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Many applications, e.g., federated learning, require the aggregation of information across a large number of
distributed nodes. In this paper, we explore e!cient schemes to do this at scale leveraging aggregation at
intermediate nodes across overlay trees. Files/updates are split into chunks which are in turn simultaneously
aggregated over di"erent trees. For a synchronous setting with homogeneous communications capabilities
and deterministic link delays, we develop a delay optimal aggregation schedule. In the asynchronous setting,
where delays are stochastic but i.i.d., across links, we show that for an asynchronous implementation of the
above schedule, the expected aggregation delay is near-optimal. We then consider the impact that failures
in the network have on the resulting Mean Square Error (MSE) for the estimated aggregates and how it can
be controlled through the addition of redundancy, reattempts, and optimal failure-aware estimates for the
desired aggregate. Based on the analysis of a natural model of failures, we show how to choose parameters
to optimize the trade-o" between aggregation delay and MSE. We present simulation results exhibiting the
above mentioned tradeo"s. We also consider a more general class of correlated failures and demonstrate via
simulation the applicability of our techniques in those settings as well.
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1 INTRODUCTION
Information aggregation over networks is a fundamental problem in distributed systems [4, 16, 18,
22, 36]. For example, in the context of Federated Learning, a server needs to obtain the average of
the local gradients of a large number of distributed clients in each round of training [29]. It is well
known that minimizing the time required to aggregate local gradients over the network is critical
to speeding up the training time in such systems [20, 24, 26, 29]. Given the size of clients’ local
gradients may be upwards of 100s of MBs, optimized structured approaches to aggregation are of
great interest.
In this paper, we consider the problem of aggregating updates present at a set of clients to a

single location which we refer to as the server, using a complete overlay network so as to reduce
the aggregation delay. Fig. 1 presents a simple illustration of the advantage of overlay aggregation.
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In the example on the left, all the clients directly send their updates to the server, and the server
aggregates, e.g, averages, these updates. In the example on the right, an overlay aggregation tree
is used where intermediate nodes aggregate the information they receive along with their own
updates and forward only the aggregate. Assuming that only one message can be transmitted or
received at a time by any node and that each transmission takes 1 unit of time, the direct aggregation
approach takes 4 units of time to complete, whereas the overlay aggregation approach takes only 3
units of time. As we will see in the sequel, these bene#ts grow for larger networks.

Fig. 1. The example on the le! is an example of direct aggregation, and the example on the right is an example
of overlay aggregation.

Observe that the example in Fig. 1 does not use all the links available in the complete overlay
network. Dividing the updates into chunks and aggregating them concurrently using an aggregation
schedule allows one to make better use of all the links and provides a further speedup leveraging
the power of parallelization.
Moreover, since such networks may be operating in unreliable and/or congested conditions,

the aggregation of updates may be subject to failure. This means that some of the transmissions
scheduled in the network may fail. In this case, the server may fail to obtain the true aggregate
of all the clients’ updates. In fact an approach to aggregation based on an overlay network may
be more drastically a"ected by failures as compared to direct aggregation. In the examples in Fig.
1, suppose that the transmission from Client 4 fails. In the direct aggregation example, the server
still receives the aggregate of Clients 2, 3, and 5. Whereas, in the overlay aggregation example,
the server only receives the aggregate of Clients 2 and 3. To address this problem, in this paper,
we study structured overlay aggregation where the aim is to average the client’s updates and use
redundancy and a failure-aware estimation approach at the server to control tradeo"s amongst
aggregation delay and the Mean-Squared-Error (MSE) of the estimated aggregate at the server.

1.1 Contributions
We begin by considering an idealized synchronous communication setting where all link delays are
#xed and equal, and design an overlay aggregation schedule, OptSched, that is optimal in terms of
minimizing aggregation delay. This in turn permits us to characterize the optimal chunk size as a
function of the link delays in the network. A solution to the problem of information dissemination
where a server wants to disseminate a #le to a set of clients may be viewed as a time-reversal of a
solution to the problem of information aggregation that we consider. In this context, Farley [9]
proposed a solution to information dissemination that is similar to the time reversal of OptSched
under a synchronous setting.
The novel contributions of our paper are as follows.
(1) Sensitivity of aggregation to stragglers: We consider a network setting where link delays

are random but i.i.d., and show in the case where they are light-tailed that an asynchronous
implementation of OptSched is near-optimal in terms of minimizing mean aggregation delay.
This is perhaps surprising as one would expect that in a large system, aggregation would
face a commensurately large number of straggler links, and hence the performance of an
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asynchronous version of OptSched would su"er. Stragglers however will hurt aggregation
performance in a system with heavy-tailed link delays. For such systems we show via
simulation that terminating scheduled aggregation of updates that are taking too long is
e"ective. Here, the technical novelty of our work lies in developing a bounding process for
the aggregation delay of the asynchronous version of OptSched which could be a useful tool
in analyzing the performance of asynchronous relaxations of other synchronous scheduling
systems.

(2) Using redundant aggregation to achieve robustness to link failures: As mentioned
above, tree-based aggregation might be viewed as being highly susceptible to link failures e.g.,
at the top of the tree. One way to address this is to use redundant and diverse aggregation
trees. This is not unlike repetition coding and leads to a new class of problems associated
with evaluating tradeo"s in the amount of redundancy (and thus aggregation delay) vs
reduced MSE in the eventually computed aggregate. We propose a novel joint aggregation
and estimation protocol, OptAgg, that extracts an estimate for the aggregate given partial
information received across redundant aggregation trees. In a setting where failures are
i.i.d., across links, we perform an upper bound analysis based on which we propose design
principles to realize desired delay-MSE tradeo"s for OptAgg.

(3) Performance simulations and comparisons: Finally, we present a broad set of simulation
results assessing the impact of link delay distributions in an i.id., setting as well as in correlated
and heterogeneous settings. Our simulations show that our theoretical results still capture
the delay-MSE tradeo"s even if the underlying assumptions are weakened. Furthermore,
simulations comparing our structured approach to a state-of-the-art gossip algorithm for
aggregation show that OptAgg can provide signi#cant aggregation delay improvement for a
large range of desired MSE of the aggregate estimate.

1.2 Related Work
Information aggregation is an important problem in systems such as sensor networks where
environmental data such as temperature may need to be aggregated from a large set of sensors
either at a single point or at a subset of the sensors. These networks may need to operate in highly
unreliable conditions and the message sizes are usually small (in Kbs). Therefore, generally, such
systems use gossip protocols for aggregation without chunking [6, 8, 12, 16, 17, 22, 23, 28, 34].
However, since we consider the aggregation of larger messages (>100s of Mbs), we propose a
structured approach to aggregation instead of a gossip-based approach. Since, in a gossip-based
aggregation protocol, a node may receive the update of another node multiple times, Kempe et
al.[22] propose a “push-sum” protocol, and Considine et al.[8] use sketching to compute an unbiased
estimate for the aggregate. In our aggregation with estimation protocol OptAgg we compute an
unbiased estimate from the partial information received from redundant copies under failure that
also minimizes a bound on the MSE.
Unlike gossip-based algorithms, structured approaches to aggregation have also been studied

[5, 27, 30, 36]. Tree-based approaches [27, 36] lead to small aggregation delay as explained in the
simple example in Fig. 1, but are susceptible to information loss due to there being a single path
from each client to the server. To protect against information loss due to failures, Motegi et al.
[30] construct a directed-acyclic graph (DAG) such that there are multiple paths from a client to
the server. In our work, we aggregate redundant replicas on di"erent trees and estimate using
partial information received from the di"erent replicas to protect against failures. Further, chunking
updates and aggregating the chunks simultaneously provides further speedup over using a single
tree or DAG without chunking.
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Information dissemination is another fundamental problem in distributed systems where in-
formation present at one node needs to be disseminated to a set of nodes. Dissemination may be
viewed as a complementary problem to aggregation, meaning that to disseminate information one
runs an aggregation schedule in reverse time. Farley[9] proposed a similar schedule to the one
constructed by our protocol OptSched and proved its optimality for the dissemination problem in
the synchronous setting. However, they did not consider an asynchronous implementation method
for the schedule nor its analysis. Farley et al.[10] considered the problem of what is the minimum
number of edges required in an overlay network to achieve dissemination within a certain time
constraint. However, they do not consider the chunking of information. Bar-Noy and Kipnis[2]
consider the dissemination problem in a synchronous setting where nodes may send and receive
simultaneously. In our work, we only consider the setting where nodes may either send or receive
at a time and leave it to future work to adapt our techniques to the other setting. Karp et al.[21]
consider dissemination and aggregation problems in the logP model where nodes may transmit
and receive simultaneously, but they may only initiate communications after certain intervals of
initiating or completing a previous communication. Sanghavi et al.[32] consider the problem of
information dissemination with chunking in a synchronous setting using a novel gossip algorithm.
However, it is not straightforward to perform aggregation using their approach.

In-Network Aggregation has been used in Distributed Machine Learning and Federated Learning
where network hardware such as network switches are used to aggregate information en route
to the server[11, 25]. This is an alternate approach where the physical layer of the network is
used to speed up aggregation. In our work, we focus on an overlay setting where client nodes that
themselves generate information are used to speed up aggregation. In the sequel, in-network and
overlay aggregation ideas may be combined.

Notation. A set of 𝐿 elements shall be denoted as {𝑀1, . . . , 𝑀𝐿 }, while an ordered set of elements
shall be denoted as (𝑀1, . . . , 𝑀𝐿 ). For positive integers 𝑁1 < 𝑁2, [𝑁1,𝑁2] denotes the set of integers
{𝑁1, . . . ,𝑁2}, and [𝑁1] denotes the set [1,𝑁1]. log𝑀 will denote the base 2 logarithm of 𝑀 , and ln𝑀
will denote the base 𝑂 logarithm of 𝑀 .

2 MODEL SETUP
𝑁 nodes are connected over a complete overlay network. 𝑁 ↑1 of these nodes, labeled as Nodes 2 to
𝑁 , are called clients, and Node 1 is called the server. Each Client 𝑃 has an update 𝜴𝑀 , which is a vector
of dimension dim, and the goal is to compute the aggregate, 𝜴 ↭ 1

𝑁↑1
∑𝑁

𝑀=2 𝜴
𝑀 at the server using

the overlay network. In order to obtain a speed up, instead of transmitting entire updates over links,
clients may split their updates into𝑄 chunks, where each chunk is a vector of dimension dim/𝑄 ,
and transmit chunks over the links in the network. Denoting the division of Client 𝑃’s update
into chunks as, 𝜴𝑀 = (𝜴𝑀(𝑅))𝑂𝑃=1, the server computes chunk-aggregates 𝜴(𝑅) ↭ 1

𝑁↑1
∑𝑁

𝑀=2 𝜴
𝑀(𝑅) in

order to obtain the aggregate 𝜴 = (𝜴(𝑅))𝑂𝑃=1.
At any point in time, a node that is not busy in a communication may communicate with at

most one other node (which is also not busy) by setting up a link, and be either receiving data or
transmitting data, but not both. The delay on a link is the time required to send a chunk across
it. The link delays may be constant and equal for all links in the network, which we call the
synchronous setting. Or, the link delays may be random, which we call the asynchronous setting.
The communication model is further elaborated in Section 2.2.

Some transmissions across links may fail. This may happen because the link delay is too high
and the protocol gives up, or if the node shuts down due to exogenous reasons. Since we employ
overlay network aggregation, a Client 𝑃 failing to transmit on a link may lead to more than just
its update being lost as illustrated with the failure of the uplink from Client 4 in Fig. 1. In order
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(a) Aggregation Trees (b) Aggregation Schedule (c) Node Schedules

Fig. 2. Aggregation Trees, Schedule and Node Schedules for a system with 𝑁 = 5 nodes,𝑄 = 2 chunks and
𝑆 = 1 replicas per chunk. The node schedule figure depicts a snapshot in time of the progress of nodes in an
asynchronous implementation. Nodes 2 and 5 are communicating in their virtual slots 2, Nodes 1 and 3 are
communicating in their virtual slots 3 and Node 4 is waiting for Node 5 in its virtual slot 3.

to protect against failures, we introduce redundancy by creating 𝑆 replicas of each chunk and
aggregating them on di"erent trees as explained next.

2.1 Aggregation Trees
Corresponding to each chunk-replica (𝑅,𝐿) there is a directed rooted tree T (𝑅,𝐿), over the 𝑁
nodes, with the server (Node 1) as the root, such that there exists a unique path from every client
to the server. The children of Node 𝑃 in T (𝑅,𝐿) are the set of all nodes that have a directed link to
𝑃 in T (𝑅,𝐿). The parent of Node 𝑃 in T (𝑅,𝐿) is the unique node to which 𝑃 has a directed link in
T (𝑅,𝐿). A node is a leaf node in T (𝑅,𝐿) if it has no children.
Aggregation of chunk-replica (𝑅,𝐿) happens as follows. A leaf node 𝑃𝑄 sets it message as

𝜶𝑀𝐿 (𝑅,𝐿) ↓ 𝑇𝑀𝐿 (𝑅) and sends it to its parent. The parent receives the message if the link doesn’t
fail. For every Client 𝑃 that is not a leaf node, let C𝑀(𝑅,𝐿) denote the set of children in T (𝑅,𝐿)
from which it has successfully received messages. Then, Client 𝑃 collects messages from all these
children and computes its message as, 𝜶𝑀(𝑅,𝐿) ↓ 𝑇𝑀(𝑅) +∑𝑀𝑀 ↔C𝑁 (𝑃,𝐿) 𝜶𝑀𝑀 (𝑅,𝐿). Similarly, denoting
by C1(𝑅,𝐿) the set of the server’s children from which it has successfully received messages, it
sets its message as 𝜶1(𝑅,𝐿) ↓ ∑

𝑀𝑀 ↔C1(𝑃,𝐿) 𝜶
𝑀𝑀 (𝑅,𝐿). If there were no failures in T (𝑅,𝐿), then the

chunk-aggregate may be computed by the server as 𝜶1(𝑅,𝐿)/(𝑁 ↑ 1). In case of failures, discussion
on estimating the aggregate using 𝜶1(𝑅,𝐿)’s is delayed to Section 4. An example set of aggregation
trees is shown in Fig. 2a.

2.2 Communication Model and Aggregation Schedule
In this section we consider the creation of a schedule for message transfers over a collection of
aggregation trees {T (𝑅,𝐿)}𝑃↔[𝑂],𝐿↔[𝑅] that respects the constraints of communication on the over-
lay network. The design of these schedules is considered under the synchronous and asynchronous
settings.

2.2.1 Synchronous Se!ing: For simplicity and ease of analysis, we #rst describe the aggregation
schedule in the Synchronous setting. In the Synchronous setting, the delay of chunk transfers over
all links is #xed to a constant. In particular, for any nodes 𝑃1 and 𝑃2, the time required to send a
message (corresponding to 1 chunk-replica) from 𝑃1 to 𝑃2 is,

𝑈sync(𝑄) =
𝑉

𝑄
· 1
𝑊prop

+
1
𝑊 𝑆

, (1)
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where 𝑉 is the size of the update,𝑄 is the number of chunks, 𝑊prop is the transfer speed that captures
the delay that is proportional to the size of the message, and 𝑊 𝑆 accounts for a #xed delay such as
the time required to set up the link.
Time is split into slots, where each slot has a duration of 𝑈sync(𝑄). The aggregation schedule,

denoted by S, is a sequence of sets where S(s) =
{(
𝑃s𝑇,tx,𝑃

s
𝑇,rx,𝑅

s
𝑇 ,𝐿

s
𝑇

)}𝑈 s
𝑇=1

describes the set of
communications that happen in slot s. 𝑋 s is the total number of communications that happen in slot
s, 𝑃s𝑇,𝑉𝑊 and 𝑃s𝑇,𝑋𝑊 are the transmitter and receiver, respectively, of the 𝑌th communication, and𝑅s

𝑇
and 𝐿s𝑇 identify the chunk-replica corresponding to the message sent from 𝑃s𝑇,𝑉𝑊 to 𝑃s𝑇,𝑋𝑊 . Slot indices
run from 1 to S, where S denotes the length of the schedule. The aggregation delay in this setting is,
𝑍sync(S) = 𝑎 · 𝑈sync(𝑄). An example aggregation schedule is shown in Fig. 2b.

