
Performance and Efficiency Tradeoffs in Blockchain Overlay
Networks

Parikshit Hegde

hegde@utexas.edu

The University of Texas at Austin

Austin, Texas, USA

Gustavo de Veciana

deveciana@utexas.edu

The University of Texas at Austin

Austin, Texas, USA

ABSTRACT
Underlying blockchain’s scalability and performance is a Peer-to-

Peer (P2P) overlay network and protocols for relaying blocks and

transactions among participating nodes. In this work, we model and

perform a systematic analysis of blockchain communication proto-

cols. We begin by introducing the performance metric of interest

for blockchains, the sequence of ordered-completion-times, which
captures the progress distributed nodes are making in jointly con-

structing a consistent blockchain. We then study the characteristics

of block relaying protocols. In particular, we show that when nodes

cannot perform cut-through relaying, there is no optimal causal

block relaying protocol if block relaying times are deterministic. We

propose a simple age-based block relaying protocol that is provably

near-optimal in terms of minimizing ordered-completion-times

when the P2P overlay network is a tree. This analysis is relevant

to blockchain relay networks such as Bitcoin-Fibre, Bloxroute etc.,

where the core part of the overlay is a tree. Finally, using the in-

sights derived for tree overlays, we explore the interplay between

transaction and block relaying and prioritization (age, size, FCFS

based) on both tree and fully connected overlays via simulation. We

observe that policies that relay blocks and incorporate transactions

into blocks based on ‘age’ outperform other natural policies. We

also explore a fundamental tradeoff between mining and computa-
tional efficiencies and performance (in terms of ordered completion

times).

CCS CONCEPTS
•Networks→ Peer-to-peer protocols;Network performance
modeling; Peer-to-peer networks.

KEYWORDS
blockchains, overlay networks, scheduling, performance

ACM Reference Format:
Parikshit Hegde and Gustavo de Veciana. 2022. Performance and Efficiency

Tradeoffs in Blockchain Overlay Networks. In The Twenty-third International
Symposium on Theory, Algorithmic Foundations, and Protocol Design for
Mobile Networks and Mobile Computing (MobiHoc ’22), October 17–20, 2022,
Seoul, Republic of Korea. ACM, New York, NY, USA, 10 pages. https://doi.

org/10.1145/3492866.3549730

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9165-8/22/10. . . $15.00

https://doi.org/10.1145/3492866.3549730

1 INTRODUCTION
A blockchain is operated by a set of nodes on a Peer to Peer (P2P)

network. Transactions are submitted by clients and are distributed

across the nodes for eventual inclusion in the blockchain. Following

a selection rule, a node groups a subset of transactions it knows into

a block and attempts to add the block to the blockchain by a process

called mining. Apart from the set of transactions, the block also

consists of a block-header, which includes the block’s proof-of-work,
indices of the contained transactions, and some protocol-dependent

metadata about the block’s predecessors. Once mined, the block

needs to be distributed to all the participating nodes so that they

can add it to their copies of the blockchain. In this work, one of our

primary focus is on the design and analysis of policies to distribute

transactions and blocks across overlay links in order to optimize

the performance of the blockchain.

When a block is mined, it might contain transactions that have

already been shared with a few other nodes in the network. In order

to avoid transmitting redundant information during block distri-

bution, Bitcoin employs a protocol called compact block relay[1].
Here, when a mined block is being sent to a peer node, only those

transactions in the block that are not already available at the peer

are sent. This is as opposed to sending all of the block’s contents

to the receiver irrespective of the transactions that the receiver

already possesses. We will refer to this latter approach as the naive
block relay. As we will see, the performance of scheduling protocols

of a blockchain are rooted in an interplay between transaction and

mined block dissemination, which is unique to blockchain systems.

Our aim is to take a systematic approach to the blockchain com-

munication problem. Hence, we start by describing high level design

objectives. The following categories are not necessarily indepen-

dent of each other.

Performance: It is well known that the rate at which transac-

tions can be securely confirmed by the blockchain is proportional

to the rate at which blocks can distributed in the blockchain [7, 18].

This is because blockchains confirm transactions by reaching a

consensus on an ordered sequence of blocks, where the blocks are

ordered by the times at which they were mined. To this end, we

note that knowing block 𝑖 (indexed by mining time) is most useful

to a node when it already has knowledge of all blocks mined prior

to 𝑖 . In this paper, we propose a performance measure called ordered
completion times (OCT) for blocks, which is the time at which the

given block and all blocks published prior to it are known to all the

peers. We also propose and study scheduling protocols (or, policies)

for blockchains that optimize OCT, thus optimizing the rate and

throughput of transaction confirmation as well.

Physical Network and Overlay Network: The physical net-

work layer of the blockchain consists of a set of compute nodes

221

https://doi.org/10.1145/3492866.3549730
https://doi.org/10.1145/3492866.3549730
https://doi.org/10.1145/3492866.3549730

MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea Hegde and de Veciana

(peers) connected by a network of physical links. The overlay-

network is a layer of abstraction over the physical layer, where peers

are connected via logical links. The capacities and latencies of the

logical links are thus dictated by the underlying physical network.

Past works have observed that a completely randomized construc-

tion of the overlay network is a cause for slow block-propagation

times [6, 14], and therefore partially “structured approaches” of net-

work design have been proposed, such as Bitcoin-Fibre, Falcon and

bloXroute [2, 3, 14]. In particular, these structured overlay networks

consist of a core network that has a tree structure and has resources

specifically provisioned for the blockchain (see Figure 1 for a small

instance). In this paper, our analysis of protocols will focus on such

structured overlay networks, in particular, tree networks, however

this also provides key insights for the performance of protocols on

more general overlay networks.

Figure 1: A small instance of a Blockchain Overlay Network,
such as Bitcoin-Fibre, or Bloxroute. The core-network that
consists of relay nodes with provisioned resources is shown
in blue, and the nodes connecting to it are shown in yellow.

Efficiency: A couple of efficiency measures could be of interest.

First,mining efficiency, which is the fraction of time that a node can

be actively mining, impacts a miner’s revenue. Second, in systems

where nodes and clients have to perform certain set of operations

per block, their computational efficiency could be affected by the

number of transactions per block. These efficiency measures can

be affected by the transaction arrival rate, network parameters and

network policy, as we will demonstrate via simulation in Section 5.

1.1 Summary of Contributions:
A summary of the contributions of this paper is as follows:

• We begin by introducing a performance metric of interest,

the sequence of ordered-completion-times, which captures the
progress distributed nodes are making in jointly constructing

a consistent blockchain. This metric captures both the rate

at which transactions are confirmed in the blockchain, as

well as the influence of block distribution on the security of

the blockchain.

• We study the characteristics of block relaying/scheduling

protocols. In particular, we show that when nodes cannot

perform cut-through relaying, there is no optimal causal

block relaying protocol if block relaying times are determin-

istic. We propose a simple age-based block relaying protocol

that is provably near-optimal in terms of minimizing ordered-

completion-times when the P2P overlay network is a tree.

This analysis is relevant to core parts of blockchain relay

networks where the overlay network is a tree.

• Driven by our theoretical results, we use simulation to ex-

plore the complex interplay between transaction and block

relaying and prioritization (age, size, FCFS based). We ob-

serve that among the policies considered, the best perfor-

mance is achieved by policies which prioritize block relaying

based on their age (which is in line with our above analysis)

and distribute unmined transactions either according to their

size and/or their age.

• We explore the performance of blockchain systems in a nat-

ural regime where the block mining rate grows proportion-

ally with the transaction arrival rate and show that it has

a U-shape where it goes from being limited by mining de-

lays to limited by network congestion. This tradeoff sup-

ports the existence of a natural sweet spot if one wishes to

achieve both mining and computational efficiency, and per-

formance. Moreover, in practice when network parameters

are unknown, one might use sensitivity analysis and other

optimization techniques to find this sweet spot.

1.2 Paper Organization
In Section 1.3, we review previous works that analyze blockchain

network protocols, and works that use a simple network abstraction

as a basis for blockchain analysis. In Section 2, we introduce our

performance metric, OCT, and explain its significance. In Section

3, we describe our network model. In Section 4, we do a perfor-

mance analysis in the case that the network is a tree, and show

that although optimal policies are not possible with respect to min-

imizing OCT, a simple age-based policy is near optimal. Finally,

in Section 5, we present simulation results on tree and fully con-

nected networks and describe the tradeoff between performance

and efficiency metrics.

