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a b s t r a c t

We consider optimizing the streaming of bufferable information flows to multiple clients sharing a
network. The information flow to each client can be broken down into time segments where each
segment is associated with a possibly varying quality/distortion-rate trade-off which can be adapted
to network resources available and allocated to the client. The segments are downloaded, buffered and
consumed sequentially by each client, and this proceeds in an asynchronous manner across the clients.
Such settings are relevant to streaming of video and audio, and potentially to streaming of augmented
reality and virtual reality content. We focus on jointly optimizing the network’s resource allocation and
clients’ quality adaptation across segments so as to fairly optimize clients’ Quality of Experience (QoE),
while incorporating clients’ sensitivity to rebuffering events caused when a client’s buffer empties. We
consider QoE models capturing trade-offs between clients’ mean quality and temporal variability in
quality. We present a simple asymptotically optimal online algorithm to solve the problem. It distributes
the tasks of resource allocation to the network and quality adaptation to the respective clients. Further,
it is asynchronous and is lightweight in terms of implementation overheads.

© 2023 Elsevier B.V. All rights reserved.
s

1. Introduction

We consider a setting where a network is shared by multiple
lients. The network’s resources (e.g., bandwidth) are shared by
treams of bufferable information flows to the clients. A bufferable
nformation flow to a client can be broken down into time
egments. Each client downloads the segments sequentially into
buffer, and consumes downloaded segments at a constant

ate whenever downloaded segments are available in the buffer.
ownloaded segments that have not yet been consumed are
tored at the client’s buffer. Delivery of a segment to a client
epends on the share of the network’s finite resources allocated
o the client. A segment can be delivered in one of multiple
uality/distortion levels, and the amount of network resources
equired for the segment depends on the selected quality. More
etwork resources are required to stream higher quality seg-
ents, and this ‘quality-rate trade-off’ can vary across segments

or the same bufferable information flow.
An interesting aspect of this setting is asynchrony. That is,

he network controller and clients operate ‘at their own pace’.
n particular, the completion instants of the segment downloads
f clients do not need to align with those of other clients nor
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with the time epochs of network resource allocation. This asyn-
chrony is well suited for modeling of asynchronous streaming
of information flows. Such a setting matches, for example, the
characteristics of video delivery to multiple devices over wire-
line/wireless networks, where the network might correspond to
a base station shared by multiple end devices/clients consuming
the content. In particular, the setting is compatible with Dynamic
Adaptive Streaming over HTTP (DASH) based video streaming [1],
wherein video is viewed as a sequence of short duration (e.g., sec-
onds) video segments. Such settings may be relevant to streaming
of augmented reality (AR) and virtual reality (VR) content too.

Our primary goal is to optimize the clients’ Quality of Expe-
rience (QoE). To that end, we focus on solving the optimization
problem OPT below:

max
∑
i∈N

Ui (Mean Qualityi − Quality Variabilityi)

ubject to Rebufferingi, and Network constraints,

where N is the set of clients, and Ui is a ‘nice’ function chosen
to ensure desired fairness across clients’ experienced QoE. The
optimization variables for OPT are network resource allocation
and clients’ segment quality adaptation.

The objective function in OPT aims to capture QoE associated
with the clients, where a client’s QoE is expressed as being an
increasing function of mean quality and decreasing function of
nous streaming of bufferable information flows, Systems & Control Letters (2023)
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emporal variability in quality. While the role of mean qual-
ty (reduced distortion) in QoE is clear, the impact of temporal
ariability of quality is perhaps less and is often ignored in net-
ork resource allocation formulations. The detrimental impact of
emporal variability on QoE of video streams can be significant
see [2–4]), and [2] even suggests that temporal variability in
uality can result in a QoE that is worse than that of a constant
uality video with lower average quality.
Rebuffering constraints in the optimization problem, are re-

ated to rebuffering events which happen when the buffer of
client empties, and the client’s consumption of information

low stalls. Rebuffering events have a significant impact on QoE.
ndeed [5] points out that the total time spent rebuffering and the
requency of rebuffering events during a video session can signif-
cantly reduce video QoE. In our approach, we impose constraints
n the fraction of total time spent rebuffering.
Network constraints in OPT capture time varying constraints

n network resource allocation, and can model wide range of real
etworks.

.1. Main contributions

The main contribution of this paper is that it presents a general
ramework for optimization of streaming of bufferable informa-
ion flows incorporating its inherent asynchrony. This asynchrony
ntroduces several technical challenges, and they are discussed in
ection 5.
In this paper, we present a simple online algorithm Resource

llocation and Quality Adaptation (RAQA), which solves OPT with
trong optimality guarantees. In fact, our algorithm performs
s well as omniscient optimal offline scheme which knows all
bout evolution of the network constraints and the quality-rate
radeoffs ahead of time. RAQA is also asynchronous, and using
inimal communication, distributes the tasks of network resource
llocation to network controller, and segment quality adaptation
o respective clients.

.2. Related work

The framework and algorithm developed in this paper en-
bles developing of more holistic streaming solutions to impor-
ant networking problems of today such as streaming of video
e.g., see [1], AR/VR (e.g., see [6]) and [7,8]) in advanced wireless
etworks.
There is a substantial body of work considering video stream-

ng on which the present work draws, including in particular,
9–16] which utilize extensions of Network Utility Maximization
NUM) framework (see [17]). The main focus of [9,10] is real-time
nteractive video which present the challenge of meeting strict
elivery deadlines. Papers [11,12] study video delivery optimiza-
ion in wireless networks considering simpler QoE models, and
o not explicitly incorporate rebuffering into their respective op-
imization frameworks, and instead control rebuffering through
etwork congestion control. Using static QoE models, [14,15]
tudy the resource allocation component of video delivery ac-
ounting for user dynamics. A major weakness of the aforemen-
ioned papers is the limited nature of the associated QoE models
that are essentially just the mean quality) and their lack of
lexibility in managing/incorporating user preferences related to
ebuffering.

While [13] presents a novel algorithm for realizing mean-
ariability tradeoffs for video streaming (see [18] for general-
zations), the model involves a strong assumption of synchrony-
he download of a segment of each video client starts at the
eginning of a (network) slot and finishes by the end of the slot.

his assumption on synchrony precludes any explicit control over p

2

ebuffering as it limits the ability of a video client to get ahead
by downloading more segments) during periods when channel is
ood and/or network is underloaded. Relaxed/different versions
f this assumption can be found in the theoretical frameworks
sed in many previous papers (e.g., decision making in [11,12,
6] is synchronous) as it facilitates an easier extension of tools
rom classical NUM framework. However, this assumption of
ynchrony is not ideal for DASH-based video clients in a wireless
etwork that operate ‘at their own pace’- downloading variable
ized segments (with variable download times) one after the
ther. In this paper, we drop the assumption of synchrony which
llows us to exploit opportunism across video clients’ state of
layback buffer (channels and features of video content like qual-
ty rate tradeoffs), and base our adaptation decision concerning a
egment on network state information relevant to the download
eriod of the segment. We also tackle the consequent novel
echnical challenges related to distributed asynchronous algo-
ithms operating in a stochastic setting. Further, the rebuffering
onstraint in our asynchronous setting effectively induces a new
ype of constraint involving averages measured over two time
cales.
From a theoretical perspective, our work relies heavily on an

xtension of results from the theory of asynchronous stochastic
pproximation presented in Chapter 12 of [19]. This extension
s discussed in more detail in the proof sketch for Theorem 4.
e also use extensions of several theoretical tools from [18,20]

tc related to Network Utility Maximization (NUM). In summary,
ey novel elements of this work are the general QoE frame-
ork including incorporating sensitivity to temporal variability,
ebuffering constraints involving two time-scales, asynchronous
ecision making and a generalization of results for asynchronous
tochastic approximation in [19].