The aggregation schedule has to adhere to the constraints set by the communication model.
Speci#cally, in any slot s, a node may participate in at most one communication. Further, for every
chunk-replica (𝑅,𝐿) that is a part of the schedule, the schedule induces an aggregation tree T (𝑅,𝐿)
such that, a directed link (𝑃1,𝑃2) exists in T (𝑅,𝐿) if and only if (𝑃1,𝑃2,𝑅,𝐿) exists in S(s) in exactly
one slot s. Additionally, a schedule S has to respect the precedence constraint set by the tree T (𝑅,𝐿)
i.e., the transmission of chunk-replica (𝑅,𝐿) from 𝑃1 may only be scheduled after all links from the
children of 𝑃1 in T (𝑅,𝐿) have been scheduled.

The schedule S can also be conceptualized as a set of node-schedules, where each node 𝑃 has its
own node-schedule denoted as N𝑀 . N𝑀 is a list of length S, where,

N𝑀(s) =




↗, if 𝑃 doesn’t participate in slot s,
(𝑃rx,𝑅,𝐿, tx) , if (𝑃,𝑃rx,𝑅,𝐿) ↔ S(s),
(𝑃tx,𝑅,𝐿, rx) , if (𝑃tx,𝑃,𝑅,𝐿) ↔ S(s).

(2)

An example of the set of node schedules corresponding to the schedule in Fig. 2b is shown in Fig.
2c.

2.2.2 Asynchronous Se!ing: In this setting, communications no longer happen in a sequence of
synchronized slots. Instead, two nodes not currently participating in any communication may set
up a link and transfer a chunk-replica from one to the other. Then, the transfer delay on the link is
i.i.d., distributed according to CDF 𝑉𝑌(𝑂). The mean, 𝑏𝑌(𝑂) of the link delay distribution is equal to
𝑈sync(𝑄).

In this setting, we implement an asynchronous version of schedule S where communications are
scheduled when the transmitter and receiver nodes are available while respecting the precedence
constraints given by S. Speci#cally, each node 𝑃 follows its node schedule N𝑀 in a sequence of
virtual slots. At the start, the node is in its virtual slot 1 and it contacts its partner node in N𝑀(1)
and begins the transfer of the appropriate chunk-replica. Once the transfer is complete, it moves
onto its next virtual slot. If N𝑀(1) = ↗, it immediately moves onto its next virtual slot. Once a
node has completed its #rst 𝑐 ↑ 1 virtual slots, it proceeds to its 𝑐 th virtual slot. If N𝑀(𝑐) = ↗, it
immediately proceeds to its 𝑐 + 1th virtual slot. Otherwise, it checks if its partner node in N𝑀(𝑐)
has also completed its #rst 𝑐 ↑ 1 virtual slots. If it has, then the nodes set up a link and transfer a
chunk-replica according toN𝑀(𝑐). If it has not, then node 𝑃 waits until it partner node completes is
#rst 𝑐 ↑ 1 virtual slots. See Fig. 2c for an example.
Since the asynchronous implementation respects the precedence constraints of all the node

schedules, the server ends up aggregating the same aggregate as it would in the Synchronous
setting.
The aggregation delay in the Asynchronous setting, denoted 𝑍async(S), is the time at which all

nodes have completed their respective schedules.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 41. Publication date: December 2024.



Optimal Aggregation via Overlay Trees: Delay-MSE Tradeo"s under Failures 41:7

(a) S1 produced by OptSched(8, {1, 2}, 1) (b) S2 produced by OptSched(8, {1, 2}, 1)

Fig. 3. Chunk-replica 1’s message transfers are shown in blue, and 2’s are shown in green.

3 OptSched: A SCHEDULE FOR OVERLAY AGGREGATIONWITH CHUNKING
In this section, we propose a protocol to construct an aggregation schedule and later prove that the
schedule is optimal in terms of minimizing the length of the schedule. For ease of exposition, we
present a version of our protocol OptSched for the special case when the number of nodes 𝑁 is a
power of 2 here. The complete protocol for a general 𝑁 may be found in Appendix C.
Looking ahead, when running our aggregation and estimation protocol OptAgg under failures,

we may need to reattempt aggregation of a subset of chunks, say, M ↘ [𝑄]. Therefore, OptSched
accepts as inputs the number of nodes 𝑁 , a set of chunksM, and the number of replicas per chunk
𝑆 , and outputs a schedule S|M |𝑅 that aggregates the |M|𝑆 chunk-replicas.

The intuition underlying how OptSched constructs schedules may be gleaned from an example
for 𝑁 = 8, M = {1, 2} and 𝑆 = 1 shown in Fig. 3. Let the 2 chunk-replicas be labelled 1 and
2. It #rst creates a schedule S1 for chunk-replica 1 where at each slot, the maximum number of
communications are scheduled amongst the nodes that haven’t already transmitted the chunk-
replica, ref., Fig. 3a. Schedule S1 has two phases, #rst is the head phase which ends at the last slot
where all 𝑁 nodes are busy, and the rest of the slots are in the tail phase. Observe that Nodes 5, 6,
7 and 8 are idle in the tail phase of S1. Schedule S2 for two chunk-replicas is constructed based
on S1 as follows: it is identical to S1 in the head phase, and interleaves a slot between the head
and tail phases of S1 where Nodes 2, 3 and 4 transmit chunk-replica 2 to Nodes 5, 6 and 7. Then,
as Nodes 1, 2, 3 and 4 aggregate chunk-replica 1 in the tail, Nodes 5, 6, 7 and 8 simultaneously
aggregate chunk-replica 2. After the chunk-replica 1’s aggregate has been received at the server
in slot 4, chunk-replica 2’s aggregate present at Node 5 is transmitted to the server in slot 5, ref.
Fig. 3b. S2 takes 2 extra slots compared to S1. In general, OptSched constructs a schedule S𝐿 for
𝐿 chunk-replicas from a schedule S𝐿↑1 for 𝐿 ↑ 1 chunk-replicas by identifying the head and tail
phases of S𝐿↑1, and interleaving a slot and scheduling simultaneous aggregation in the tail phase.
A formal description is presented in Algorithm 1. OptSched creates a sequence of schedules

S1, . . . ,S|M |𝑅 iteratively, where S𝐿≃ is a schedule to aggregate 𝐿 ≃ of the |M|𝑆 chunk-replicas. A
bijective function 𝑑 is used to map chunk-replica index pairs, (𝑅,𝐿) to a serial index 𝐿 ≃ (see Line 1).

In Lines 3 to 7, the schedule S1 is created. Here, as described above, in each slot, the maximum
number of links are formed between nodes that haven’t already transmitted 𝑑↑1(1) until all client
nodes have transmitted once.
For 𝐿 ≃ > 1, S𝐿≃ is constructed from S𝐿≃↑1. This operation involves four steps: Retain, Interleave,

Merge, and Final Aggregation. In the Retain step, which is for the #rst 𝑒 slots of the head phase (𝑒
being de#ned in Line 10), S𝐿≃ follows the same schedule as S𝐿≃↑1.
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Algorithm 1: OptSched (𝑁 ,M,𝑆) where 𝑁 is a power of 2.
Input :Number of Nodes: 𝑁 , (labelled 1 to 𝑁 )

Chunk Indices: M,
Replicas Per Chunk: 𝑆 ,

Output :Schedule S|M |𝑅 to compute ∑𝑁
𝑀=2 𝜴

𝑀(𝑅,𝐿) at node 1 for all𝑅 ↔ M,𝐿 ↔ [𝑆].
1 Compute a bijective function, 𝑑 : M⨌

[𝑆] → [|M|𝑆] ;
// Initialize Schedule

2 𝑁 ≃ = 𝑁 , s = 1 ;
3 while 𝑁 ≃ > 1 do
4 S1(s) =

{
(𝑁 ≃ + 1 ↑ 𝑓, 𝑓,𝑑↑1(1)) : 𝑓 = 1 . . .𝑁 ≃/2

}
;

5 𝑁 ≃ = 𝑁 ≃/2 ;
6 s = s +1 ;
7 end
8 for 𝐿 ≃ = 2 to |M|𝑆 do
9 S𝐿≃↑1 = len(S𝐿≃↑1) ;

10 𝑒 = S𝐿≃↑1 ↑ log𝑁 + 1 ;
// Retain

11 S𝐿≃(s) = S𝐿≃↑1(s), 1 ⇐ s ⇐ 𝑒 ;

// Interleave
12 N tx = (𝑃 : 𝑃 ⇒ 2, client 𝑃 participates in slot 𝑒 + 1 or later of S𝐿≃↑1) ; // |N tx | = 𝑁 /2↑ 1
13 N rx = (𝑃 : 𝑃 ⇒ 2, client 𝑃 does not participate in slot 𝑒 + 1 or later of S𝐿≃↑1) ;
14 S𝐿≃(𝑒 + 1) =

{(
N tx( 𝑓 ),N rx( 𝑓 ),𝑑↑1(𝐿 ≃)

)
: 𝑓 = 1 . . . |N tx |

}
;

// Merge
15 N 0 = [2,𝑁 ] \ N tx ; // nodes yet to transmit 𝑑↑1(𝐿 ≃)
16 for s = 𝑒 + 2 to S𝐿≃↑1 +1 do
17 N avail = N 0 \{nodes participating in S𝐿≃↑1(s↑1)} ;
18 S0 = {

(
N avail(|N avail | + 1 ↑ 𝑓 ),N avail( 𝑓 ),𝑑↑1(𝐿 ≃)

)
: 𝑓 = 1 . . . ⇑ |N avail | /2⇓};

19 S𝐿≃(s) = S𝐿≃↑1(s↑1) ⇔ S0 ;
20 N 0 = N 0 \{ transmitters in S0} ;
21 end

// Final Aggregation
22 S𝐿≃(S𝐿≃↑1 +2) = {(N avail(1), 1,𝑑↑1(𝐿 ≃))};
23 end

Before describing the Interleave step, we observe that in the tail phase of S𝐿≃↑1, there will be a
set of nodes that have transmitted all of the #rst 𝐿 ≃ ↑ 1 chunk-replicas ordered according to 𝑑↑1

and, thus, do not participate anymore in S𝐿≃↑1. So, looking forward, in the Merge step, the aim is
to aggregate the new chunk-replica in these slots with these nodes. To that end, in the Interleave
step, a set of nodes that are active in the tail pase of S𝐿≃↑1 are identi#ed (see Line 12), and in Line
14 a new slot is interleaved where these active nodes transmit the new chunk-replica 𝑑↑1(𝐿 ≃) to
the rest of the nodes. As described earlier, in the Merge step, S𝐿≃ continues to aggregate the #rst
𝐿 ≃ ↑ 1 chunk-replicas as was performed in the tail of S𝐿≃↑1, while simultaneously aggregating
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chunk-replica 𝑑↑1(𝐿 ≃) amongst the nodes that are not participating in the aggregation of the #rst
𝐿 ≃ ↑ 1 chunk-replicas.

As will be shown in the proof of Lemma 2, by the end of the Merge step, the new chunk-replica
has been aggregated at a single client. So, in the Final Aggregation step, this client transmits the
aggregated chunk-replica to the server (see Line 22), which completes the schedule, thus aggregating
all the 𝐿 ≃ chunk-replicas.

R!"#$% 1. In Lines 4, 12 and 13, ordered sets of nodes are formed, although the ordering of these
nodes may be arbitrary. In the sequel (see Section 5.2) we will randomize such ordering to provide
additional robustness to link delay and failure heterogeneity.

Next, we analyze the aggregation delay of OptSched in the Synchronous and Asynchronous
settings.

3.1 Optimality of OptSched in the Synchronous Se"ing
In the Synchronous setting, for any schedule S of length 𝑎 that aggregates chunksM ↘ [𝑄] and 𝑆
replicas per chunk over 𝑁 nodes, the aggregation delay is simply,𝑍sync(S) = 𝑎 · 𝑈sync(𝑄). Therefore,
to prove the optimality of the aggregation delay of the schedule produced by OptSched, one needs
to prove that the length of the schedule is optimal. The following Lemma provides a lower bound
on the length of any schedule S.
L!""# 1. Let S be a schedule that aggregates a set M ↘ [𝑄] of chunks, with 𝑆 replicas each.

Then, the length 𝑎 of the schedule is lower bounded as,

S ⇒ ↖log𝑁 ↙ + 2(|M|𝑆 ↑ 1)(𝑁 ↑ 1)
𝑁

.

We provide a proof sketch here. There are a total of |M|𝑆 chunk replicas, and each one requires
𝑁 ↑ 1 communications to be aggregated since each client has to transmit each chunk replica exactly
once. At most 𝑁 /2 transmissions can be realized in each slot. Therefore, a lower bound on the
length of the schedule is 2 |M|𝑆 (𝑁 ↑ 1)/𝑁 . However, a tighter lower bound can be obtained by
recognizing that to complete aggregation, only one communication may happen in the last slot
where a client sends the last message to the server. Similarly, in the penultimate slot, at most 2
communications may happen where two other nodes transmit to the two nodes that communicate
in the last slot. Extrapolating, for 0 ⇐ 𝑔 ⇐ ⇑log𝑁 ⇓ ↑ 1, at most 2𝑉 communications may happen in
the S↑𝑔 th slot. Up to 𝑁 /2 communications may happen in all previous slots. Using this constraint,
and the fact that |M|𝑆 (𝑁 ↑ 1) total communications need to happen, we obtain the lower bound.
The following Lemma characterizes the length of the schedule produced by OptSched.

L!""# 2. OptSched(𝑁 ,M,𝑆) produces an aggregation schedule S|M |𝑅 with length 𝑎 |M |𝑅 =
↖log𝑁 ↙ + 2(|M|𝑆 ↑ 1) slots.

We provide a sketch here. The length of the schedule S1 is ↖log𝑁 ↙ because at the end of each
slot, the number of nodes that are yet to transmit is halved. And, when constructing S𝐿≃ from S𝐿≃↑1,
exactly two more slots are added (one associated with the Interleave step, and the other associated
with the Final Aggregation step). Therefore, the length of the schedule S|M |𝑅 is ↖log𝑁 ↙ +2(𝑄𝑆 ↑1).
The complete proof, given in Appendix D involves showing that S|M |𝑅 indeed aggregates all the
chunk replicas.
With the observation that in the Synchronous setting the aggregation delay of a schedule is

simply the length of the schedule scaled by the slot duration, Lemma 1 and 2 prove that OptSched
is optimal in this setting.
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T&!’$!" 1. Consider a system in the Synchronous setting with link delays 𝑈sync(𝑄). Let S be
any schedule that aggregates chunks in M ↘ [𝑄], with associated aggregation delay 𝑍sync(S). Let
S|M |𝑅 be the schedule produced by OptSched(𝑁 ,M,𝑆 ) with aggregation delay 𝑍sync(S|M |𝑅 ). Then,
𝑍sync(S|M |𝑅 )/𝑍sync(S) ⇐ 1 +𝑕(1/𝑁 ).

