
1

Flow Migration on Multicore Network Processors:
Load Balancing While Minimizing Packet

Reordering
Muhammad Faisal Iqbal∗, Jim Holt†, Jee Ho Ryoo‡, Gustavo de Veciana§, Lizy K. John¶

∗‡§¶University of Texas at Austin
† Freescale Semiconductor Inc. & MIT Computer Science and Artificial Intelligence Laboratory

{∗faisaliqbal,‡jr45842}@utexas.edu, {§gustavo, ¶ljohn}@ece.utexas.edu
†jim.holt@freescale.com, jholt@csail.mit.edu

Abstract—With ever increasing network traffic rates, multicore
architectures for network processors have successfully provided
performance improvements through high parallelism. However,
naively allocating the network traffic to multiple cores without
considering diversified application nature and flow locality results
in issues such as packet reordering, load imbalance and inefficient
cache usage. Consequently, these issues degrade the performance
of latency sensitive network processors by dropping packets or
delivering packets out of order. In this paper, we propose a packet
scheduling scheme that considers the multiple dimensions of
locality to improve the throughput of a network processor while
minimizing out of order packets. Our scheduling policy tries to
maintain packet order by maintaining the flow locality, minimizes
the migration of flows from one core to another by identifying the
aggressive flows, and partitions the cores among multiple services
to gain instruction cache locality. The scheduler uses a novel low
cost two-level caching scheme to identify top aggressive flows.
Our light weight hardware implementation shows improvement
of 60% in the number of packets dropped and 80% improvement
in the out-of-order packet deliveries over previously proposed
techniques.

I. INTRODUCTION

Multicore processors are widely used in many application
domains. One that greatly benefits from multicore architectures
is networking. Network or communications processors used
in enterprise, edge and core routers employ highly parallel
architectures to meet the demands of diversified applications
and ever increasing traffic rates. These routers not only have to
handle huge amounts of traffic, but also need to support mul-
tiple complex applications like intrusion detection, firewalls,
protocol gateways, etc. To meet these requirements, routers
need huge processing power. Network processors provide
this processing power by exploiting packet level parallelism
through a large number of cores. These processors are also
software programmable which helps to meet the demands of
diverse applications. Many different hardware architectures
have been proposed for network processors. These include
adapting general purpose multicore processors like Sun Ni-
agara [24] and Tilera [9] or specific architectures for packet
processing like Freescale T4240 [2], Broadcom XLP832 [4],
EZChip[25], Intel IXP [5] or IBM PowerNP [6]. These spe-
cialized communications processors have a large number of
cores, in addition to a set of accelerators and co-processors

for frequently used network application functions. There have
been different designs for network processors, but all of them
follow the similar many core approach to exploit packet
level parallelism. This huge amount of parallelism has some
intrinsic challenges such as load balancing, packet ordering
and memory locality.

a) Load Balancing: All cores need to share the load
equally to maximize the throughput. An unbalanced allocation
of load can overload some cores. As a result, incoming packets
will experience large delays and may even result in packet loss
due to limited storage in the network processor.

b) Packet Ordering: Performance of upper layer proto-
cols, such as TCP, greatly depends on packet ordering [33].
It is important in applications like VOIP and multimedia
transcoding that packets arrive in order because the receiver
might not be able to easily reorder the packets. Hence, it is
important to preserve the order among packets of a flow. In this
work, a flow is a set of packets which have the same source
IP, destination IP, source port, destination port and protocol. If
packets from the same flow are processed by different cores,
they will experience different queuing and processing delays,
and consequently, the probability of out of order delivery of
packets increases. Careful scheduling of packets is needed in
the network processors to minimize out of order departure of
packets.

c) Data Locality: If different cores process the packets
of the same flow, the data cache will be utilized inefficiently as
the same data is copied to multiple caches. There is per flow
data (state, statistics), as well as more global data (routing
table) used by all flows. If packets of a flow always go to the
same core, we can get locality in both local and global data.
Locality in global data comes from the fact that different flows
may be hot with respect to different parts of the routing table
i.e., at the lower levels of the tree. The higher levels are hot to
all cores. Furthermore, there are many statistics which are kept
per flow, per port etc. Each packet may need to update several
of these statistics. If multiple cores work on the packets of
the same flow in parallel, this per flow information needs to
be kept consistent across these cores by using synchronization
primitives like locks or semaphores. This results in blocking
access and deteriorates performance. The scheduler needs to
account for flow locality in order to get good performance.



2

d) Instruction Cache Locality: Modern network proces-
sors have to support multiple applications but the fast path
cores used in these processors are usually small with small I-
Cache (8-16KB). These caches can hold only a single program
at a time. The performance of a core will deteriorate due
to I-cache misses if it has to process packets of different
application types.

Researchers have proposed using hashing to distribute pack-
ets in parallel network processors [11], [22], [36], [37]. The
scheduler hashes one or more header fields of the incoming
packet and uses the result to decide the target core for that
packet. Packets of the same flow are always mapped to the
same core since header fields are constant for all packets of a
flow.Hence the flow locality and packet order is maintained.
Hash based designs are popular because of simplicity, but
they do not perform very well under highly variable traffic
conditions and skewed flow sizes. By skewed flow sizes
we mean the very common situation where network traffic
constitutes several very high data rate flows and very large
number of low data rate flows [17], [37]. Furthermore, the
hash based schemes need to be adapted for multi-service
routers where different packets require different processing
and cores are dynamically allocated to services based on traffic
variations. Hashing schemes also need to be modified for
power saving techniques like [29], [20] which power down
the underutilized cores when demand varies. To meet these
challenges, this paper makes the following contributions:

1) We propose to partition the cores among multiple ser-
vices of a router with a separate map table for each
service. Each service has exclusive ownership of a subset
of cores so that the I-cache locality is maintained. The
number of cores allocated to a service changes dynam-
ically with traffic variations. We propose modifications
to the hash based schemes for a multi-service router and
propose using incremental hashing to manage scheduling
when cores are dynamically allocated to services.