.3. Organization of the paper

Section 2 introduces system model and assumptions. We for-
ulate OPT in Section 1 as an offline optimization problem in
ection 3.
In Section 4, we present an online algorithm RAQA which

olves this optimization problem, and introduce its optimality
roperties. Proof of optimality of RAQA is discussed in Section 5.
e conclude in Section 6.

. System model

We shall first introduce some notation and conventions to be
sed throughout the paper. We use bold letters to denote vectors.
iven a T -length sequence (a(t))1≤t≤T or a (infinite) sequence
a(t))t∈N, we let (a)1:T denote the T -length sequence (a(t))1≤t≤T .
or example consider a sequence (a(t))t∈N of vectors. Then (a)1:T
enotes the T -length sequence containing the first T vectors of
he sequence (a(t))t∈N, and (ai)1:T denotes the T -length sequence
ontaining ith component of the first T vectors. Table 1 lists the
ey variables used in this paper. We develop our algorithmic
ramework by considering network supporting fixed set of buffer-
ble information flows to clients N where |N | = N . The network
perates in a slotted manner with resources allocated for the
uration of a slot τslot seconds. Slots are indexed by k ∈ {0, 1, 2...}.
Allocation constraint: We assume that resource allocation is

ubject to time varying constraints. In each slot k, a network
ontroller (e.g., a base station) allocates rk =

(
ri,k
)
i∈N ∈ RN

+
bits

or rk/τslot bits per second) to the clients such that ck (rk) ≤ 0,
here ck is a real valued function modeling current constraints
n network resource allocation. We refer to ck as the allocation
onstraint in slot k. This function could be determined by various

arameters like clients’ SINR (Signal-to-Interference Noise Ratio).
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Table 1
Summary of key notation used in this paper.
Variable Description

N Set of clients served by network
N Number clients served by network
i Variable used to index clients in N
β i Client i’s upper bound on fraction of time spent rebuffering
τslot Slot duration in seconds
k Variable used to index slots
ck Allocation constraint in slot k
ri,k Resource allocation to client i in slot k
li Playback duration (in seconds) of each segment of client i
s, si Variables used to index segments
fi,s QR trade-off associated with segment s of client i
qi,s Quality associated with segment s of client i
mi,s RAQA parameter for client i’s mean quality till sth segment
bi,k RAQA parameter for client i’s rebuffering risk in slot k

The available network resources may vary stochastically across
slots. Hence we shall let Ck denote a randomly selected function
corresponding to the allocation constraint in slot k, and thus ck
corresponds to a realization of such constraint for slot k.

We make the following assumptions on these allocation con-
straints:

Assumptions. C.1–C.3 (Time Varying Allocation Constraints)
C.1 (Ck)k∈N is a stationary ergodic process of functions selected

from a set C.
C.2 C is a (arbitrarily large) finite set of real valued functions

on RN
+
, such that each function c ∈ C is convex and continuously

differentiable on an open set containing [0, rmax]N with c (0) ≤ 0
and

min
r∈[0,rmax]N

c (r) < 0. (1)

C.3 The feasible region for each allocation constraint is
bounded: there is a constant 0 < rmax < ∞ such that for any
c ∈ C and r ∈ RN

+
satisfying c (r) ≤ 0, we have ri ≤ rmax for each

i ∈ N .

We denote the marginal distribution of this process by(
πC(c)

)
c∈C . Without loss of generality, we assume that πC(c) > 0

for each c ∈ C. Note that we are restricting ourselves to settings
with convex capacity regions

{(
ri,k
)
i∈N ∈ RN

+
: ck (rk) ≤ 0

}
due

to the convexity assumption in C.2. This model captures a fairly
general class of allocation constraints, including, for example,
time-varying capacity constraints associated with bandwidth al-
location at a shared wireless base station. Further, we require that
the resources allocated to each client i ∈ N in each slot should be
at least ri,min where ri,min > 0 (can be relaxed to each client being
guaranteed a strictly positive amount of resource allocation over
a fixed (large) number of slots).

Information flows’ Quality Rate (QR) tradeoffs: We assume
information flows are modeled as sequence of segments which
are streamed to, buffered and consumed by the associated client.
Segments are indexed using variables like s, si etc taking val-
ues in {0, 1, 2, . . .}. We let li denote the playback duration, in
seconds, of each segment of client i (extensions to segment-
index-dependent segment durations are in [21]). Each segment
of the flow may have multiple representations realizing possible
Quality-Rate (QR) tradeoffs. Specifically the QR tradeoff for the sth
segment of client i is captured by a convex function fi,s – to obtain
a representation of quality qi,s, the client will need to download
a file of size lifi,s

(
qi,s
)
. Convexity is a reasonable assumption for

video [1], where increases in the rate typically lead to diminishing
marginal gains in the video quality/distortion.
3

As with the resource allocation constraints, we shall consider
a setting where the QR tradeoff associated with the sth segment
of client i is modeled by a random function Fi,s satisfying the
following assumptions:

Assumptions. QR.1–QR.2 on QR Tradeoffs
QR.1 For each client i ∈ N we assume

(
Fi,s
)
s≥0 is a stationary

ergodic process taking values in a set Fi.
QR.2 Fi is a finite set of differentiable increasing convex func-

tions defined on an open set containing [0, qmax] such that
min{fi∈Fi} fi (0) > 0.

As indicated in Assumption QR.1, we model the evolution
of QR tradeoffs of each client i ∈ N as a stationary ergodic
process. Let

(
πFi (fi)

)
fi∈Fi

denote the associated marginal distri-
bution. Without loss of generality, we assume that πFi (fi) > 0
for each fi ∈ Fi. Let fmin:=min{i∈N ,fi∈Fi} fi (0) which is strictly
positive from QR.2, and this gives a lower bound on segment
compression rates. Even at zero quality, there will be overhead
information associated with a representation of a segment which
causes fmin to be positive. The constant qmax represents the max-
imum quality that can achieved in the given network setting. Let
fmax:=max{i∈N ,fi∈Fi} fi (qmax) denote an upper bound on segment
compression rates.

QoE model: A client’s Quality of Experience (QoE), depends on
the quality of the segment representations, (qi)1:S , downloaded
by a client i on the condition that a rebuffering related con-
straint (discussed next) is met. QoE models are typically complex
and context dependent. We shall adopt a simple1 model moti-
vated by the discussion in Section 1 and the model in [2]. Let
mS

i ((qi)1:S) and VarSi ((qi)1:S) denote mean quality and tempo-
ral variance in quality respectively associated with the first S
segments downloaded by the client i, i.e.,

mS
i

(
(qi)1:S

)
:=

∑S
s=1 qi,s
S

,

VarSi
(
(qi)1:S

)
:=

∑S
s=1

(
qi,s − mS

i (qi)
)2

S
.