1.3 Related Work
Most papers analyzing properties of blockchains use extremely

simplified network models. [8, 9] use a synchronous model for the

networkwhere it is assumed that a broadcasted block is immediately

received by all the nodes in the network. A popular model is the

Δ-synchronous model[7, 10, 18] where the delay for all nodes to

receive the broadcast of a mined block is at most Δ, where Δ is a

deterministic parameter. A recent work [20] models Δ as a random

variable which is i.i.d., across blocks. All these models fail to explore

the underlying communication and queueing policies.

Two desirable properties for a Blockchain are persistence and
liveness [9]. Persistence states that once a transaction is confirmed

in a blockchain, it will stay confirmed forever with high probability.

Liveness states that once a transaction is submitted to be included

in the blockchain, it will be confirmed within a certain period

of time with high probability. [7, 9, 10, 18, 20] all establish these

two properties of the blockchain under the simple network models

described above. For instance, in theΔ-synchronous networkmodel,

222

Performance and Efficiency Tradeoffs in Blockchain Overlay Networks MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea

they conclude that the blockchain has persistence and liveness as

long as the adversary controls fewer than a 1/(1 + Δ𝜆) fraction of

the nodes, where 𝜆 is the rate at which blocks are mined. We believe

that our proposed performance metric, ordered-completion-times,

is the right metric to use when studying persistence and liveness

properties of blockchains under a more comprehensive network

model.

Works that consider more complicated network models are

mostly restricted to the empirical domain. [6] performed an empiri-

cal study of the Bitcoin network and identified that network delay

is a primary bottleneck for scaling blockchains. [5] perform a study

of scalability issues in Bitcoin, in which they empirically observe

the relationship between block size, network parameters and block

propagation delay.

Some recent works model and analyze network dynamics of

blockchains as well. [15, 16] study the queueing dynamics of trans-

action arrivals and block mining, however their model doesn’t

capture the queueing dynamics of transaction and block propa-

gation. [11] study a model capturing general overlay networks.

However, their work is restricted to studying the stability of the

system, and not performance measures such as block propagation

delay or ordered-completion-times.

Lastly, we note that there are several recent works that modify

the underlying blockchain protocol to enable a high throughput of

blocks and transactions [19, 21, 22]. The key idea in these works is

to maintain a directed-acyclic-graph (DAG) of blocks rather than

a chain. We stress that our analysis of network communication

protocols is relevant to such DAG-based protocols as well.

Notation. N denotes the set of natural numbers. (𝑥1, 𝑥2, . . .)
represents a sequence (ordered-set) of elements. {𝑥1, 𝑥2 . . . } rep-
resents an unordered set of elements. [𝑚,𝑛] represents the set

{𝑚,𝑚+1 . . . , 𝑛}, and [𝑘] represents the set [1, 𝑘]. For two sequences
𝒙 = (𝑥𝑖)𝑖 ,𝒚 = (𝑦𝑖)𝑖 , 𝒙 ≤ 𝒚 if and only if 𝑥𝑖 ≤ 𝑦𝑖 for every 𝑖 .

2 PERFORMANCE IN BLOCKCHAIN
NETWORKS

A blockchain is a directed acyclic graph with blocks as vertices

such that each block has exactly one outgoing edge. Such a graph

has a root-vertex, called the genesis-block in blockchains, such that

all other blocks in the blockchain have a path to the genesis block.

A chain in the blockchain is a path from one of the leaf blocks (a

block with no incoming edges) to the genesis block. Themain chain
is the chain of longest length, with ties broken uniformly. Refer to

Figure 2 for a small instance of a blockchain.

Blocks are added to the blockchain by network nodes through a

process called mining. Honest nodes mine their blocks at the tip of

their main chain, and publish their blocks soon after they are mined.

Adversarial nodes could mine blocks at any point in the blockchain,

and could wait an arbitrary amount of time before publishing their

blocks. To simplify notation in the following sections, we will as-

sume that blocks are indexed according to the order in which they

are published (and not the order in which they are mined, which

could be different due to adversarial behavior). When a node hears

of a published block, it adds the block along with its outgoing edge

to its copy of the blockchain.

Our proposed performance metric can be understood by the

blockchain instance shown in Figure 2. Because of the sequential

ordering of blocks in the blockchain, Block 3 can only be verified

after both Blocks 1 and 2 are verified. At a transaction level, Trans-

action E can only be verified after transactions A, B, D, C and F,

and the block-headers of blocks 1, 2 and 3 are also received and ver-

ified. Therefore, in terms of transaction confirmation, we note that

receiving Block 3 is not useful to a peer until it has also received

all the contents of Blocks 1 and 2. Hence, we define the ordered-

completion-time for Block 3 as the earliest time at which all Blocks

1, 2 and 3 are received. Similarly, ordered-completion-time for Block

2 is the earliest time at which Blocks 1 and 2 are received.

Next, we focus on the features of a network performance metric

required for a theoretical security analysis of blockchains. Most

works [7–10, 18] that do a security analysis of the blockchain use a

simplified network model, such as the Δ-synchronous model, which

doesn’t capture the dynamics of different blocks being distributed

at different rates, and different network nodes receiving blocks at

different rates. However, we observe that all these works intrinsi-

cally use the following general network metric. At any time 𝑡 , they

compute a previous time, 𝑡 − Δ(𝑡), such that all blocks that were

published by time 𝑡 −Δ(𝑡) have been received by all network nodes

by time 𝑡 . For the simple Δ-synchronous network model, we would

have Δ(𝑡) = Δ, for all time 𝑡 .

Figure 2: A small instance of a blockchain. The contents of
the blocks are shown, where the red portion of the block
is the block-header containing some metadata. The transac-
tions indices are not “in-order” to indicate that the order
in which transactions arrive to the system may be differ-
ent from the order in which they are incorporated in to the
blockchain.

In our work, we propose a network performance metric that

captures both the practical purpose of transaction confirmation

time, as well as the purpose of aiding a theoretical security analysis.

To that end, let𝑨 = (𝒂𝑖)∞𝑖=1 denote the block arrival sequence, where
𝒂𝑖 = (𝑛𝑖 , 𝑡𝑖 ,𝑚𝑖) is the mining node, time of publishing and block-

size respectively of block 𝑖 . Here, we note that although the blocks

are numbered in sequence, this does not imply that they form a

single chain in the blockchain. That is, they could be on different

forks in the blockchain (as illustrated in Figure 2). However, our

metric will be oblivious to the structure of forking in the blockchain,

and will only depend on the block arrival sequence because, from

a security point of view, it is still important to distribute blocks

which are on short forks in the blockchain [7, 18].

223

MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea Hegde and de Veciana

Let 𝑹 = (𝑟𝑖)∞𝑖=1 denote the block receipt seqeunce, where 𝑟𝑖 is the
time at which block 𝑖 was received by all network nodes. Clearly,

the sequence 𝑹 is a function of the block arrival sequence 𝑨, and a

network communication policy, denoted 𝜋 (network policies are

discussed in detail in the following section). We define the ordered-

completion-time for block 𝑖 , denoted Θ𝑖 , as the time by which all

blocks up to index 𝑖 have been received by all network nodes.

Definition 2.1 (Ordered-Completion-Time). Θ𝑖 is the earliest
time at which all the networks nodes have received blocks 1, . . . , 𝑖 , for
some arrival sequence 𝑨 = (𝒂𝑖′)∞𝑖′=1 and network policy 𝜋 ,:

Θ𝑖 (𝜋,𝑨) = max

𝑖′∈[1,𝑖]
𝑟𝑖′ (𝜋,𝑨) .

The sequence of Θ𝑖 ’s is represented as Θ(𝜋,𝑨) = (Θ𝑖 (𝜋,𝑨))∞𝑖=1.

We are interested in designing network policies that minimize

Θ𝑖 , for each block 𝑖 . To do so, we first describe the communication

model.