R!"#$% 2. The slot duration 𝑈sync(𝑄) is a decreasing function of the number of chunks 𝑄 . And,
the length of the schedule is an increasing function of the number of chunks. This suggests that the
aggregation delay is a U-shaped function of the number of chunks. The aggregation delay is high
when the !les are split into a small number of chunks because then the schedule cannot exploit the
parallelism possible in the link communications. On the other hand, if the !le is split into too many
chunks, the aggregation delay is also high because a large number of links need to be setup, and the
!xed cost 1/𝑊 𝑆 of setting up links adversely a"ects the aggregation delay. Therefore, there exists a sweet
spot for the number of chunks that minimizes the aggregation delay and is the nearest integer to,

𝑄∝ = argmin
𝑂 ↔N

(↖log𝑁 ↙ + 2(𝑄𝑆 ↑ 1)) 𝑈sync(𝑄),

=

√
𝑉𝑊 𝑆 (↖log𝑁 ↙ ↑ 2)

2𝑆𝑊prop

(3)

3.2 Near-Optimality of OptSched in the Asynchronous Se"ing
The aggregation delay in the Asynchronous setting, 𝑍async(S), is a more complicated function of
the schedule since communication doesn’t happen in a sequence of synchronized slots. As such,
we simply state the lower bound, upper bound and near-optimality of the aggregation delay of
OptSched here, and postpone the analysis required to obtain these results to Appendix A.
The following Lemma gives a lower bound on the aggregation delay of any schedule in the

Asynchronous setting.

L!""# 3. Consider a system in the Asynchronous setting with link delay CDF 𝑉𝑌(𝑂) and mean
𝑏𝑌(𝑂). Then, the expected aggregation delay of a schedule S of length 𝑎 is lower bounded as,

E
[
𝑍async(S)


⇒ 𝑎 · 𝑏𝑌(𝑂) .

Recall that the aggregation delay of scheduleS in the Synchronous setting is𝑍sync(S) = 𝑎 ·𝑈sync(𝑄).
Therefore, Lemma 3 says that the expected aggregation delay of a schedule in the Asynchronous
setting is no better than the aggregation delay in the Synchronous setting when the mean link
delay remains the same.
To develop an upper bound on the aggregation delay in the Asynchronous setting, we require

that the link delay CDF 𝑉𝑌(𝑂) has a light tail. In particular, we require that it have a log moment
generating function (logMGF) denoted as, !𝑌(𝑂)(𝑖 ) ↭ lnE

[
𝑂𝑍𝑌(𝑂) , where 𝑗(𝑄) ′ 𝑉𝑌(𝑂). The

upper bound will make use of the distribution’s right-tail Cramér function,

!∝
𝑌(𝑂)(𝑘) =


0 , if 𝑘 < E[𝑗(𝑄)],
sup𝑍 ⇒0[𝑖𝑘 ↑ !𝑌(𝑂)(𝑖 )] , if 𝑘 ⇒ E[𝑗(𝑄)].

In the domain where it is positive and #nite, !∝
𝑌(𝑂)(𝑘) is strictly increasing in 𝑘 .

The following Lemma characterizes an upper bound on the aggregation delay of any schedule S
in the Asynchronous setting when the link delay distribution has a light tail.

L!""# 4. Consider a system in the Asynchronous setting with link delay CDF 𝑉𝑌(𝑂) that has a
logMGF !𝑌(𝑂)(𝑖 ) and a right-tailed Cramér function !∝

𝑌(𝑂)(𝑘). Let 𝑘
∝(𝑄) > 0 be the unique solution
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to the equation, !∝
𝑌(𝑂)(𝑘

∝(𝑄)) = ln 2. Then, for a schedule S of length 𝑎 and any 𝑘 > 𝑘∝(𝑄), the right
tail of the aggregation delay is upper bounded as,

𝑙
(
𝑍async(S) ⇒ 𝑘 S

)
⇐ 𝑂↑ S(!∝

𝑂(𝑃 )(𝑎 )↑ln 2).

Further, the expected aggregation delay is upper bounded as, E
[
𝑍async(S)


⇐ 𝑘∝(𝑄) S +𝑚(𝑎).

Combining the lower and upper bounds on the aggregation delays of schedules in the Asynchro-
nous setting of Lemma 3 and 4 with the bounds on the length of the schedules from Lemma 1 and
2, we get the near-optimality result for OptSched.

T&!’$!" 2. Consider a system in the Asynchronous setting with the link delay CDF 𝑉𝑌(𝑂) with
mean 𝑏𝑌(𝑂). Let 𝑉𝑌(𝑂) have a logMGF !𝑌(𝑂)(𝑖 ) and right-tailed Cramér function !∝

𝑌(𝑂)(𝑘), and let
𝑘∝(𝑄) be given as in Lemma 4. Let S be any schedule that aggregates 𝑆 replicas of chunks M ↘ [𝑄]
and S|M |𝑅 be the schedule produced by OptSched(𝑁 ,M,𝑆 ). Then,

E
[
𝑍async

(
S|M |𝑅

) 
E
[
𝑍async (S)

 ⇐ 𝑘∝(𝑄)
𝑏𝑌(𝑂)

+ 𝑚(𝑎).

R!"#$% 3. To capture an intuition for why the result of Theorem 2 is surprising, observe that
roughly 𝑁 /2 links are active at any time in the Asynchronous setting. So, with 𝑁 being large, there
is an increased chance of there being a straggler link, i.e., a link with very high delay. A straggler
link may slow down the entire schedule because other nodes may be scheduled to communicate with
nodes involved in the straggler link, and therefore have to wait for the straggler link to complete.
Surprisingly, Theorem 2 says that when the link delay distribution has a logMGF, no matter how large
the number of nodes, the expected aggregation delay in the Asynchronous setting is at most a constant
multiplicative gap away to a lower bound, with the lower bound being equal to the aggregation delay
in a Synchronous setting with the same mean link delay.

To further illustrate the phenomenon in Theorem 2 and Remark 3, we present some simulation
results under 3 di"erent link delay distribution settings. Consider a system with #le size 𝑉 = 100𝑄𝑛,
proportional speed 𝑊prop = 10𝑄𝑛𝑜𝑐 and #xed delay 1/𝑊 𝑆 = 0.1𝑐 . We show simulation results
under three link delay distributions that all have a mean 𝑈sync(𝑄). They are a shifted Exponential,
Gaussian distribution and a Pareto distribution with scale 𝑘 > 1 (unrelated to 𝑘∝ in Theorem 2).
The distributions are given in Table 1.

Shifted Exponential (Exp) 𝑝 𝑏𝑌(𝑂)(𝑀 ) = (2/𝑈sync(𝑄))𝑂↑
2

𝑄sync (𝑃 ) (𝑊↑𝑐sync(𝑂)/2)
, 𝑀 ⇒ 𝑐sync(𝑂)

2
Gaussian (Gauss) 𝑝 𝑑𝑌(𝑂) = N (𝑈sync(𝑄), (0.3𝑈sync(𝑄))2)

Pareto(𝑘) 𝑝 𝑒𝑌(𝑂)(𝑀 ) =
𝑎

𝑊𝑅+1

(
(1↑𝑎 )𝑐sync(𝑂)

𝑎

)𝑎
, 𝑀 ⇒ (1↑𝑎 )𝑐sync(𝑂)

𝑎 .
Table 1. Link Delay Distributions considered in Simulations

Fig. 4a shows the behavior of the mean aggregation delay as the number of nodes increases for
the three link delay distributions in the case where the number of chunks is 10, and the number
of replicas is 1. Since the shifted Exponential and Gaussian distributions have a logMGF, their
expected aggregation delay is bounded above by a distribution-dependent upper bound 𝑘∝(𝑄)𝑎 ,
where the 𝑘∝’s are 2.02𝑈sync(𝑄) and 1.49𝑈sync(𝑄) respectively, and 𝑎 is the schedule length. Crucially,
even as the number of nodes increases, their aggregation delays under OptSched are within 2.02
and 1.49 times of the lower bound given in Lemma 3. However, when the tail of the link delay
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(a) Simulation of variation of aggregation delay as
a function of number of nodes in the Asynchronous
se#ing under di"erent link delay distributions. 95%
confidence intervals are shown for the Pareto distri-
butions.

(b) Simulation of variation of aggregation delay as a
function of number of chunks in the Asynchronous
se#ing under di"erent link delay distributions, along
with the theoretical lower bound and upper bounds.

Fig. 4

distribution is heavy, such as in the Pareto distribution, this ratio between the aggregation delay
and the lower bound grows with the number of nodes as can be seen in Fig. 4a, with the heavier
tailed Pareto(2.0) having a higher aggregation delay than Pareto(2.2). Still, the aggregation delays
for the Pareto distributions are smaller compared to direct aggregation’s aggregation delay of
11𝑁 seconds for these system settings. And, compared to a state of the art gossip aggregation
algorithm[22] that is described further in Section 5, for 𝑁 = 100 nodes, we observe a >8x speedup
with shifted Exponential and Gaussian distributed link delays, and >5x speedup with Pareto delays.
In Section 5.3 we suggest a remedy of employing link delay thresholds to reduce the aggregation
delays of heavy-tailed distributions further.
In Fig. 4b we consider a system with 𝑁 = 500 nodes, 𝑆 = 1 replica-per-chunk, and the shifted

Exponential and Gaussian distributions for the link delay. The plot shows the variation of the
aggregation delay of the schedule produced by OptSched as a function of the number of chunks.
The plot highlights the performance gain obtained from chunking as opposed to using a single
aggregation tree (i.e.,𝑄 = 1). We observe that all the simulation curves, upper and lower bounds
have a U-shape for the same reason as in the Synchronous setting. Notably, the simulation suggests
that the location of the minimum of the lower bound curve is in agreement with the that of
minimum of the simulation curves for both distributions. Therefore, since the number of chunks
𝑄 is a design parameter, this suggests that one can choose the optimal𝑄 according to (3) in the
asynchronous setting as well. In the example in Fig. 4b,𝑄∝ = 18 optimizes the aggregation delay.

R!"#$% 4. Although we consider the example of averaging updates in this work, OptSchedmay be
used in any setting where the aggregation is decomposable [18]. Here, aggregation being decomposable
means that the aggregate may be obtained by !rst performing aggregation within a partition of the
clients, and then aggregating over the partition aggregates. Moreover, when the bitsize of all the updates,
messages, and aggregates are the same, the (near) optimality results of Theorem 1 and 2 continue
to hold. Examples of decomposable and size-preserving aggregations include summation, averaging,
product, min, and max.
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4 AGGREGATION AND ESTIMATION UNDER FAILURES
In this section, we propose a protocol to estimate aggregates at the server when there are failures.
Transmissions across some links may fail because the delay on the link was too high and the
protocol gave up or if the node shut down due to exogenous reasons.
In overlay aggregation, since clients help aggregate each other’s messages, a failure in an

aggregation tree may lead to more than just the corresponding node’s message not making it to
the server. Indeed, the messages of the nodes below it would also not make it. So, when a node’s
message does not make it to the server in a particular aggregation tree, we call it a node drop for
that aggregation tree. See Fig. 5 for an example of failure and drops with and without overlay
aggregation.

Fig. 5. The figure on the le! is an example of direct aggregation. Here, node 4 failed, and it is also the only
node that dropped. In the figure on the right, nodes employ overlay network aggregation. Here, node 4 failed,
however, both nodes 4 and 5 dropped.

Therefore, in the presence of failures, the server may not receive the true aggregate, leading the
server to make an estimate. We focus on estimates of the following kind.

D!()*)+)’* 1. 𝜴̂ is an estimate for the aggregate 𝜴 = 1
𝑁↑1

∑𝑁
𝑀=2 𝜴

𝑀 with linearly bounded noise if,
(1) it is unbiased, E [𝜴̂ | 𝜴] = 𝜴, and,
(2) has MSE bounded as,

E

∞𝜴̂ ↑ 𝜴∞22

 (𝜴𝑀)𝑁𝑀=2

⇐ 𝑞2

(𝑁 ↑ 1)2
𝑁
𝑀=2

∞𝜴𝑀 ∞22 ,

where 𝑞2 is its normalized Mean-Squared-Error (MSE).

4.1 OptAgg: An Aggregation and Estimation Protocol under Failures
Here we present our aggregation and estimation protocol, OptAgg. Recall that the aggregation
schedule produces an aggregation tree T (𝑅,𝐿) for each chunk-replica (𝑅,𝐿). LetA(𝑅,𝐿) denote the
set of nodes that do not drop in the treeT (𝑅,𝐿). In the example on the right of Fig. 5,A(𝑅,𝐿) = {2, 3},
assuming that it was the aggregation tree for chunk replica (𝑅,𝐿). This means that the server receives
the message, 𝜶1(𝑅,𝐿) = ∑

𝑀↔A(𝑃,𝐿) 𝜴𝑀(𝑅) corresponding to chunk-replica (𝑅,𝐿). In OptAgg, the
server needs to know the sizes ofA(𝑅,𝐿)which may be easily obtained using the following method.
Every client appends their chunk with a coordinate with entry 1. This coordinate when summed
up at the server will result in the value of |A(𝑅,𝐿)|, the size of A(𝑅,𝐿). OptAgg uses the value of
the fraction of nodes that do not drop,

𝑟(𝑅,𝐿) ↭
|A(𝑅,𝐿)|
𝑁 ↑ 1

.

OptAgg computes an estimate that minimizes an upper bound on the MSE based solely on
knowledge of the fraction of clients (as opposed to their identities) that successfully contributed to
the aggregate, and reattempts aggregation for those that don’t meet a speci#ed MSE constraint.
Intuitively, the quality of the partially received chunk-replica is higher if a higher number of nodes
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Algorithm 2: OptAgg(𝑁 ,𝑄,𝑆,𝑞2
𝑉𝑓)

Input :Number of nodes: 𝑁 ,
Number of chunks:𝑄 ,
Number of replicas per chunk: 𝑆 ,
MSE Threshold: 𝑞2

𝑉𝑓 > 0.
Output :Aggregate Estimate: 𝜴̂.

1 ∈ = ↗ ; // set of successfully received chunks
2 while |∈| < 𝑄 do
3 Run OptSched(𝑁 , [𝑄] \∈,𝑆 ) to compute schedule to aggregate chunks not in ∈ ;

// Receive chunk-replica aggregates:
{
𝜶1(𝑅,𝐿) :𝑅 ↔ [𝑄] \∈,𝐿 ↔ [𝑆]

}
// Compute fraction of clients not dropped in aggregation tree:

{𝑟(𝑅,𝐿) :𝑅 ↔ [𝑄] \∈,𝐿 ↔ [𝑆]}
4 for𝑅 ↔ [𝑄] \∈ do
5 𝑞2(𝑅) = 2∑𝑆

𝑇=1
𝑈(𝑉,𝑇)

1↑𝑈(𝑉,𝑇)
;

6 if 𝑞2(𝑅) ⇐ 𝑞2
𝑉𝑓 then

7 𝑠∝(𝑅,𝐿) =
𝑈(𝑉,𝑇)

1↑𝑈(𝑉,𝑇)∑𝑆
𝑊=1

𝑈(𝑉,𝑊 )
1↑𝑈(𝑉,𝑊 )

, ∋𝐿 ↔ [𝑆] ;

8 𝜴̂(𝑅) = 1
𝑁↑1

∑𝑅
𝐿=1

𝑔∝(𝑃,𝐿)
𝑕(𝑃,𝐿) 𝜶

1(𝑅,𝐿) ;
9 ∈ = ∈⇔ {𝑅} ;

10 end
11 𝜴̂ = (𝜴̂(𝑅))𝑂𝑃=1
12 end

contributed to its aggregate received for a given tree. Our estimate takes a weighted average of such
aggregates for each chunk, where the weight is higher when the number of nodes contributing,
𝑟(𝑅,𝐿), is high. Our results show that an optimal weighting should be non-linear, i.e., be proportional
to 𝑟(𝑅,𝐿)/(1 ↑ 𝑟(𝑅,𝐿)), which is also increasing in 𝑟(𝑅,𝐿). OptAgg is explained in more detail
next.

