We can compute p(i)alg according to

p(i)alg = 1− Pr
(
R(i)

alg ∩ (S"\S(i)
alg) = ∅|B(i)

alg

)

= 1−
(
1−

|S"\S(i)
alg|

|X |

)r

= 1−
(
1− k − i

m

)r

. (17)

Note that since p(i)alg ≤ 1, it follows that

k−1∏

i=0

p(i)alg ≤ p(k−1)
alg = 1−

(
1− 1

m

)r

. (18)

Therefore, since maxi ri < m− k and lim supm,k→∞ ri/m =
0, for all i, we can establish

lim sup
m,k→∞

Pr
(
S(k)
alg = S"

)
≤ lim sup

m,k→∞

k−1∏

i=0

p(i)alg ≤ lim sup
m,k→∞

p(k−1)
alg

= lim sup
m,k→∞

1−
(
1− 1

m

)r

= 0.

(19)

We next consider the case whereR(i)
alg is constructed by sampling

the elements in X\S(i)
alg without replacement. The probability

of success in this case is higher than when sampling with
replacement. Nevertheless, we can derive p(i)alg according to

p(i)alg = 1−
ri−1∏

l=0

(
1− k − i

m− l

)
. (20)

To establish the asymptotic probability, we upperbound
the success probability with p(k−1)

alg . Once again, since
lim supm,k→∞ ri/m = 0, for all i, one can observe that

lim supm,k→∞ p(k−1)
alg , thereby proving the stated result. !

Theorem 2 establishes an upper bound on the probability that
a variant of GREEDY with a restricted search space constructed
uniformly at random identifies S" exactly. The theorem states
that as long as lim supm,k→∞ ri/m = 0, the asymptotic success
probability is zero. To illustrate the implications of this theorem,
we consider the scenario where ri = r is kept fixed, i.e., the
size of the restricted search space is constant. This choice is

3Note that S(k)
alg and S" are quantities that depend on m.
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explored in [3]–[6] where bounds on the expected approximation
factor of Algorithm 2 are derived with r = m

k log 1
ε . Corollary

2.1 below derives bound on the success probability under this
consideration.

Corollary 2.1: Under the assumptions of Theorem 2 and r =
m
k log 1

ε , consider a sequence of optimization problemsP(m, k)
as (2) where m, k → ∞. The following claims hold:

1) If there exists α ∈ (0, 1) such that r ≤ kα−1m (equiv-
alently, ε ≥ exp(−kα)), then the probability that ALG

succeeds on P(m, k) goes to zero, i.e.,

lim sup
m,k→∞

Pr
(
S(k)
alg = S"

)
= 0. (21)

2) If there exists α1 ∈ (0, 1) such that r ≤ α1m (equiva-
lently, ε ≥ exp(−α1k)), then the probability that ALG

succeeds on P(m, k) satisfies

lim sup
m,k→∞

Pr
(
S(k)
alg = S"

)
≤ 1− exp (−α1) < 0.64.

(22)
Proof: For simplicity, we only consider the case of construct-

ing R via sampling with replacement as the case of sampling
without replacement can be treated analogously.

First, consider the setting where ε ≥ exp(−kα), 0 < α < 1.
In light of Theorem 2, to establish the first result it suffices to
show that

lim sup
m,k→∞

1−
(
1− 1

m

)r

= 0. (23)

Using Lemma 2 yields

1−
(
1− 1

m

)r

≤ 1− exp
(
− r

m

)(
1− r

m2

)

= 1− exp

(
log ε

k

)(
1 +

log ε

mk

)

≤ 1− exp
(
−kα−1

)(
1− kα−1

m

)
, (24)

where for the last inequality we recall the assumption
ε ≥ exp(−kα). The result is then established by noting
lim supm,k→∞

kα−1

m = 0, lim supk→∞ exp(−kα−1) = 1, and
using the squeeze theorem.

Next, consider the second setting, i.e., ε ≥ exp(−α1k), 0 <
α1 < 1. Following a similar approach, one obtains

Pr
(
S(k)
alg = S"

)
≤ 1− exp (−α1)

(
1− α1

m

)
:= δ2. (25)

Since the bound in (25) goes to 1− exp(−α1) as m, k → ∞, it
holds that δ2 ≤ 1− exp(−α1) < 1− 1/e < 0.64. !

Corollary 2.1 establishes upper bounds on the probability that
a variant of GREEDY with a restricted search space constructed
uniformly at random identifies S" exactly in two scenarios: (i)
If the size of the search space remains fixed in each iteration
of ALG and the algorithm makes O(mkα) oracle calls for
some α ∈ (0, 1), then the probability of the exact identification
approaches zero as the problem dimension grows. (ii) If the size
of the search space remains fixed in each iteration of ALG and
strictly less than [m], and the algorithm makes O(mk) oracle

calls, then although the probability of the exact identification
may be nonzero, it is not asymptotically 1. Note that in many
applications, including sparse reconstruction and sparse learning
[23], [26], an arbitrarily high success probability is a condition
required to establish any nontrivial sample complexity results,
i.e., the minimum number of data points for successful recovery
and prediction.