We model the QoE of client i for these S segments as

eSi
(
(qi)1:S

)
= mS

i

(
(qi)1:S

)
− ηiVarS

(
(qi)1:S

)
, (2)

where ηi > 0 scales the penalty for temporal variability in quality.
Our objective function capturing clients’ QoE is

φS
(
(q)1:S

)
:=

∑
i∈N

eSi
(
(qi)1:S

)
. (3)

Here, we have set Ui(.) appearing in OPT in Section 1 to Ui(e) =

e. In [21], we discuss extensions to concave Ui(.) which pro-
vide more flexibility in imposing QoE fairness across users, and
consider more general variability penalties involving non-linear
functions of VarS

(
(qi)1:S

)
.

Rebuffering constraints: Let κ > 0 and let KS = ⌈κS⌉. In the
sequel, we shall focus on stationary resource allocation policies
such that for each client i, 1

KS

∑KS
k=1 ri,k converges.

Then, a good estimate (for large S) for the time required by
client i to download the first S segments is

Ti,S
(
(qi)1:S , (ri)1:KS

)
=

li
∑S

s=1 fi,s
(
qi,s
)

1
τslotKS

∑KS
k=1 ri,k

which is the ratio of the cumulative size of S segments (i.e.,
li
∑S

s=1 fi,s
(
qi,s
)
) to the per slot resource allocation estimate

(i.e., 1
τslotKS

∑KS
k=1 ri,k). Note that since we consider settings where

1 See [21] for extensions to more general QoE models.
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he per slot resource allocation converges, it follows that Ti,S(.)
is an asymptotically (as S goes to infinity) accurate estimate of
the time required by client i to download the first S segments.
hus, the following is an asymptotically accurate estimate for the
ercentage of time that client i is rebuffering while watching the

S segments:

βi,S
(
(qi)1:S , (ri)1:KS

)
(4)

:=
Ti,S

(
(qi)1:S , (ri)1:KS

)
−
∑S

s=1 li∑S
s=1 li

.

he denominator in (4) corresponds to the total playback dura-
ion

∑S
s=1 li associated with the S segments. The numerator term

s an estimate of time spent rebuffering, as it is the difference
f the estimate for time required for download of the first S
egments and the total playback duration associated with the S
egments. Note that we allow βi,S

(
(qi)1:S , (ri)1:KS

)
can also take

egative values which happens when segments are being down-
oaded at rate higher than the rate at which they are consumed.
e express the rebuffering constraint as

i,S
(
(qi)1:S , (ri)1:KS

)
≤ β i, ∀ i ∈ N , (5)

where each client i specifies an upper bound β i > −1 on the
raction of time spent rebuffering. Though setting β i = 0 ensures
that there is only an asymptotically negligible amount of rebuffer-
ing, we can enforce more stringent constraints on rebuffering by
setting β i to negative values.

. Offline optimization formulation

Given the system model in the previous section, one can now
ormalize the offline optimization problem OPT(S) correspond-
ng to maximizing the clients’ sum QoE. The maximization is
ver joint selection of the clients’ quality adaptation (i.e., finding
(qi)1:S

)
i∈N ) and the network’s resource allocation (i.e., finding

r)1:KS ). In the offline setting, we assume that (ck)k and
(
fi,s
)
s

or each client i ∈ N are known ahead of time. The offline
ptimization OPT(S) is given below.

OPT(S)

max
(q)1:S ,(r)1:KS

φS
(
(q)1:S

)
subject to 0 ≤ qi,s ≤ qmax ∀ s ∈ {1, . . . , S} , ∀ i ∈ N ,

ri,k ≥ ri,min, ∀ k ∈ {1, . . . , KS} , ∀ i ∈ N ,

ck (rk) ≤ 0, ∀ k ∈ {1, . . . , KS} ,

βi,S
(
(qi)1:S , (ri)1:KS

)
≤ β i, ∀ i ∈ N . (6)

We will further require following assumption to ensure strict
easibility, and this is used in later sections.

ssumptions. -SF (Strict Feasibility): For each c ∈ C, c
((
ri,min

)
i∈N

0, and for each i ∈ N , max{fi∈Fi}
τslot fi(0)
ri,min

< 1.

This assumption requires that the resource allocation
(
ri,min

)
i∈N

s strictly feasible for any c ∈ C, and that the maximum size of
egments at zero quality is not too large.
We assume that the optimization problem OPT(S) is feasible

sufficient conditions are discussed in [21]). Let φ
opt
S denote the

ptimal value of objective function of OPT(S).
In practice, solving OPT(S) directly is impossible (except for

rivial cases) since we need to know (ck)k and
(
fi,s
)
s ahead of time.

urther, it is also computationally prohibitive as the optimization
ould be over O(NS) variables. Thus, the challenge is to overcome
hese two hurdles, i.e., to find a simple and online algorithm that
s near optimal.
4

. Online algorithm for resource allocation and quality adap-
ation

In this section, we propose an algorithm for joint Resource
llocation and Quality Allocation denoted RAQA for short. It in-
olves solving network-level and client-level optimization prob-
ems RA(b, c) and QAi(θi, fi) which are discussed next.

Resource allocation problem RA(b, c): For b ∈ RN and alloca-
tion constraint c ∈ C, the (convex) optimization problem RA(b, c)
for resource allocation is

max
r

{∑
i∈N

hB
i (bi) ri : c (r) ≤ 0, ri ≥ ri,min ∀i ∈ N

}
, (7)

where hB
i (.) is a non-negative valued Lipschitz continuous func-

tion such that limb→∞ hB
i (b) = ∞, hB

i (bi) = 0 for all bi ≤

for some constant b (typically set as zero or small negative
numbers), and is strictly increasing for bi ≥ b. Simple examples
of functions satisfying these conditions are max(b, 0), max(b2, 0)
etc. Let R∗ (b, c) denote the set of optimal solutions to RA(b, c).
lso, let φR (r, b, c) denote the objective function of RA(b, c).
Client quality adaptation problem QAi(θi, fi): For mi ∈

[0, qmax], bi ∈ R and θi = (mi, bi), let

φQ (qi, θi, fi) = qi − ηi (qi − mi)
2
−

hB
i (bi)(

1 + β i
) fi (qi) (8)

or QR tradeoff fi. The optimization problem QAi(θi, fi) associated
ith quality adaptation of client i is given below:

ax
qi

{
φQ (qi, θi, fi) : 0 ≤ qi ≤ qmax

}
.

he optimization problem QAi(θi, fi) is convex with strictly con-
ave objective function, and thus has a unique solution denoted
s q∗

i (θi, fi).
RAQA algorithm: We will further elaborate on the intuition

nderlying the two types of optimization problems introduced
bove after presenting RAQA framework.
Let si be an indexing variable keeping track of the segment

hat client i is currently downloading. Let ϵ > 0,
(i)

=
{
(mi, bi) ∈ R3

: 0 ≤ mi ≤ qmax, bi ≥ b
}
,

and let [x]y = max(x, y) for x, y ∈ R.

RAQA

Initialization: Let
(
mi,0, bi,0

)
∈ H(i) for each i ∈ N .