3 NETWORK MODEL
We consider a blockchain network with 𝑁 peers (or, nodes) inter-

connected via an overlay graph 𝐺 = (𝑁, 𝐸), where 𝐸 denotes a

set of directed edges, which we also refer to as links. Links are
bidirectional, meaning that if (𝑢, 𝑣) ∈ 𝐸, then (𝑣,𝑢) ∈ 𝐸. We will

use the terms graph and network interchangeably. Without loss of

generality, the nodes are labelled from 1 to 𝑁 .

For a node 𝑢 in 𝐺 , let 𝑃 (𝑢) denote the set of neighbours of 𝑢,
i.e., 𝑃 (𝑢) = {𝑣 : (𝑣,𝑢) ∈ 𝐸}. Each edge (𝑢, 𝑣) ∈ 𝐸 in the overlay

network represents an overlay link (𝑢, 𝑣) transmitting data from

node 𝑢 to node 𝑣 . The graph𝐺 is said to be a tree if there is a single

path between any two nodes 𝑢, 𝑣 with a unique sequence of links.

Developing a model and analysis for a general overlay network

𝐺 is very difficult. In fact, a far simpler problem of characterizing

the stability region of communication protocols on general overlay-

networks 𝐺 is still an open problem [11]. Therefore, we will focus

our analysis on the case where 𝐺 is a tree. Moreover, this assump-

tion is relevant for structured networks such as in Bitcoin-Fibre,

Falcon[2, 3] etc., where the core network is a tree.

Assumption 1. The capacity of a link (𝑢, 𝑣) is denoted as 𝑐 (𝑢, 𝑣).
A link has capacity 𝑐 means that it takes 𝑚/𝑐 seconds to serve a
file/packet of size𝑚 bits. Moreover, the capacity of each link is assumed
to be decoupled from the traffic in the rest of the network.

The above assumption provides a natural but simplified model

for overlay link capacities in an overlay network built on top of

possibly shared physical resources. Block/transaction relaying over

such links ismediated via TCP sessionswhose long term throughput

is known to depend on round-trip-times (geography) and packet

loss (underlay network congestion), see e.g.. [17]. Thus, roughly

we assume that the TCP throughput among nodes is stable and

representative of the achievable rate in transferring data amongst

the overlay nodes involved. We are also further assuming that the

capacities of overlay links are decoupled, even if they share physical

links, and/or if the links share the same network interface, i.e., they

are not limited by a node’s protocol processing power at the network

interface. In the core network infrastructure of structured networks

such as Bitcoin-Fibre and Falcon, resources are provisioned, and

therefore, the blockchain VPN would enjoy a degree of isolation

from other traffic on the network, making Assumption 1 reasonable

for such networks.

In the next two paragraphs, we introduce notation to track the

distribution of blocks and transactions in the graph. A directed

subgraph of the graph 𝐺 , denoted by its set of links 𝑇 , is a directed

graph such that if a directed edge (𝑣1, 𝑣2) is in𝑇 , then (𝑣1, 𝑣2) is in𝐺 .

Links in𝑇 do not have to be bidirectional.𝑇 is called an arborescence
on 𝐺 if it has an associated node called the root, denoted root(𝑇),
such that there is a unique directed path from root(𝑇) to every

other node 𝑣 in 𝐺 . Notice that if a block 𝑖 was mined by node 𝑢,

then there exists an arborescence𝑇 with root𝑢 such that the block 𝑖

was transmitted on every link (𝑣1, 𝑣2) ∈ 𝑇 . Let T𝐺 be the collection

of all arborescences in𝐺 . Since the graph𝐺 is assumed to be a tree,

there is a single arborescence associated with each root node 𝑢. In

this case, we denote by 𝑇 (𝑢) the arborescence with root 𝑢.

Define path𝑇 (𝑣) as the unique path in the arborescence 𝑇 from

its root node, root(𝑇), to node 𝑣 .

Definition 3.1 (Diameter). The diameter of the weighted graph
𝐺 , denoted diam(𝐺) is defined as,

diam(𝐺) = max

𝑇 ∈T𝐺

max

𝑣≠root(𝑇)

∑
(𝑣1,𝑣2) ∈path𝑇 (𝑣)

1

𝑐 (𝑣1, 𝑣2)
. (1)

Assuming there is no congestion (queuing) in the overlay net-

work, the diameter diam(𝐺) is an upper bound on the time it takes

for a block of unit size mined at any node in the network to be

distributed to all other nodes in the graph.

We further introduce an alternate weight for a tree graph𝐺 called

the critical-synchronized-delay. This is best defined in a recursive

manner.

Definition 3.2 (Critical-Synchronization-Delay). Let (𝑢, 𝑣)
be a link on the graph 𝐺 . Then, define its synchronization delay as,

sd(𝑢, 𝑣) =

0 , if 𝑃 (𝑢) = {𝑣},
max𝑤∈𝑃 (𝑢)\{𝑣 } sd(𝑤,𝑢)
+max𝑥 ∈𝑃 (𝑢)\{𝑣 }

1

𝑐 (𝑥,𝑢) , otherwise.
(2)

Then the critical-synchronization-delay of the graph, denoted csd(𝐺),
is defined as:

csd(𝐺) = max

(𝑢,𝑣) ∈𝐸
sd(𝑢, 𝑣). (3)

For an intuitive description of the critical-synchronization-delay,

consult Figure 3. For a given node, its children are the nodes who

have links into the node in the given tree (for instance, 𝑥1’s chil-

dren are 𝑦1 and 𝑦2, and 𝑥1 is their parent). Consider the following

computational scenario. All the leaf nodes are said to be ready at

time 0. Every other node needs to begin and finish a computation,

following which it is said to be ready. A node can begin its compu-

tation when all its children nodes are ready. And, the time that a

node takes to finish the computation is equal to the maximum of

the inverse of the capacities of links from its children to it. Then,

the synchronized-delay of link (𝑢, 𝑣) is the time at which node 𝑢

is ready in the tree shown in Figure 3. Following these rules, no-

tice that nodes 𝑥1 and 𝑥2 are ready at times 1 and 10 respectively.

Therefore, node𝑢 can begin its computation at time equal to 10, and

224

Performance and Efficiency Tradeoffs in Blockchain Overlay Networks MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea

takes max{10, 1} time to finish computation. So, node 𝑢 is ready at

time 20: sd(𝑢, 𝑣) = 20.

Figure 3: A subset of a graph 𝐺 depicting links that lead up
to link (𝑢, 𝑣). The link capacities are shown next to the cor-
responding links.

In section 4, we show that diam(𝐺) and csd(𝐺) appear as additive
gaps of our proposed algorithm from the optimal in the non-fluid
regime, where nodes have to receive the whole block before they

can begin relaying it to their neighbours.

As noted in the introduction, a blockchain communication proto-

col could be running in two modes of operation: naive, or compact

block relay. Our analysis is restricted to naive block relay in which

all the block’s contents are relayed on links even if the receiver

already possesses some of the block’s transactions. Therefore, when

analyzing naive block relay we can ignore transaction-distribution

and solely focus on block distribution. To this end, we only in-

troduce notation for block-distribution in this section. We will

introduce notation for transaction distribution in Section 5 when

we discuss compact block relay.

Recall that the mining process is represented by the block arrival

sequence 𝑨 = (𝒂𝑖)∞𝑖=1, where 𝒂𝑖 = (𝑛𝑖 , 𝑡𝑖 ,𝑚𝑖) is the 𝑖-th block

arrival.𝑛𝑖 , 𝑡𝑖 and𝑚𝑖 represent the node that mined the block, arrival-

time and the block-size respectively for the 𝑖-th block. For analysis

purposes, it will be useful to truncate 𝑨 to the first 𝑘 blocks, which

we will denote as, 𝑨 |𝑘 = (𝒂𝑖)𝑘𝑖=1.
For the link (𝑢, 𝑣), which is the link transmitting blocks from

peer 𝑢 to peer 𝑣 , there exists a corresponding link-policy 𝜋 (𝑢, 𝑣)
that decides which of the available blocks at peer 𝑢 to transmit to

𝑣 . The link-policy is local which means that it is a causal function

of the state of the peers 𝑢 and 𝑣 , and not of the state of any other

peers in the system. The link-policy can work in a preemptive-
resume manner, which means that it can interrupt the service of

a block in order to serve another block. It can later resume the

service of the former block starting from where it was interrupted.