In addition to 𝑁 ,𝑄 and𝑆 ,OptAgg accepts another input 𝑞2
𝑉𝑓 which is a bound on the normalized

MSE of the aggregate estimate. OptAgg proceeds as follows. First, it implements the schedule
produced by OptSched to aggregate all the𝑄 chunks with 𝑆 replicas each. Then, for each chunk
𝑅, denoting,

𝑞2(𝑅) ↭
2∑𝑅

𝐿=1
𝑕(𝑃,𝐿)

1↑𝑕(𝑃,𝐿)

,

it considers the chunk successfully received if 𝑞2(𝑅) ⇐ 𝑞2
𝑉𝑓 . We call this the chunk-acceptance

condition, where chunks of higher quality as determined by the magnitude of 𝑟(𝑅,𝐿) are accepted.
If a chunk𝑅 is successfully received, then it computes a coe!cient for the chunk’s 𝐿 th replica as,

𝑠∝(𝑅,𝐿) =
𝑕(𝑃,𝐿)

1↑𝑕(𝑃,𝐿)∑𝑅
𝑖=1

𝑕(𝑃, 𝑖 )
1↑𝑕(𝑃, 𝑖 )

,

and obtains an estimate,

𝜴̂(𝑅) =
1

𝑁 ↑ 1

𝑅
𝐿=1

𝑠∝(𝑅,𝐿)
𝜶1(𝑅,𝐿)
𝑟(𝑅,𝐿)

.
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Note that if 𝑟(𝑅,𝐿 ≃) = 1 then, 𝜶1(𝑅,𝐿 ≃) is the true aggregate of chunk𝑅, and therefore, all partially
received chunks may be ignored. In this case, we adopt the convention that 𝑠∝(𝑅,𝐿 ≃) = 1/𝑌 where 𝑌
is the number of chunk replicas with 𝑟(𝑅,𝐿 ≃) = 1, and set 𝑠∝(𝑅,𝐿) to 0 for all chunk-replicas with
𝑟(𝑅,𝐿) < 1. This behaviour would not be captured if, say, 𝑠∝(𝑅,𝐿) △ 𝑟(𝑅,𝐿).

For chunks that were not accepted, OptAgg re-attempts another aggregation. The process
continues until all chunks have been successfully received. The complete protocol is described in
Algorithm 2.

4.2 Analysis of OptAgg in the Independent Link Failure Model
We analyzeOptAgg in the setting where each link in an aggregation tree T (𝑅,𝐿) fails independently
with a probability 𝑜 of every other link in all the trees {T (𝑅≃,𝐿 ≃)}𝑃≃ ↔∈,𝐿≃ ↔[𝑅]. Particularly, even if a
link between the same two nodes 𝑃1 and 𝑃2 exists in two di"erent trees T (𝑅1,𝐿1) and T (𝑅2,𝐿2),
they fail independently of each other. This models events where a link between two nodes failed to
be setup or the transfer across the link did not complete in time due to random exogenous events
in the network.

We compute a bound on the MSE of the estimate 𝜴̂ as a function of the fraction of clients dropped
in the aggregation trees. To that end, for a chunk𝑅, de#ne F drop(𝑅) as the sigma-algebra of the
fraction of clients dropped in the corresponding 𝑆 aggregation trees in the attempt in which chunk
𝑅 was successfully received in OptAgg,

F drop(𝑅) ↭ 𝑞 ({𝑟(𝑅,𝐿) : 𝐿 ↔ [𝑆]}) . (4)

L!""# 5. Consider chunk𝑅, and consider an estimate,

𝜴̂𝑔 (𝑅) ↭
1

𝑁 ↑ 1

𝑁
𝑀=2

𝑠(𝑅,𝐿)
𝑟(𝑅,𝐿)

𝜶1(𝑅,𝐿),

where 𝑠(𝑅,𝐿)’s are non-negative and ∑𝑅
𝐿=1 𝑠(𝑅,𝐿) 𝑕(𝑃,𝐿)>0 = 1.

Under the independent link failure model, the estimate 𝜴̂𝑔 (𝑅) is an unbiased estimate of 𝜴(𝑅),
E[𝜴̂𝑔 (𝑅)| 𝜴(𝑅)] = 𝜴(𝑅). And, its MSE is bounded as,

E
𝜴̂𝑔 (𝑅) ↑ 𝜴(𝑅)

2
2

 (𝜴𝑀(𝑅))𝑁𝑀=2 , F drop(𝑅)

⇐ 1

(𝑁 ↑ 1)2
𝑅
𝐿=1

2𝑠2(𝑅,𝐿)
𝑕(𝑃,𝐿)

1↑𝑕(𝑃,𝐿)

𝑁
𝑀=2

∞𝜴𝑀(𝑅)∞22 .

The MSE bound above is minimized for 𝑠(𝑅,𝐿) = 𝑠∝(𝑅,𝐿),

E

∞𝜴̂(𝑅) ↑ 𝜴(𝑅)∞22

 (𝜴𝑀(𝑅))𝑁𝑀=2 , F drop(𝑅)

⇐ 1

(𝑁 ↑ 1)2
2∑𝑅

𝐿=1
𝑕(𝑃,𝐿)

1↑𝑕(𝑃,𝐿)

𝑁
𝑀=2

∞𝜴𝑀(𝑅)∞22 .

That is, Lemma 5, proved in Appendix F, states that the chunk estimate 𝜴̂(𝑅) obtained using
OptAgg is an estimate of 𝜴(𝑅)with linearly bounded noise thatminimizes a bound on the normalized
MSE.
OptAgg depends on two parameters that realize a tradeo" between aggregation delay and

normalized MSE. In order to achieve a normalized MSE of no more than 𝑞2, we propose setting

𝑞2
𝑉𝑓 = 𝑞2, and 𝑆 =


1 ↑ (1 ↑ 𝑜) (1 ↑ 𝑜/2) ↖log𝑁 ↙

𝑞2(1 ↑ 𝑜) (1 ↑ 𝑜/2) ↖log𝑁 ↙


, (5)

where 𝑜 is the link failure probability. When 𝑜 is unknown, one may choose 𝑆 based on a conser-
vative estimate for 𝑜 .
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With such a choice of 𝑞2
𝑉𝑓 , the chunk-acceptance condition in Line 6 of Algorithm 2 motivated

by the result of Lemma 5, will ensure that the normalized MSE of the estimate is bounded by 𝑞2.
The choice of𝑆 is more subtle. Although a small𝑆 leads to a shorter schedule length, the chances

of passing the chunk-acceptance condition may be smaller leading to many reattempts and thus
high aggregation delay. Our speci#c choice for 𝑆 proposed above is developed in Appendix B.
Intuitively, as can be seen, 𝑆 is roughly inversely proportional to the desired normalized MSE
𝑞2 and is an increasing function of the link failure probability 𝑜 so that the chunk-acceptance
condition may be passed with a su!cient probability.

R!"#$% 5 (R!,!-#*.! +’ F!/!$#+!/ L!#$*)*0). Communication is a known bottleneck in
Federated Learning systems [20] and several works in the literature have proposed using client-side
lossy compression of the local gradient, 𝜷𝑀 , before they are sent to the server to aggregate [1, 3, 13, 15, 31].
A standard model used for compression is a stochastic compression operator 𝜸 which is unbiased,
E [𝜸(𝜷𝑀)| 𝜷𝑀] = 𝜷𝑀 and has MSE bounded as, E

[
∞𝜸(𝜷𝑀) ↑ 𝜷𝑀 ∞22 | 𝜷𝑀


⇐ 𝑡 ∞𝜷𝑀 ∞22, where 𝑡 > 0 is a

compression parameter. Stochastic quantization and random sparsi!cation are two examples [1, 3].
Then, the server obtains an estimate for the aggregate, 𝜷 = 1

𝑁↑1
∑𝑁

𝑀=2 𝜷
𝑀 as, 𝜷𝜴 = 1

𝑁↑1
∑𝑁

𝑀=2 𝜸(𝜷
𝑀).

Since clients apply compression independently on the local gradients, the MSE on 𝜷𝜴 can be bounded

as, E
𝜷𝜴 ↑𝜷

2
2
|(𝜷𝑀)𝑁𝑀=2


⇐ 𝑗

(𝑁↑1)2
∑𝑁

𝑀=2 ∞𝜷𝑀 ∞22. Therefore, the aggregate of the compressed gradients

may be viewed as an estimate with linearly bounded noise. Previous works have shown that, depending
on the FL algorithm being used, the number of rounds of training needed to converge to a speci!ed
convergence criterion grows as an increasing function of 𝑡 [1, 3, 13, 31].
Therefore, the estimate 𝜴̂ produced by OptAgg functions similarly to the aggregate of client-side

compressed updates. When client-side compression with parameter 𝑡 is combined with OptAgg under
a MSE constraint 𝑞2, the independence between the randomness of the client-side compressors and the
link failures allows us to demonstrate that the server’s estimate will meet the criteria of De!nition 1
with a normalized MSE of 𝑡 + 𝑞2. This highlights the relevance of our work for an FL application.

5 SIMULATION
In this section, we present some simulation results to verify the analysis of OptAgg from Section
4.2 in the i.i.d., link delay and i.i.d., failure setting, study the generality of OptSched and OptAgg
in a setting with heterogeneous link delays and link failures, and illustrate that when link delay
distributions have heavy tails, it may be useful to set a threshold on link delays to get much smaller
aggregation delays while only su"ering a small normalized MSE on the estimate.

For all the simulations below, we consider #le size 𝑉 = 100𝑄𝑛, proportional speed 𝑊prop = 10𝑄𝑛𝑜𝑐
and #xed delay 1/𝑊 𝑆 = 0.1𝑐 . The number of chunks is 𝑄 = 10, which means 𝑈sync(𝑄) = 1.1𝑐 . We
consider the three link delay distributions given in Table 1. All simulations have been run until the
95% con#dence interval has converge to a width of 5% of the sample mean of the aggregation delay
and/or the normalized MSE.

In addition to comparing to the baseline of direct aggregation, below we will also compare to the
gossip-based Push-Sum algorithm for aggregation introduced in [22]. Our structured aggregation
approach is quite di"erent than theirs, thus we will make a few reasonable assumptions to make
the comparison fair, in fact give Push-Sum an advantage. In their setting, nodes follow the random-
contact model where nodes choose a receiver at random and transmit a message upon successful
completion of their previous transmission. This process continues until the aggregate estimate
has converged. A node may be receiving from multiple other nodes concurrently in their random-
contact model. In our communication model, a node may receive from at most one node at a time.
In order to compare to OptSched and OptAgg, we assumed that if a node is receiving from 𝑌 other
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nodes at the same time in Push-Sum, then the instantaneous rate of all the 𝑌 communications is
1/(𝑈sync(𝑄)𝑌).

Note that when using Push-Sum, the server does not know exactly when the MSE of its current
estimate has satis#ed the desired MSE-constraint. So, in practice, one may need to run Push-Sum for
a conservatively longer time to ensure that the server’s average estimate has converged. To realize
an aggressive comparison, we simulated a genie based stopping time for Push-Sum, i.e., stop when
MSE satis#es the constraint. Therefore, Push-Sum may have higher delays than those reported in
our simulations. OptAgg does not have the problem stated above because it automatically checks
for a chunk-acceptance condition in order to satisfy the MSE constraint without relying on a genie
knowledge of the true aggregate.

5.1 Tradeo!s in i.i.d., Link Delay Se"ing with Independent Failures
Here we consider the setting where link delays are i.i.d., distributed according to the Shifted
Exponential distribution. We consider i.i.d., link failure probabilities of 0.01, 0.03, 0.05 and 0.1. We
show simulation results for N=100 nodes and N=150 nodes in Fig. 6. The plots were obtained using
the following procedure. Given a link failure probability 𝑜 and a constraint on the normalized MSE
𝑞2 that the aggregate needs to satisfy, we chose 𝑞2

𝑉𝑓 and𝑆 according to (5). Then, we ran simulations
to compute the expected aggregation delay and the realized normalized MSE. We veri#ed that the
realized normalized MSE is smaller than the constraint 𝑞2. Then we plot the expected aggregation
delay vs normalized MSE. Note that normalized MSE values in the plots are the realized normalized
MSE and not the normalized MSE constraints. The set of normalized MSE constraints 𝑞2 were
uniformly chosen in the range 0.1𝑜 to 𝑜 .

First, we observe that for all the failure probabilities considered, the expected aggregation delay
is signi#cantly lower than that of direct aggregation for the whole range of normalized MSE
considered for both 𝑁 = 100 and 𝑁 = 150 cases. Moreover, even though individual aggregation
trees are more susceptible to link failures (see Fig. 5), because the di"erent replicas of the chunks
of a node are routed along di"erent routes in the schedule, and OptAgg aggregates and estimates
information from these replicas optimally, we are able to achieve low normalizedMSEwhile keeping
the aggregation delay low as well. Therefore, we observe that OptAgg achieves a lower aggregation
delay compared to the gossip algorithm down to a normalized MSE constraint 𝑞2 ▽ 0.3𝑜 , for all the
link failure probabilities 𝑜 considered, even though gossip is particularly resilient to link failures.
For instance, to achieve a 𝑞2 of 0.02 under link failure probability 𝑜 = 0.05 with 𝑁 = 100 nodes,
OptAgg achieves a 2x speedup over gossip.
The MSE threshold in OptAgg is chosen to optimize a bound on the normalized MSE. And, the

number of replicas 𝑆 is chosen according to a heuristic as explained in Section B. Therefore, we
also performed a brute force search (BFS) over a grid of values of 𝑞2

𝑉𝑓 and 𝑆 in the following manner.
Given a 𝑞2 constraint, we performed a grid search over a range of values of 𝑞2

𝑉𝑓 and 𝑆 . Amongst the
parameters that satis#ed the 𝑞2 constraint, we chose the pair with the smallest expected aggregation
delay and plotted it as a solid circle in Fig. 6. We observe that these points coincide exactly with the
curve obtained using our heuristic in most cases, and are only marginally lower in a few cases. This
suggests that our heuristic to choosing 𝑞2

𝑉𝑓 and 𝑆 provides the Pareto Frontier of the achievable
pairs of expected aggregation delay and normalized MSE under OptAgg. A Proof of this statement
is left to future work.

5.2 Tradeo!s in the Heterogeneous Link Delay Se"ing with Dependent Failures
The near-optimality of the expected aggregation delay of OptSched in Theorem 2 and the MSE
bound on the estimate under failures in Lemma 5 have been analyzed so far in the i.i.d., link delay
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(a) N=100 (b) N=150

Fig. 6. Aggregation Delay and normalized MSE Tradeo" curves for OptAgg in the i.i.d., link delay with i.i.d.,
failures se#ing for 𝑁 = 100 and 𝑁 = 150 nodes. The solid lines show the tradeo"s by using 𝑆 as in (5). The
solid circles show the tradeo"s obtained by doing a brute-force search (BFS) over values of 𝑞2𝑉𝑓 and 𝑆 .

and link failure settings respectively. In this section, we study the generality of these results in
heterogeneous link delay and link failure settings.
To model heterogeneous link delays, each link gets assigned a delay i.i.d., according to a dis-

tribution at time 0, and the delay for these links is then #xed for the duration of aggregation.
This models a heterogeneous link delay setting because some links get assigned a high delay, and
others get assigned a low delay for the entire duration of aggregation. We shall compare this to the
homogeneous setting where link delays are independently resampled from the same distribution
each time a schedule uses a link (i.e., the model in the analysis of the asynchronous version of
OptSched in Section 3.2).
Fig. 7a shows the behavior of the expected aggregation delay of OptSched as a function of

the number of nodes. Perhaps surprisingly, we observe that for both the Shifted Exponential and
Gaussian distributions, the expected aggregation delay for the heterogeneous and the homogeneous
settings match. Although for the heterogeneous setting link delays stay #xed across the aggregation
schedule, because OptSched randomizes when and where links are included in the schedule as
explained in Remark 1, the average aggregation delay behaves as if link delays were resampled at
each use in the schedule. We observed the same phenomenon for the Pareto distribution as well,
but we don’t show it in Fig. 7a because the high aggregation delays under the Pareto distribution
would hide the details of the Shifted Exponential and Gaussian plots.