In each slot k ≥ 0, carry out the following steps:

ALLOCATE: At the beginning of slot k, network controller allo-
cates resources r∗k choosing any solution to RA(bk, ck). Update bk
as follows:

bi,k+1 = bi,k + ϵ

(
τslot(

1 + β i
)) . (9)

ADAPT: In slot k, if any client i ∈ N finishes download of si th
segment, download of segment si + 1 is started immediately. Let
θi,si = (mi,si , bi,k+1). For segment si+1 of client i, the client selects
representation with quality q∗

i (θi,si , fi,si+1) (i.e., optimal solution to
QAi(θi,si , fi,si+1)), denoted as q∗

i,si+1 for brevity. Update parameters
mi,si+1, bi,k+1 and si as follows:

mi,si+1 = mi,si + ϵ
(
q∗

i,si+1 − mi,si

)
, (10)

bi,k+1 =
[
bi,k+1 − ϵ (li)

]
b , (11)

si = si + 1.
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Thus, RAQA’s resource allocation is done at the beginning of
ach slot k, allocating r∗

i,k to client i. RAQA’s quality adaptation
or segment si + 1 of client i is carried out immediately after
ompletion of download of segment si, and involves selecting
epresentation with quality q∗

i (θi,si , fi,si+1). Thus, the quality adap-
tation is asynchronous, i.e., adaptation related decisions about a
segment are made by a client only at the completion of download
of previous segment.

The update Eq. (10) associated with the parameter mi,si is
similar to update rules used for tracking EWMA (Exponentially
Weighted Moving Averages), and ensures that mi,si tracks the
mean quality of client i. Consider the evolution of bi,k which is
updated in both (9) and (11) ignoring the operator [.]b and with
initialization to zero. Hence, at some time t seconds (or k = t/τslot
slots) after starting the video,
bi,k − bi,0

ϵ
≈

t(
1 + β i

) − LDi (t),

here LDi (t) is the playback duration of segments downloaded up
o time t . This sheds light on the role of bi,k as an indicator of risk
of violation of rebuffering constraint in (6) for client i. For β i = 0
and small enough b, (bi,k − bi,0)/ϵ is equal to (t − LDi (t)) which is
equal to negative of the duration of content in playback buffer (if
there is any).

The above discussion about the roles of mi,si and bi,k now
make the formulations of optimization problems RA(b, c) and
QAi(θi, fi) intuitively clearer. The objective function (8) includes
a term

(
qi − mi,s

)2 ensuring that an optimal solution to QAi(θi, fi)
is not too far from mi,s. Since mi,s tracks current estimate of mean
quality, this avoids high variance in quality. Next, note that the
term hBi (bi)

(1+β i)
fi (qi) in (8) penalizes quality choices leading to large

segment sizes when bi,k+1 is high (i.e., there is higher risk of
iolation of rebuffering constraints). Further, relatively large bi,k

results in higher allocation to client i (see (7)). Also note that we
can control the sensitivity of RAQA to a higher risk of rebuffering
by appropriately choosing

(
hB
i (.)
)
i∈N .

For each i ∈ N , parameters
(
mi,si , bi,k

)
are learnt/updated by

client i. The network controller only needs to know bk for carrying
ut resource allocation in slot k. and this can be achieved using
inimal signaling (see Section 4.2). Further, strong optimality
f RAQA (see Theorem 1) points to the critical role

(
bi,k
)
i∈N in

carrying optimal joint quality adaptation and resource allocation
using minimal signaling. In particular,

(
bi,k
)
i∈N carries almost

all the information about the clients’ quality adaptation that is
required by the network controller to carry out optimal resource
allocation, and the variable bi,k carries almost all the information
that the quality adaptation at client i needs to know about the
resource allocation (to the client).

4.1. Optimality of RAQA

The following theorem is the main optimality result for RAQA,
and we discuss key steps of our proof in Section 5.

Theorem 1. Under the assumptions in the previous sections,
(a) Feasibility: RAQA asymptotically satisfies the rebuffering con-

straints, i.e., for each i ∈ N

lim sup
S→∞

βi,S

((
q∗

i

)
1:S ,

(
r∗

i

)
1:KS

)
≤ β i. (12)

(b) Optimality: Let Sϵ =
S
ϵ
. Then,

lim
→∞

lim
ϵ→0

(
φSϵ

((
q∗
)
1:Sϵ

)
− φ

opt
Sϵ

)
onverges to zero in probability.
5

Here Ck and Fi,s are random functions corresponding to ck
nd fi,s respectively. Recall that, under RAQA, q∗

i,si
is the quality

ssociated with segment si of client i (and the notation used in
his result is described at the beginning of Section 2). This result
ells us that the difference in performance (according to definition
3)) of the online algorithm RAQA (i.e., φSϵ

(
(q∗)1:Sϵ

)
) and that of

he optimal offline scheme goes to zero for long enough videos
nd small enough ϵ. Recall that φ

opt
Sϵ is the optimal value of

PT(Sϵ), i.e., the performance of the optimal omniscient offline
cheme which knows all the allocation constraints (ck)k and QR
tradeoffs

(
fi,s
)
s ahead of time.

4.2. Key features and implementation of RAQA

Next, we summarize the key features of RAQA.

Optimality: RAQA carries out ‘cross-layer’ joint optimization of
resource allocation and quality adaptation, with strong optimality
guarantees given in Theorem 1.

Online: RAQA is an online algorithm as it only uses current infor-
mation, i.e., network controller only needs to know the allocation
constraint ck to carry out resource allocation for slot k, and client i
only requires the QR tradeoff fi,s for quality adaptation of segment
s.

Simple: QAi(θi, fi) is a scalar convex optimization problem.
RA(b, c) is an N variable convex optimization problem.

Distributed implementation: RAQA can be implemented in a
distributed manner with minimal signaling since quality adapta-
tion is client driven and for the resource allocation, the network
controller needs to only know bk. Each client can send a signal
to the network controller indicating the end of each segment
download, which can trigger (11) at the network controller. The
network controller could obtain information about allocation con-
straints through Channel Quality Information (CQI) feedback from
the network, and clients could obtain their respective QR trade-
offs using application layer information exchange. Further, the
asynchronous nature of RAQA ensures that the clients can work
at their own pace. Thus, the adaptation prescribed in RAQA is
entirely client driven requiring no assistance from the network
controller.

5. Proof of optimality of RAQA

This section develops the proof of Theorem 1, which is the
main optimality result for RAQA. Due to space constraints, we
have included shortened proofs for some of the intermediate
results (focusing on key ideas involved) and detailed proofs can
be found in [21].

Outline of the proof: To provide a big picture for overall proof,
we begin with an outline below highlighting the key steps:

(1) We begin by discussing about some key properties of RAQA
(see Lemmas 1–3).

(2) RAQA is optimal if the underlying estimated parameters were
to converge to optimal parameter set: In particular, in Sec-
tion 5.1, we study an auxiliary optimization problem OPT-
STAT and obtain Theorem 2 which suggests that our key
Theorem 1 will follow if RAQA estimated parameters con-
verge to an optimal set.