Remark 1: At the first glance one may suggests that if a
fixed sample size is used throughout the GREEDY with random
sampling, i.e., Algorithm 2, the probability that the algorithm
recovers the optimal solution goes to zero when the size of the
problem grows. However, this statement is not accurate. In fact,
one can show

k−1∏

i=0

p(i) ≥ δ, (26)

for a strictly positive δ. Further details regarding this remark are
postponed to Appendix B.

A. Progressively-Increasing Random Sampling

The proofs of Theorem 2 and Corollary 2.1 reveal the under-
lying cause for the failure of Algorithm 2 to find the optimal
solution: since the size of the search domain is fixed throughout
the iterations, if Algorithm 2 successfully identifies elements
from S" in earlier iterations, the chance of sampling new ele-
ments from S" significantly decreases in the subsequent ones.
Therefore, success in earlier iterations increases the chance of
failure to select new elements from S" in the subsequent ones.
This phenomenon is not encountered in the GREEDY algorithm
since in each iteration GREEDY considers all the elements in
the ground set, including those in S". Therefore, although in
initial iterations Algorithm 2 may search smaller domains, if the
goal is to identify exactly all the elements in S", one should
progressively increase the size of the search domain to improve
the probability of success.

We thus propose a simple increasing schedule strategy of
search spaces which grow to ultimately reach size m. In partic-
ular, we progressively increase the size of the search domain as
the cardinality of the identified subset S(i) grows. The proposed
method, referred to as Progressive Stochastic Greedy (PSG), in
the ith iteration samples ri =

m
k−i log

1
ε elements uniformly at

random from X to construct the search set R(i). Following [3]–
[6], we let ε, such that e−k ≤ ε ≤ e−

k
m , be a parameter which

allows one to strike a desired balance between performance and
complexity; the sampling may be with or without replacement.
Note that since ri ≤ m for all i = 0, . . . , k − 1, for any iteration
i such that i ≥ is := k − log 1

ε , we set ri to its maximum value,
m. Thus, this procedure can be interpreted as a hybrid scheme
that provides a soft transition from a restricted search space with
random sampling to GREEDY.

Remark 2: If a prior distribution is known on which elements
constitute the optimal subset, that distribution can be leveraged
to improve the performance of PSG. Leveraging this information
has been pursued in the special case of the Bayesian sparse
reconstruction problem (see, e.g., [43]).
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B. Complexity Analysis of PSG

Recall that GREEDY and Algorithm 2 with ri = r =
m
k log 1

ε , i.e., STOCHASTIC-GREEDY [3]–[6], require O(mk) and
O(m log 1

ε ) function evaluations, respectively. In the following,
we express the complexity of PSG in terms of the total number of
function evaluations throughout the iterations of the algorithm.
Specifically, given our choice of ri, we have that

O




k−log 1

ε∑

i=0

m

k − i
log

1

ε
+m log

1

ε



 (27)

As an example, for ε ≥ exp(−kα) and ε ≥ exp(−αk), 0 <
α < 1, the complexity expression in (27) reduces to Õ(mkα)
and O(mk), respectively, while for a constant ε the complexity
reduces toO(m log( 1ε ) log k). Thus, the proposed method incurs
at most a factor O(log k) higher complexity than STOCHASTIC-
GREEDY. As we show in the reminder of the next subsection, this
relatively small increase in complexity is sufficient to satisfy a
necessary condition for identifying S".

C. Lower Bound on the Probability of Success

We now aim to determine whether PSG, i.e., Algorithm 2 with
the proposed progressively-increasing schedule, can identify the
optimal solution to P(m, k) as m, k → ∞.

To answer the above question, one needs to establish a suffi-
cient condition for the exact identification ofS" or, equivalently,
a lower bound on the probability of success of Algorithm 2.
Recall from Lemma 1 that

Pr
(
S(k) = S"

)
=

k−1∏

i=0

p(i)
k−1∏

i=0

q(i). (28)

Therefore, it suffices to derive nontrivial lower bounds on∏k−1
i=0 p

(i) and
∏k−1

i=0 q
(i). In Theorem 3 below, we provide a

lower bound on
∏k−1

i=0 p
(i).