2) We present a methodology to achieve load balancing
when a core gets overloaded due to skewed flow distribu-
tion. This methodology is based on the previous research
[37] which proposes to migrate only the aggressive flows
to lightly loaded core. Migrating only the top flows
achieves load balancing with minimum flow migrations.
The scheme proposed in [37] incurs a large overhead
since it requires to maintain per flow statistics. Instead
of keeping the per flow statistics, we present a novel low
overhead scheme based on annex cache [21] to identify
the top data rate flows.

3) We evaluate the design with real and synthetic traces
and show that it can effectively maintain the flow order
and cache locality with higher throughput and lower out
of order packets than previously proposed schemes.

The rest of the paper is organized as follows: Section II present
the background and motivates the problem. The design of
scheduler is presented in Section III. Evaluation infrastructure
is explained in Section IV and results are discussed in Section
V. We present related work in Section VI and conclude in
Section VII.

II. BACKGROUND AND MOTIVATION

Architecture for a typical network processor is shown in
Figure 1. Incoming packets are received by the Frame Manager
(FM). FM places the packet payload in a buffer allocated by
the Buffer Manager and places the header, a pointer to the
buffer and some meta data as command descriptors in the
input queues to the processing cores. These general purpose
cores process the packets and can offload some of the work to
accelerators e.g., some of the work can be placed in the queue
for security accelerator (SEC). SEC performs the required
processing and puts it back to the return queue. Eventually,
the general purpose core sends the packet back to FM via an
enqueue after finishing the processing. Network processing can

Interconnect

Core
0

IL1

DL1

L2
Core
n-1

IL1

DL1

L2

Queue

Manager

Buffer

Manager

SEC
Table

Lookup

Frame
Manager

Interface

Accelerators

L3 DDR

Packets

Layer 2 - 3

Processing

Layer 4 - 7

Processing

Fig. 1: Architecture of Communications Processors

be classified as either Control Plane or Data Plane. Control
Plane is responsible for control and management processing
e.g., maintaining and updating the routing tables. Data Plane
deals with actual processing involved in packet forwarding
such as searching, compression, encryption etc. Traditionally,
the general purpose cores in the network processor were
responsible for processing both control and data plane packets.
However, in modern network processors, control and data
plane packets take two different paths. When a packet arrives,
a packet classifier in the FM decides whether it is a control
plane or a data plane packet. Control plane packets take the
slow path through the general purpose cores. The data plane
packets (Layer 2 or possibly Layer 3) take the fast path and are
not offloaded to general purpose cores. Fast path processing
is handled by the FM itself. FM is equipped with a large
number (32 - 120) of small cores also called I/O Processors
(IOP) which are responsible for fast path processing. These
IOPs are typically in-order dual issue cores with non coherent
memory, and do not have an operating system. In this work,
we are interested in the scheduling of data plane packets on
IOPs. We will use the term cores and IOPs interchangeably in
rest of the paper.

The design of scheduler for data plane is very challenging.
First, the scheduler is in the data path, and therefore, should
be as efficient as possible in terms of latency to handle
ever increasing traffic rates (100 Gbps and even higher in
future). Second, it should satisfy the requirements of load
balancing, flow locality, packet ordering and I-cache locality.
Hash based designs are popular choices due to their low
overhead. These designs only need to compute a hash function



3

to get the target core for a packet. The packets of the same
flow are always mapped to the same core, and hence, the flow
locality and packet ordering are maintained. But, there are
several challenges associated with the hash based schemes
which we try to address in this work. First, it is a well
known fact that network traffic constitutes only few heavy-
hitter flows and a very large number of low data rate flows
[17], [37]. Figure 2 demonstrates this behavior in real network
traffic. Under this situation, hashing alone cannot achieve load
balance effectively as shown by Shi et al. [37] and can result
in overloading some cores. In this scenario, the load of each
core should be monitored and adjusted dynamically to migrate
some load to underutilized cores. Care must be taken since
we want to minimize the number of flow transfers. Previous
research has shown that the load can be balanced effectively
with minimum flow disruption by migrating only the top
aggressive flows [37]. We follow the same approach in dealing
with load imbalance. However, the results in [37] are based
on off-line analysis and require keeping per flow statistics
to identify aggressive flows. Maintaining per flow statistics
has significant overheads, and thus, is not feasible in realistic
designs. Although many per flow statistics are available in
software, it is very time consuming for hardware scheduler
to access these software statistics. The scheduler needs to
function with minimum software intervention for good per-
formance. We present a novel and low overhead hardware
technique to identify aggressive flows by using Annex Cache.
The annex cache based scheme readily integrates with the
scheduler and can be directly accessed. We explain the design
of aggressive flow detector in detail in Section III.

Fig. 2: Distribution of flow sizes in real network traces.
Rank 1 is the flow with the largest flow size.

Another challenge associated with hash based schemes is
present in multi-service routers. These routers have to support
services like IP forwarding, intrusion detection, IPSEC encryp-
tion, IPSEC decryption, etc. The mix of packets destined for
each service varies with time. If packets of different services
are sent to the same core, I-cache locality cannot be maintained
which results in huge performance overhead [38], [23], [39].
Therefore, it is necessary that cores are partitioned effectively
among services to get high cache locality. Traditionally, cores
are allocated to services statically at design time based on
their worst case arrival rates. This results in unnecessary

hardware over-provisioning with high system cost. All services
do not experience their worst case traffic at the same time, so
most of the processing resources under-utilized. A system that
can multiplex cores among different services fundamentally
lowers the number of cores needed and reduces system cost.
In this work, we extend the hash based schemes for multi-
service routers and propose incremental hashing to manage the
scheduling when cores are dynamically allocated to services.

III. LOCALITY AWARE PACKET SCHEDULER

In this section we present the design of our proposed
Locality Aware Packet Scheduler (LAPS). The design goals
of LAPS are: a) To achieve high throughput by maintaining I-
Cache and flow locality. b) To minimize out of order departure
of packets. c) To have a low overhead in order to sustain high
packet rates.