(3) RAQA’s auxiliary differential inclusion converges to the op-
timal parameter set: In Section 5.2, we study an auxiliary
differential inclusion ((27)–(31)) which evolves according
to average dynamics of RAQA, and show in Theorem 3
that the differential inclusion converges to the optimal

parameter set.
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(4) RAQA parameters also converge to the optimal parameter set:
In Section 5.3, we view RAQA’s update equations ((10)–(11)
and (23)– (25)) as an asynchronous stochastic approxima-
tion update (see, e.g., [19] for reference), and relate this
stochastic approximation update to the auxiliary differ-
ential inclusion (in (27)–(31)). We then use this relation-
ship and convergence of the auxiliary differential inclusion
(from Section 5.2) to show that RAQA’s parameters also
converge to the optimal parameter set.

(5) Finally, a proof of Theorem 1 is given in Sub Section 5.4.

We shall thus begin by discussing some key properties of
AQA. The optimization problem RA(b, c) is convex, and using

Assumption-SF, we can show that it satisfies Slater’s condition
(see e.g., [22]). Thus, KKT conditions are necessary and sufficient
for optimality. The optimization problem QAi(θi, fi) is also con-
vex and satisfies Slater’s condition (since the constraints are all
linear), and thus, KKT conditions are necessary and sufficient for
optimality.

The next result states that the parameters in RAQA stay in a
compact set and in particular, points out that the parameters bi,k
can be uniformly bounded.

Lemma 1. For any initialization
(
mi,0, bi,0

)
i∈N ∈

∏
i∈N H(i), the

parameters evolving according to RAQA satisfy the following: for
each i ∈ N , s ≥ 1 and k ≥ 1, we have 0 ≤ mi,s ≤ qmax and
b ≤ bi,k ≤ b for some finite constants b, and for all k and s large
enough.

Proof. The boundedness of mi,. and lower bound for bi,. can be
proved using boundedness of the quantities involved in (10) and
(11) respectively. Proving an upper bound for bi,. involves noting
that larger bi,. values force the selection of lower quality/size
segments, and bi,. stops increasing once the segment size is small
enough (based on the role of bi,. in QAi(θi, fi)). ■

For the next two results, let θi = (mi, bi) where 0 ≤ mi ≤ qmax
and bi ∈ R. The next result provides smoothness properties for
the optimal solutions of RA(b, c) and QAi(θi, fi).

Lemma 2 (a). For each i ∈ N and fi ∈ Fi, q∗

i (θi, fi) is a continuous
function of θi.

(b) For each c ∈ C, R∗ (b, c) is a convex and compact set. Further,
R∗ (b, c) is an upper semi-continuous set valued map of b.

(c) For each c ∈ C and r∗ (b, c) ∈ R∗ (b, c), φR (r∗ (b, c) , b) is
a continuous function of b.

Proof. Parts (a), (b) and (c) follow respectively from Theorem 2.2,
Theorem 2.4 and Theorem 2.1 in [23]. ■

In the next result, we discuss concavity and differentiability
properties of the optimal value of QAi(θi, fi).

Lemma 3. The following hold for each i ∈ N and fi ∈ Fi.
(a) The optimal value of QAi(θi, fi), i.e., φQ

(
q∗

i (θi, fi) , θi, fi
)
, is a

strictly concave function of mi (with bi and di fixed).
(b) The partial derivative of φQ

(
q∗

i (θi, fi) , θi, fi
)
with respect of

mi is given by:

∂φQ
(
q∗

i (θi, fi) , θi, fi
)

∂mi
= 2ηi

(
q∗

i (θi, fi) − mi
)
. (13)

(c) Let θ
(m)
i = (m, bi), i.e., θi with first component set to m. If

m ̸= mi, the optimal value of QAi(θ
(m)
i , fi) satisfies

φQ
(
q∗

i

(
θ
(m)
i , fi

)
, θ

(m)
i , fi

)
< φQ (q∗

i (θi, fi) , θi, fi
)

+2η m − m
(
q∗ θ , f − m

)
.
i ( i) i ( i i) i

6

Proof. Part (a) follows from Proposition 2.8 from [24]. Part (b)
follows from Theorem 4.1 in [25]. Part (c) follows from strict
concavity in (a) and (b). ■

5.1. RAQA is optimal if the underlying estimated parameters were to
converge to optimal parameter set

Next we develop an optimal solution which corresponds to
a stationary policy, i.e., a policy for which the allocation and
quality adaptation decisions depend solely on the current state
etermined by the current allocation constraint or QR tradeoffs
espectively. At first sight, it may not be apparent how a sta-
ionary policy utilizing such limited information (i.e., just the
tate) could help towards solving OPT(S) (which involves complex
erms like temporal variance, and (6)). Intuitively this is due to
he fact that the objective and constraint functions in OPT(S) de-
end on time and segment averages of the quantities of interest,
.g. mean and variance of segment quality over time. Thus, in the
tationary ergodic regime, the averages involved in OPT(S) can be
ewritten in terms of ensemble averages. Additionally, note that
e will consider stationary policies where resource allocation is
ot directly dependent on QR-tradeoffs and quality adaptation
s not directly dependent on current allocation constraint. Still
e will see that such a policy performs well. This is explored in
emma 4(b) which suggests that all the information required to
ointly coordinate resource allocation and quality adaptation can
e encapsulated in few shared parameters.
Recall (see Section 2) that (Ck)k is a stationary ergodic random

process with marginal distribution
(
πC(c)

)
c∈C . We let Cπ denote

random function with distribution
(
πC(c) : c ∈ C

)
. Also, recall

hat for each i ∈ N ,
(
Fi,s
)
s≥0 is a stationary ergodic process with

arginal distribution
(
πFi (fi)

)
fi∈Fi

. We let Fπ
i denote a random

unction with distribution
(
πFi (fi)

)
fi∈Fi

.
Consider a stationary policy with (r (c))c∈C being a vector

(of vectors) representing the allocation of resources r (c) ∈ RN

or each possible instance of resource constraints, i.e., c ∈ C.
he above represents a slight abuse of notation as earlier we let
(t) denote the allocation to the clients in slot t . One can easily
ifferentiate between these based on the context in which they
re being discussed. Also, for such a stationary policy, let qi (f )
enote the quality associated with a segment of client i when
∈ Fi. Mimicking the definition of φS

(
(q)1:S

)
, mS

i

(
(qi)1:S

)
and

arSi
(
(qi)1:S

)
in Section 3, we let

φπ

((
(qi (fi))fi∈Fi

)
i∈N

)
= (14)∑

i∈N

(
Mean

(
qi
(
Fπ
i

))
− ηiVar

(
qi
(
Fπ
i

)))
,

ean
(
qi
(
Fπ
i

))
= E

[
qi
(
Fπ
i

)]
,

Var
(
qi
(
Fπ
i

))
= E

[(
qi
(
Fπ
i

)
− Mean

(
qi
(
Fπ
i

)))2]
.

et us now consider the optimization problem OPTSTAT.