The ensemble of all link-policies in the network is represented as:

𝜋 = {𝜋 (𝑢, 𝑣) : (𝑢, 𝑣) ∈ 𝐸}. We will refer to 𝜋 simply as the policy.
We consider two modes for operation: the fluid-regime and the

non-fluid-regime. In the fluid regime, a node can start forwarding

(fluid) bits of a block before it has received the whole block from

its neighbours. That is, the nodes can employ cut-through relaying

to speed up communication [12]. In the non-fluid regime, a node
can only start forwarding a block after it has received the entire

block. In the context of blockchain, the latter is more realistic since

a block is typically "verified" before it is forwarded.

A link-policy is said to be work-conserving if it is serving a block
whenever there is a block available to serve(in the fluid regime,

when there is a bit of a block to serve).

Let 𝑏𝑢
𝑖
(𝜋,𝑨) denote the time at which peer𝑢 receives the last bit

of the 𝑖th block (denoted as block 𝑖) in the arrival sequence 𝑨 under

policy 𝜋 . If 𝑢 is the node that mined block 𝑖 (that is, 𝑛𝑖 = 𝑢), then

𝑏𝑢
𝑖
(𝜋,𝑨) = 𝑡𝑖 , and the peer forwards the block to all its neighbours.

If 𝑢 is not the miner of the block, then it received it from one of its

neighbours, and it needs to forward it to each of its other neighbours

in the tree. Then, the block receipt, 𝑟𝑖 time of block 𝑖 (first defined

in Section 2), can be expressed as,

𝑟𝑖 (𝜋,𝑨) = max

𝑢∈[1,𝑁]
𝑏𝑢𝑖 (𝜋,𝑨)

4 PERFORMANCE ANALYSIS
In this section, our goal is to characterize the performance of cer-

tain protocols 𝜋 on the blockchain system under naive block relay,

assuming that the overlay network 𝐺 is a tree.

We separate our analysis into two main cases: the non-fluid

regime and the fluid regime. We first discuss the non-fluid regime,

and show later that the results for the fluid regime can be obtained

as a corollary to the non-fluid regime results.

4.1 Non-Fluid Regime
We first show that, in the non-fluid regime, there exists no causal

and decentralized policy 𝜋 that is optimal in terms of minimizing

Θ𝑖 (𝜋,𝑨) for every block 𝑖 , and every arrival sequence 𝑨. However,
later in this section, we propose a simple policy called 𝜋∗𝑛𝑝 that

achieves near-optimality guarantees with respect to minimizing

ordered-completion-times metric under any arrival sequence 𝑨. In
fact, the near-optimality guarantee holds even when comparing to

non-causal and centralized policies.

There are two factors that could lead to there being no optimal

policies. First, since we require policies to be causal, uncertainty

around future arrivals might lead to there being no optimal (causal)

policies. In the interest of space, we skip showing this formally.

Second, since our proposed performance metricΘ(·, ·) is a vector,
the performance of two policies 𝜋1 and 𝜋2 may not always be

comparable. That is, for some arrival sequence 𝑨, it maybe that

Θ(𝜋1,𝑨) ≰ Θ(𝜋2,𝑨) and Θ(𝜋2,𝑨) ≰ Θ(𝜋1,𝑨). Moreover, for a

given arrival sequence 𝑨, there might not exist a (possibly non-

causal) policy 𝜋∗ such that Θ(𝜋∗,𝑨) ≤ Θ(𝜋,𝑨), for any other

policy 𝜋 . This is illustrated formally in Lemma 4.1. The crux of the

proof is in the following situation. Suppose that a link was midway

through serving a block when it received an older block (a lower-

indexed block) from another node. Here, it faces the dilemma of

whether to preempt the current service and serve the older block,

or to complete the current service before serving the older block.

In the former case, it might take a longer time for the next link in

the path to begin service, since it cannot start service until it has

received a full block. In the latter case, an older block is having to

wait for a newer block to complete service, which could hurt the

metric Θ(𝜋,𝑨), since the metric prioritizes the completion of older

blocks. This phenomenon is illustrated in detail in the proof of the

following Lemma, which can be found in Appendix A

225

MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea Hegde and de Veciana

Lemma 4.1. Assuming 𝐺 is a tree, there exists no causal policy 𝜋∗

such that for every arrival sequence 𝐴 = (𝒂𝑖)∞𝑖=1 and any other policy
𝜋 ,

Θ(𝜋∗,𝑨) ≤ Θ(𝜋,𝑨) .
This is true even if all block sizes are equal, i.e.,𝑚𝑖 =𝑚, and all link
capacities are equal, i.e., 𝑐 (𝑢, 𝑣) = 𝑐 .

As a consequence of Lemma 4.1, we turn to constructing near-

optimal policies. The ordered-completion-times metricΘ(𝜋,𝑨) sug-
gests that blocks should be distributed in the order of their age.

Therefore, it seems that a good policy 𝜋 should prioritize serving

the oldest available blocks at every link. However, from Lemma

4.1, it is unclear whether a policy should preempt the service of

a newer block in order to serve an older block. Also, if there are

two blocks one of which is much smaller in size than the other, it

is unclear if one should disregard the ages of the block and serve

the smaller sized block first.

In this work, we propose a very simple policy called 𝜋∗𝑛𝑝 which

non-preemptively serves the oldest block at each link. Despite the

many complicated scenarios that could arise as described above, we

prove that this simple policy achieves near-optimality guarantees

on tree overlay-networks on any arrival sequence 𝑨. The policy is

defined formally below.

Definition 4.2. The policy 𝜋∗𝑛𝑝 =

{
𝜋∗𝑛𝑝 (𝑢, 𝑣) : (𝑢, 𝑣) ∈ 𝐸

}
is such

that for every link (𝑢, 𝑣) and at every time 𝑡 ,
• if 𝜋∗𝑛𝑝 (𝑢, 𝑣) was serving a certain block 𝑖 at 𝑡− and its service
was not completed, then it continues serving 𝑖 at time 𝑡 ,

• otherwise, if there are available blocks, it starts serving the
oldest available block at that link (that is the block with the
smallest 𝑡𝑖).

The𝑛𝑝 in 𝜋∗𝑛𝑝 stands for non-preemptive since the policy doesn’t

preempt the service of a block to serve another. Observe that it

is also a work-conserving policy. Also, it is a decentralized policy

since at each link the policy only depends on the state of the nodes

connected to that link and not on the global state of the system.

Below, we characterize the performance of 𝜋∗𝑛𝑝 .
The near-optimality gap for 𝜋∗𝑛𝑝 can be split into two cases. In

the first case, when all the block sizes in the arrival sequence are

equal, we show that Θ𝑖 (𝜋∗𝑛𝑝 ,𝑨) is larger by additive-gap at most

𝑚max diam(𝐺) compared to Θ𝑖 (𝜋,𝑨), for any arrival sequence 𝑨,
policy 𝜋 and block index 𝑖 . In the second case, when the block

sizes are allowed to be different, we show that the gap is at most

𝑚max (diam(𝐺) + csd(𝐺)).
Note that the near-optimality of 𝜋∗𝑛𝑝 holds evenwhen the policies

𝜋 we compare to are non-causal and know the global state of the

system (centralized). The following theorem states it formally.

Theorem 4.3. Assume that 𝐺 is a tree. Let 𝑨 = (𝒂𝑖)∞𝑖=1 be an
arrival sequence with the maximum block size being𝑚max.

If all the block sizes in 𝑨 are equal to𝑚max, then for all 𝑘 ∈ N and
all (possibly non-causal and centralized) policies 𝜋 ,

Θ𝑘 (𝜋∗𝑛𝑝 ,𝑨) ≤ Θ𝑘 (𝜋,𝑨) + diam(𝐺𝑆)𝑚max . (4)

If the block sizes are different, then for all 𝑘 ∈ N and all (possibly
non-causal and centralized) policies 𝜋 ,

Θ𝑘 (𝜋∗𝑛𝑝 ,𝑨) ≤ Θ𝑘 (𝜋,𝑨) +
(
csd(𝐺)+ diam(𝐺)

)
𝑚max . (5)

The proof of the Theorem can be found in Appendix B.