Theorem 3: Suppose the optimal solution to (2) is unique. Let
ri = min( m

k−i log
1
ε ,m), for all i = 0, . . . , k − 1. Then,

p =
k−1∏

i=0

p(i) ≥ (1− ε)k−log 1
ε . (29)

Furthermore, if ε = 1
kα for some α > 1, then lim supm,k→∞

p = 1.
Proof: Note that since ri = m for all i ≥ k − log 1

ε , it follows
that p(i) = 1. Let us first consider the setting of sampling with
replacement. There, it holds that

k−1∏

i=0

p(i) =

k−log 1
ε−1∏

i=0

(
1−

(
1− k − i

m

)ri)

≥
k−log 1

ε−1∏

i=0

(
1− exp

(
−ri

k − i

m

))

= (1− ε)k−log 1
ε . (30)

Next, we consider the setting of sampling without replace-
ment. For every i < k − log 1

ε ,

p(i) = 1−
ri−1∏

l=0

(
1− k − i

m− l

)

(a)
≥ 1−

(
1− k − i

ri

ri−1∑

l=0

1

m− l

)ri

≥ 1−
(
1− k − i

m

)ri

(b)
≥ 1− exp

(
−ri

k − i

m

)
= 1− ε, (31)

where (a) is obtained by using the inequality relating arithmetic
and geometric means, and (b) is due to the fact that (1 + x)y ≤
exy for any real number y ≥ 1. Therefore, just as in the case of
sampling with replacement, (29) holds.

Finally, to establish the asymptotic result, using (1 + x)y ≤
exy we can show that

(1− ε)k−log 1
ε ≥ 1− kε. (32)

Hence, if ε = 1
kα for some α > 1, lim supm,k→∞ p = 1 by the

squeeze theorem. !
Note that, as we argued in Corollary 2.1, for the specific value

of ε = 1
kα the success probability of Algorithm 2 with ri = r =

m
k log 1

ε goes to zero. Additionally, it turns out that in the regime
where ε ≤ 1

kα , the proposed procedure requires O(m log2 k) =

Õ(m) function evaluations as opposed to O(m log k) function
evaluations of STOCHASTIC-GREEDY.

Since we have established a lower bound on
∏k−1

i=0 p
(i) in (29),

we need only derive a nontrivial lower bound on q(i) in order
to show existence of a sufficient condition for the exact identifi-
cation of S", and establish a lower bound on the probability of
success of Algorithm 2 with the proposed sampling strategy.

A lower bound on q(i) can be obtained by considering the
conditions under which the largest marginal gain of elements in
R(i) ∩ S" exceeds that in R(i)\S" for all i = 0, . . . , k − 1, i.e.,

max
j∈R(i)\S#

fj(S(i)) < max
j∈R(i)∩S#

fj(S(i)), (33)

with high probability. Doing so requires problem-dependent
information and a general result cannot be derived. However,
below we specify such a condition for the problem of sparse
support selection.

In the task of sparse support selection [23], [26], we are given
a linear measurement vector y = Ax+ ν where x ∈ Rm is a
k-sparse unknown vector, i.e., a vector with at most k non-zero
components, y ∈ Rn denotes the vector of measurements, A ∈
Rn×m is the coefficient matrix assumed to be full rank, and
ν ∈ Rn denotes the additive measurement noise vector. The
search for a sparse approximation of x leads to the NP-hard
cardinality-constrained least-squares problem

minimize
x

‖y −Ax‖22 subject to ‖x‖0 ≤ k, (34)

which can be interpreted as an instance of (2) [13], [41].
Theorem 4 below states that PSG successfully recovers k-

sparsexwith high probability as long as the number of measure-
ments is linear in k (sparsity) and logarithmic in m

k , achieving
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Fig. 1. Empirical evaluation of the theoretical bounds established by Theorem 2 and Corollary 2.1.

the optimal sample complexity established by Candes and Tao
[26]. The proof is provided in the supplementary material.

Theorem 4: Let x ∈ Rm be an arbitrary sparse vector with k
non-zero entries and letA ∈ Rn×m denote a random matrix with
entries drawn independently from N (0, 1/n). Given noiseless
measurements y = Ax, PSG with parameter e−k ≤ ε ≤ e−

k
m

finds a solution that satisfies

Pr (Spsg = S") ≥ (1− ε)k−log 1
ε

(
1− c1(

m

k
)c2 exp(−c3

n

k
)
)
,

for some positive universal constants c1, c2, and c3. Furthermore,
assume that m > k

√
k and

n ≥ max

(
6

C1
k log

m

k 6
√
4β

, C2k

)
, (35)

where 0 < β < 1, and C1 and C2 are positive constants inde-
pendent of β, n, m, and k. Then, PSG with parameter ε < β

k can
exactly identify the optimal support subsetS" with a probability
of success exceeding 1− 2β.

D. Verifying the Theory

In this section, we verify our theoretical results by comparing
them to the empirical ones obtained via Monte Carlo (MC)
simulations. Specifically, we consider the task of sparse support
selection.