OPTSTAT

max(
(qi(fi))fi∈Fi

)
i∈N

,(r(c))c∈C

φπ

((
(qi (fi))fi∈Fi

)
i∈N

)
(15)

subject to c (r (c)) ≤ 0, ∀ c ∈ C, (16)
0 ≤ qi (fi) ≤ qmax, ∀ fi ∈ Fi, ∀ i ∈ N ,

ri (c) ≥ ri,min, ∀ c ∈ C, ∀ i ∈ N ,

E
[
Fπ
i

(
qi
(
Fπ
i

))](
1 + β i

) ≤
E [ri (Cπ )]

τslot
, ∀ i ∈ N . (17)
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This optimization problem is obtained by replacing the time
nd segment averages of various quantities in OPT(S) with the
xpected value of the corresponding quantities evaluated under
he stationary distribution of (Ck)k and

(
Fi,s
)
s≥0 for each i ∈ N .

ote that in the constraint c (r (c)) ≤ 0 given in (16), c appearing
s argument of r(c) is an index (for the corresponding element in

C) whereas the other c is the associated function. Similarly, in the
term Fπ

i

(
qi
(
Fπ
i

))
, the argument Fπ

i serves as an index whereas
Fπ
i (.) is the (random) function.
We can show that OPTSTAT is a convex optimization problem

satisfying Slater’s condition. Further, we can show that the opti-
mal quality choices obtained by solving OPTSTAT are unique and
we denote them by

((
qπ
i (f )

)
f∈Fi

)
i∈N

. Let
(((

qπ
i (f )

)
f∈Fi

)
i∈N

,

(rπ (c))c∈C
)

be an optimal solution to OPTSTAT, and let bπ

enote the associated Lagrange multipliers for the constraints
17). Since OPTSTAT is a convex optimization problem satisfying
later’s condition, we can conclude that the KKT conditions are
ecessary and sufficient for optimality. For each i ∈ N , let

mπ
i = E

[
qπ
i

(
Fπ
i

)]
, (18)

vπ
i = Var

(
qπ
i

(
Fπ
i

))
, (19)

σ π
i = E

[
Fπ
i

(
qπ
i

(
Fπ
i

))]
. (20)

hus mπ
i , v

π
i and σ π

i are the (statistical) mean quality, variance in
uality and mean segment size for client i associated with optimal
olution to OPTSTAT. Also, let
π

= {(ρπ , bπ ) : there is an optimal solution (21)(((
qπ
i (f )

)
f∈Fi

)
i∈N

, (rπ (c))c∈C
)
to OPTSTAT with

ρπ
i =

E
[
rπ
i (Cπ )

]
τslot

for each i ∈ N , and with

bπ as the associated optimal Lagrange multipliers
for constraints (17) respectively} .

In the next result, we present three useful properties of any
ptimal solution to OPTSTAT. Part (a) below provides a client level
ptimality result which essentially suggests that we can decouple
he quality adaptation of the clients. It states that the component
qπ
i (f )

)
f∈Fi

of the optimal solution to OPTSTAT associated with
lient i ∈ N is itself an optimal solution to an optimization
roblem which can be solved by the client i. Part (b) points out
hat we only need to know a few parameters (specifically, bπ ) as-
ociated with the quality adaptation to carry out optimal resource
llocation. This suggests that we could potentially decouple the
ask of optimal resource allocation from quality adaptation. Part
c) states that when the RAQA parameters θi,s of client i are in the
et H∗

i defined as

∗

i :=

{(
mπ

i ,
(
hB
i

)−1 (
bπ
i

))
: there exists some ρ ∈ RN

such that (ρ, bπ ) ∈ Xπ
} , (22)

he RAQA can provide optimal quality choices for OPTSTAT.

emma 4. For parts (a) and (b) of this result, suppose (ρπ , bπ ) ∈

Xπ and let the associated optimal solution be
(((

qπ
i (f )

)
f∈Fi

)
i∈N

,

(rπ (c))c∈C
)
.

(a) For each i ∈ N ,
(
qπ
i (f )

)
f∈Fi

is the unique optimal solution to
he following optimization problem

max
(qi(f ))f∈Fi

)E [qi (Fπ
i

)]
− ηiVar

(
qi
(
Fπ
i

))
∑ bπ

i(
1 + β

)E [Fπ
i

(
qi
(
Fπ
i

))]
,

i∈N i

7

s.t. 0 ≤ qi(f ) ≤ qmax, ∀ f ∈ Fi.

(b) (rπ (c))c∈C is an optimal solution to:

max
(r(c))c∈C

E

[∑
i∈N

bπ
i ri (C

π )

]
,

s.t. c (r (c)) ≤ 0, ∀ c ∈ C,

ri (c) ≥ ri,min, ∀ c ∈ C, ∀ i ∈ N .

(c) The following holds for each i ∈ N : If θπ
i ∈ H∗

i , then
q∗

i

(
θπ
i , f

)
= qπ

i (f ) for each f ∈ Fi.

Proof. Parts (a) and (b) can be shown using KKT conditions
for OPTSTAT, and applying them to the optimization problems
in parts (a) and (b). Part (c) follows from strict concavity of the
objective function in part (a). ■

The next result states that the performance of RAQA (mea-
sured in terms of φS(.) defined in (3)) with its parameters θi,s
picked from the set H∗

i is optimal.

Theorem 2. Suppose θπ
i ∈ H∗

i for each i ∈ N . Then, for almost all
sample paths

lim
S→∞

(
φS

(((
q∗

i

(
θπ
i , fi,s

))
i∈N

)
1≤s≤S

)
− φ

opt
S

)
= 0.

Proof. Proof details are omitted for brevity (see Theorem 3.1 [21]
for details). The proof involves constructing a feasible solution to
OPTSTAT (i.e., a stationary policy) using optimal temporal solu-
tion, and comparing its performance against that of the optimal
stationary policy, and arguing that both lead to same performance
by utilizing optimality of respective formulations, and stationarity
and ergodicity of underlying processes

(
Fi,s, Li,s

)
s≥0. ■

5.2. RAQA’s auxiliary differential inclusion converges to the optimal
parameter set

Theorem 2 suggests that we can prove Theorem 1 if we can
show that the updates (10)–(11) of RAQA guide the parameters(
θi,s
)
s≥1 of client i to H∗

i for each client i ∈ N . Hence, we
next show that RAQA’s ‘learning component’ (i.e., updates (9)–
(11)) guide its parameters to the optimal set (i.e.,

∏
i∈N H∗

i ).
To this end, we study an auxiliary differential inclusion which
evolves according to average dynamics of RAQA, and study its
convergence.

For the rest of this section, we also consider the evolution of
auxiliary parameters

(
vi,si

)
si≥1,

(
σi,si

)
si≥1 and

(
ρi,k
)
k≥1 associated

with RAQA. We update vi,si and σi,si based on the quality q∗

i,si+1
(shorthand for q∗

i (θi,si , fi,si+1) where θi,si = (mi,si , bQ ,i,si )) chosen
by RAQA for (si + 1)th segment of client i ∈ N as follows:

vi,si+1 = vi,si + ϵ

((
q∗

i,si+1 − mi,si

)2
− vi,si

)
, (23)

σi,si+1 = σi,si + ϵ
(
fi,si
(
q∗

i,si+1

)
− σi,si

)
. (24)

Thus, vi,si and σi,si track the variance (roughly) and the mean
segment size respectively of the segments downloaded by client
i ∈ N . We update the parameter ρk based on the resource
allocation r∗k ∈ R∗ (bk, ck) in slot k as described below

ρi,k+1 = ρi,k + ϵ

(
r∗

i,k

τslot
− ρi,k

)
∀ i ∈ N . (25)

Thus, ρk tracks the mean resource allocation per unit time to
clients.