4.2 Fluid Regime
In the fluid-regime, links can start serving bits of a block before

they have received the whole block. We will consider the bits to

be infinitesimally small, thus mimicking a fluid. Denote by 𝜋𝑓 𝑙 the

policy that, at every link and at every time, serves a bit from the

oldest available block (which is probably only partially received) at

that node. The following theorem says that 𝜋𝑓 𝑙 is optimal in terms

of the ordered-completion-time for any arrival sequence.

Theorem 4.4. Assuming that 𝐺 is a tree, for any arrival sequence
𝑨,

Θ(𝜋𝑓 𝑙 ,𝑨) ≤ Θ(𝜋,𝑨),
for any other policy 𝜋 .

Proof Sketch. The fluid-regime can be considered to be equiv-

alent to the non-fluid regime where𝑚max → 0. Therefore, substi-

tuting𝑚max = 0 in Theorem 4.3 implies this result. □

So far, we have analyzed the performance of blockchain systems

on tree-overlays while only considering the distribution of blocks

(instead of both transactions and blocks). We concluded that al-

though no optimal policies exist, a simple policy that relays the

oldest block non-preemptively achieves near-optimal performance.

In the following section, we carry this insight into a more realistic

scenario where we consider both tree and complete-overlays, as

well as the distribution of both transactions and blocks.

5 SIMULATION
In this section, we further explore factors that impact blockchain

system performance-efficiency via simulation. We start by briefly

describing our simulation model. For simplicity we consider two

classes of overlay network 𝐺 : linear and fully connected networks.

Each node has transactions arriving as a Poisson process of rate 𝜆𝑡 .

Upon arrival, transactions are disseminated through neighboring

nodes and become candidate transactions for inclusion in mined

blocks. Transaction sizes are uniformly distributed between 0.5

and 1.5 units. A node stores all its known transactions that have

not yet been included in the blockchain in its transaction-mempool,
or simply mempool. When a node becomes aware that a certain

transaction in its mempool has been mined into a block (possibly

at a different node) it removes it from its mempool.

When a node has received all the completed blocks in the

blockchain, it groups at most𝑚max transactions from its mempool

according to a mining strategy (elaborated later) and tries to mine

them into a block. The block mining process at each node occurs

at rate 𝜆𝑏 . A block consists of the block-header, and the list of

transactions included in the block. Usually, the block header is

much smaller compared to the rest of the block. Therefore, for

simplicity, we assume that the block-header size is 0.

If a node successfully mines a block, say block 𝑖 , it immediately

announces the corresponding block header to all the other nodes in

the network. Since a blockchain is a sequence of blocks containing

a consistent order of transactions, nodes need to receive and verify

the contents of block 𝑖 before they can append their blocks on top of

226

Performance and Efficiency Tradeoffs in Blockchain Overlay Networks MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea

block 𝑖 . Therefore, the other nodes temporarily pause mining until

they receive the complete block (i.e., all its associated transactions)

and verify it. Once the block is received and verified, a node can

resume mining. In practice, nodes may start mining blocks with 0

transactions in them while they wait to receive other completed

blocks, instead of pausing their mining. However, since the size of

such blocks will be negligible (as they only consist of block headers),

we shall simply ignore such blocks.

When a node 𝑢 receives a transaction tx (either as a new arrival

or forwarded by another node), it announces the availability of tx
to all its other neighbours through an inventory message. Those
neighbours that have not yet received tx request it from node 𝑢 by

sending a getdata message. Upon receiving a getdata message from

a neighbour 𝑣 , node 𝑢 adds the transaction to the corresponding

link (𝑢, 𝑣)’s queue. If node 𝑣 receives tx from a different neighbour

before node𝑢 is able to send it, then node 𝑣 notifies it, and𝑢 removes

the transaction from link (𝑢, 𝑣)’s queue. In our simulation, we have

set the sizes of inventory messages and getdata messages to 0. We

shall also have Assumption 1 in place, that is each link (𝑢, 𝑣) in 𝐺
serves data at a rate 𝑐 (𝑢, 𝑣).

We shall simulate systems which are stable, meaning that the

mempool and the link-queue sizes should not diverge to infinity. For

the mempools to be stable, transactions should be incorporated into

blocks at a rate at least as high as the rate of transaction arrivals.

That is, we need𝑚max𝜆𝑏 > 𝜆𝑡 . Since a node’s mining process could

be paused part of the time (while it waits to receive previously

mined blocks) and all the blocks may not be full, in our simulations

we set𝑚max𝜆𝑏 ≥ 3𝜆𝑡 .

Now, we comment on the stability of the links. On tree networks,

we note that there is exactly one set of paths for a transaction

originating at a particular node to take. Therefore, denoting𝐻 (𝑢, 𝑣)
as the number of nodes whose transaction need to be served on

link (𝑢, 𝑣),

𝐻 (𝑢, 𝑣) =
��� {𝑥 : 𝑥 ∈ [𝑁] and (𝑢, 𝑣) ∈ 𝑇 (𝑥)}

���. (6)

And, if we assume that the rate of transaction arrivals at all the

nodes is equal to 𝜆𝑡 , then, for a tree-network, all the links are stable

if for all links (𝑢, 𝑣), 𝑐 (𝑢, 𝑣) > 𝜆𝑡𝐻 (𝑢, 𝑣).
Stability of link-queues in fully connected networks is non-trivial

[11]. However, here, we use a heuristic to estimate an upper bound

as follows. Each arriving transaction needs to be communicated a

total of 𝑁 − 1 times in order to be distributed to all the nodes.

Since the transaction arrival rate at each node is 𝜆𝑡 , the total

communication rate demanded by the transactions per node is

𝜆𝑡 (𝑁 − 1). We estimate the system capacity to be the minimum

over the nodes of the sum of link capacities out of each node. An

upper bound on the transaction arrival rate is then calculated as

(𝑁 − 1)𝜆𝑡 < system capacity.

Different communication protocols are possible based on the

order in which transactions in the link queues are served. Since

our performance metric, ordered-completion-times, naturally pri-

oritizes the distribution of blocks, transactions in the link-queue

that have already been mined into a block are marked as mined-

transactions. In all the protocols we consider (except FCFS), mined-

transactions are served before unmined transactions. We consider

the following communication protocols (which are all

non-preemptive) and mining strategies,

(1) Age − Based: The age of a transaction is the time since the

transaction arrived to the system. If there are any mined-

transactions in the link-queue, serve the oldest of those trans-

actions. Otherwise, serve the oldest unmined transaction.

During mining, sort the transactions in the mempool in de-

scending order of their age, and group the first𝑚max trans-

actions into a candidate block (if there are fewer than𝑚max

transactions in the mempool, group all of them into the

block).

(2) FCFS: Serve transactions on a First Come First Serve (FCFS)

basis at all link queues (without regard to whether a trans-

action is mined or unmined). Incorporate transactions into

blocks on a FCFS basis as well.

(3) Size − Based: Serve the smallest-sized transaction among

the mined transactions first. Otherwise, serve the smallest-

sized transaction amongst the unmined transactions. During

mining, sort the transactions in the mempool in ascending

order of their sizes and group the first 𝑚max transactions

into a candidate block.

(4) Age + Size − Based: If there are mined transactions to be

sent, serve the smallest transaction from the oldest available

block. Otherwise, send the smallest unmined transaction.

Mining strategy is the same as for the Size − Based policy.

The Age − Based and Age + Size − Based policies are motivated

by our analysis of the 𝜋∗𝑛𝑝 policy in Section 4 which suggests that

serving mined transactions based on the age of their correspond-

ing blocks is near optimal. The Size − Based policy prioritizes the

smallest mined transactions on a link, and thus takes advantage that

smaller transactions would propagate faster through the network.