LAPS uses a hash based design which is a natural way
of maintaining flow locality. When a packet arrives, its flow
identifier is extracted from the header. Flow identifier is a
five tuple consisting of source and destination IP addresses,
source and destination ports and protocol ID. This five tuple
is hashed using CRC16 to get an index into a map table.
CRC16 is shown to provide good performance for hashing
IP headers [8]. The map table stores target core ID where the
packet is eventually forwarded. The hash table based designs
are simple but they suffer from several challenges which
LAPS tries to overcome. First, in the presence of skewed
flow size distribution as shown in Figure 2, LAPS presents
an efficient scheme for identifying and migrating aggressive
flows. Second, LAPS modifies the hash based design to make
it suitable for work in a multi-service router.

A. Load Balancing by Migrating Aggressive Flows

When a core becomes overloaded i.e., its queue size reaches
a threshold, the scheduler needs to migrate some of the incom-
ing traffic from that core to a less loaded core. This migration
of flows has two drawbacks: One, it makes some cached data
in the source core useless and triggers some cold misses in
the cache of newly allocated core. Two, flow migration makes
it harder to maintain the order among packets of the flow. The
new incoming packets will potentially experience less queuing
delay as compared to older packets which are waiting in the
overloaded core’s queue. To avoid these two drawbacks, it is
desirable to minimize the number of flow migrations. If we
can identify and migrate only the most aggressive flows, load
balance can be achieved with minimum disruption i.e., only a
few flows need to be migrated to achieve load balance. This
is based on the observation made in [37], which indicates that
load imbalance is usually caused by a few aggressive flows.
However, the scheme proposed in [37] keeps stats for each
active flow in order to identify the aggressive flows. This
requires a lot of overhead and is infeasible in the practical
designs. In contrast, LAPS proposes a novel cache based
hardware called Aggressive Flow Detector (AFD) to identify
the top flows. The hardware consists of a very small fully
associative cache called Aggressive Flow Cache (AFC). AFC
is augmented with a cache assist called annex cache. Detailed



4

architecture of annex cache and AFC is presented in Section
V-B. Flows that hit in the AFC are considered aggressive
flows. When load imbalance is observed, the scheduler checks
if flow ID of the incoming packet hits in the AFC. If it hits, the
flow ID is copied into the migration table and is allocated to
the least loaded core. Listing 1 shows how the aggressive flows
are migrated to the least loaded cores when load imbalance
is observed. The scheduler gives priority to the output of
migration table over the default hash table. If all the cores
get overloaded, this means that the current allocation of cores
to this service is not enough to handle the input traffic. An
additional core is requested at this instance.

1 for (every incoming packet){
2 if (load_imbalance){
3 minq = findMinQ();
4 if (minq < high_thresh){
5 hit = AFC.access(flowID);
6 if (hit){
7 migration_table.add(flowID,minq);
8 AFC.invalidate(flowID);
9 }

10 }
11 else{
12 request_core();
13 }
14 }
15 }

Listing 1: Load Balancing by Flow Migration

B. I-Cache Locality

A simple hash based design as proposed in [11], [37] can
result in inefficient I-Cache usage. It can schedule packets
of different applications to the same core. The core will
experience a large number of I-Cache misses which will
adversely affect the performance. In order to avoid these I-
Cache misses LAPS partition the map table among different
services i.e., each partition will have its own map table.
All the cores in a single map table will always get packets
which require the same processing so I-Cache locality will be
preserved. LAPS presents strategies to dynamically allocate
different number of cores to services based on the traffic and
presents methodology for maintaining the map tables of each
service under this dynamic allocation of cores with minimum
disruption. Figure 3 shows the overall architecture of LAPS.

C. Allocation of Cores to Services

At initialization, cores are equally divided among services.
As traffic varies over time, requirement of each service
changes and the core allocation needs to be modified. This
situation arises when request_core() is called in Listing
1. LAPS needs to find an additional core to fulfill the demands
of a requesting service and update the map table accordingly.
LAPS keeps a list of cores which are marked as surplus cores
by other services (Section III-D). When a service requests
an additional core, LAPS looks through the list of surplus
cores and finds the core which has been marked extra for
the longest period of time and allocates this core to fulfill the

demands of requesting service. This policy makes sure that the
deallocated core has the least utility for the victim service. The
core ID is added to the list of allocated cores for the requesting
service. In order to minimize the number of flows migrated on
core allocation we make use of Incremental Hashing. Initially
each service has m entries in the map table and the hash
function used is h1(k) = CRC16(k)%m. When an additional
core is allocated to that service the hash function changes to
h2(k) = CRC16(k)%2m such that the flows which were
initially mapped to index 0 are now divided between index 0
and m. Let b be the current number of buckets in use then our
hash function is defined as

h(k) =

{
h2(k) : (h1(k)) < (b−m)
h1(k) : (h1(k)) ≥ (b−m)

The hash function remains the same when more cores are
allocated i.e., b increases until b reaches 2m. In that case the
second hash function is modified to h2(k) = CRC16(k)%4m.
Use of this incremental hashing in conjunction with load
balancing scheme of Section III-A allows us to add additional
cores to a service with minimal disruption to the existing flows.

D. Release of Cores by Services

When input queue to a core becomes empty, a timer starts.
When the timer reaches idleth, the core is marked surplus
by adding it to a list of extra cores. The core still remains
allocated to the same service. In case, the same service needs
more resources in near future, this core can be unmarked and
removed from the list of surplus cores without incurring the
overhead of context switch. If the core is actually allocated
to another service, it is removed from the bucket list of the
victim service. Other core IDs will be shifted to take the place
of this ID. The bucket size b is decremented by 1 and the hash
function is also changed accordingly. This may result in some
flow migrations but the performance overhead is tolerable
because this service is only lightly loaded anyway.

E. Overall Scheme

Figure 3 shows the overall architecture for LAPS. The
bucket list in the mapping table for each service Si is dynamic
and the dynamic size bi changes with traffic variations. The
hash function for each service is decided based on the size
of its bucket list. Following steps are taken when a packet
arrives:

1) If the flow ID hits in the migration table, the packet
is forwarded to the core ID indicated by the migration
table.

