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ABSTRACT

We study the problem of adaptive video data scheduling over
wireless channels. We prove that, under certain assumptions,
adaptive video scheduling can be reduced to a Markov deci-
sion process over a finite state space. Therefore, the schedul-
ing policy can be optimized via standard stochastic control
techniques using a Markov decision formulation. Simulation
results show that significant performance improvement can be
achieved over heuristic transmission schemes.

1. INTRODUCTION

The problem of efficient real-time video transmission over
wireless channels is challenging. In the first place, the data
throughput is varying over time. In the second place, real-
time video delivery can be highly delay-sensitive. To improve
the receiver/decoder video quality, the transmitter should op-
timally allocate bandwidth among current and future frames.
In the third place, the video packets are structured. Due to the
nature of predictive video coding algorithm, a video frame
can be decoded only when its predictor is available. Hence,
the prediction structure of the video codec enforces an order
on the video packets.

A system with finite state space is called a controlled
Markovian system if its state transition probability only de-
pends on the current state and the control action taken at
the state. If a instantaneous service quality associated with
the system is solely determined by the state, this system is
called a Markov decision process (MDP) [1]. The average
service quality of the system can be maximized by optimizing
the control policy. The MDP-based control framework has
previously been proposed in the scenario of real-time video
transmission. Indeed in [2], a MDP based formulation was
introduced for the problem of real-time encoder rate con-
trol. The derived optimal control policy operates at the video
encoder adapting the video rate according to the channel con-
ditions and video rate-distortion characteristics. In [3], an
MDP formulation was proposed for adaptive video play out
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and scheduling. The controller controls the play out speed
according to the receiver buffer state and channel state to
optimize the receiver visual quality. Neither of the above two
works considered the adaptive real-time video scheduling.
The most closely related work to our paper is by Zhang et
al. [4], in which a reinforcement learning framework was
studied for adaptive video transmission. The optimal trans-
mission policy is obtained via reinforcement learning rather
than MDP-based optimization. Hence, the transmitter need
to learn a “good” policy from trying those “bad” policies.
For real time video delivery, it will degrade the visual quality
until the learning is finished.

In this paper, we propose to apply MDP-based stochas-
tic control to real-time video scheduling. Under certain as-
sumptions, the real-time video scheduling can be formulated
as a Markov decision process over finite state space. Hence,
standard policy optimization algorithms can be employed to
derive video scheduling strategies. Different from [4], the
scheduling policy is derived off-line and thus is suitable for
real-time applications. Simulations results show that substan-
tial gains can be achieved by the optimized scheduling policy.

2. SYSTEM MODEL

We consider a real-time wireless video transmission system
with the compressed video stored on a server. The video is
sent through a stable TCP/IP network to a wireless router
which forwards the video to a mobile user. We assume that
the wireless channel between the wireless router and the user
is the bottleneck of the link. Our adaptive control policy op-
erates on the wireless router in a frame by frame basis. At
the beginning of each frame slot, one frame is displayed and
the wireless transmitter schedules a collection of video data
for transmission. Video sequences are encoded by an H.264
compatible scalable video encoder and the prediction struc-
ture is “I-P-P-P...”. We adopt this prediction structure rather
than the “Hierarchical B” structure because no structural de-
lay is introduced and this is the most widely used structure
for real-time video transmission. Each frame of the video se-
quence is compressed into L quality layers.