When it comes to unmined transactions, apart from ensuring a

quick distribution of transactions in the network, it might be bene-

ficial to prioritize transactions that have already been distributed in

the rest of the network. This is so that when such transactions do

get mined into a block, the rest of the nodes do not have to pause

for long to receive and verify them. Since we need communica-

tion policies to be decentralized, we use the following heuristics

in designing the policies. First, the Age − Based policy also priori-

tizes the dissemination of unmined transactions by their age, with

the idea that older transactions are more likely to be already dis-

tributed in the rest of the network. Second, the Size − Based and

Age + Size − Based policies prioritize the smallest unmined trans-

actions on a link since they propagate faster through links. We use

the simple FCFS policy as a natural and simple baseline.

Additionally under all the above policies, we ensure that the min-

ing strategy of incorporating transactions into blocks is consistent

with the communication policy used to relay transactions. As one

might expect, we found that if the two policies were not consistent,

it led to bad performance (in the interest of space, we skip showing

these results).

In our simulations performance comparisons for various policies

are based on the average ordered-completion-delay of transactions.

The ordered-completion-delay for a transaction is the difference

of its arrival time and the ordered completion time of the corre-

sponding block that it is eventually mined into. The average ordered

227

MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea Hegde and de Veciana

(a) Plot depicting ordered-completion-delay
for transactions versus transaction arrival
rate for different policies. Linear Network
with N=10 nodes. All link capacities are
equal to 1. 𝜆𝑏 = 3𝜆𝑡 /𝑚max, and𝑚max = 50.

(b) Plot depicting tradeoff between ordered-
completion-delay (solid lines) and mining
efficiency (dashed lines). Fully connected
network with N = 10 nodes. All link capac-
ities sampled i.i.d., Unif[0.5,1.5]. The policy
used is the Age − Based policy.

(c) Plot depicting tradeoff between ordered-
completion-delay (solid lines) and compu-
tational efficiency (dashed lines). Fully con-
nected network with N = 10 nodes. All link
capacities sampled i.i.d., Unif[0.5,1.5]. The
policy used is the Age − Based policy.

Figure 4

completion delay for a linear network with𝑁 = 10 nodes and all the

link capacities being equal to 1 is shown in Figure 4a. We observe

that for low values of transaction arrival rate, all policies have a

similar performance. This is because, in this region, transactions do

not build up in the link-queues, thus all the policies end up behaving

similarly. However, for high transaction arrival rates, we observe

that the Age − Based and Age + Size − Based policies outperform

the others in terms of ordered completion delays. This is in-line with

our intuition from Section 4 since these policies prioritize mined

transactions according to the age of the corresponding blocks. In

terms of scaling, when 𝜆𝑡 reaches 97% of system capacity, FCFS

has 10% more delay than Age − Based policy. Whereas, on a linear

network with N=20 nodes, it had 17% more delay. We speculate

that the gap in performance could increase for larger networks.

In the left-axis of Figure 4b, we show the performance of

Age − Based policy on a fully connected network with N=10 nodes,

for different mining rates. First, when the mining rate is held fixed

(𝜆𝑏 = 3/𝑚max) across the different transaction arrival rate 𝜆𝑡 , we

notice that the ordered-completion-delays low for small 𝜆𝑡 (where

there is no network congestion), and the delay grows with increas-

ing 𝜆𝑡 because of increasing network congestion.

Second, Figure 4b also depicts the performance when we set the

mining rate to be proportional (𝜆𝑏 = 3𝜆𝑡/𝑚max) to the transaction

arrival rate 𝜆𝑡 . Here, we notice that the ordered-completion-delay

exhibits a U-curve shape w.r.t., varying 𝜆𝑡 . The increase in delay for

high 𝜆𝑡 is due to network congestion as explained above. Whereas,

for small 𝜆𝑡 , the increase in delay is due to increase in inter-arrival

time of blocks. Therefore, under this scaling of mining rates, we

note that there is a sweet-spot for transaction arrival rate as the

system goes from being driven block mining delays to network

congestion.

Purely in terms of ordered-completion-delay, it seems that hold-

ing the mining rate fixed is a better strategy as compared to varying

it linearly with transaction arrival rate. However, we note that there

is a tradeoff between performance (ordered-completion-delay) and

the efficiency of the system.We propose the following twomeasures

to quantify the efficiency.

• Mining Efficiency: This is measured in terms of the fraction

of time that a node’s mining is paused while it waits to

receive mined blocks from other nodes. The system has high

mining efficiency if the fraction of a nodes’ paused time

is low. A low mining efficiency implies that node’s mining

resources are either held dormant or are wasting energy for

a fraction of the time, both of which are bad for the miner.

• Computational Efficiency: This is measured in terms of the

average number of transactions per mined block. A lower

computational efficiency could mean that nodes and clients

need to perform more computation per transaction. For in-

stance, in certain blockchain consensus protocols such as

Ouroboros Proof of Stake[13], all the nodes in the system

need to perform a joint computation to decide which node

gets to mine the block. Similarly, in recently popular pro-

tocols such as stateless blockchains [4], the computation

required by the clients is proportional to the block mining

rate. In either examples, lower number of transactions per

block means more computation by nodes and clients per

transaction.

In Figure 4b we show the tradeoff between performance and

mining efficiency. Note that although higher mining rate (such as

when we have fixed 𝜆𝑏 with respect to 𝜆𝑡) leads to better perfor-

mance, the more frequent mining of blocks means that transactions

have lesser time to be distributed to all the nodes before they are

mined. Therefore, we observe that nodes are paused for longer (i.e.,

they have lower mining efficiency) when the 𝜆𝑏 is higher.

Similarly, the tradeoff between performance and computational

efficiency is shown in Figure 4c. Here, we note that with a higher

mining rate (such as when 𝜆𝑏 is held fixed), the more frequent

mining of blocks means that the number of transactions per blocks

(computational efficiency) goes down quickly as the transaction

arrival rate goes down.

228

Performance and Efficiency Tradeoffs in Blockchain Overlay Networks MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea

In conclusion, we note that there is an inherent tradeoff between

performance and efficiency in blockchain systems. This means that,

based on the relative importance of performance and efficiency,

there exists a sweet spot in terms of choosing the transaction arrival

rate and block mining rate. In systems where transaction arrival

rates is dictated by external forces, the sweet spot can be expressed

in terms of the link capacities that the nodes in the system need to

invest in.

6 CONCLUSION
We have explored the interplay among transaction and block relay-

ing policies and the mining strategies used to incorporate transac-

tions into blocks and their impact on blockchain performance in

terms of order-completion-delays as well as tradeoffs in efficiency.

This is certainly a complex system dynamics to analyze but our

theoretical results on tree overlays and simulation results on tree

and fully-connected overlays provide support for the claim that

consistent age-based strategies provide robust performance over a

variety of networks and loads for such systems.

Appendices

Appendix A PROOF OF LEMMA 4.1
Proof. The proof is by counter-example. Consider a linear net-

work with 𝑁 = 4 peers. Let the capacity at all the links be 𝑐 = 1,

and all block sizes be 𝑚 = 1. We will only consider the first 2

block arrivals (future arrivals can be assumed to be arriving much

later with respect to these two blocks). The idea is to construct

an arrival sequence such that any policy that optimizes Θ1 is non-

optimal in terms of Θ2, and vice versa. Let the two block arrivals

be: 𝒂1 = (1, 0, 1) and 𝒂2 = (2, 1/2, 1). Refer Fig. 5(a) for a pictorial
depiction of the network.

For the links (2, 1) and (1, 2), the link-policies are simple. 𝜋 (2, 1)
needs to serve block 2 from time 1/2 to 3/2, and 𝜋 (1, 2) needs to
serve block 1 from time 0 to 1.

(a) Linear network with N=4 and 2 block arrivals.

(b) Temporal depiction of block service at different links under
policies 𝜋1 (bottom) and 𝜋2 (top). Block 1’s service is shown in
blue, and block 2’s in red. Other links are not shown since they
are inconsequential for this example.

Figure 5: Pictorial Illustration for Lemma 4.1.

For the link (2, 3), we need to consider two link-policies, 𝜋1 (2, 3)
and 𝜋2 (2, 3). Let 𝜋1 (2, 3) serve block 2 from time 1/2 to 3/2, and
serve block 1 from time 3/2 to 5/2. Let 𝜋2 (2, 3) serve block 2 from

1/2 to 1 and then from 2 to 3/2, and let it serve block 1 from time 1

to 2. And, let 𝜋3 (3, 4) serve the block that arrives to the link (3, 4)
first.