Next, we consider a heterogeneous link failure setting as well. Here, the link delays are sampled
heterogeneously in the same way as described above. A link failure occurs when the link delay is
greater than a certain threshold 𝑈𝑉𝑓 . Because the link delays themselves are #xed and heterogeneous,
the link failures are #xed and heterogeneous as well. In the simulations results we present here, we
consider the Pareto distribution with 𝑘 = 2 for the link delays and set the delay thresholds such
that a link’s failure probability is 𝑜 . We consider 𝑜 = 0.01, 0.03 and 0.05. Fig. 7b shows the expected
aggregation delay and MSE tradeo"s. The curves were obtained using the same methodology
as explained in Section 5.1. Here again we observe the same improvement in aggregation delay
compared to direct aggregation and gossip as in the i.i.d., link delay and failure setting. Moreover,
even though link failures are heterogeneous and correlated across time, by comparing against the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 41. Publication date: December 2024.



Optimal Aggregation via Overlay Trees: Delay-MSE Tradeo"s under Failures 41:19

(a) Expected Aggregation Delay as a function of the
number of nodes in the heterogeneous and i.i.d.,
se#ings.

(b) Aggregation Delay and MSE Tradeo"s of
OptAgg in the heterogeneous se#ing with N=100
Nodes. The solid lines show the tradeo"s by us-
ing 𝑆 as in (5). The solid circle show the tradeo"’s
obtained by doing a brute-force search (BFS) over
values of 𝑞2𝑉𝑓 and 𝑆 .

Fig. 7

solid circles obtained using a brute-force search (BFS) over 𝑞2
𝑉𝑓 and 𝑆 , our heuristic for choosing 𝑞2

𝑉𝑓
and 𝑆 as given in (5) appear to describe the Pareto frontier for the achievable region of expected
aggregation delay and normalized MSE in this setting as well. Again, the reason for the tradeo"
curves in the heterogeneous link failure setting behaving similarly to those in the i.i.d., link failure
setting is the randomization used by OptSched as explained above.

5.3 Delay Threshold for Heavy-Tailed Distributions
In Theorem 2, we showed that if link delay distributions are light-tailed and have a logMGF, then
the expected aggregation delay of the asynchronous implementation of OptSched is near-optimal.
And, in Fig. 4a we illustrated that heavy-tailed link delay distributions such as Pareto distribution
may su"er a large expected aggregation delay as the number of nodes grows.
Here we propose a #x for this problem for heavy-tailed link delay distributions by using a

threshold on link delays. That is, if the link delay is greater than a certain threshold 𝑈𝑉𝑓 , we abandon
the chunk transfer on the link and the nodes move on to their next communication in their node
schedules. Since we want to compare the improvement in aggregation delay due to the delay
threshold alone, we set 𝑆 = 1, but set 𝑞2

𝑉𝑓 = 8 to reattempt aggregation for chunks in the rare events
where the server receives no information from a chunk because the link from the client sending
the aggregate to the server failed. The threshold 𝑈𝑉𝑓 is set relatively high such that probability of
link failure is low so that the normalized MSE is very low. We consider 𝑁 = 100 nodes.

The results are shown in Fig. 8.We observe that systemswith a heavy-tailed link delay distribution
o"er a signi#cant improvement in aggregation delay, while only su"ering a small loss in the
normalized MSE. The gains are larger for the heavier-tailed distributions, as we see increasing gains
with decreasing 𝑘 parameter of the Pareto distribution. Moreover, the gains appear to $atten out
with lower delay thresholds (corresponding to the higher MSE points in the plot). This is because
a truncated Pareto distribution has a logMGF, and thus the near-optimality result of Theorem 2
negates the need to set a very low threshold.
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Fig. 8. Decrease in expected aggregation delay with link delay thresholding for di"erent link delay distribu-
tions. Points with higher normalized MSE correspond to lower delay thresholds.

Lastly, we observe that there is no improvement in aggregation delay obtained by delay threshold-
ing for the light-tailed Shifted Exponential and Gaussian distributions. In fact, there is a very slight
increase in the aggregation delay as the delay threshold decreases because of reattempts made due
to higher chances of not meeting the 𝑞2

𝑉𝑓 = 8 threshold. This further supports the near-optimality
result of Theorem 2 for light-tailed link delay distributions.

6 CONCLUSIONS
In this paper, we have taken a new look at information aggregation, a fundamental problem in
distributed systems, and one that is particularly relevant for new classes of applications such as
federated learning.
We have seen that an asynchronous implementation of delay-optimal synchronous structured

overlay-based aggregation schedules is robust to delay variability particularly when link delays
are light-tailed. Unfortunately in networks with losses such schedules are fragile since aggregates
corresponding to multiple nodes may be lost with a single failure. However by using an appropriate
amount of redundancy and failure-aware estimation of the desired aggregates, one can realize
trade-o"s in the aggregation delay vs the normalized MSE of the estimated aggregate, giving
substantial improvements over direct aggregation.
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A AGGREGATION DELAY ANALYSIS FOR ASYNCHRONOUS SETTING
In this section, we develop the analysis techniques used to prove Lemma 3 and 4 that were used to
prove the near-optimality of OptSched in the Asynchronous setting.
First, we de#ne a vector process (𝜹𝑘 )𝑙s=0 that tracks the progress that the di"erent nodes have

made in a schedule S. Recall that each node locally has a notion of a sequence of virtual slots
in its node schedule, even though there is no notion of synchronized slots across nodes in the
Asynchronous setting. Let 𝑢 s

𝑀 denote the time at which node 𝑃 has completed its virtual slot s. The
sequence is initialized for virtual slot “0” as, 𝑢 0

𝑀 = 0 for all nodes 𝑃.

The set of communications in slot s of S is S(s) =
{(
𝑃s𝑇,tx,𝑃

s
𝑇,rx,𝑅

s
𝑇 ,𝐿

s
𝑇

)}𝑈 s
𝑇=1

. Then, 2𝑋 s nodes
communicate in their virtual slot s, and the rest do “nothing”. Let, 𝑗s

1, . . . ,𝑗
s
𝑈 s denote the respective

link delays all distributed i.i.d., according to 𝑉𝑌(𝑂). Then, the process evolves as follows. For nodes
𝑃 that do not communicate in slot s of S, 𝑢 s

𝑀 = 𝑢 s↑1
𝑀 . For nodes that communicate in slot s,

𝑢 s
𝑀s
𝑋,rx
,𝑢 s

𝑀s
𝑋,tx

= max
(
𝑢 s↑1
𝑀s
𝑋,tx
,𝑢 s↑1

𝑀s
𝑋,rx

)
+ 𝑗s

𝑇 , ∋𝑌 ↔ [𝑋 s], 𝑐 ⇒ 1. (6)

Since the aggregate needs to be computed at the server, the last communication in any schedule
S will involve the server. Therefore, 𝑍async(S) = 𝑢𝑙

1 .
The lower bound result of Lemma 3 is a straightforward application of Jensen’s inequality.

P$’’( ’( L!""# 3. For nodes 𝑃s𝑇,𝑉𝑊 and 𝑃s𝑇,𝑋𝑊 , we may use Jensen’s inequality,

E

𝑢 s
𝑀s
𝑋,tx


,E


𝑢 s
𝑀s
𝑋,rx


⇒ max

(
E

𝑢 s↑1
𝑀s
𝑋,𝑌𝑍


,E


𝑢 s↑1
𝑀s
𝑋,rx

 )
+ E

[
𝑗s
𝑇


.

For nodes 𝑃 that do not participate in slot s, E[𝑢 s
𝑀] = E[𝑢 s↑1

𝑀 ]. By a nested application of Jensen’s
inequality, we can lower bound the aggregation delay of this system with link delay CDF 𝑉𝑌(𝑂) by
another system with deterministic link delay 𝑏𝑌(𝑂). ↫

The technical challenge in obtaining an upper bound is that𝑢 s↑1
𝑀s
𝑋,tx

and𝑢 s↑1
𝑀s
𝑋,rx

in (6) maybe correlated
due to past interactions between the nodes. The key insight in obtaining an upper bound is that
the progress would be slower (i.e., the values of 𝜹𝑘 would be higher) if they were independent. To
that end, we de#ne a bounding process as follows. Let (𝑗̂s)̸s=1 be an i.i.d., sequence of link delays
each with CDF 𝑉𝑌(𝑂) Then, de#ne a sequence of random variables (𝑢 s)̸s=0 as,

𝑢 0 = 0, 𝑢 s = max
(
𝑢 s↑1, 𝑢̃ s↑1

)
+ 𝑗̂s, s ⇒ 1, (7)

where 𝑢̃ s↑1 is an i.i.d., copy of 𝑢 s↑1.
The following Lemma states that 𝑢 s is an “upper bound” on the time required for nodes to

complete their virtual slot s, and is proved in Supplementary Material Section E.1.

L!""# 6. For every 𝑐 ↔ [𝑎], the vector
(
𝑢 s
𝑀

)𝑁
𝑀=1 is !rst-order-stochastically-dominated (FOSD) by

the vector
(
𝑢 s
𝑀

)𝑁
𝑀=1

, where 𝑢 s
𝑀’s are i.i.d., copies of 𝑢 s. That is, for any 𝑀1, . . . , 𝑀𝑁 ⇒ 0,

𝑙
(
𝑢 s
1 ⇐ 𝑀1, . . . ,𝑢 s

𝑁 ⇐ 𝑀𝑁
)
⇒ 𝑁

𝑇=1 𝑙
(
𝑢 s ⇐ 𝑀𝑇

)
.

Due to Lemma 6, characterizing the convergence of (𝑢 )̸s=0 gives an upper bound on the conver-
gence of aggregation delay in the Asynchronous setting.

L!""# 7. Let the process
(
𝑢 s

)̸
s=0

be as de!ned in (7). Let the delay CDF 𝑉𝑌(𝑂) have a logMGF, with
its associated right-tail Cramér function, !∝

𝑌(𝑂)(·). Let 𝑘∝(𝑄) > 0 be such that, !∝
𝑌(𝑂)(𝑘

∝(𝑄)) = ln 2.
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Then, for any 𝑘 > 𝑘∝(𝑄) and any s > 0,

𝑙
(
𝑢 s ⇒ 𝑘 s

)
⇐ 𝑂↑ s(!∝

𝑂(𝑃 )(𝑎 )↑ln 2). (8)

Moreover, lims↛
𝑚̂ s

s = 𝑘∝(𝑄) in probability.

The proof of Lemma 7 relies on the observation that 𝑢 s can be interpreted approximately as the
weighted height of a binary tree with s levels and i.i.d., edge lengths. With this observation, we
use the result of [7] that characterizes the convergence of the heights of such trees to obtain our
result. The Lemma is proved in Supplementary Material Section E.2. The tail bound on 𝑍async(S) in
Lemma 4 is a direct consequence of (8). The bound on E

[
𝑍async(S)


may be obtained either from

(8) or from the convergence in probability result and the observation that
(
𝑢 𝑘/𝑐

)
𝑘⇒1

are Uniformly
Integrable due to (8).

B NUMBER OF REPLICAS TO USE UNDER FAILURES
In this section, we explain our choice for the number of replicas 𝑆 in (5) when running OptAgg.
Consider the chunk-acceptance condition in Line 6 of OptAgg. Since 𝑀/(1 ↑ 𝑀 ) is a convex function,
by Jensen’s inequality,

𝑅
𝐿=1

𝑟(𝑅,𝐿)
1 ↑𝑟(𝑅,𝐿)

⇒ 𝑆
𝑟(𝑅)

1 ↑𝑟(𝑅)
a.s. where 𝑟(𝑅) =

1
𝑆

𝑅
𝐿=1

𝑟(𝑅,𝐿).

Due to the choice of 𝑞2
𝑉𝑓 = 𝑞2, a su!cient condition for the acceptance of chunk𝑅 is,

𝑆 ⇒ 2(1 ↑𝑟(𝑅))
𝑞2𝑟(𝑅)

. (9)

By Lemma 10 in SupplementaryMaterial G, the expectation of𝑟(𝑅) is,E[𝑟(𝑅)] = (1↑𝑜) (1 ↑ 𝑜/2) ↖log𝑁 ↙ .
Since, (9) is only a su!cient condition and the realizations of 𝑟(𝑅) may vary around its mean, we
did a search over choices of 𝑆 of the following form with a tunable parameter 𝑊𝑅 ,

𝑆 =
2(1 ↑ E[𝑟(𝑅))]
𝑊𝑅𝑞2 E[𝑟(𝑅)]

.

We found in simulations that 𝑊𝑅 = 2 gave the lowest delay while satisfying the MSE constraint 𝑞2.
This gives us the rule for selecting 𝑆 as given in (5).

C OptSched PROTOCOL FOR GENERAL 𝑁

OptSched for a general number of nodes 𝑁 is shown in Algorithm 3. The ideas here are the same
as in the explanation in Section 3 for the special case of 𝑁 being a power of 2. The di"erence is
that identifying the nodes to aggregate the new chunk on in the Interleave and Merge step is more
complicated as can be seen in Lines 12 to 19. The primary reason is that unlike in the simpler setting
where the client nodes that participate in slot 𝑒 + 1 or later of S𝐿≃↑1 was 𝑁 /2, here the number of
such nodes may be smaller than 𝑁 /2. Therefore, the set of ⇑𝑁 /2⇓ transmitters for the Interleave
step need to be chosen more carefully so that the aggregation of chunk-replica 𝑑↑1(𝐿 ≃) in the Merge
step does not collide with the aggregation of the #rst 𝐿 ≃ ↑ 1 chunk-replicas.

D PROOF OF LEMMA 2
P$’’( ’( L!""# 2. The proof will be by induction. Let 𝑃𝐿≃(s) represent the number of nodes

that participate in slot s or later of schedule S𝐿≃ .
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Algorithm 3: OptSched (𝑁 ,M,𝑆)
Input :Number of Nodes: 𝑁 , (labelled 1 to 𝑁 )

Chunk Indices: M,
Replicas Per Chunk: 𝑆 ,

Output :Schedule S to compute ∑𝑁
𝑀=2 𝜴

𝑀(𝑅,𝐿) at node 1 for all𝑅 ↔ M,𝐿 ↔ [𝑆].
1 Compute a bijective function, 𝑑 : M⨌

[𝑆] → [|M|𝑆] ;
// Initialize Schedule

2 𝑁 ≃ = 𝑁 , s = 1 ;
3 while 𝑁 ≃ > 1 do
4 S1(s) =

{
(𝑁 ≃ + 1 ↑ 𝑓, 𝑓,𝑑↑1(1)) : 𝑓 = 1 . . . ⇑𝑁 ≃/2⇓

}
;

5 𝑁 ≃ = 𝑁 ≃ ↑ |S1(s)| ;
6 s = s +1 ;
7 end
8 for 𝐿 ≃ = 2 to |M|𝑆 do
9 S𝐿≃↑1 = len(S𝐿≃↑1) ;

10 𝑒 = S𝐿≃↑1 ↑↖log𝑁 ↙ + 1 ;
// Retain

11 S𝐿≃(s) = S𝐿≃↑1(s), 1 ⇐ s ⇐ 𝑒 ;

// Interleave
12 N tx = {client nodes that participate in slot 𝑒 + 2 or later of S𝐿≃↑1 } ;
13 N 0

rx = {nodes that do not participate in slot 𝑒 + 1 or later of S𝐿≃↑1 } ;
14 N rem = [2,𝑁 ] \ N tx \N0

rx ;
15 if |N tx | < ⇑𝑁 /2⇓ then
16 First add nodes from N rem to N tx, and then, if needed, add nodes from N 0

rx until
|N tx | = ⇑𝑁 /2⇓ ;

17 end
18 N rx = [1,𝑁 ] \ N tx ;
19 S𝐿≃(𝑒 + 1) =

{(
N tx(𝑌),N rx(𝑌),𝑑↑1(𝐿 ≃)

)
: 𝑓 = 1 . . . |N tx |

}
;

// Merge
20 N 0 = [2,𝑁 ] \ N tx ; // nodes yet to transmit 𝑑↑1(𝐿 ≃)
21 for s = 𝑒 + 2 to S𝐿≃↑1 +1 do
22 N avail = N 0 \{nodes participating in S𝐿≃↑1(s↑1)} ;
23 S0 = {

(
N avail(|N avail | + 1 ↑ 𝑓 ),N avail( 𝑓 ),𝑑↑1(𝐿 ≃)

)
: 𝑓 = 1 . . . ⇑ |N avail | /2⇓};

24 S𝐿≃(s) = S𝐿≃↑1(s↑1) ⇔ S0 ;
25 N 0 = N 0 \{ transmitters in S0} ;
26 end

// Final Aggregation
27 S𝐿≃(S𝐿≃↑1 +2) = {(N 0(1), 1,𝑑↑1(𝐿 ≃))};
28 end
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Induction Hypothesis (IH). For some 1 ⇐ 𝐿 ≃ ⇐ |M|𝑆 , the following statements are true for S𝐿≃ .