2) If the flow ID does not hit the migration table, the map
table is searched using the hash function and the packet
is forwarded to the core indicated by the mapping table.

3) Under load imbalance, the aggressive flows (flows that
hit in AFC) are migrated to the least loaded core
allocated to that service

4) When number of cores allocated to a service become
insufficient, the bucket lists are updated. An idle core
is removed from the bucket list of donor service and is
added to the bucket list of overloaded service.



5

S0 S1 SN-1

Core

Realloc

Mux

Hash

Service
Type

Migration
Table

M
u
x

AGGRESSIVE FLOW
DETECTOR (AFD)

Hit

Incoming

Packet Target
Core ID

Load Imbalance
Detector

Core
Reallocation

Fig. 3: Locality Aware Packet Scheduler

F. Aggressive Flow Detector (AFD)

The design of Aggressive Flow Detector is based on annex
cache. Annex Cache was proposed by John [21] to exploit
locality in the memory references in general purpose processor
workloads. We show that such a structure can be very useful
in order to identify aggressive flows. The AFD has two main
components as shown in Figure 4. One component is a small
fully associative cache called Aggressive Flow Cache (AFC).
AFC holds the IDs of top aggressive flows. All entries into
AFC come via annex cache. Items referenced only rarely will
be filtered out by annex cache and will never enter AFC. The
basic premise is that a flow deserves to enter AFC only if
it proves its right to be in AFC by showing locality in the
annex cache. Annex cache also serves as a victim cache and
provides some inertia before a flow is excluded from the AFD.
Both AFC and annex cache use Least Frequently Used (LFU)
replacement policy. The design of AFD is slightly different
from the one presented in [21] because our annex cache is
bigger than AFC. We do not want a larger AFC because we
want only the aggressive flows to cache in AFC. Annex cache
is a bigger structure which serves as a qualifying station for
large number of flows to show their eligibility to be cached
into the AFC. When a packet arrives, its flow ID is checked
in both AFC and annex cache. If it is a hit in AFC, the hit
counter is incremented. On a hit in the annex cache, flow
counter is incremented and the value is compared with a pre-
defined threshold. If the hit count exceeds the threshold, the
flow is promoted to AFC. The victim flow from AFC is then
placed in the annex cache. Finally on a miss in annex cache,
a flow replaces the LFU flow of the annex cache.

G. Timing Analysis of LAPS

In order to sustain a traffic of 100 Gbps, the scheduler
has to be able to schedule 100 Million packets per second
(considering mixed sized packets). Note that the critical path
of LAPS is Hash Delay → Map Table Access → Mux Delay.
AFD and map table update are not part of the critical path since
they work in the background. The critical path is dominated by
hash Delay. Even the FPGA implementations of CRC16 show
that it can operate in excess of 200 MHz [1]. The delay of
map table is a fraction of a nano second according to our Cacti

Tag Counter

Threshold>

Way 0 Way N-1

Tag Counter

Way 0 Way N-1

Tag Counter Tag Counter

Fully Associative AFC

N-way Associative Annex Cache

victimhot flow

incoming
packet

Fig. 4: Structure of Aggressive Flow Detector

[31] simulations. This means LAPS is capable of sustaining at
least 200 Million packets per second and more efficient ASIC
implementations of hash functions make this design scalable
for future traffic of beyond 100 Gbps.

IV. EVALUATION INFRASTRUCTURE

In this section, we describe the evaluation infrastructure and
provide a brief introduction of the set of traces used in this
study.

A. Traffic Traces

In this work we used real network traces to evaluate
the performance of packet scheduler. Following is a small
description of set of traces used in this study.

1) CAIDA Traces: This dataset contains anonymized traf-
fic traces from CAIDA’s equinix-sanjose monitor [10]. This
monitor is connect to OC-192 link. These set of traces are
captured in year 2011 and are of duration of 1 minute each.

Trace Name

Caida 1 20110120-125905.UTC.anon.pcap.gz
Caida 2 20110120-130000.UTC.anon.pcap.gz
Caida 3 20110120-130100.UTC.anon.pcap.gz
Caida 4 20110120-130200.UTC.anon.pcap.gz

TABLE I: List of CAIDA traces used in the study

2) University of Auckland Traces: This set of traces, also
known as AUCK-II, is captured at University of Auckland and
captures the traffic between the university and its ISP [3]. All
connections from the university to external world pass through
this measurement point. These traces are of one hour long
duration each.

Trace Name

Auckland 1 20000614-181539-0.gz
Auckland 2 20000614-181539-1.gz
Auckland 3 20000619-183717-1.gz
Auckland 4 20000621-105006-0.gz
Auckland 5 20000621-105006-1.gz
Auckland 6 20000630-175712-0.gz
Auckland 7 20000630-175712-1.gz
Auckland 7 20000703-152100-0.gz

TABLE II: List of Auckland-II traces used in the study



6

B. Workload Model
In order to model the different services running on a multi-

service router, we consider a workload similar to the one
presented in Figure 5. This model is based on methodology
presented in [19]. In modern network processors, all tasks of
the same path are scheduled on the same core to reduce the
communication overhead. Hence, in this study we consider
all the tasks on the same path as a single service. Thus our
simulations have four active services in the processors. A
packet is tied to a single core for the life time of its processing.
The incoming packets can be serviced by one of the four

Fig. 5: Example Task graph for an edge router

services represented by different paths of Figure 5. Path 1
describes the path of outgoing packets which are tunneled via
VPN. Path 2 represents the default handling of packets. Path 3
is the path of incoming packets on edge router that are scanned
for malware and Path 4 is for incoming VPN packets which
are decrypted and scanned for malware.

C. Simulation Infrastructure
For evaluating different scheduling strategies, we developed

a simulation model in SpecC [14]. SpecC is similar to systemC
[15] in its design and philosophy. Different components of the
simulator are shown in Figure 6.