Rate-distortion Model For each frame, let ∆Rm be the data
rate in the mth layer and ∆qm be its contribution to the visual
quality measured in PSNR. For a real video sequence, ∆Rm

and ∆qm varies from frame to frame. For simplicity, we only
use their average values as brief approximations.
Channel Model and System State As shown in [5], The dy-
namics of a wireless channel can be modeled by a finite state
Markov channel. In this paper, the channel state space is de-
fined as C = {(R1, p1), ..., (R|C|, p|C|)}, where (Ri, pi) is
the transmission rate and packet error probability of the ith
state. The state transition matrix P is a |C| × |C| matrix with
entry Ps,t as the transition probability from state (Rs, ps) to
(Rt, pt). We define the receiver buffer state space as the set of
L dimensional vectors L = {(l1, · · · , lL)|lm ≥ 0, 1 ≤ m ≤
L}, in which lm is the number of received but not displayed
frames in the mth layer. At the beginning of each time slot t,
the first frame in the window is decoded and the reconstruc-
tion visual quality is

Qt(st) =
L∑

m=1

∆qm × 1(lm > 0), (1)

where 1(·) is the indicator function. The system state S is
defined as the product of the channel state and the receiver
buffer state, i.e., S = C × L.
Control Set and Policy For each state s ∈ S , we define a
feasible control set U(s). Each control u ∈ U(s) is a L-
dimensional vector (u1, · · · , uL). The entries are the number
of frames scheduled for transmission in each layer when ac-
tion u is taken. The control policy µ(s) is defined as the map-
ping from the system state s to an control in set U(s). Once
the scheduler select video data, the data will be transmitted in
a frame by frame order as shown in Fig.1. Every video packet
is repeatedly transmitted until received. In the following, we
assume that the scheduler never schedule the enhancement
layers of a frame before its base layer is received because the
enhancement layers are decoded based on the base layer.

3. PROBLEM FORMULATION

At each time slot, the scheduler can schedule any subset of
video data not previously received. This makes the feasi-
ble control set U(·) very large and optimization intractable.
Intuitively, the more enhancement layers that are scheduled,
the better instantaneous visual quality is obtained. Mean-
while, the more base layers that are scheduled, the less re-
ceiver buffer drainage is likely to happen. It is observed that,
when a lot of video data are buffered at the receiver, the re-
ceiver buffer is less susceptible to drainage. Hence, it would
be beneficial to schedule as many enhancement layers as pos-
sible. To this end, we define a window of size W . For any slot
t, the scheduler schedules the video frames which to be dis-
played in the interval [t, t+W ] with higher priority. Specifi-
cally, the scheduler operates according to the following rules.
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Fig. 1. Receiver buffer state, control and corresponding trans-
mission order.

If all the data within the window are transmitted, the transmit-
ter should schedule as many enhancement layers as possible.
If the receiver buffer is empty, the transmitter only schedules
the base layer. In other cases, the transmitter chooses data
units within the window according to policy µ(·).

Here, the window size W provides a tradeoff between
complexity and optimality. The larger the window, the bet-
ter the performance and the higher the complexity. By using
this window, although the state space is still infinite, we fix the
actions outside a finite state space. In other words, we only
need to find the optimal policy when the window is neither
empty nor fulfilled.

Let st = (Ct, Lt) and U(st) be the system state and the
corresponding feasible control set at slot t, respectively. If
one frame is decoded at the beginning of the slot and there are
∆Lt = (∆l1, · · · ,∆lL) frames transmitted for each layer by
the end of the slot, we have Lt+1 = ⌈Lt − e⌉+ + ∆Lt,

1

where e = (1, · · · , 1). Assuming the packet length is
Lpkt, there will be N = ⌈∆T×Rt

Lpkt
⌉ packet transmissions

during a time slot ∆T . Assuming that the packet loss hap-
pens independently, at the end of the time slot, the number
of successfully transmitted packets is distributed binomi-
ally. At time t + 1, the number of successfully transmitted
packets is at least Nl = ⌈

∑4
m=1 ∆lm∆Rm∆T

Lpkt
⌉ but is less

than Nh = ⌈ (
∑4

m=1 ∆lm∆Rm+∆R̃)∆T

Lpkt
⌉, where ∆R̃ is the

data rate in the frame which is scheduled but is not com-
pletely received. Hence, the state transition probability from
st = (Ct, Lt) to st+1 = (Ct+1, Lt+1) is approximately

Pst,st+1 ≈

[
Nh−1∑
n=Nl

(
N

n

)
pN−n
t (1− pt)

n

]
× PCt,Ct+1 , (2)

where the first multiplicative term is the transition probability

1⌈x⌉+ = max{x, 0}
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Fig. 2. The behaviors of the original system A.

of receiver buffer state from Lt to Lt+1 and the second term
is the transition probability of channel state from Ct to Ct+1.