We consider a setting with increasing support size k (varied
from 10 to 100) and set the dimensions of the signal and the num-
ber of measurements to m = 2k1.5 and n = 6k log(m/k 6

√
4β),

respectively, for three different values of β = 0.1, 0.05, 0.01.
In each trial, we select locations of the nonzero elements of x
uniformly at random and draw those elements from a normal
distribution. Entries of the coefficient matrix A are also gener-
ated randomly fromN (0, 1

n ). The results are averaged over 1000
Monte Carlo trials. Note that, as we show in the supplementary,
in the above settings PSG is able to recover x exactly.

First, we investigate the exact performance of PSG with the
schedule

ri =
m

k − i
log

1

ε
, ε =

β

k
(36)

for β = 0.1, 0.05, 0.01, and show the results in Fig. 1(a). As can
be seen there, the empirical exact recovery rate of PSG is very
close to 1; this coincides with the theoretical lower bound of
1− 2β established in the supplementary that builds upon the

insights of Theorem 2 (i.e, the achieved rate is 0.8,0.9,0.98 for
β = 0.1, 0.05, 0.01, respectively).

Next, we empirically verify the results of Theorem 2 and
Corollary 2.1 wherein we established an upper bound on the
success probability of a variant of Algorithm 2, named ALG, with
a restricted uniform search space. Fig. 1(b), (c) compares this
theoretical result with the empirical success rate for r = m/

√
k

and r = m/2, which correspond to instances of the two settings
considered in Corollary 2.1. Fig. 1(b) shows that for r = m/

√
k

the success rate goes to zero as k increases, as predicted by the
first part of Corollary 2.1.4 In Fig. 1(c) we see that the success
rate does not go to zero for r = m/2; moreover, it is always
bounded by 1− e−0.5 ≈ 0.39, as claimed by the second part of
Corollary 2.1.

IV. ANALYSIS OF APPROXIMATION FACTOR

As argued in Section III, finding a lower bound on the success
probability requires problem-dependent information and thus a
general result cannot be derived. Therefore, in this section we
focus on analyzing the performance of PSG from the perspective
of establishing nontrivial worst-case approximation factors.

A. Expected Approximation Factor

We first establish bounds on the expected approximation
factors of PSG. Then, assuming martingale structure of the
marginal gains encountered in Algorithm 2, we establish a high
probability result for the approximation factor and present it in
the next subsection.

Proposition 2: LetSpsg denote the random subset selected by
PSG, and let cf and ef be the multiplicative and additive weak
submodularity constants of the submodularity ratio of the set
function objective in (2), respectively. Then

E[f(Spsg)] ≥ Acf(S"),E[f(Spsg)]≥Ae(f(S")−(k − 1)ef ),
(37)

where

Ac := 1−
k−log 1

ε∏

i=1

(
1− 1− ε

k
k−i−1

kc

)(
1− 1

kc

)log 1
ε

, (38)

4Note that, in this setting, for k ≥ 20 ALG failed in all of the trials; however,
for illustration purposes (i.e., to be able to show the plot in the logarithmic scale)
we set the success rate of ALG for k ≥ 20 to 10−10.
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and

Ae := 1−
k−log 1

ε∏

i=1

(
1− 1− ε

k
k−i−1

k

)(
1− 1

k

)log 1
ε

. (39)

Proof: We first prove the result under a bounded cf assump-
tion. To simplify the notation, let fi := f(S(i)

psg) and f" :=
f(S").

Since cf ≥ 1, it holds that 1
r (1 + (r − 1)cf ) ≤ cf , for all r.

Employing the first part of Lemma 1 with S = S(i)
psg and T =

S∗ ∪ S(i)
psg , and recalling monotonicity of f , we obtain

f(S∗)− f(S(i)
psg) ≤ f(S∗ ∪ S(i)

psg)− f(S(i)
psg)

≤ cf
∑

j∈S∗\S(i)
psg

fj(S(i)
psg). (40)

We now proceed with the analysis by considering two distinct
scenarios: the case where ri < m and hence the search space is
strictly less than that of GREEDY, and the case where ri = m.
Note that the first iteration in which the latter condition holds is
is := k − log 1

ε .
For any i < is, we need to find the probability that the current

search space R(i) samples an element from the optimal subset.
In light of the analysis in Section III, this probability for both
sampling with and without replacement may be bounded below
by

Pr
(
R(i) ∩ (S"\S(i)) += ∅

)
≥ 1− e−

ri
m |S#\S(i)|

≥ (1− ε
k

k−i )

(
|S"\S(i)|

k

)
.