Let 𝜋1 be the policy containing the link-policy 𝜋1 (2, 3), and
let 𝜋2 be the policy containing the link-policy 𝜋2 (2, 3). For any
other policy 𝜋 , it can be shown that either Θ(𝜋1,𝑨) ≤ Θ(𝜋,𝑨), or
Θ(𝜋2,𝑨) ≤ Θ(𝜋,𝑨). Refer to Fig. 5(b) for a pictorial representation
of the two policies.

The ordered completion times for the two policies can be com-

puted to be: Θ(𝜋1,𝑨) = (7/2, 7/2), and Θ(𝜋2,𝑨) = (3, 4). Since
these two sequences are not comparable, the proof by counter-

example is complete. □

Appendix B PROOF OF THEOREM 4.3
Proof. In the interest of space, we will only prove (4) here. The

proof of (5) is similar. Denote by 𝑧
(𝑢,𝑣)
𝑘

(𝑡, 𝜋) the number of the first

𝑘 blocks that have been transferred on link (𝑢, 𝑣) by policy 𝜋 on

arrival sequence𝑨 (for brevity, we skip including𝑨 as a parameter).

Similarly, define 𝑧𝑢
𝑘
(𝑡) as the number of blocks among the first 𝑘

blocks that are mined by node 𝑢 by time 𝑡 . Define, diam(𝑢, 𝑣) ≜∑
(𝑣1,𝑣2) ∈path𝑇 (𝑢) (𝑣)

1

𝑐 (𝑣1,𝑣2) . Then, diam(𝐺), defined in Definition

3.1, can be expressed for trees as, diam(𝐺) = max𝑢,𝑣 diam(𝑢, 𝑣).
We prove the lemma statement by proving the following stronger

statement:

𝑧
(𝑢,𝑣)
𝑘

(𝑡, 𝜋∗𝑛𝑝) ≥ 𝑧
(𝑢,𝑣)
𝑘

(𝑡 −𝑚max diam(𝑢, 𝑣), 𝜋) ,∀𝑡 . (7)

Before proving (7), let’s show how it implies (4). Since𝐺 is a tree,

the number of the first 𝑘 blocks of 𝑨 that need to be served on link

(𝑢, 𝑣) is equal under any policy, call it 𝑘 (𝑢,𝑣) . Under policy 𝜋 , let

𝑡 (𝑢,𝑣) be the earliest time when all the corresponding 𝑘 (𝑢,𝑣) blocks
are transferred, i.e., 𝑧

(𝑢,𝑣)
𝑘

(𝑡 (𝑢,𝑣) , 𝜋) = 𝑘 (𝑢,𝑣) . Then, (7) implies that,

𝑧
(𝑢,𝑣)
𝑘

(𝑡 (𝑢,𝑣) +𝑚max diam(𝐺), 𝜋∗𝑛𝑝) ≥ 𝑘 (𝑢,𝑣) .

That is, 𝜋∗𝑛𝑝 will complete serving the bits on link (𝑢, 𝑣) by time at

most 𝑡 (𝑢,𝑣) +𝑚max diam(𝑢, 𝑣). Θ𝑘 (𝜋,𝑨) is the maximum of 𝑡 (𝑢,𝑣) ’s
taken over all links (𝑢, 𝑣) ∈ 𝐸. Therefore, Θ𝑘 (𝜋∗𝑛𝑝 ,𝑨) ≤ Θ𝑘 (𝜋,𝑨) +
𝑚max diam(𝐺).

Now, we prove (7). Recall 𝐻 (𝑢, 𝑣) from (6). The proof will be by

induction on 𝐻 (·, ·). As the base case, consider links (𝑢, 𝑣) with
𝐻 (𝑢, 𝑣) = 0. In this case, the only blocks that are served on (𝑢, 𝑣)
are those mined by node 𝑢. Since 𝜋∗𝑛𝑝 is a work conserving policy

that serves oldest blocks first, we have 𝑧
(𝑢,𝑣)
𝑘

(𝑡, 𝜋∗𝑛𝑝) ≥ 𝑧
(𝑢,𝑣)
𝑘

(𝑡, 𝜋).
As the induction hypothesis, assume that (7) is true for all links

(𝑥,𝑦) such that 𝐻 (𝑥,𝑦) ≤ 𝑛, for some integer 𝑛. If there are no

links (𝑢, 𝑣) with 𝐻 (𝑢, 𝑣) = 𝑛 + 1, then the induction hypothesis

is vacuously true for all links (𝑥,𝑦) with 𝐻 (𝑥,𝑦) ≤ 𝑛 + 1 as well.

Consider that there is a link (𝑢, 𝑣) such that𝐻 (𝑢, 𝑣) = 𝑛+1. Let 𝑃 (𝑢)\
{𝑣} = {𝑥1, . . . , 𝑥𝑙 } be all the other neighbours of 𝑢, i.e., (𝑥 𝑗 , 𝑢) ∈ 𝐸

for all 𝑗 ∈ [𝑙]. Notice that for all these neighbouring links (𝑥 𝑗 , 𝑢),
we have 𝐻 (𝑥 𝑗 , 𝑢) ≤ 𝑛. Therefore, from the induction hypothesis,

all these neighbouring links satisfy (7). As a contradiction, assume

229

MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea Hegde and de Veciana

that (7) fails at link (𝑢, 𝑣). Let 𝑡 be the earliest time that it fails:

𝑧
(𝑢,𝑣)
𝑘

(𝑡, 𝜋∗𝑛𝑝) < 𝑧
(𝑢,𝑣)
𝑘

(𝑡 −𝑚max diam(𝑢, 𝑣), 𝜋). (8)

Link (𝑢, 𝑣) takes𝑚max/𝑐 (𝑢, 𝑣) time to deliver a block. Since, 𝑡 is

the first time that the induction hypothesis fails, we have,

𝑧
(𝑢,𝑣)
𝑘

(
𝑡 − 𝑚max

𝑐 (𝑢, 𝑣) , 𝜋
∗
𝑛𝑝

)
= 𝑧

(𝑢,𝑣)
𝑘

(
𝑡 − 𝑚max

𝑐 (𝑢, 𝑣) −𝑚max diam(𝑢, 𝑣), 𝜋
)
.

(9)

To see why the above equation is true, consider the two alternate

cases. If, it was “<” instead of “=”, then 𝑡 is not the earliest time

that (7) fails. Instead, if it was “>”, then for (8) to be true, 𝜋 would

have to serve more than 1 block on link (𝑢, 𝑣) in a time interval of

length𝑚max/𝑐 (𝑢, 𝑣), which is impossible.

In other words, (8) and (9) imply that policy 𝜋 delivered a block

from the first 𝑘 blocks on link (𝑢, 𝑣) in the time interval

(𝑡 −𝑚max/𝑐 (𝑢, 𝑣) −𝑚max diam(𝑢, 𝑣), 𝑡 −𝑚max diam(𝑢, 𝑣)]. This im-

plies that at time 𝑡 −𝑚max/𝑐 (𝑢, 𝑣) −𝑚max diam(𝑢, 𝑣), node 𝑢 has

at least an extra block from the first 𝑘 blocks than node 𝑣 under

policy 𝜋 , which it sends over in that interval. That is,

𝑧𝑢
𝑘

(
𝑡 − 𝑚max

𝑐 (𝑢, 𝑣) −𝑚max diam(𝑢, 𝑣)
)

+
∑

𝑥 ∈𝑃 (𝑢)\{𝑣 }
𝑧
(𝑥,𝑢)
𝑘

(
𝑡 − 𝑚max

𝑐 (𝑢, 𝑣) −𝑚max diam(𝑢, 𝑣), 𝜋
)

> 𝑧
(𝑢,𝑣)
𝑘

(
𝑡 − 𝑚max

𝑐 (𝑢, 𝑣) −𝑚max diam(𝑢, 𝑣), 𝜋
)
.