(1) S𝐿≃ has induced an aggregation tree for each of the #rst 𝐿 ≃ chunk-replicas (ordered according
to 𝑑↑1).

(2) S𝐿≃ completes in S𝐿≃ = 2(𝐿 ≃ ↑ 1) + ↖log𝑁 ↙ steps.
(3) S𝐿≃ does not violate communication constraints.
(4) 𝑃𝐿≃(𝑒𝐿≃ + 𝑔 ) ⇐ 2 ↖log𝑁 ↙↑𝑉 ⇐ ⇑𝑁 /2s↑1⇓, for all integers 1 ⇐ 𝑔 ⇐ ↖log𝑁 ↙ ↑ 1, and where

𝑒𝐿≃ = S𝐿≃ ↑↖log𝑁 ↙ + 1.

Before proceeding further in the proof by induction, we remark how, if the induction is true, we
obtain the statement of the Theorem. When the induction is run through till 𝐿 ≃ = |M|𝑆 , Statement
(3) ensures that the schedule S|M |𝑅 doesn’t violate communication constraints, Statement (1)
implies that S|M |𝑅 induces an aggregation tree for each of the |M|𝑆 chunk replicas, and Statement
(2) ensures that S|M |𝑅 completes in the required time.

Base Case (BC). Here, we prove the Statements of IH for S1. Line 5 in Algorithm 3 ensures that
once a node transmits, it no longer participates in S1. And, the While loop in Line 3 runs until the
only node left to transmit is the server (Node 1). Therefore, S1 induces an aggregation tree for the
#rst chunk-replica. This proves Statement (1).
To prove Statement (2), observe that if at the start of the while loop, 𝑁 ≃ = 2 nodes remain to

transmit, then the schedule completes in one more slot (where, a communication between the
two remaining nodes is scheduled). Now, assume that for some 𝑁 ≃ and all 𝑁 ≃≃ < 𝑁 ≃, if 𝑁 ≃≃ nodes
remain at the start of the While loop, then the schedule completes in ↖log𝑁 ≃≃↙ more slots. Now, if
𝑁 ≃ nodes remain, then after one more iteration of the While loop, ↖𝑁 ≃/2↙ nodes will remain (see
Lines 4 and 5 of Algorithm 3). So, when 𝑁 ≃ nodes remain, the number of slots needed to complete
is 1 + ↖log ↖𝑁 ≃/2↙↙, which is ↖log𝑁 ≃↙. This proves Statement (2) for the Base Case. Statement (3) is
trivially true for the Base Case since Line 4 of Algorithm 3 ensures that a node participates in at
most one communication in a slot.

To prove Statement (4) for the Base Case, notice that in the last slot, exactly one communication
happens. Therefore, exactly two nodes participate in the last slot or later, leading to 𝑃1(S1) = 2. Now,
assume that for some 2 ⇐ s ⇐ ↖log𝑁 ↙ ↑ 1, 𝑃1(𝑒1 + s) ⇐ 2 ↖log𝑁 ↙↑s. Then, in the previous slot, at most
𝑃1(𝑒1 + s) more nodes may have been active, where each of them may have transmitted to one of
the nodes still participating in slot 𝑒1 + s or later. Therefore, 𝑃1(𝑒1 + s↑1) ⇐ 2𝑃1(𝑒1 + s) ⇐ 2 ↖log𝑁 ↙↑s +1.
This completes the proof of Statement (4).

Induction Step (IS):. Assuming the IH is true for 𝐿 ≃ ↑ 1, here we prove the following statements
for schedule S𝐿≃ .

(1) S𝐿≃ has induced an aggregation tree for each of the #rst 𝐿 ≃ chunk replicas.
(2) S𝐿≃ completes in S𝐿≃ = 2(𝐿 ≃ ↑ 1) + ↖log𝑁 ↙ steps.
(3) S𝐿≃ does not violate communication constraints.
(4) 𝑃𝐿≃(𝑒𝐿≃ + s) ⇐ 2 ↖log𝑁 ↙↑s ⇐ ⇑𝑁 /2s↑1⇓, for all integers 1 ⇐ s ⇐ ↖log𝑁 ↙ ↑ 1, and where

𝑒𝐿≃ = S𝐿≃ ↑↖log𝑁 ↙ + 1.

To prove Statement 1, #rst, notice that S𝐿≃ contains all the communications that happen in S𝐿≃↑1
(see Lines 11 and 24 of Algorithm 3). So, from Statement 1 of IH, S𝐿≃ also induces an aggregation
tree for each of the #rst 𝐿 ≃ ↑ 1 chunk replicas. It remains to prove that S𝐿≃ induces an aggregation
tree for chunk replica 𝐿 ≃ too.

From Statement (4) of IH, no more than ⇑𝑁 /2⇓ nodes participate in slot 𝑒𝐿≃↑1 + 2 or later of 𝑎𝐿≃↑1.
Therefore, from Lines 12, 15 and 16 of Algorithm 3, N tx contains exactly ⇑𝑁 /2⇓ nodes. Then, Line
18 further implies that N rx contains exactly ↖𝑁 /2↙ nodes. Since N tx and N rx are disjoint, and
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|N tx | ⇐ |N rx |, in the Interleave step (Line 19 of Algorithm 3), all nodes in N tx transmit chunk
replica 𝐿 ≃.

Therefore, after the Interleave step, the number of client nodes yet to transmit𝐿 ≃ is |[2,𝑁 ] \ N rx | =
⇑𝑁↑1

2 ⇓. Let 𝑃 nodes be busy communicating the #rst 𝐿 ≃ ↑ 1 chunks in slot 𝑒𝐿≃↑1 + 1 of S𝐿≃↑1. By
de#nition, 𝑃 ⇐ 𝑃𝐿≃↑1(𝑒𝐿≃↑1 + 1). Then, depending on whether 𝑃 ⇐ ⇑𝑁 /2⇓ or not, from Lines 22 and 23
in the #rst loop of Algorithm 3, the number of nodes that transmit chunk replica 𝐿 ≃ in slot 𝑒𝐿≃↑1 + 2
of S𝐿≃ is,

min


⇑𝑁↑1

2 ⇓
2


,


𝑁 ↑ 𝑃

2



So, the number of client nodes yet to transmit 𝐿 ≃ at the start of slot 𝑒𝐿≃↑1 + 3 of S𝐿≃ is,

max


⇑𝑁↑1

2 ⇓
2


,


𝑁 ↑ 1
2


↑

𝑁 ↑ 𝑃

2


. (10)

The above set of nodes forms a subset of N rx. And, from Statement (4) of IH, the number of nodes
that participate in slot 𝑒𝐿≃↑1 + 2 or later of S𝐿≃↑1 is at most ⇑𝑁 /2⇓, and they are all within the set
N tx, which is disjoint from N rx. So, from slot 𝑒𝐿≃↑1 + 3 of S𝐿≃ onwards, all the nodes that are yet
to transmit 𝐿 ≃ in any slot are available to communicate it. From the analysis of the Base Case, we
know that if 𝑁 ≃ nodes want to aggregate a chunk replica at one node, then it takes ↖log𝑁 ≃↙ slots.
So, upper bounding the number of nodes in (10),

max


⇑𝑁↑1

2 ⇓
2


,


𝑁 ↑ 1
2


↑

𝑁 ↑ 𝑃

2


⇐ max


𝑁 ↑ 1
4


,
𝑁 ↑ 1
2

↑ 𝑁 ↑ 𝑃

2
+
1
2

}
,

= max

𝑁 ↑ 1
4


,
𝑃

2

}
,

⇐ max

𝑁 ↑ 1
4


, 2 ↖log𝑁 ↙↑2

}
,

⇐ 2 ↖log𝑁 ↙↑2 .

Therefore, in the remaining ↖log𝑁 ↙ ↑ 2 iterations of the loop in Line 21 of Algorithm 3, chunk-
replica 𝐿 ≃ is aggregated at a single client node. Then, in the #nal aggregate step, this client node
transmits to the server (see Line 27 of Algorithm 3). Therefore, S𝐿≃ constructs an aggregation tree
for chunk replica 𝐿 ≃ too. This proves Statement (1) of the Induction Step.

Statement (2) is true for S𝐿≃ because it uses exactly 2 more slots than S𝐿≃↑1, one in the Interleave
Step, and one in the Final Aggregate Step (Lines 19 and 27 respectively of Algorithm 3). So,
S𝐿≃ = S𝐿≃↑1 +2 = 2(𝐿 ≃ ↑ 1) + ↖log𝑁 ↙.
Now we prove Statement (3) for S𝐿≃ . First, from IH, S𝐿≃↑1 does not violate communication

constraints. Since,N tx andN rx are disjoint sets, S𝐿≃ does not violate communication constraints in
the Interleave Step (Line 19 of Algorithm 3). In the Merge steps, chunk replica 𝐿 ≃ is communicated
only over those nodes that do not participate in S𝐿≃↑1 in that slot (see Lines 22, 23, and 24). And, in
the Final Aggregate step, only one communication happens. Therefore, S𝐿≃ does not violate any
communication constraints.
The proof of Statement (4) is the same as the one for the Base Case. Notice that in the last slot,

exactly one communication happens. Therefore, exactly two nodes participate in the last slot or
later, leading to 𝑃𝐿≃(S𝐿≃) = 2. Now, assume that for some 2 ⇐ s ⇐ ↖log𝑁 ↙ ↑ 1, 𝑃𝐿≃(𝑒𝐿≃ + s) ⇐ 2 ↖log𝑁 ↙↑s.
Then, in the previous slot, at most 𝑃𝐿≃(𝑒𝐿≃ + s) more nodes may have been active, where each of
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them may have transmitted to one of the nodes still participating in slot 𝑒𝐿≃ + s or later. Therefore,
𝑃𝐿≃(𝑒𝐿≃ + s↑1) ⇐ 2𝑃𝐿≃(𝑒𝐿≃ + s) ⇐ 2 ↖log𝑁 ↙↑s +1. This completes the proof of Statement (4). ↫

E PROOFS OF SECTION A
E.1 Proof of Lemma 6
P$’’( ’( L!""# 6. Recall that (𝑃s1,tx,𝑃

s
1,rx), . . . , (𝑃

s
𝑈 s,tx,𝑃

s
𝑈 s,rx) are the pairs of nodes that commu-

nicate in slot s. Let 𝑃s1,0, . . . ,𝑃
s
𝑁↑2𝑈 s,0 be the list of nodes not communicating in slot s.

Base Case: s = 1.

𝑙 (𝑢 1
1 ⇐ 𝑀1, . . . ,𝑢

1
𝑁 ⇐ 𝑀𝑁 ) = 𝑙

((
𝑢 1
𝑀1
𝑋,tx

⇐ 𝑀1
𝑀1
𝑋,tx
,𝑢 1

𝑀1
𝑋,rx

⇐ 𝑀1
𝑀1
𝑋,rx

) 𝑈 1
𝑇=1

,

(
𝑢 1
𝑀1
𝑊 ,0

⇐ 𝑀1
𝑀1
𝑊 ,0

)𝑁↑2𝑈 1

𝑖=1

)
,

=
𝑈 1∏
𝑇=1

𝑙
(
𝑗 ⇐ min(𝑀𝑀1

𝑋,tx
, 𝑀𝑀1

𝑋,rx
)
)
,

⇒
𝑁∏
𝑀=1

𝑙 (𝑗 ⇐ 𝑀𝑀),

=
𝑁∏
𝑀=1

𝑙 (𝑢 1 ⇐ 𝑀𝑀).

As the Induction Hypothesis, assume that the Theorem statement is true up to s↑1.

Induction Step: For notational convenience, de#ne,

𝑣 s
𝑀s
𝑋,tx
,𝑣 s

𝑀s
𝑋,rx

= max
(
𝑢 s↑1
𝑀s
𝑋,tx
,𝑢 s↑1

𝑀s
𝑋,rx

)
, 𝑌 = 1, . . . , 𝑋 s,

𝑣 s
𝑀s
𝑊 ,0
= 𝑢 s↑1

𝑀s
𝑊 ,0
, 𝑓 = 1, . . . ,𝑁 ↑ 2𝑋 s,

and,
𝑣 s = max

(
𝑢 s↑1, 𝑢̃ s↑1

)
. (11)

Now,

𝑙 (𝑣 s
1 ⇐ 𝑤1, . . . ,𝑣

s
𝑁 ⇐ 𝑤𝑁 ) = 𝑙

((
𝑣 s
𝑀s↑1
𝑋,tx

⇐ 𝑤𝑀s↑1
𝑋,tx

,𝑣 s
𝑀s↑1
𝑋,rx

⇐ 𝑤𝑀s↑1
𝑋,rx

) 𝑈 s↑1
𝑇=1

,

(
𝑣 s
𝑀s↑1
𝑊 ,0

⇐ 𝑤𝑀s↑1
𝑊 ,0

)𝑁↑2𝑈 s↑1

𝑖=1

)
,

= 𝑙

((
𝑣 s
𝑀s↑1
𝑋,tx

,𝑣 s
𝑀s↑1
𝑋,rx

⇐ min
(
𝑤𝑀s↑1

𝑋,tx
,𝑤𝑀s↑1

𝑋,rx

)) 𝑈 s↑1
𝑇=1

,

(
𝑣 s
𝑀s↑1
𝑊 ,0

⇐ 𝑤𝑀s↑1
𝑊 ,0

)𝑁↑2𝑈 s↑1

𝑖=1

)
,

= 𝑙

((
𝑢 s↑1
𝑀s↑1
𝑋,tx

,𝑢 s↑1
𝑀s↑1
𝑋,rx

⇐ min
(
𝑤𝑀s↑1

𝑋,tx
,𝑤𝑀s↑1

𝑋,rx

)) 𝑈 s↑1
𝑇=1

,

(
𝑢 s↑1
𝑀s↑1
𝑊 ,0

⇐ 𝑤𝑀s↑1
𝑊 ,0

)𝑁↑2𝑈 s↑1

𝑖=1

)
,

(𝑛)
⇒

𝑈 s↑1∏
𝑇=1

𝑙
(
𝑢 s↑1 ⇐ min

(
𝑤𝑀s↑1

𝑋,tx
,𝑤𝑀s↑1

𝑋,rx

))2 𝑁↑2𝑈 s↑1∏
𝑖=1

𝑙
(
𝑢 s↑1 ⇐ 𝑤𝑀s↑1

𝑊 ,0

)
,

(𝑜)=
𝑈 s↑1∏
𝑇=1

𝑙
(
𝑣 s ⇐ min

(
𝑤𝑀s

𝑋,tx
,𝑤𝑀s

𝑋,rx

)) 𝑁↑2𝑈 s↑1∏
𝑖=1

√
𝑙
(
𝑣 s ⇐ 𝑤𝑇s𝑊

)
,

⇒
𝑁∏
𝑀=1

𝑙
(
𝑣 s ⇐ 𝑤𝑀

)
. (12)
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(a) follows from the Induction Hypothesis, and (b) follows from the de#nition of 𝑣 .
Further, by the same logic as in the base case,

𝑙
( (
𝑢 s
𝑀 ↑ 𝑣 s

𝑀 ⇐ 𝑥𝑀
)𝑁
𝑀=1

)

= 𝑙

((
𝑢 s
𝑀s
𝑋,tx

↑ 𝑣 s
𝑀s
𝑋,tx

⇐ 𝑥𝑀s
𝑋,tx
,𝑢 s

𝑀s
𝑋,rx

↑ 𝑣 s
𝑀s
𝑋,rx

⇐ 𝑥𝑀s
𝑋,rx

) 𝑈 s
𝑇=1

,
(
𝑢 s
𝑀s
𝑊 ,0
↑ 𝑣 s

𝑀s
𝑊 ,0

⇐ 𝑥𝑀s
𝑊 ,0

)𝑁↑2𝑈 s

𝑖=1

)
,

=
𝑈 s∏
𝑇=1

𝑙
(
𝑗 ⇐ min

(
𝑥𝑀s

𝑋,tx
, 𝑥𝑀s

𝑋,rx

))
,

⇒
𝑁∏
𝑀=1

𝑙 (𝑗 ⇐ 𝑥𝑀),

=
𝑁∏
𝑀=1

𝑙 (𝑢 s ↑ 𝑣 s ⇐ 𝑥𝑀). (13)

From (12) and (13), the vectors
(
𝑣 s
𝑀

)𝑁
𝑀=1 and

(
𝑢 s
𝑀 ↑ 𝑣 s

𝑀

)𝑁
𝑀=1 are #rst-order-stochastically-dominated

by vectors 𝑣 s
𝑀 and (𝑢 s

𝑀 ↑ 𝑣 s
𝑀 ) respectively (where 𝑣 s

𝑀 ’s are i.i.d., copies of 𝑣 s). Further,
(
𝑢 s
𝑀 ↑ 𝑣 s

𝑀

)𝑁
𝑀=1

is independent of 𝑣 s
𝑀 because for a node 𝑃, 𝑢 s

𝑀 ↑ 𝑣 s
𝑀 is either 0 or is disributed according to 𝑉𝑌(𝑂)

depending on whether it participates in slot s of the schedule or not, indpendent of the value of 𝑣 s
𝑀 .