(41)

Given that for any i < is PSG selects an element from R(i)

greedily, conditioned on R(i) ∩ (S"\S(i)) += ∅, the marginal
gain of the selected value is larger than that of any element
selected from R(i) ∩ (S"\S(i)) uniformly at random (an in turn
from S"\S(i), given that the sampling is uniform). Therefore,

E
[
f(i+1)(S(i)

psg)|S(i)
psg

]
≥ 1− ε

k
k−i

|S"\S(i)|
∑

j∈S∗\S(i)
psg

fj(S(i)
psg). (42)

Since |S"\S(i)| ≤ k, using (40) and taking the total expectation
we obtain for all i < is

E [(fi+1 − fi)] ≥

(
1− ε

k
k−i

)

kcf
(f ∗ − E [fi]) . (43)

For i ≥ is, the search space of PSG is equivalent to that of
GREEDY. Therefore,

fi+1 − fi ≥
1

kcf
(f ∗ − E [fi]) . (44)

Let ∆i = f ∗ − E[fi]. Using induction,

∆k−1 ≤ (1−Ac)∆0. (45)

Rearranging and noting that∆0 = f ∗ since f(∅) = 0 establishes
the stated result.

Fig. 2. Comparison of expected approximation factors of PSG, GREEDY, and
STOCHASTIC-GREEDY for ε = 0.5, 0.9 and different values of k. The normal-
ized PSG variants have the same number of oracle calls as STOCHASTIC-GREEDY
by employing ε′ = ε1/ logk .

The proof of the second part is analogous, except we leverage
the second part of Lemma 1 and define∆i = f ∗ − E[fi]− (k −
1)ef to arrive at the recursion ∆k−1 ≤ (1−Ae)∆0, thereby
completing the proof. !

Note that, as expected, if the function f is submodular, i.e.,
cf = 1 and ef = 0, then Ac = Ae and the expected approxima-
tion factors in (37) become identical.

It can be shown using elementary algebra that Ac ≥ 1−
e
− 1

cf − ε
cf

and Ae ≥ 1− 1
e − ε. Such bounds are expected as

the search space of PSG, i.e. ri, can be lower bounded by that of
the STOCHASTIC-GREEDY, r = m

k log (1/ε). Therefore, the ex-
pected approximation factors of PSG are at least as large as those
of STOCHASTIC-GREEDY. However, it is worth noting that these
lower bounds are typically loose. To show this, we plot Ae and
compare the results to the approximation factors of GREEDY and
STOCHASTIC-GREEDY in Fig. 2 for two values of ε = 0.5, 0.9.
As the figure demonstrates, there is a large gap between the ex-
pected approximation factors of PSG and STOCHASTIC-GREEDY.
Note that the improvement in the approximation factor only
requires a marginal increase in the number of oracle calls [cf.
(27)]. The figure also shows the approximation factor for a
normalized variant of PSG. The normalized is performed such
that, effectively, this variant of PSG employs ε′ = ε1/ logk. This
choice ensures that this variant of PSG has the same number of
oracle calls as STOCHASTIC-GREEDY with ε = 0.9, 0.5. As the
figure shows, as k grows the approximation factor of normal-
ized PSG approaches that of STOCHASTIC-GREEDY. Overall, in
scenarios where ε is large and k is small, which is typical in
practice, PSG enjoys better guarantees.

B. High-Probability Bounds for the Approximation Factor

In Proposition 2, we established bounds on the expected
approximation factor of the proposed scheme. Given that these
results hold only on expectation, it is of interest to explore
whether similar performance guarantees hold with high prob-
ability. The prior work [6] has shown a high probability bound
for Algorithm 2 when ri = r = m

k log 1
ε . To derive this result,

each step of Algorithm 2 is interpreted as an approximation of
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the marginal gains of the selected elements using GREEDY,

fj(alg)
(S(i)) = η(i)fj(g)(S

(i)), (46)

where subscripts alg and g refer to the elements selected by
Algorithm 2 and GREEDY, respectively, and {η(i)}ki=1 is a col-
lection of random variables in (0,1].

The result of [6], however, relies on the assumption that
{η(i)}ki=1 are independent, which is not realistic since the el-
ement selected in each iteration depend on the selected subset
so far. In Proposition 3, we relax that independence assumption
and show that as long as {η(i)}ki=1 form a martingale, one can
derive a high-probability performance guarantee. Additionally,
we derive high-probability bounds using both additive and mul-
tiplicative weak submodularity constants.