Our aim is to find the optimal policy µ∗(·) which maxi-
mizes the average visual quality

Jµ(s) = lim
N→∞

1

N
E

{
N−1∑
t=0

Qt(st)|s0 = s

}
, ∀s ∈ S. (3)

3.1. State Space Reduction

Using the window defined in section 3, we reduced the fea-
sible control set. But, the system state moves in the infinite
state space and the MDP algorithm can only operate on a fi-
nite state space. To this end, we need to further reduce the
state space to a finite one. We define a partition of the state
space as follows:

S = {(C,L)|C ∈ C; ⌈lm − 1⌉+ ≥ W,∀1 ≤ m ≤ L}}
So = {(C,L)|C ∈ C, ⌈lm − 1⌉+ ≤ W,∀1 ≤ m ≤ L}.

Given a policy µ(·), the state will transit as a controlled
Markov chain in set So ∪ S. Let set ∂S be the subset of S
which could be reached from the states in So. Because the
bandwidth is limited, ∂S is a finite set. As shown in Fig. 2,
once the system moves onto state S, it will first visit some
state s′ ∈ ∂S and traverse in S for some time before it visit
to some state s′′ ∈ So. During this period, the decoded video
quality will always be Q̂ =

∑L
m=1 ∆qm because the window

is always full. Let Ts′ be the expected time the system spends
in S if it enters S at state s′ ∈ ∂S. Let PT

s′,s′′ be the proba-
bility that the state jumps back to So at state s′′ if it enters S
from state S′ ∈ ∂S. The following theorem shows that this
infinite state problem can be equated to a finite state problem.

Theorem 1. Given a policy µ(·), if the associated jump
chain2 of the original infinite-state Markov chain is posi-
tive recurrent, then the average video quality of the original
system A is the same as the following finite state system Ã:3

2The jump chain associated with a Markov chain is a Markov chain with
the state transitions as its state space.

3The simplified system is not coupled with the original system. They just
share certain statistical properties.

1. The system is a Markov process over state space So ∪ S;

2. When the system is in one of the states in s ∈ So, it acts
according to policy µ̃(s) = µ(s).

3. When the system jumps to a state in s′ ∈ ∂S from So, it
spends Ts′ slots there.After that, the system Ã jumps to state
s′′ ∈ So with probability PT

s′,s′′ .

Proof Sketch of Theorem 1. If the jump chain is positive re-
current, the jump from So to ∂S can partition the Markov pro-
cess into i.i.d segments. We only need to optimize the policy
µ(·) to maximize the average quality in each segment. Every
segment consists of two consecutive subsegments. During the
first subsegment, the state st ∈ S̄. In the other subsegment,
st ∈ So. Because every state in S̄ provide same visual quality∑L

m=1 ∆qm, we can abstract the first subsegment as a single
state with transition probability PT

s′,s′′ . This simplified sys-
tem provide the same average quality as the original system.
The detailed proof is not included for lack of space.

3.2. Computing Ts and PT
s,s′

Before we apply the standard MDP results to identyfy opti-
mal policies, Ts and PT

s,s′ need to be determined. When the
system moves in S, the system always schedules as many en-
hancement layers as possible, so we can have a one to one
mapping between Lt and the quantity k̃t =

∑4
n=1(ln −W ),

i.e., the received video data outside the window. Hence, the
state transitions of the system can be modeled as a Markov
chain with (Ct, k̃t) as the state. All the states in S correspond
to some state k̃t > 0. All the state in So corresponds to some
state k̃t <= 0.