And, (𝑢 s
𝑀 ↑ 𝑣 s

𝑀 ) is independent of 𝑣 s
𝑀 by construction.

Since FOSD is closed under addition of independent random vectors [33, Theorem 6.B.16], the

vector
(
𝑢 s
𝑀

)𝑁
𝑀=1 is #rst-order-statistically-dominated by

(
𝑢 s
𝑀

)𝑁
𝑀=1

. That is,

𝑙
(
𝑢 s
1 ⇐ 𝑀1, . . . ,𝑢

s
𝑁 ⇐ 𝑀𝑁

)
⇒

𝑁∏
𝑇=1

𝑙
(
𝑢 s ⇐ 𝑀𝑇

)
.

↫

E.2 Proof of Lemma 7
P$’’( ’( L!""# 7. This proof is inspired from [7]. Recall 𝑣 𝑘 from (11).
Consider an in#nite binary tree 𝑦̸ where each edge length is distributed according to the CDF

𝑉𝑌(𝑂). Observe that, in distribution, 𝑣 s +1 is the length of the longest path from the root to a node
at depth s in 𝑦̸. Denote,

{
𝑧 s
𝑇

}2s
𝑇=1 as the lengths of the 2

s paths from the root to the nodes at depth
s. 𝑧𝑇 is a sum of s i.i.d., random variables distributed according to 𝑉𝑌(𝑂), but 𝑧𝑇 may depend on 𝑧 𝑖 ,
for 𝑌 ↦= 𝑓 .
We #rst prove (8). By using Cherno" bound, we get,

𝑙 (𝑧 s
𝑇 ⇒ 𝑘 s) ⇐ 𝑂↑ s!∝

𝑂 (𝑎 ) ,∋𝑌 ↔ [2s].

By a union bound over all the 𝑧 s
𝑇 ’s,

𝑙 (𝑣 s +1 ⇒ 𝑘 s) = 𝑙
( 2smax
𝑇=1

𝑧 s
𝑇 ⇒ 𝑘 s

)
,

⇐ 2s𝑙 (𝑧 s
1 ⇒ 𝑘 s),

⇐ 2s𝑂↑ s!∝
𝑂 (𝑎 ),

= 𝑂↑ s(!∝
𝑂 (𝑎 )↑ln 2).

Since, 𝑣 s +1 = max{𝑢 s, 𝑢̃ s}, 𝑙 (𝑢 s ⇒ 𝑘 s) ⇐ 𝑙 (𝑣 s +1 ⇒ 𝑘 s). Therefore, we get,

𝑙 (𝑢 s ⇒ 𝑘 s) ⇐ 𝑂↑ s(!∝
𝑂 (𝑎 )↑ln 2). (14)
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Next, we prove the convergence in probability. Since, !∝
𝑌 (𝑘) > ln 2 for all 𝑘 > 𝑘∝, from (14) we

get,

lim
s↛

𝑙

(
𝑢 s

s
⇒ 𝑘

)
= 0. (15)

In order to prove the upper bound, we make use of Galton-Watson (GW) Processes [14].

D!()*)+)’* 2. A Galton-Watson (GW) process (𝑧𝑋 )𝑋 ↔Z+ with o"spring distribution (𝑜𝐿 )𝐿↔Z+ is
a discrete-time Markov chain taking values in the set Z+ of non-negative integers whose transition
probabilities are as follows,

𝑙 (𝑧𝑋+1 = 𝐿 |𝑧𝑋 =𝑅) = 𝑜∝𝑃𝐿 ,

where
(
𝑜∝𝑃𝐿

)
𝐿↔Z+

is the𝑅th power distribution of (𝑜𝐿 )𝐿↔Z+ . In other words, given 𝑧𝑋 =𝑅, 𝑧𝑋+1 is the

sum of𝑅 i.i.d., random variables each with distribution (𝑜𝐿 )𝐿↔Z+ .
The GW process maybe visualized as a tree, where there is a root node, and the number of

children that each node in this tree has is distributed independently according to (𝑜𝐿 )𝐿↔Z+ . Then,
𝑧𝑋 may be interpreted as the number of nodes in this tree at level 𝛥 .

We will use the following fact [14, Theorem 6.1] in the proof.

F#.+ 1. If the mean of the o"spring distribution of a GW process (𝑧𝑋 )𝑋 ↔Z+ is greater than 1, i.e.,∑
𝐿 𝐿𝑜𝐿 > 1, then, there exists, 0 < 𝑡 ⇐ 1, such that, the process survives with probability 𝑡. That is,

𝑙

(⋂
𝑋 ⇒0

𝑧𝑋 > 0

)
= 𝑡.

In other words, the tree produced by the GW process is in!nite with probability 𝑡.

Consider the in#nite binary tree 𝑦̸ where the edge lengths are i.i.d., distributed according to
𝑉𝑌(𝑂). Recall that 𝑣 s +1 is the maximum length of a path from the root to a node at depth s. Let
𝑒, 𝑔 be positive integers, and let 0 < 𝑘 ≃ < 𝑘∝. In order to di"erentiate between nodes in 𝑦̸ and
nodes in the GW process, we will call the nodes in the former as, simply, nodes, and in the latter as
gw-nodes.
We will start a GW process from each node at depth 𝑔 . The node at depth 𝑔 is a gw-node. Then,

for each node that is also a gw-node, another node at depth 𝑒 from it in 𝑦̸ is its child in the GW
process if the corresponding path length is at least 𝑘 ≃𝑒 . Letting 𝑗1, . . . ,𝑗𝑄 denote i.i.d., random
variables with CDF 𝑉𝑌(𝑂), the expected number of children of a gw-node may then be calculated as,

2𝑄𝑙

(
𝑄
𝑖=1

𝑗 𝑖 ⇒ 𝑘 ≃𝑒

)
= 2𝑄𝑂↑𝑄!

∝(𝑎≃)+𝑝(𝑄 ),

> 1, for large enough 𝑒 .

The #rst statement follows from large deviations, and since there are 2𝑄 nodes at depth 𝑒 in a binary
tree which are candidates to be children in the GW process. The second statement follows since for
any 𝑘 ≃ < 𝑘∝, we have !∝(𝑘 ≃) < ln 2.

Since the expected number of children in the GW process is greater than 1, from Fact 1 we have
that the process survives with a positive probability 𝑡. Since we started a GW process at each
node at depth 𝑔 in 𝑦̸, there are 2𝑉 independent GW processes that each survive with probability 𝑡.
Therefore, the probability that any one of them survives is 1 ↑ (1 ↑ 𝑡)2𝑌 .

Since 𝑢 s ⇒ 𝑣 s, picking a path along one of these surviving processes, we get,

𝑙

(
𝑢 s

s
⇒ 𝑘 ≃ s↑1 ↑ 𝑔

s

)
= 1 ↑ (1 ↑ 𝑡)2

𝑌
,∋ s ⇒ 𝑔 .
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Taking the limit,

lim
s↛

𝑙

(
𝑢 s

s
⇒ 𝑘 ≃

)
= lim

s↛
𝑙

(
𝑢 s

s
⇒ 𝑘 ≃ s↑1 ↑ 𝑔

s

)
,

= 1 ↑ (1 ↑ 𝑡)2
𝑌
.

The above probability can be made arbitrarily close to 1 by making 𝑔 large. That is,

lim
s↛

𝑙

(
𝑢 s

s
⇒ 𝑘 ≃

)
= 1. (16)

From (15) and (16) we conclude,

lim
s↛

𝑢 s

s
= 𝑘∝ in probability.

↫

F PROOF OF LEMMA 5
We split the statement of Lemma 5 into two parts, the #rst part on the unbiased property of the
estimate 𝑇(𝑅), the second part on the bound on the MSE.

Part 1:
The unbiased property follows from a straightforward application of linearity of expectation.

L!""# 8. Under the same system condition as in the statement of Theorem 5, 𝜴̂𝑔 (𝑅) is an unbiased
estimate of 𝜴(𝑅), i.e.,

E

𝜴̂𝑔 (𝑅)

 𝜴(𝑅)

= 𝜴(𝑅).
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P$’’(. Consider chunk𝑅. Recall the de#nition of F drop(𝑅) from (4).

E
[
𝜴̂𝑔 (𝑅)| 𝜴(𝑅), F drop(𝑅)


= E

[
𝑅
𝐿=1

𝑠(𝑅,𝐿)
(𝑁 ↑ 1)𝑟(𝑅,𝐿)


𝑀↔A(𝑃,𝐿)

𝜴𝑀(𝑅)
 𝜴(𝑅), F drop(𝑅)

]
,

= E

[
𝑅
𝐿=1

𝑠(𝑅,𝐿)
(𝑁 ↑ 1)𝑟(𝑅,𝐿)

𝑁
𝑀=2

𝜴𝑀(𝑅) {𝑀↔A(𝑃,𝐿))}

 𝜴(𝑅), F drop(𝑅)

]
,

= E

[
𝑁
𝑀=2

𝜴𝑀(𝑅)
𝑅
𝐿=1

𝑠(𝑅,𝐿)
(𝑁 ↑ 1)𝑟(𝑅,𝐿) {𝑀↔A(𝑃,𝐿)}

 𝜴(𝑅), F drop

]
,

= E

[
E

 𝑁
𝑀=2

𝜴𝑀(𝑅)
𝑅
𝐿=1

𝑠(𝑅,𝐿)
(𝑁 ↑ 1)𝑟(𝑅,𝐿) {𝑀↔A(𝑃,𝐿)}

 (𝜴𝑀(𝑅))𝑁𝑀=2 , F drop(𝑅)
  𝜴(𝑅), F drop(𝑅)

]
,

(𝑛)= E

[
𝑁
𝑀=2

𝜴𝑀(𝑅)
𝑅
𝐿=1

𝑠(𝑅,𝐿)
(𝑁 ↑ 1)𝑟(𝑅,𝐿)

𝑟(𝑅,𝐿) {𝑕(𝑃,𝐿)>0}

 𝜴(𝑅), F drop(𝑅)

]
,

(𝑜)= E

[
𝜴(𝑅)

𝑅
𝐿=1

𝑠(𝑅,𝐿) {𝑕(𝑃,𝐿)>0}

 𝜴(𝑅), F drop(𝑅)

]
,

= 𝜴(𝑅)
𝑅
𝐿=1

{𝑕(𝑃,𝐿)>0}
𝑕(𝑃,𝐿)

1↑𝑕(𝑃,𝐿)∑𝑅
𝑖=1

𝑕(𝑃, 𝑖 )
1↑𝑕(𝑃, 𝑖 )

,

= 𝜴(𝑅),

where (a) follows from symmetry in the link failure model, and (b) follows from the de#nition of
𝑠(𝑅,𝐿)’s.
By the Tower rule of expectations,

E
[
𝜴̂𝑔 (𝑅)| 𝜴(𝑅)


= E


E

𝜴̂(𝑅)

 𝜴(𝑅), F drop

  𝜴(𝑅)

,

= 𝜴(𝑅).

Since 𝑠∝(𝑅,𝐿)’s satisfy all the constraints of 𝑠(𝑅,𝐿)’s, 𝜴̂(𝑅) is an unbiased estimate as well. ↫

Part 2:
Let F drop(𝑅) be as de#ned in (4). For succinctness, here we only show the proof of the MSE bound
for 𝑠∝(𝑅,𝐿)’s. However, one can observe that stopping the equation (18) at (b) would prove the
MSE bound for 𝑠(𝑅,𝐿)’s.

L!""# 9. Under the same system condition as in the statement of Lemma 5, we have,

E

∞𝜴̂(𝑅) ↑ 𝜴(𝑅)∞22

 (𝜴𝑀(𝑅))𝑁𝑀=2 , F drop(𝑅)

⇐ 1

(𝑁 ↑ 1)2
2∑𝑅

𝐿=1
𝑕(𝑃,𝐿)

1↑𝑕(𝑃,𝐿)

𝑁
𝑀=2

∞𝜴𝑀(𝑅)∞22 .

The proof of Lemma 9 uses the property of negative association (NA) of random variables which
we introduce brie$y.
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D!()*)+)’* 3 ([19]). A set of random variables 𝑢 1,𝑢 2, . . . ,𝑢 𝑄 are said to be negatively associated
(NA) if, for every pair of disjoint subsets 𝑎1, 𝑎2 of {1, . . . , 𝑒}, cov(𝑝 (𝑢 𝑇 , 𝑋 ↔ 𝑎1),𝛩(𝑢 𝑖 , 𝑓 ↔ 𝑎2)) ⇐ 0 for all
non-decreasing functions 𝑝 ,𝛩.

Some examples of sets of random variables that have the NA property are stated below. See [35]
for a proof.

P$’1’2)+)’* 1. (1) If random variables𝑢 1,𝑢 2, . . . ,𝑢 𝑄 are random permutations of𝑀1, 𝑀2, . . . , 𝑀𝑄 ,
with each permutation being equally likely, then they are NA.

(2) If𝑢 1,𝑢 2, . . . ,𝑢 𝑄 are NA, and𝑣 1,𝑣 2, . . . ,𝑣 𝑋 are NA, and further {𝑢𝑇 }𝑇 and {𝑣𝑖 } 𝑖 are independent
of each other, then 𝑢 1, . . . ,𝑢 𝑄 ,𝑣 1, . . . ,𝑣 𝑋 are NA.

(3) Let 𝑝1, . . . , 𝑝𝑋 : R𝑄 → R be either all monotonically increasing or all monotonically decreasing in
each of their input coordinates, with each 𝑝𝑇 operating on disjoint subsets of [𝑒], 𝑎1, 𝑎2, . . . , 𝑎𝑋 ∀ [𝑒].
Let, 𝜹 ↭

(
𝑢 𝑇

)𝑄
𝑇=1. Then, 𝑣

1 = 𝑝1(𝜹 ), . . . ,𝑣 𝑋 = 𝑝𝑋 (𝜹 ) are NA if 𝑢 1, . . . ,𝑢 𝑄 are NA.

The property of negative association imbues several other useful properties on the set of random
vectors. We shall only use the following property here. See [35] for a proof.