Proposition 3: Instate the notation and assumptions of Propo-
sition 2. Let η be a martingale with E(η) ≥ µ satisfying the
conditions of Theorem 5. Then, it holds with probability of at
least 1− δ (for any δ > 0) that

f(Spsg) ≥ Ahp
c f(S"), f(Spsg) ≥ Ahp

e (f(S")− (k − 1)ef ),
(47)

where

Ahp
c := 1− exp



− 1

cf



µ+

√
log 1

δ

2k
+

log 1
ε

k







 , (48)

and

Ahp
e := 1− exp



−



µ+

√
log 1

δ

2k
+

log 1
ε

k







 . (49)

Proof: Let fi := f(S(i)
psg) and f" := f(S"). Note that for any

element j it holds that

fj(S(i)
psg) ≤ f(j)psg (S

(i)
psg) ≤ f(j)g (S

(i)
psg). (50)

Combining the above result with (40) and (46) we obtain

fi+1 − fi ≥
η(i+1)I(i < is) + I(i ≥ is)

kcf
(f ∗ − fi) . (51)

Using an inductive argument similar to the one in the proof of
Proposition 2, we obtain

fk−1 ≥ f ∗

[
1− e

− 1
kcf

∑is
i=1 η(i)

(
1− 1

kcf

)log 1
ε

]
. (52)

Next, we use the result of Theorem 5 to bound the deviation of∑is
i=1 η

(i) from its mean with high probability. By Theorem 5
and the assumption that η(i) ∈ (0, 1],

Pr

(
is∑

i=1

η(i) − isµ > λ

)
≤ exp

(
− λ2

2is

)
. (53)

Setting the right-hand side of the above inequality to δ yields
that with probability exceeding 1− δ

is∑

i=1

η(i) ≤ isµ+

√
is
2
log

1

δ
≤ kµ+

√
k

2
log

1

δ
, (54)

where we relied on the fact that is ≤ k. Using this bound in (52)
along with (1 + x)y ≤ exy for any real number y ≥ 1 proves
the first part of the proposition.

Leveraging the second part of Lemma 1 and repeating similar
arguments furnishes the second result. !

Proposition 3 establishes high probability bounds on the
worst-case performance of the proposed scheme. For large k,
the approximation factors may be approximated by 1− e−µ/cf

and 1− e−µ for multiplicative and additive weak submodularity
constants, respectively. Therefore, if µ is near 1, as expected,
the marginal gains of elements selected by PSG are relatively
close to those that would have been selected by GREEDY, which
in turn means we recover the guarantees of GREEDY in that
regime.

V. APPLICATIONS TO SUBSET SELECTION

We demonstrate efficacy of the proposed algorithm in two ap-
plications, namely column subset selection for sparse subspace
clustering and observation selection for target tracking.

A. Column Subset Selection for Subspace Clustering

Here we present results of an empirical evaluation of the
proposed PSG scheme; specifically, the performance of PSG is
compared to several baselines on the task of dimensionality
reduction via column subset selection (CSS) [27] for sparse
subspace clustering (SSC) [44]–[47].

The goal of CSS is to identify a subset S , |S| = k, of the set
ofm columns of a data matrixA ∈ Rn×m that best approximate
the entire data matrix. Formally, the task of identifying S can be
cast as the optimization problem

minimize
S

‖A−PSA‖2F s.t. |S| = k, (55)

where PS = ASA
†
S is the projection operator (specifically,

projection onto the span of columns of AS ) and A†
S =

(A3
SAS)−1A3

S denotes the Moore-Penrose pseudo-inverse of
AS . Since A = PSA+ (I−PS)A and ‖A‖2F = ‖PSA‖2F +
‖(I −PS)A‖2F by properties of projection matrices, (55) can
equivalently be written as an instance of the weak submodular
maximization task (2) [31], [48].

We aim to use Algorithm 2 as a CSS-based dimensionality
reduction technique to reduce the cost of performing clustering
via SSC [44], [45]. That is, using a lower dimensional data matrix
ASg obtained via CSS, we learn the representation matrix C by
solving

minimize
C

‖ASg −ASgC‖2F + λ‖C‖1, (56)

and then employ spectral clustering [49] on W = |C|+ |C|3
to segment the data points.

We consider the proposed PSG scheme with ε = 0.1. We
consider GREEDY, STOCHASTIC-GREEDY, and random column
subset selection as the benchmarking schemes. Additionally, we
use the best rank-k approximation of a matrix (i.e., top-k SVD) to
serve as an upper bound on the achievable performance; note that
this scheme explicitly minimizes the Forbenius reconstruction
criterion. We compare performance of the above algorithms
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Fig. 3. Performance comparison of SSC with various CSS-based dimensionality reduction schemes on EYaleB dataset consisting of face images under 64 different
illumination conditions.

Fig. 4. Face clustering: given images of multiple subjects, find images that belong to the same subject (examples from the EYaleB dataset [50]).

using the real EYaleB dataset [50] which contains frontal face
images of 38 individuals under 64 different illumination condi-
tions (see Fig. 4). There are m = 2414 columns (i.e., features)
in this dataset; we select k out of m = 2414 columns, where k
varies from 100 to 1000, and apply the SSC method of [45] to
cluster the data points based on the selected features.