Thus, the auxiliary parameters do not affect the allocation
or adaptation in RAQA. The evolution of parameters m , v ,
( s s
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bk, σs, ρk
)
s,k does depend on RAQA’s resource allocation (r∗k) and

uality adaptation (q∗

i (θi,si , fi,si+1)).
Using Lemma 1 and assumptions in Section 2, we can show

hat the
(
ms, vs, bk, σs, ρk

)
s,k remains in H defined as

H =
{
(m, v, b, σ, ρ) ∈ R5N

: for each i ∈ N , (26)

0 ≤ mi ≤ qmax, 0 ≤ vi ≤ q2max, b ≤ bi ≤ b,
lifmin ≤ σi ≤ lifmax, ri,min ≤ ρi ≤ rmax

}
.

Let Θ̂(t) =
(
m̂(t), v̂(t), b̂(t), σ̂(t), ρ̂(t)

)
∈ H and θ̂i(t) = (m̂i(t),

bi(t)) for each i ∈ N , i.e., θ̂i(t) includes only the components in
Θ̂(t) that affect the quality adaptation of client i ∈ N . For each
client i ∈ N , we use the variables m̂i(t), v̂i(t), b̂i(t), σ̂i(t) and ρ̂i(t)
to track the average dynamics of the parametersmi,si , vi,si , bi,k, σi,si
and ρi,k respectively associated with RAQA (explained in detail in
the sequel).

The main focus of this subsection is the following differential
inclusion which describes the evolution of

(
Θ̂(t)

)
t≥0:

Auxiliary differential inclusion related to RAQA

Θ̂(0) ∈ H and for almost all t ≥ 0 and each i ∈ N ,
.̂
mi(t) =

1
ui
(
Θ̂(t)

) (E [q∗

i

(̂
θi(t), Fπ

i

)]
− m̂i(t)

)
, (27)

.̂
vi(t) =

1
ui
(
Θ̂(t)

) (E [(q∗

i

(̂
θi(t), Fπ

i

)
− m̂i(t)

)2]
−v̂i(t)) , (28).̂

bi(t) =
1(

1 + β i
) −

li
ui
(
Θ̂(t)

) + ẑbi
(
Θ̂(t)

)
, (29)

.̂
σi(t) =

1
ui
(
Θ̂(t)

) (E [Fπ
i

(
q∗

i

(̂
θi(t), Fπ

i

))]
−

σ̂i(t)) , (30)
.̂
ρi(t) =

1
τslot

(
E
[
r∗

i

(̂
b(t), Cπ

)]
τslot

− ρ̂i(t)

)
, (31)

here

i
(
Θ̂(t)

)
= τslot

E
[
liFπ

i

(
q∗

i

(̂
θi(t), Fπ

i

))]
E
[
r∗

i

(̂
b(t), Cπ

)] , (32)

and r∗
(̂
b(t), c

)
∈ R∗

(̂
b(t), c

)
for each c ∈ C.

Here ẑbi
(
Θ̂(t)

)
mimics the role of the operator [.]b in (11), and

nsure that
(
Θ̂(t)

)
t≥0 stays in H (see [21] for a more detailed

iscussion and see Section 4.3 of [19] for a discussion about pro-
ected stochastic approximation). Note that ui (.) is a set valued
ap (and hence (27)–(31) describes a differential inclusion) since

he denominator E
[
r∗

i

(̂
b(t), Cπ

)]
in (32) is a set valued map. Fi-

ally, note that the above definition only requires that
(
Θ̂(t)

)
t≥0

s differentiable for almost all t ≥ 0, i.e., we are considering
he class of absolutely continuous functions

(
Θ̂(t)

)
t≥0 that satisfy

27)–(31). We can show that the differential inclusion (27)–(31) is
ell defined, i.e., there exists an absolutely continuous function
hat solves (27)–(31) for any Θ̂(0) ∈ H. Further, we can show
hat these solutions are Lipschitz continuous and stay in H and
ence are bounded.
By comparing (27)–(31) against RAQA update rules (9)–(11)

nd (23)–(25), we see that the differential inclusion (27)–(31)
eflects the average dynamics of the evolution of parameters
n RAQA. For instance, this is apparent when we compare the
pdate rule (27) against (10). Note that the rate of change ofˆi(t) given in (27) has a scaling term 1(ˆ ) which corresponds
ui Θ(t) (

8

to the segment download rate of client i at time t and ui
(
Θ̂(t)

)
defined in (32) is expected segment download duration of client i
at time t . This scaling is naturally expected since m̂i(t), v̂i(t), and
σi(t) correspond to RAQA parameters that are updated when a
segment download is completed, and thus we can view 1

ui
(
Θ̂(t)

)
as the update rate associated with these parameters. Similarly,
we can view the constant scaling term 1

τslot
in (31) describing the

evolution of ρ̂i(t) as the corresponding update rate by noting that
the associated (auxiliary) RAQA parameter ρi,k is updated at the
beginning of every slot, i.e., once every τslot seconds. Finally, note
that Eq. (29) describing the evolution of b̂i(t) can be rewritten as

.
bi(t) =

1
τslot

(
τslot(

1 + β i
))−

li
ui
(
Θ̂(t)

) + ẑbi
(
Θ̂(t)

)
,

nd presence of the two scaling terms 1
τslot

and 1
ui
(
Θ̂(t)

) reflects the

act that the corresponding RAQA parameter bi,k is updated at the
eginning of every slot (using (9)) and when a segment download
f client i is completed (using (11)). Thus, we can expect that
27)–(31) captures the average dynamics of RAQA, and the pres-

nce of the client dependent update rates
(

1
ui
(
Θ̂(t)

))
i∈N

reflects

the asynchronous nature of the evolution of RAQA parameters
here different clients are updating their parameters at their own
possibly time varying) rates.

Next, we define certain classes of policies.

efinition 1. Stationary resource allocation policy: Let (r(c))c∈C
be a |C| length vector (of vectors) where r(c) ∈ RN

+
. We refer

to (r(c))c∈C as a stationary resource allocation policy as we can
associate (r(c))c∈C with a resource allocation policy that allocates
resource r(c) in each slot k when Ck = c , based only on the
allocation constraint in that slot.

Definition 2. Feasible stationary resource allocation policy: A
stationary resource allocation policy

(
(r (c))c∈C

)
is feasible if

r (c) ≥ rmin and c (r (c)) ≤ 0, ∀ c ∈ C.

Definition 3. Stationary quality adaptation policy for client i: Let
(qi (fi))fi∈Fi

∈ RFi
+ . We refer to (qi (fi))fi∈Fi

as a stationary quality
adaptation policy for client i ∈ N as we can associate (qi (fi))fi∈Fi
ith a quality adaptation policy for client i that chooses quality
i (fi) for each segment s with QR trade-off fi, based only on the
R trade-off of that segment.

efinition 4. Feasible stationary quality adaptation policy for
lient i: We say that a stationary quality adaptation policy
qi (fi))fi∈Fi

for client i is feasible if 0 ≤ qi (fi) ≤ qmax for each
i ∈ Fi.