P$’1’2)+)’* 2. Let the set of random variables 𝑢 1,𝑢 2, . . . ,𝑢 𝑄 be negatively associated. Then,

E



(
𝑄
𝑇=1

𝑢 𝑇 ↑ E
[

𝑄
𝑇=1

𝑢 𝑇

])2
⇐

𝑄
𝑇=1
E
 (
𝑢 𝑇 ↑ E[𝑢 𝑇]

)2
.

We are prepared to prove Lemma 9.

P$’’( ’( L!""# 9. First, de#ne a “#ctional quantity” for every Client 𝑃,

𝜴̂𝑀(𝑅) ↭ 𝜴𝑀(𝑅)
𝑅
𝐿=1

𝑠∝(𝑅,𝐿) {𝑀↔A(𝑃,𝐿)}
𝑟(𝑅,𝐿)

.

Observe that,

𝜴̂(𝑅) =
1

𝑁 ↑ 1

𝑁
𝑀=2

𝜴̂𝑀(𝑅). (17)

From the above equation, 𝜴̂𝑀(𝑅) maybe interpreted as an estimate of 𝜴𝑀(𝑅), although the server
only has knowledge of 𝜴̂(𝑅) and not of 𝜴̂𝑀(𝑅). The MSE of 𝜴̂𝑀(𝑅) is bounded as,

E
[
∞𝜴̂𝑀(𝑅) ↑ 𝜴𝑀(𝑅)∞22 | 𝜴𝑀(𝑅), F drop(𝑅)



= ∞𝜴𝑀(𝑅)∞22 E


(
𝑅
𝐿=1

𝑠∝(𝑅,𝐿)
𝑟(𝑅,𝐿)

(
{𝑀↔A(𝑃,𝐿)} ↑𝑟(𝑅,𝐿)

))2 F drop(𝑅)

,

(𝑛)= ∞𝜴𝑀(𝑅)∞22
𝑅
𝐿=1

(
𝑠∝(𝑅,𝐿)
𝑟(𝑅,𝐿)

)2
E

 (
{𝑀↔A(𝑃,𝐿)} ↑𝑟(𝑅,𝐿)

)2 F drop(𝑅)

,

(𝑜)= ∞𝜴𝑀(𝑅)∞22
𝑅
𝐿=1

𝑠∝(𝑅,𝐿)2

𝑟(𝑅,𝐿)2
𝑟(𝑅,𝐿)(1 ↑𝑟(𝑅,𝐿)),

(𝑞)= ∞𝜴𝑀(𝑅)∞22
1∑𝑅

𝐿=1
𝑕(𝑃,𝐿)

1↑𝑕(𝑃,𝐿)

. (18)

(a) follows because, under the link failure model, links fail independently across trees. Therefore,
node drops are also independent across trees. (c) follows from the choice of 𝑠∝(𝑅,𝐿) as in Algorithm
2. In fact, it is the value of 𝑠𝐿 ’s that minimizes the quantity in (b).
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To extend (18) to our intended result, we need to establish a set of NA random variables.
By symmetry, given F drop(𝑅), {1↔A(𝑃,𝐿)}, . . . , {𝑁 ↔A(𝑃,𝐿)} are uniformly random permutations

of |A(𝑅,𝐿)| number of 1’s, and𝑁↑1↑ |A(𝑅,𝐿)| number 0’s. Therefore, by Statement 1 of Proposition
1, they are NA.

Since link failures are independent across trees, for any 𝐿1 ↦= 𝐿2, the set of random variables{
{𝑀↔A𝑇1 }

}𝑁
𝑀=2

is independent of the set
{

{𝑀↔A𝑇2 }
}𝑁
𝑀=2

. Therefore by Statement 2 of Proposition 1,

given F drop(𝑅), ⋃𝑅
𝐿=1

{
{𝑀↔A(𝑃,𝐿)}

}𝑁
𝑀=2 is a set of NA random variables.

Consider a coordinate 𝑊 ↔ [𝑈]. Let, 𝑎𝑒𝑞 ↭ {𝑃 ↔ [2,𝑁 ] : 𝑇𝑀𝑞 (𝑅) ⇒ 0} be the set of nodes where the
𝑊 th coordinate of their update is non-negative. Recalling that,

𝑇𝑀𝑞 (𝑅) = 𝑇𝑀𝑞 (𝑅)
𝑅
𝐿=1

𝑠∝(𝑅,𝐿) {𝑀↔A(𝑃,𝐿)}
𝑟(𝑅,𝐿)

,

given F drop(𝑅) and 𝜴𝑀(𝑅), 𝑇𝑀𝑞 (𝑅) is a monotonically increasing function of
(

{𝑀↔A(𝑃,𝐿)}
)𝑅
𝐿=1 for

every 𝑃 ↔ 𝑎𝑒𝑞 . Moreover, for distinct 𝑃1,𝑃2 ↔ 𝑎𝑒𝑞 , 𝑇
𝑀1
𝑞 and 𝑇𝑀2

𝑞 operate on disjoint subsets of⋃𝑅
𝐿=1

{
{𝑀↔A(𝑃,𝐿)}

}𝑁
𝑀=2. Therefore, by Statement 3 of Proposition 1,

{
𝑇𝑀𝑞

}
𝑀↔𝑙𝑎𝑀 is a set of NA random

variables given F drop(𝑅) and (𝜴𝑀(𝑅))𝑁𝑀=2. And, from Proposition 2, we have,

E



(
𝑀↔𝑙𝑎𝑀

𝑇𝑀𝑞 (𝑅) ↑

𝑀↔𝑙𝑎𝑀

𝑇𝑀𝑞 (𝑅)

)2 F drop(𝑅), (𝜴𝑀(𝑅))𝑁𝑀=2


⇐

𝑀↔S𝑎

𝑀

E


(𝑇𝑀𝑞 (𝑅) ↑ 𝑇𝑀𝑞 (𝑅))2

F drop(𝑅), (𝜴𝑀(𝑅))𝑁𝑀=2

.

(19)

Let 𝑎𝑁𝑞 ↭
{
𝑃 ↔ [, 2𝑁 ] : 𝑇𝑀𝑞 < 0

}
be the set of nodes where the 𝑊 th coordinate is negative. By the

same reasoning as above (except that 𝑇𝑀𝑞 is a decreasing function of
(

{𝑀↔A(𝑃,𝐿)}
)𝑅
𝐿=1), we have,

E



( 
𝑀↔𝑙𝑏𝑀

𝑇𝑀𝑞 (𝑅) ↑

𝑀↔𝑙𝑏𝑀

𝑇𝑀𝑞 (𝑅)

)2 F drop(𝑅), (𝜴𝑀(𝑅))𝑁𝑀=2


⇐


𝑀↔S𝑏
𝑀

E


(𝑇𝑀𝑞 (𝑅) ↑ 𝑇𝑀𝑞 (𝑅))2

F drop(𝑅), (𝜴𝑀(𝑅))𝑁𝑀=2

.

(20)

Recalling the identity, (𝑀 + 𝑤)2 ⇐ 2𝑀2 + 2𝑤2, we have,

E



(
𝑁
𝑀=2

𝑇𝑀𝑞 (𝑅) ↑
𝑁
𝑀=2

𝑇𝑀𝑞 (𝑅)

)2 F drop(𝑅), (𝜴𝑀(𝑅))𝑁𝑀=2


⇐ 2E


(
𝑀↔𝑙𝑎𝑀

𝑇𝑀𝑞 (𝑅) ↑

𝑀↔𝑙𝑎𝑀

𝑇𝑀𝑞 (𝑅)

)2 F drop(𝑅), (𝜴𝑀(𝑅))𝑁𝑀=2


+ 2E


( 
𝑀↔𝑙𝑏𝑀

𝑇𝑀𝑞 (𝑅) ↑

𝑀↔𝑙𝑏𝑀

𝑇𝑀𝑞 (𝑅)

)2 F drop(𝑅), (𝜴𝑀(𝑅))𝑁𝑀=2

,

(𝑛)
⇐ 2

𝑁
𝑀=2
E


(𝑇𝑀𝑞 (𝑅) ↑ 𝑇𝑀𝑞 (𝑅))2

F drop(𝑅), (𝜴𝑀(𝑅))𝑁𝑀=2

, (21)
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(a) (b)

Fig. 9

where (a) follows from (19) and (20). Now, we are prepared to prove the statement of the Lemma,

E

∞𝜴̂(𝑅) ↑ 𝜴(𝑅)∞22

 (𝜴𝑀(𝑅))𝑁𝑀=2 , F drop(𝑅)


(𝑛)= E



1

𝑁 ↑ 1

(
𝑁
𝑀=2

𝜴̂𝑀(𝑅) ↑
𝑁
𝑀=2

𝜴𝑀(𝑅)

)
2

2

 (𝜴𝑀(𝑅))𝑁𝑀=2 , F drop(𝑅)

,

=
1

(𝑁 ↑ 1)2
𝑐
𝑞=1
E



(
𝑁
𝑀=2

𝑇𝑀𝑞 (𝑅) ↑
𝑁
𝑀=2

𝑇𝑀𝑞 (𝑅)

)2
2

 (𝜴𝑀(𝑅))𝑁𝑀=2 , F drop(𝑅)

,

(𝑜)
⇐ 1

(𝑁 ↑ 1)2
𝑐
𝑞=1

2
𝑁
𝑀=2
E


(𝑇𝑀𝑞 (𝑅) ↑ 𝑇𝑀𝑞 (𝑅))2

F drop(𝑅), (𝜴𝑀(𝑅))𝑁𝑀=2

,

=
2

(𝑁 ↑ 1)2
𝑁
𝑀=2
E

∞𝜴̂𝑀(𝑅) ↑ 𝜴𝑀(𝑅)∞22

 (𝜴𝑀(𝑅))𝑁𝑀=2 , F drop(𝑅)

,

(𝑞)=
2

(𝑁 ↑ 1)2
1∑𝑅

𝐿=1
𝑕(𝑃,𝐿)

1↑𝑕(𝑃,𝐿)

𝑁
𝑀=2

∞𝜴𝑀(𝑅)∞2 .

(a) is true due to (17). (b) follows from (21). (c) follows from (18). ↫

G EXPECTATION AND VARIANCE OF 𝑟(𝑅,𝐿)
G.1 Definitions
D!()*)+)’* 4. De!ne a sequence of Standard Trees (T𝑀)𝑀⇒1, where T𝑀 consists of 2𝑀 + 1 nodes

(including clients and server), while denoting T ≃
𝑀 as the subtree of T𝑀 that contains all the clients,

but not the server. T 0 is de!ned as shown in Fig. 9a, and the further trees in the sequence are derived
recursively as shown in Fig. 9b.
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G.2 Tracking Node Drop Rate
L!""# 10. Consider that a Standard Tree T𝑀 with 2𝑀 + 1 nodes (including the server), has nodes

failing at rate 𝑜 . Then, denoting 𝑉𝑀,𝑟 as the fraction of nodes that drop,

E
[
𝑉𝑀,𝑟


= 1 ↑ (1 ↑ 𝑜)

(
1 ↑ 𝑜

2

)𝑀
,

var(𝑉𝑀,𝑟 ) =
𝑜(1 ↑ 𝑜)(3 ↑ 𝑜)

4

(
1 ↑ 𝑜

2

)2𝑀↑1
↑ 𝑜(1 ↑ 𝑜)

4

(
1 ↑ 𝑟

2
2

)𝑀+1
.

P$’’(. De#ne 𝑢𝑀 as the random variable denoting the number of node drops in the standard
tree T𝑀 . Denoting the client node that directly communicates with the server in a Standard Tree
as the root client, de#ne 𝑣𝑀 as the number of node drops in T𝑀 due to failures of all client nodes
except the root client.

Observe that since T 1 only has 2 clients, one of which is the root, 𝑣1 is a Bern(𝑜) random variable.
Then, let 𝑧𝑀 be a independent Bern(𝑜) random variable and 𝑣 ≃

𝑀 be an independent copy of 𝑣𝑀 . Due
to the recursive construction of T𝑀 , we have,

𝑣𝑀+1
𝑐= 𝑣𝑀 + 𝑧𝑀2𝑀 + (1 ↑ 𝑧𝑀)𝑣 ≃

𝑀, 𝑃 ⇒ 1, (22)

where 𝑐= means equal in distribution. De#ning, 𝑤𝑀 = E[𝑣𝑀]/2𝑀 and simplifying,

𝑤𝑀+1 = 𝑤𝑀
(
1 ↑ 𝑜

2

)
+
𝑜

2
.

Solving the equation with the initial condition, 𝑤1 = E[𝑣1]/2 = 𝑜/2 (because 𝑣1 is a Bern(𝑜) random
variable), we get,

𝑤𝑀 = 1 ↑
(
1 ↑ 𝑜

2

)𝑀
. (23)

Further, observe that,
𝑢𝑀

𝑐= 𝑧𝑀2𝑀 + (1 ↑ 𝑧𝑀)𝑣𝑀 . (24)
Then, since 𝑉𝑀,𝑟 = 𝑢𝑀/2𝑀 , we get,

E[𝑉𝑀,𝑟] = 1 ↑ (1 ↑ 𝑜)
(
1 ↑ 𝑜

2

)𝑀
. (25)

From (22),

E[𝑣 2
𝑀+1] = E[𝑣

2
𝑀 ] + 22𝑀 E[𝑧 2

𝑀] + E[𝑣
2
𝑀 ]E[(1 ↑ 𝑧𝑀)2] + 2𝑀+1 E[𝑣𝑀]E[𝑧𝑀] + 2E[(1 ↑ 𝑧𝑀)]E[𝑣𝑀]2.

De#ne, 𝑤(2)𝑀 ↭ E[𝑣 2
𝑀 ]/22𝑀 , and recalling that 𝑤𝑀 = E[𝑣𝑀]/2𝑀 , we get,

𝑤(2)𝑀+1 =
(
1 ↑ 𝑟

2
)

2
𝑤(2)𝑀 +

𝑜

2
𝑤𝑀 +

(1 ↑ 𝑜)
2

𝑤2𝑀 +
𝑜

4
.

Plugging in the value of 𝑤𝑀 from (23),

𝑤(2)𝑀+1 =
(
1 ↑ 𝑟

2
)

2
𝑤(2)𝑀 +

(1 ↑ 𝑜)
2

(
1 ↑ 𝑜

2

)2𝑀
↑
(
1 ↑ 𝑜

2

)𝑀+1
+
1
2
+
𝑜

4
.

Solving for 𝑤(2)𝑀 using the above iteration and the initial condition 𝑤(2)1 = 𝑜/4,

𝑤(2)𝑀 = 1 ↑ 2
(
1 ↑ 𝑜

2

)𝑀
+
(
1 ↑ 𝑜

2

)2𝑀↑1
↑ 𝑜

4

(
1 ↑ 𝑟

2
2

)𝑀↑1
.
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Observing that, E[(𝑉𝑀,𝑟 )2] = E[𝑢 2
𝑀]/22𝑀 . Then, from (24),

E[(𝑉𝑀,𝑟 )2] = 𝑜 + (1 ↑ 𝑜)𝑤(2)𝑀 ,

= 1 ↑ 2(1 ↑ 𝑜)
(
1 ↑ 𝑜

2

)𝑀
+ (1 ↑ 𝑜)

(
1 ↑ 𝑜

2

)2𝑀↑1
↑ 𝑜(1 ↑ 𝑜)

4

(
1 ↑ 𝑟

2
2

)𝑀↑1
.

Further, var(𝑉𝑀,𝑟 ) = E[(𝑉𝑀,𝑟 )2] ↑ E[𝑉𝑀,𝑟]2, from (25),

var(𝑉𝑀,𝑟 ) =
𝑜(1 ↑ 𝑜)(3 ↑ 𝑜)

4

(
1 ↑ 𝑜

2

)2𝑀↑1
↑ 𝑜(1 ↑ 𝑜)

4

(
1 ↑ 𝑟

2
2

)𝑀+1
.

↫
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