1) Packet Generator: Packet Generator generates traffic
with programmable traffic rates. To generate packets, it reads
the real packet traces. We govern the traffic for each path
based on Holt-Winterz forecasting as suggested in [7]. The
traffic rate is governed by equation 1.

xi(t) = a+ b.t+ C.S(t%m) + n(σ) (1)

where xi(t) is the traffic rate for service i, a is the baseline
traffic component, b is the trend component, C is the mag-
nitude of seasonal component S, m is the period of seasonal
component, n is random noise with a standard deviation of σ.
Total incoming traffic is the sum of traffic of each individual
service i.e.,

X(t) =
∑

xi(t) (2)

The header for each generated packet is taken from real
network traces. We use a separate packet trace for each path
of the flow graph. The use of real network traces ensures that
realistic flow scenarios are created.

2) Scheduler: The Scheduler module implements the dif-
ferent scheduling strategies. Once a decision has been made
the input packets are enqueued into the input queue of the
target core. The queue size is set to 32 packet descriptors for
each queue based on previous research [32]. A packet is lost
when it is assigned to a queue which is already full.

Trace 

File
Packet

Generator

Rate 

Generator

Scheduler

Core Input 

Queues

Data Plane

Cores

core n-1

core 1

core 0

Output

Buffer

Fig. 6: Simulation infrastructure

3) Processing Latencies: Each packet of a service i, expe-
riences a Processing Delay (PDi) in the core based on the
following equation

PDi = Tproc,i + FMpenalty + CCpenalty (3)

Where Tproc,i is the processing time, FMpenalty is the penalty
due to flow migration and CCpenalty is the cold cache
penalty which occurs when subsequent packet needs different
processing than the previous packet. Tproc,i is derived from
real delays seen by the packets when the packet processing
is implemented in software on a full system GEMS [30]
simulator. The configuration of in-order cores is shown in
Table III.

Frequency Pipeline Branch Predictor I-Cache D-Cache

1GHz 7 stage gshare/BTB 16KB 32KB
2-issue 128 entry each 2 way 4 way

TABLE III: Data plane core configuration

We executed these packet processing applications and de-
rived a packet processing delay model for each service. TProc

is measured to be 0.5µs for path 2 i.e., IP forwarding. For path
3, it is measured to be 3.53µs. For Path 1, it also depends on
the packet size and is given as

Tproc,path1 = 3.7µs+
PacketSize

64byte
× 0.23µs (4)

Similarly the processing time for path 4 is given as

Tproc,path3 = 5.8µs+
PacketSize

64byte
× 0.21µs (5)

FMpenalty is set to four cache misses (o.8µs) conservatively
(two for routing data and two for per flow data). In reality, a
flow migration can cause a lot more misses depending on how
much per flow data is maintained. Because of small I-cache,
these cores can hold instructions of only the last executed
program (e.g., AES encryption used in IPSec requires 16KB).
So whenever a packet of different service arrives at a core,
it will experience cold cache penalty. We set the cold cache
penalty to 10µs which is the cold cache penalty for the smallest
service i.e., IP Forwarding. In practice this penalty will be
higher because many services are larger and a context switch
can result in some D-Cache misses too. For simplicity, we
ignore these data misses due to context switch in this work.

V. RESULTS AND DISCUSSION

In this section, we demonstrate the effectiveness of LAPS
through experimental results. First, we show that LAPS is able



7

(a) Packets Dropped (b) Percentage of Cold Caches (c) Out of order packets

Fig. 7: Comparison of LAP with FCFS and AFS with different traffic scenarios listed in Table VI

to handle dynamic traffic variations effectively and exploits
I-cache and flow locality to improve the throughput while
minimizing packet reordering. Second, we show that our
proposed AFD mechanism assists LAPS to identify the top
aggressive flows accurately and helps to achieve load balance
with minimum flow migrations.

A. Performance Improvement with LAPS

In this section, we compare the performance of LAPS with
a First Come First Served (FCFS) scheduler and the scheduler
presented in [11]. This scheme migrates arbitrary flows when
load imbalance is detected. We call this as Arbitrary Flow Shift
(AFS). For this set of experiments, traffic rate is governed by
equation 1. We experimented with different sets of parameters
for equation 1 and LAPS outperforms other schemes in all
scenarios. We present results with two sets of parameters listed
in Table IV. Set 1 represents the under-load scenario i.e., the
aggregate traffic rate is less than the ideal capacity of 16 cores.
Set 2 represents an overload scenario i.e., the data rate is more
than the capacity of the 16 core system.

Service a b C m σ

Set 1

S1 1 0.03 0.3 40 0.1
S2 1.8 -.025 0.1 25 0.05
S3 0.5 0.01 0.07 60 0.25
S4 0.3 0.005 0.09 600 0.3

Set 2

S1 1.5 0.002 0.3 100 0.3
S2 1.3 -.02 0.15 25 0.05
S3 1 0.004 0.25 30 0.25
S4 0.7 0.01 0.18 200 0.3

TABLE IV: Parameters governing traffic rate. Rate is in
Mpps and period is in seconds

For each service, we use real network traces listed in Table
V to generate the packet. The combination of sets of equation
in Table IV and traces in Table V creates different traffic sce-
narios listed in Table VI. Figure 7(a) shows packets dropped
with three schemes under the traffic scenarios shown in Table
VI for a traffic of 60 seconds. LAPS outperforms FCFS and
AFS in both the under-load and overload conditions. FCFS and
AFS distribute packets of different services arbitrarily to cores
and suffer from poor I-cache locality (Figure 7(b)). These
schemes drop packets even in under-load conditions because

Group S1 S2 S3 S4

G1 Caida1 Caida2 Caida3 Caida4
G2 Caida5 Caida6 Caida2 Caida3
G3 auck1 auck2 auck3 auck4
G4 auck5 auck6 auck7 auck8

TABLE V: Traces used in experiment for packets of
individual services

Scenario Parameter Set Trace Group

T1 Set 1 G1
T2 Set 1 G2
T3 Set 1 G3
T4 Set 1 G4

T5 Set 2 G1
T6 Set 2 G2
T7 Set 2 G3
T8 Set 2 G3

TABLE VI: Traffic scenarios used in Figure 7

almost 60% of packets suffer from cold cache penalties. On
the other hand, LAPS partitions the cores among services
effectively and enjoys good I-Cache performance. Under over-
load scenarios (T5 through T8), LAPS also suffers from some
cold caches because cores are dynamically switched between
services based on traffic variations.