Fig. 3 shows the performance of various column subset se-
lection schemes as well as the top-k SVD approach. In Fig. 3(a)
we observe that the reconstruction errors of GREEDY and the
proposed scheme are nearly identical, and that as we increase the
number of selected columns the reconstruction error decreases;
this is consistent with the fact that f(S) is a monotone func-
tion. Fig. 3(b) shows a significant computational complexity
improvement that the proposed scheme provides over the greedy
CSS method. Since the complexity of Algorithm 2 increases
logarithmically in k, the cost of selecting more columns is rela-
tively small compared to the greedy approach. While we observe
ε = 0.1 achieves a good tradeoff between computational costs
and performance, depending on the amount of data available,
the value of ε can be tuned using cross-validation. Finally, in
Fig. 3(c) we compare the clustering accuracy of SSC applied
to a subset of features selected by different schemes. As the
figure shows, clustering performance of SSC combined with
the proposed CSS method is nearly identical to that of the
conventional greedy approach; moreover, both achieve superior
accuracy compared to the scheme that randomly select subsets
of columns.

B. Observation Selection in Target Tracking

We consider a realistic multi-object tracking application by
an autonomous car, referred to as the ego vehicle, that moves
on a highway. Perception plays a major role in the planning
subsystem of an autonomous vehicle; accurately identifying and

Fig. 5. The object tracking scenario: an ego vehicle (dark blue) moves on
a highway with five lanes and aims to identify and track the vehicles in its
surroundings using six radar and two camera sensors.

tracking the critical objects in its surrounding, e.g., other vehicles
on the highway, are critical in the design of the perception sub-
system [51]. Given the typically large amount of data gathered
by the vehicle’s sensors, observation selection techniques may
be employed to reduce the computational burden of tracking
algorithms and improve their runtime [6], [52]. Motivated by
this argument, we resort to performing observation selection via
the proposed scheme.

We consider a scenario with an ego vehicle that moves on a
stretch of 500 meters of a typical highway road with five lanes,
along with six other vehicles (see Fig. 5 and the supplementary
gif file). All the vehicles move with the speed of 25 km/s,
except for the passing vehicle which has a speed of 35 km/s.
The ego vehicle has six radar sensors and two vision sensors
covering the 360 degrees field of view. The sensors have some
overlap and some coverage gap. The ego vehicle is equipped
with a long-range radar sensor and a vision sensor on both
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Fig. 6. Performance comparison of the proposed observation selection algo-
rithm with the greedy approach, and an approach that utilizes all of the gathered
observations. The proposed scheme results in nearly the same OSPA while
significantly reducing the running time of tracking.

the front and the back of the vehicle. Each side of the vehicle
has two short-range radar sensors, each covering 90 degrees.
One sensor on each side covers the area from the middle of
the vehicle to the back. The other sensor on each side covers
the area from the middle of the vehicle forward. We set the
properties of the sensors such that they are in agreement with
the realistic characteristics of radar and camera sensors [53]. The
sensors gather noisy observations about the location and velocity
of the surrounding vehicles. After selecting the observations
via a subset selection algorithm, the selected observations are
used in a GGIW-PHD extended object tracker that relies on a
rectangular target model for the surrounding vehicles [54]–[56].
We assess the performance of the observation selection and
tracking algorithms based on the optimal sub-pattern assignment
(OSPA) metric [57], [58] as well as the time it takes to produce
the estimated locations.

Fig. 6 shows the performance comparison of the proposed
scheme with greedy observation selection that selects 50% of the
observations. We also provide a comparison with a method that
uses all of the gathered observations in the tracking algorithm. As
Fig. 6(a) shows, all schemes achieve similar tracking accuracy.
Note that OSPA increases from time t = 50 to t = 75 as in this
interval the passing vehicle gets farther from the ego vehicle,

but it is still considered as a tracked object in the OSPA metric.
However, after t = 75, the passing vehicle is not in the line of
sight of the ego car anymore, resulting in the OSPA metric to
improve.

Fig. 6(b) depicts the runtime comparison and demonstrates
that using the proposed scheme to perform observation selection
significantly reduces the cost of object tracking. Note that in the
interval (35,50), the passing vehicle is in the proximity of the ego
vehicle. Therefore, the mounted sensors produce significantly
more observations, thereby increasing the runtime of the bench-
marking schemes. However, thanks to the progressive random
sampling strategy, the runtime of the proposed scheme does not
increase significantly in this interval.

VI. CONCLUSION

In this paper, we studied the problem of large-scale mono-
tone weak submodular maximization that comes up in many
modern signal processing and machine learning applications
including sparse reconstruction, dimensionality reduction, ob-
servation gathering, and sensor selection. Motivated by the
desire to reduce complexity of the celebrated greedy scheme,
we theoretically studied fundamental performance limits of
restricting the size of the greedy search space by means of
uniform sampling strategies. We first studied the asymptotic
probability of successfully identifying the optimal subset. Our
analysis revealed that many of the standard practices that rely
on fixed sampling sizes lead to a success probability that is
asymptotically zero. We showed that an increasing schedule of
the search space size satisfies a necessary condition for the exact
identification of the optimal subset in large-scale problems. Fol-
lowing this insight, we proposed a progressive stochastic greedy
algorithm and demonstrated its efficacy in the applications to
sparse subset selection, dimensionality reduction, and extended
object tracking. We further established strong guarantees, both
on expectations and with high probability, on the approximation
factors of the proposed algorithm.