At the beginning of each time slot, the state k̃t reduces by
R̂ =

∑4
m=1 ∆Rm because one frame is displayed. Then, the

encoder schedules the video data with the best possible qual-
ity. At the end of the slot, k̃ is changed by a certain amount
that is solely dependent on the channel state Ct with the prob-
ability specified in equation (2). Because Ct is Markovian,
the state k̃t will vary like a random walk but with Markovian
step-size. This process can be described by a quasi-birth-
death process (QBDP). Hence, determining Ts and PT

s,s′ is
actually the hitting time problem of the quasi-birth-death pro-
cess. The problem for continuous time QBDP was essentially
solved in [6, p. 96]. The discrete time case can also be solved
similarly. Due to the limit of the space, we do not elaborate
it here. Given the formulation, the optimal policy for a MDP
can be determined for the simplified system Ã, which is also
the optimal policy of A. A standard policy optimization algo-
rithm for semi-Markov system can be employed to derive the
optimal policy [1, p. 435].

3.3. Modified Policy Iteration Algorithm

Let s0 be a state in So ∪ ∂S. The hitting time to state s0 can
partition the process into into i.i.d cycles. Maximizing the



Table 1. Performance Comparison between Optimized Policy
and Heuristic Policy

Bus Foreman
PSNR Lost Frames PSNR Lost Frames

O 34.8491 0 37.0902 6
H1 34.8897 88 36.9953 112
H2 34.3468 0 36.3332 6

Mobile Flower
PSNR Lost Frames PSNR Lost Frames

O 33.3675 0 35.3217 0
H1 33.2382 48 35.6844 48
H2 32.9873 0 34.5415 0

average video quality λ in the cycles by optimizing the policy
µ(·), will maximize the average video quality of the system.
This is equivalent to the stochastic optimal path problem with
stage costs g(s)− τ(s)λ, where

g(s) =

{
Q(s) : s ∈ So

TsQ̂ : s ∈ ∂S,

and

τ(s) =

{
1 : s ∈ So

Ts : s ∈ ∂S.

The optimal policy can be determined via policy iteration, see
e.g. [1].

4. SIMULATION RESULTS

The proposed adaptive scheduling algorithm is evaluated on
the test sequence of “foreman”, “bus”, “flower” and “mobile”.
These video sequences are encoded using H.264\SVC refer-
ence software JSVM into 4 layers. The GOP length is set as
LGOP = 16. We employ a 4-states Markov channel to test
the performance of the proposed scheduling algorithm. The
state transition matrix is
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and the steady state distribution is π= [0.15, 0.60, 0.20, 0.05].
Denote the throughput of each state by r1, r2, r3 and r4. The
state parameters are designed such that r1 < R1 < r2 <
R2 < r3 < R3 < r4 < R4 in which Ri is the average video
data rate up to the ith layer. Hence, the channel throughput
will fluctuate about the average rate of each layer. The aver-
age throughput of the channel is higher than the base layer but
not enough to support the first enhancement layer.

The policy iteration algorithm was used for policy opti-
mization and the window size W was set to 5. Empirically,

the algorithm converged to the optimal policy within 10 iter-
ations. Two heuristic policies were compared with the opti-
mized policy (O). The first one (H1) always tries to send data
to maximally improve the video quality of the frame which
will be displayed in the next slot. The second policy (H2),
only transmits the video data in the first two layers because
the average throughput is just enough to transmit the first two
layers. Each sequence was transmitted over the channel 20
times. The number of lost frames and the average PSNR of
the received frames are presented in Table 1. We compare
the PSNR and frame loss separately because the degradation
of video visual quality also depends on the adopted conceal-
ment algorithm. The simulation results shows that the opti-
mized policy can alleviate frame loss while achieving a better
video quality. For the received frames, a video quality im-
provement of 0.4-0.8dB in PSNR is observed.

5. CONCLUSIONS

In this paper, we proposed an MDP formulation for adaptive
video scheduling over a wireless channel. Simulation results
demonstrate its power in scheduling policy optimization.
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