LAPS maintains data and instruction cache locality and is
able to sustain higher traffic input rates. Figure 7(c) shows the
effectiveness of LAPS in preserving packet order under traffic
scenarios of Table VI. FCFS does not care for packet ordering
and hence results in the highest out of order packets. AFS
improves packet order a little but still there are considerable
number of out of order packets due frequent flow migrations.
LAPS minimizes the flow migrations by only migrating the top
flows and hence results in a very few packets being delivered
out of order. Next, we show how our proposed Aggressive
Flow Detector (AFD) identifies the top flows and helps to
achieve load balance with minimum flow migrations.

B. Performance of Aggressive Flow Detector (AFD)

Recall from Section III that our proposed AFD has two
components: An aggressive flow cache (AFC), and an annex
cache. An annex cache can be viewed as a preliminary filter



8

(a) False Positive Ratio in a 16 entry AFC when
Annex Cache size is varied

(b) Effect of window size on accuracy of AFD (c) Effect of packet sampling on performance of
AFD

Fig. 8: Effectiveness of AFD in identifying aggressive flows

where non-aggressive flows are filtered out from entering
the small AFC. Therefore, any entry in AFC is considered
an aggressive flow. We evaluate the effectiveness of AFD
by varying annex cache size while setting the size of AFC
constant at 16 entries. Since our AFC size is fixed, we can only
detect up to maximum of 16 top aggressive flows. A perfectly
accurate AFC will hold the IDs of top 16 aggressive flows.
A flow found in AFC, which is not among the top 16 flows
identified by off-line analysis is considered a false positive.
Figure 8(a) shows the false positive ratio (false positives/total
entries) in AFC when annex cache size is varied. As the size
increases, the annex cache can hold more flows to choose
a possible candidate for promotion to the AFC. In other
words, the pool of aggressive flow candidates increases and
the chances of aggressive flows residing in the cache for the
AFC promotion becomes higher. For Auckland traces, AFC
can identify all top 16 flows with 100% accuracy with a
512 entry annex cache. Caida traces have much more active
flows and thus require a larger annex cache. In Caida 1 and
2 respectively, only 14 and 13 most aggressive flows are
correctly identified with a 512 entry annex cache. When we
double the size to 1024 entries, accuracy improved an average
of 6.25%. Although there are 2 or 3 false positives in Caida
1 and 2 cases, they are not random flows that are promoted
to the AFC. In fact, when we consider 20 most aggressive
flows as our area of interest, these false positives fall into the
aggressive flow category. Yet, for consistency of our work,
we treat those flows as false positives. We only looked at
the accuracy of our mechanism at the end of our simulations
until now. Since LAPS needs to peek into the AFC whenever
load balancing is required, we performed another experiment
where the accuracy is checked at every fixed interval. In
Figure 8(b), we performed the same accuracy evaluation with
varying interval steps. In this experiment, we fixed the size of
annex cache to 512 entries. AFD shows above 90% accuracy
from a small step size such as every 1000 packets to large
step sizes. This implies that our AFC will contain the most
aggressive active flows regardless of when it is accessed. In
dynamic scheduling schemes like ours, it is key to maintain
a high level of accuracy across the entire execution. Figure
8(c) shows the false positive ratio when packets are sampled
with a probability p and not all of them access the AFD. It is

interesting to note that FPR improves initially with sampling.
This is because sampling acts as a filter i.e., the probability of
large flows being sampled is higher than the smaller flows.
However, the performance deteriorates for Caida traces at
larger sampling intervals. Sampling up to 1/1k probability
gives better or equal performance than sampling all packets
for all traces. Caida traces generally have a large number of
high data rate flows and hence their performance deteriorates if
sampling is increased too much. Sampling not only improves
the accuracy but also reduces power consumption because now
each packet does not have to access the AFD.

C. Benefit of Limiting Migration to Only Top Flows

In this section, we demonstrate the benefit of migrating
only the most aggressive flows to achieve load balance. We
present results relative to the AFS scheme. To demonstrate
the effectiveness of LAPS, we simulated a situation where
only one service (IP forwarding) is active in the processor.
Real network traces are used as input traffic to simulate the
real flow scenarios. The input packet rate is set to slightly
more than 100% of what this configuration can achieve under
ideal conditions. We simulate 60 second traffic and the results
are presented in Figure 9. Figure 9(a) shows packets dropped
relative to AFS. A lot more packets are lost if we do not
migrate any flows, but for almost all traces we can achieve
similar or better throughput than AFS if only top 10 flows are
identified and migrated. The real benefit of LAPS, however,
is to maintain the order of packets. Figure 9(b) shows that
the percentage of out of order packets is reduced by 85% if
we identify and migrate only the top 16 flows. This benefit
comes from minimizing the number of flow migrations as
compared to AFS. In AFS, many non-aggressive flows are
migrated which incur flow migration penalty without providing
any benefit in load balancing. In contrast, if we migrate only
the most aggressive flows, we can achieve load-balancing by
migrating only a small number of flows and thus can reduce
out of order delivery of packets. Figure 9(c) shows that the
number of flow migrations are reduced by 80% if we migrate
only the most aggressive flows.



9

(a) Packets Dropped (b) Out of order packets (c) Number of Flow Migrations

Fig. 9: Effect of migrating top flows compared with migrating arbitrary flow (AFS) for load balancing. All plot are relative
to AFS

VI. RELATED WORK

Detecting and monitoring aggressive flows is an important
part of traffic management and policing. Consequently, there
has been plethora of work on how to calculate flow statistics.
Initial naive proposals to keep counters for each flow [34],
[13] are not scalable when there exist millions of flows, which
is common in today’s network environment. There have been
extensive researches on reducing the overheads of keeping per
flow counters [27], [18], [12], [41], [40] to find the accurate
estimate of the rates of aggressive flows. In contrast, LAPS
merely needs to identify the top aggressive flows without
accurately estimating the rates of all flows. The closest to our
work is done by Yi et al. [28] where a single cache is used
to identify ”elephant” flows. Our experiments show that such
a scheme can result in large number of false positives due
to many ”mice” flows active at any time. Our proposed AFD
eliminates these false positives effectively by using two-level
cachine and integrates directly with the scheduler.