Our established framework gives rise to interesting open
problems. First, the proposed analysis can be employed to study
exact identification conditions of PSG in other classes of weak
submodular maximization problems, i.e., settings beyond the
sparse support selection task considered in this paper. For in-
stance, exact identification conditions of GREEDY for the task of
observation selection were recently considered by [59]. Utilizing
our framework, similar results may be established for PSG.
Furthermore, as we argued, the intersection of search space of
PSG and new elements from the optimal subset is nonempty with
high probability for all iterations. Since GREEDY considers all the
elements of the ground set in each iteration, the intersection of
the search space of GREEDY and new elements from the optimal
subset is always nonempty. Therefore, it is reasonable to ask
whether the set of conditions under which GREEDY and PSG

exactly identify the optimal subset of a given weak submodular
optimization problem P is the same. Indeed, this is the case
for the problem of sparse support selection. Finally, studying
general weak submodular optimization problems remains of
interest.
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APPENDIX A

AUXILIARY LEMMA

Lemma 2: For every |a| ≤ 1 and b ≥ 1 it holds that (1 +
a)b ≥ eab(1− a2b).

Proof: Let x = ab, |x| ≤ b. Consider g(x) = e−x(1 + x
b )

b −
(1− x2

b ). At x = 0, both g(x) and f ′(x) are zero. If f ′(x) = 0
for any other x in the interval, for such x we have

e−x
(
1 +

x

b

)b
= 2 +

2x

b
.

Therefore, for such x

g(x) =
(x+ 1)2

b
+ 1− 1

b
> 0.

Furthermore, since g(b) > 0 for all b while g(−b) > 0 for b > 1
and g(−b) = 0 for b = 1, all other points we must have g(x)
> 0. !

APPENDIX B

ESTABLISHING (26)

Let us consider the second case of Corollary 2.1, i.e.,
there exists α1 ∈ (0, 1) such that r = α1 m (equivalently, ε =
exp(−α1 k)). In Corollary 2.1 we established an upperbound for
the success probability which shows as the size of the problem
grows the upper bound is strictly less than 0.64. However, this
does not mean the probability approaches zero. To see this, upon
recalling (11) we may write

k−1∏

i=0

p(i) ≥
k−1∏

i=0

(
1− exp

(
−r

k − i

m

))

=
k−1∏

i=0

(1− exp(−α1(k − i)))

=
k∏

n=1

(1− exp(−α1n)) . (57)

A crude lowerbound can be easily achieved by replacing the
product terms with the smallest term, i.e., 1− exp(−α1). Such
lowerbound – as intuition dictates – converges to zero ask → ∞.
However, this is not a tight bound. Note that for every 0 < α1 <
1, there exists a positive integer q(α1) such that exp(α1n) ≥ n2

for all n ≥ q(α1). For instance, if α1 ≥ log(2) ≈ 0.6931, then
q(α1) ≤ 4. Hence,

∞∏

n=q(α1)

(
1− 1

n2

)
≤

∞∏

n=q(α1)

(
1− 1

exp(α1n)

)
. (58)

It then follows

lim
k→∞

k−1∏

i=0

p(i) ≥
∞∏

n=1

(
1− 1

exp(α1n)

)

≥
(
1− 1

exp(α1)

) q(α1)−1∏

n=2

(
1− 1

exp(α1n)

)

(
1− 1

n2

)
∞∏

n=2

(
1− 1

n2

)

=
1

2

(
1− 1

exp(α1)

) q(α1)−1∏

n=2

(
1− 1

exp(α1n)

)

(
1− 1

n2

) := δ > 0.

(59)

For instance, if α1 ≥ log(2), then δ ≥ 0.2461. Therefore, de-
spite the intuition, the probability approaches a strictly nonzero
value as the size of the problem grows.

The above argument does not take limk→∞
∏k−1

i=0 q
(i) into

account and this probability may approach zero; however, its
analysis does not seem trivial.

APPENDIX C

AZUMA’S INEQUALITY [60]

Theorem 5: Let X be a martingale associated with a filtration
F and a sequence of random variables X0, X1, . . . , Xn satisfy-
ing Xi = E[X|Fi] and, in particular, X0 = E[X] and Xn = X .
If |Xi −Xi−1| ≤ ci, then,

Pr (X − E[X] > λ) ≤ exp

(
− λ2

2
∑n

i=1 c
2
i

)
. (60)
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