(10)

On the other hand, equations (8) and (9) imply that 𝜋∗𝑛𝑝 did

not deliver any of the first 𝑘 blocks on link (𝑢, 𝑣) in time interval

(𝑡 −𝑚max/𝑐 (𝑢, 𝑣), 𝑡].
By the induction hypothesis at all links (𝑥,𝑢) ∈ 𝑃 (𝑢) \ {𝑣},

𝑧𝑢
𝑘

(
𝑡 − 2𝑚max

𝑐 (𝑢, 𝑣)

)
+

∑
𝑥 ∈𝑃 (𝑢)\{𝑣 }

𝑧
(𝑥,𝑢)
𝑘

(
𝑡 − 2𝑚max

𝑐 (𝑢, 𝑣) , 𝜋
∗
𝑛𝑝

)
≥ 𝑧𝑢

𝑘

(
𝑡 − 2𝑚max

𝑐 (𝑢, 𝑣)

)
+

∑
𝑥 ∈𝑃 (𝑢)\{𝑣 }

𝑧
(𝑥,𝑢)
𝑘

(
𝑡 −𝑚max

(
2

𝑐 (𝑢, 𝑣) + diam(𝑥,𝑢)
)
, 𝜋

)
(𝑎)
≥ 𝑧𝑢

𝑘

(
𝑡 −𝑚max

(
diam(𝑢, 𝑣) + 1

𝑐 (𝑢, 𝑣)

))
+

∑
𝑥 ∈𝑃 (𝑢)\{𝑣 }

𝑧
(𝑥,𝑢)
𝑘

(
𝑡 −𝑚max

(
diam(𝑢, 𝑣) + 1

𝑐 (𝑢, 𝑣)

)
, 𝜋

)
(𝑏)
> 𝑧

(𝑢,𝑣)
𝑘

(
𝑡 −𝑚max

(
1

𝑐 (𝑢, 𝑣) + diam(𝑢, 𝑣)
)
, 𝜋

)
,

(𝑐)
= 𝑧

(𝑢,𝑣)
𝑘

(
𝑡 − 𝑚max

𝑐 (𝑢, 𝑣) , 𝜋
∗
𝑛𝑝

)
.

(11)

(a) follows as 𝑧𝑢
𝑘
and 𝑧

(·,𝑢)
𝑘

are non-decreasing with time and

since diam(𝑢, 𝑣) = 1/𝑐 (𝑢, 𝑣)+max𝑥 ∈𝑃 (𝑢)\{𝑣 } diam(𝑥,𝑢). (b) follows
from (10), and (c) follows from (9).

(11) implies that, under policy 𝜋∗𝑛𝑝 , node 𝑢 already has more

blocks from the first 𝑘 blocks to send to node 𝑣 at time

𝑡 − 2𝑚max/𝑐 (𝑢, 𝑣), than has been sent by link (𝑢, 𝑣) by time 𝑡 −
𝑚max/𝑐 (𝑢, 𝑣). However, it might have to wait non-preemptively

for a block with index greater than 𝑘 to complete service on link

(𝑢, 𝑣). That block would take at most𝑚max/𝑐 (𝑢, 𝑣) time to complete

service. Therefore, the bits from the first 𝑘 blocks can begin service

by at most time 𝑡 −𝑚max/𝑐 (𝑢, 𝑣), and will complete service by at

most time 𝑡 . This is a contradiction to (8) and (9). Therefore, the

induction hypothesis is true for link (𝑢, 𝑣). □

REFERENCES
[1] [n. d.]. https://bitcoincore.org/en/2016/06/07/compact-blocks-faq/. Accessed:

2021-07-01.

[2] [n. d.]. https://bitcoinfibre.org/. Accessed: 2021-03-07.

[3] [n. d.]. https://www.falcon-net.org/. Accessed: 2021-03-19.

[4] Dan Boneh, Benedikt Bünz, and Ben Fisch. 2019. Batching techniques for accumu-

lators with applications to iops and stateless blockchains. In Annual International
Cryptology Conference. Springer, 561–586.

[5] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed

Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, Dawn Song,

and Roger Wattenhofer. 2016. On Scaling Decentralized Blockchains. In Financial
Cryptography and Data Security, Jeremy Clark, Sarah Meiklejohn, Peter Y.A.

Ryan, Dan Wallach, Michael Brenner, and Kurt Rohloff (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 106–125.

[6] C. Decker and R. Wattenhofer. 2013. Information propagation in the Bitcoin

network. In IEEE P2P 2013 Proceedings. 1–10. https://doi.org/10.1109/P2P.2013.

6688704

[7] A. Dembo, S. Kannan, Ertem Nusret Tas, D. Tse, Pramod Viswanath, Xuechao

Wang, and O. Zeitouni. 2020. Everything is a Race and Nakamoto Always Wins.

IACR Cryptol. ePrint Arch. 2020 (2020), 601.
[8] Ittay Eyal and Emin Gün Sirer. 2014. Majority is not enough: Bitcoin mining is

vulnerable. In International conference on financial cryptography and data security.
Springer, 436–454.

[9] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The bitcoin backbone

protocol: Analysis and applications. In Annual international conference on the
theory and applications of cryptographic techniques. Springer, 281–310.

[10] Peter Gaži, Aggelos Kiayias, and Alexander Russell. 2020. Tight consistency

bounds for bitcoin. In Proceedings of the 2020 ACM SIGSACConference on Computer
and Communications Security. 819–838.

[11] Aditya Gopalan, Abishek Sankararaman, Anwar Walid, and Sriram Vishwanath.

2020. Stability and scalability of blockchain systems. Proceedings of the ACM on
Measurement and Analysis of Computing Systems 4, 2 (2020), 1–35.

[12] Parviz Kermani and Leonard Kleinrock. 1979. Virtual cut-through: A new com-

puter communication switching technique. Computer Networks (1976) 3, 4 (1979),
267–286. https://doi.org/10.1016/0376-5075(79)90032-1

[13] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017.

Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual
International Cryptology Conference. Springer, 357–388.

[14] Uri Klarman, Soumya Basu, Aleksandar Kuzmanovic, and Emin Gün Sirer. 2018.

bloxroute: A scalable trustless blockchain distribution network whitepaper. IEEE
Internet of Things Journal (2018).

[15] Quan-Lin Li, Jing-Yu Ma, and Yan-Xia Chang. 2018. Blockchain queue theory. In

International Conference on Computational Social Networks. Springer, 25–40.
[16] Quan-Lin Li, Jing-YuMa, Yan-Xia Chang, Fan-QiMa, andHai-Bo Yu. 2019. Markov

processes in blockchain systems. Computational Social Networks 6, 1 (2019), 1–28.
[17] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. 1998. Modeling

TCP throughput: A simple model and its empirical validation. In Proceedings of
the ACM SIGCOMM’98 conference on Applications, technologies, architectures, and
protocols for computer communication. 303–314.

[18] Rafael Pass, Lior Seeman, and Abhi Shelat. 2017. Analysis of the blockchain

protocol in asynchronous networks. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 643–673.

[19] Serguei Popov. 2018. The tangle. White paper 1, 3 (2018).
[20] Suryanarayana Sankagiri, Shreyas Gandlur, and Bruce Hajek. 2021. The Longest-

Chain Protocol Under Random Delays. arXiv preprint arXiv:2102.00973 (2021).
[21] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. 2016. SPECTRE: a fast

and scalable cryptocurrency protocol. IACR Cryptol. ePrint Arch. 2016, 1159
(2016).

[22] Yonatan Sompolinsky and Aviv Zohar. 2018. Phantom. IACR Cryptology ePrint
Archive, Report 2018/104 (2018).

230

https://doi.org/10.1109/P2P.2013.6688704
https://doi.org/10.1109/P2P.2013.6688704
https://doi.org/10.1016/0376-5075(79)90032-1

	Abstract
	1 Introduction
	1.1 Summary of Contributions:
	1.2 Paper Organization
	1.3 Related Work

	2 Performance in Blockchain Networks
	3 Network Model
	4 Performance Analysis
	4.1 Non-Fluid Regime
	4.2 Fluid Regime

	5 Simulation
	6 Conclusion
	Appendices
	A Proof of Lemma 4.1
	B Proof of Theorem 4.3
	References