Dittman [11] proposes a hashing based scheme to reduce
scheduling decision overheads. This scheme migrates arbitrary
flows on load imbalance and can result in large number of
flow migrations and out of order packets. This scheme is
called Arbitrary Flow Shift (AFS) in this paper. Dittman’s
scheme is modified by Shi et al. [37] who propose to only
migrate the flows which have high data rates. Since Internet
traffic has a majority of flows with low activity and very
small number of flows with high activity, this scheme results
in migration of a small number of low activity flows with
minimized packet ordering. The load balancing scheme of
LAPS is based on [37] but we minimize the overhead of per
flow statistics by using a low cost aggressive flow detector.
Furthermore, this scheme does not consider I-Cache locality.
whereas LAPS is a more complete solution which maximizes
throughput by considering instruction and data cache localities
and minimizes packet reorder. Shi et al. also propose an
adaptive hashing scheme [22], which assures that the weights
of the hashing scheme are modified such that the assignment
of flow bundles to cores is more evenly balanced for biased
hash bundles found in Internet traffic. In [36], Shi and Kencl
propose to combine the previous two schemes i.e., adaptive
hashing is used in conjunction with the migration of aggressive
bundles. This scheme is complementary to LAPS and can

easily be integrated with LAPS to improve the performance of
hashing. Guo et al. [16] propose a batch scheduling for packets
in order to minimize out of order delivery. However, their
experiments assume each packet requires the same application
and does not consider I-cache or flow locality in algorithm.
Furthermore, their scheme requires expensive synchronization
among multiple cores. Some researchers propose the order
restoration instead of the order preservation [35]. They allow
the packets to be processed out of order on different cores, but
only before the packet leaves the system, they are reordered to
restore the flow order. Yet, this scheme can have considerable
storage overheads, and even worse, packets of the same flow
can be processed on different cores, destroying flow locality.
Wolf et al. [38] attempt to address the issue of I-cache locality.
When a core becomes idle, it searches for a packet of the
same application as the previous one. This searching has a
lot of overhead and is not feasible for data plane packets.
This scheme, although considers application locality, does not
consider data locality and packet order.

Some consider a packet processing application as a graph
where different tasks within application forms the nodes of the
graph [26], [39]. These schemes consider adjacency between
nodes for task scheduling as the packet moves between dif-
ferent cores during processing. In contrast, we consider each
service as one entity i.e., a packet is tied to a core for the
whole processing and do not consider graph scheduling.

VII. CONCLUSIONS

We present the design and evaluation of a scheduler for
data plane packets in network processor. The packet sched-
uler adopts an efficient dynamic core allocation scheme for
multiple services to improve throughput and to minimize out
of order delivery of packets. A key to reducing the out of
order packets is to eliminate unnecessary flow migrations.
The scheduler achieves this goal by identifying and migrating
only the aggressive flows. We present the design of a novel
Aggressive Flow Detector (AFD) based on two level caching
scheme which integrates readily with our scheduler, and also,
is very effective in identifying top aggressive flows with high
accuracy. Furthermore, the scheduler extends the hash based
design for multi-service routers where the cores are dynam-
ically allocated to services to improve I-Cache locality. Our



10

experiments with real network traces show that our proposed
scheduler improves the throughput by 60% while reducing
the out of order packets by 80% as compared to previous
schemes.

REFERENCES

[1] Cyclic redundancy code generator. www.actel.com.
[2] The Freescale P4240 processor. http://www.freescale.com.
[3] The University of Auckland traces. http://wand.net.nz/wits/auck/2/.
[4] XLP832 multicore processor. http://www.broadcom.com.
[5] Intel IXP hardware reference manual, January 2003.
[6] J. R. Allen, B. M. Bass, C. Basso, R. H. Boivie, J. L. Calvignac,

G. T. Davis, L. Frelechoux, M. Heddes, A. Herkersdorf, A. Kind,
J. F. Logan, M. Peyravian, M. A. Rinaldi, R. K. Sabhikhi, M. S.
Siegel, and M. Waldvogel. IBM PowerNP network processor: Hardware,
software, and applications. IBM Journal of Research and Development,
47(2.3):177 –193, march 2003.

[7] J. D. Brutlag. Aberrant behavior detection in time series for network
monitoring. In Proceedings of the 14th USENIX conference on System
administration, LISA ’00, pages 139–146, Berkeley, CA, USA, 2000.
USENIX Association.

[8] Z. Cao, Z. Wang, and E. Zegura. Performance of hashing-based schemes
for internet load balancing. In INFOCOM 2000. Nineteenth Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, volume 1, pages 332–341 vol.1.

[9] G. Chuvpilo, D. Wentzlaff, and S. Amarasinghe. Gigabit ip routing on
raw. In In Proceedings of the 8th International Symposium on High-
Performance Computer Architecture, Workshop on Network Processors,
2002.

[10] K. Claffy, D. Andersen, and P. Hick. The CAIDA anonymized 2011
internet traces.

[11] G. Dittmann and A. Kerkersdorf. Network processor load balancing
for high speed links. In In Proceeding of International Symposium on
Performance Evaluation of Computer and Telecommunication Systems,
2002.

[12] C. Estan and G. Varghese. New directions in traffic measurement and
accounting. SIGCOMM Comput. Commun. Rev., 32(4):323–336, Aug.
2002.

[13] W. Fang and L. Peterson. Inter-as traffic patterns and their implications.
In Global Telecommunications Conference, 1999. GLOBECOM ’99,
volume 3, pages 1859–1868 vol.3.

[14] D. D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao. SpecC:
Specification Language and Methodology. Kluwer Academic Publishers
Boston, MA, 2000.

[15] T. Grotker. System Design with SystemC. Kluwer Academic Publishers,
Norwell, MA, USA, 2002.

[16] J. Guo, J. Yao, and L. Bhuyan. An efficient packet scheduling
algorithm in network processors. In INFOCOM 2005. 24th Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings IEEE, volume 2, pages 807 – 818 vol. 2, march 2005.

[17] L. Guo and I. Matta. The war between mice and elephants. ICNP, 2001.
[18] F. Hao, M. Kodialam, and T. V. Lakshman. Accel-rate: a faster mech-

anism for memory efficient per-flow traffic estimation. In Proceedings
of the joint international conference on Measurement and modeling of
computer systems, SIGMETRICS ’04/Performance ’04, pages 155–166,
New York, NY, USA, 2004. ACM.

[19] X. Huang and T. Wolf. Evaluating dynamic task mapping in network
processor runtime systems. Parallel and Distributed Systems, IEEE
Transactions on, 19(8):1086–1098, Aug.

[20] M. F. Iqbal and L. K. John. Efficient traffic aware power management
in multicore communications processors. In Proceedings of the eighth
ACM/IEEE symposium on Architectures for networking and communica-
tions systems, ANCS ’12, pages 123–134, New York, NY, USA, 2012.
ACM.

[21] L. John and A. Subramanian. Design and performance evaluation of a
cache assist to implement selective caching. In Computer Design: VLSI
in Computers and Processors, 1997. ICCD ’97. Proceedings., 1997 IEEE
International Conference on, pages 510 –518, oct 1997.

[22] L. Kencl. Load Sharing for Multiprocessor Network Nodes. PhD thesis,
EPFL, 2003.

[23] R. Kokku, T. L. Riché, A. Kunze, J. Mudigonda, J. Jason, and H. M. Vin.
A case for run-time adaptation in packet processing systems. SIGCOMM
Comput. Commun. Rev., 34:107–112, January 2004.

[24] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: a 32-way
multithreaded sparc processor. Micro, IEEE, 25(2):21 – 29, march-april
2005.

[25] G. Koren and A. Rosen. Architecture of a 100-gbps network processor
for next generation video networks. In Electrical and Electronics
Engineers in Israel (IEEEI), 2010 IEEE 26th Convention of, pages
000286 –000290, nov. 2010.

[26] J. Kuang and L. Bhuyan. Lata: a latency and throughput-aware packet
processing system. In Proceedings of the 47th Design Automation
Conference, DAC ’10, pages 36–41, New York, NY, USA, 2010. ACM.

[27] Y. Lu and B. Prabhakar. Robust counting via counter braids: An error-
resilient network measurement architecture. In INFOCOM 2009, IEEE,
pages 522–530, April.

[28] Y. Lu, M. Wang, B. Prabhakar, and F. Bonomi. Elephanttrap: A low cost
device for identifying large flows. In High-Performance Interconnects,
2007. HOTI 2007. 15th Annual IEEE Symposium on, pages 99–108,
Aug.

[29] Y. Luo, J. Yu, J. Yang, and L. N. Bhuyan. Conserving network processor
power consumption by exploiting traffic variability. ACM Trans. Archit.
Code Optim., 4(1), Mar. 2007.

[30] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood.
Multifacet’s general execution-driven multiprocessor simulator (gems)
toolset. CAN, 2005.

[31] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. Architecting
efficient interconnects for large caches with cacti 6.0. IEEE Micro,
28(1):69–79, 2008.

[32] R. Ohlendorf, M. Meitinger, T. Wild, and A. Herkersdorf. An
application-aware load balancing strategy for network processors. In
Proceedings of the 5th international conference on High Performance
Embedded Architectures and Compilers, HiPEAC’10, pages 156–170,
Berlin, Heidelberg, 2010. Springer-Verlag.

[33] V. Paxson. End-to-end internet packet dynamics. In Proceedings of
the ACM SIGCOMM ’97 conference on Applications, technologies,
architectures, and protocols for computer communication, SIGCOMM
’97, pages 139–152, New York, NY, USA, 1997. ACM.

[34] D. Shah, S. Iyer, B. Prabhakar, and N. McKeown. Analysis of a statistics
counter architecture. In Hot Interconnects 9, 2001., pages 107–111.

[35] L. Shi, Y. Zhang, J. Yu, B. Xu, B. Liu, and J. Li. On the extreme
parallelism inside next-generation network processors. In INFOCOM
2007. 26th IEEE International Conference on Computer Communica-
tions. IEEE, pages 1379 –1387, may 2007.

[36] W. Shi and L. Kencl. Sequence-preserving adaptive load balancers. In
Architecture for Networking and Communications systems, 2006. ANCS
2006. ACM/IEEE Symposium on, pages 143 –152, dec. 2006.

[37] W. Shi, M. MacGregor, and P. Gburzynski. Load balancing for parallel
forwarding. Networking, IEEE/ACM Transactions on, 13(4):790 – 801,
aug. 2005.

[38] T. Wolf and M. A. Franklin. Locality-aware predictive scheduling of
network processors. In In Proc. of IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS, pages 152–159,
2001.

[39] Q. Wu and T. Wolf. On runtime management in multi-core packet
processing systems. In Proceedings of the 4th ACM/IEEE Symposium
on Architectures for Networking and Communications Systems, ANCS
’08, pages 69–78, New York, NY, USA, 2008. ACM.

[40] M. Zadnik and M. Canini. Evolution of cache replacement policies to
track heavy-hitter flows. In Architectures for Networking and Commu-
nications Systems (ANCS), 2010 ACM/IEEE Symposium on, pages 1–2,
Oct.

[41] M. Zadnik, M. Canini, A. Moore, D. Miller, and W. Li. Tracking
elephant flows in internet backbone traffic with an fpga-based cache.
In Field Programmable Logic and Applications, 2009. FPL 2009.
International Conference on, pages 640–644, 31 2009-Sept. 2.