Next, we define the set H̃ ⊂ R5N as

˜ =

{
(m, v, b, σ, ρ) ∈ H : ∃ a feasible stationary (33)

resource allocation policy (r (c))c∈C s.t.
E [ri (Cπ )]

τslot
= ρi

∀ i ∈ N ; for each i ∈ N , ∃ there is a feasible stationary
quality adaptation scheme

(
(qi (fi))fi∈Fi

)
such that

E
[
qi
(
Fπ
i

)]
= mi,Var

(
qi
(
Fπ
i

))
≤ vi ≤ q2max,

E
[
Fπ
i

(
qi
(
Fπ
i

))]
≤ σi ≤ fmax

}
.

e can view H̃ as the set of ‘achievable’ parameters in H, i.e., for
m, v, b, σ, ρ ∈ H there is some feasible stationary resource
)
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llocation policy with mean resource allocation per unit time ρ,
and there is some feasible stationary quality adaptation policy for
each i that has mean quality of mi, a variance in quality which is
at least vi and mean segment size which is at least σi.

It can be verified that H̃ is a bounded, closed and convex set
(using an approach similar to Lemma 5 (b) in [18]). Hence, we
conclude that for any Θ ∈ H, there exists a unique projection of
Θ̃ ∈ H onto the set H̃. Let .̃ denote this projection operator. The
next result states that, irrespective of the initialization, the differ-
ential inclusion converges to the bounded, closed and convex set
H̃ of achievable parameters.

Lemma 5. There exists a finite constant χ0 > 0 such that for any
initialization Θ̂(0) ∈ H,

d
dt

d5N
(
Θ̂(t), H̃

)
≤ −χ0d5N

(
Θ̂(t), H̃

)
.

ence, limt→∞ d5N
(
Θ̂(t), H̃

)
= 0.

roof. The result is an application of a generalization of Lemma
in [26]. ■

The next result provides the main convergence result for the
ifferential inclusion (27)–(31) which states that Θ̂(t) converges
o the following set

∗
=
{
(m, v, b, σ, ρ) ∈ H :

(
ρ,
(
hB
i (bi)

)
i∈N

)
∈ Xπ ,

and for each i ∈ N , mi = mπ
i , vi = vπ

i

}
(34)

bserve that (based on (34), (26) and (33))

∗
⊂ H̃ ⊂ H.

Recall that Theorem 2 suggested that we can prove Theorem 1,
f we can show that the updates (10)–(11) guide RAQA parame-
ers

(
θi,s
)
s≥1 of client i to the set H∗

i (defined in (22)) for each
lient i ∈ N . Note that for each i ∈ N , H∗

i is a set obtained by
rojecting H∗ on a lower dimensional space (by considering only

client i’s components and ‘dropping’ the components (v, σ, ρ)).
Hence, the following result along with Theorem 4 (which re-
lates evolution of RAQA parameters to the differential inclusion)
help us to establish the desired convergence property for RAQA
parameters.

Theorem 3 (a). For Θ̂ =
(
m̂, v̂, b̂, σ̂, ρ̂

)
∈ H, and some (ρπ , bπ ) ∈

Xπ , let

L
(
Θ̂
)
:= −

∑
i∈N

(
1 + β i

)
li (m̂i − ηîvi) (35)

∑
i∈N

(
libπ

i σ̂i − τslotbπ
i ρ̂i
)
+

∑
i∈N

σ π
i

∫ b̂i

b

(
hB
i (e) − bπ

i

)
de∑

i∈N

(
1 + β i

)
li
(
m̂i − mπ

i

)2
+

χ2

χ0
d
(
Θ̂, H̃

)
,

here χ0 is the positive constant from Lemma 5, and χ2 is an
ppropriately chosen (large) positive constant. If Θ̂(0) ∈ H, then
or almost all t

dL
(
Θ̂(t)

)
dt

{
≤ 0, ∀ Θ̂(t) ∈ H,

< 0, ∀ Θ̂(t) /∈ H∗.

(b) If Θ̂(0) ∈ H, then limt→∞ d5N
(
Θ̂(t),H∗

)
= 0.

Proof of the above theorem is given in Appendix.
9

.3. RAQA parameters also converge to optimal parameter set

The main focus of this subsection is Theorem 4 which re-
ates RAQA to the auxiliary differential inclusion (27)–(31), and
btains the desired convergence result for RAQA by using the
onvergence result in Theorem 3 for the differential inclusion. Our
pproach here relies on viewing the update equations ((9)–(11)
nd (23)–(25)) of RAQA as an asynchronous stochastic approx-
mation update equation (see Chapter 12 of [19] for a detailed
iscussion on asynchronous stochastic approximation) to relate
AQA to the differential inclusion using tools from the theory of
tochastic approximation.
Next, we define two auxiliary variables bR,i,k and bQ ,i,si+1. At

he beginning of slot k, let bR,i,k = bi,k for each i ∈ N and
hus the variable stores the value of bi,k used while deciding
llocation for kth slot. In slot k, if any client i ∈ N finishes
ownload of si th segment, let bQ ,i,si+1 = bi,k+1, and thus the
ariable stores the value of bi,k used while deciding the quality for
lient i’s (si + 1)-th segment. In the following, we use superscript
on RAQA parameters (mϵ

i,s)i∈N , (vϵ
i,s)i∈N , (bϵ

Q ,i,s)i∈N , (bϵ
R,i,k)i∈N ,

bϵ
i,k)i∈N , (σ ϵ

i,s)i∈N and (ρϵ
i,k)i∈N to emphasize their dependence on

(see RAQA updates in (9)–(11) to see the dependence). We refer
o the update of RAQA parameters

(
mi,si , bi,k

)
in (10)–(11) carried

ut after the selection of segment quality for client i (following a
egment download) as a Qi-update. Let δτ ϵ

Q ,i,s denote the time (in
econds) between the sth and (s + 1)th Qi-updates. Let τ ϵ

Q ,i,s =∑s−1
j=0 δτ ϵ

Q ,i,j. denote ϵ times the cumulative time for the first s
i-updates.
Next, we define time interpolated processes
Θ̂

ϵ
(t) =

(
m̂ϵ(t), v̂ϵ(t), b̂ϵ(t), σ̂ϵ(t), ρ̂ϵ(t)

)
associated with

AQA’s parameters. For each i ∈ N and for t ∈
[
τ ϵ
Q ,i,s, τ

ϵ
Q ,i,s+1

)
, letˆϵ

i (t) = mϵ
i,s, v̂ϵ

i (t) = vϵ
i,s, b̂

ϵ
Q ,i(t) = bϵ

Q ,i,s, and σ̂ ϵ
i (t) = σ ϵ

i,s. Also,
or t ∈ [kτslotϵ, (k + 1)τslotϵ), let b̂ϵ

R,i(t) = bϵ
R,i,k and ρ̂ϵ

i (t) = ρϵ
i,k.

or each t , letˆ ϵ

Q (t) =
(
m̂ϵ(t), v̂ϵ(t), b̂ϵ

Q (t), σ̂
ϵ(t), ρ̂ϵ(t)

)
,

Θ̂
ϵ

R(t) =
(
m̂ϵ(t), v̂ϵ(t), b̂ϵ

R(t), σ̂
ϵ(t), ρ̂ϵ(t)

)
,

The next result states that for small enough ϵ, the time interpo-
lated versions of RAQA parameters Θ̂

ϵ

Q (.) and Θ̂
ϵ

R(.) stay close
to the set H∗ (defined in (34)) most of the time over long time
windows.

Theorem 4. Let Θ̂
ϵ

Q (0) = Θ̂
ϵ
(0) ∈ H. Then, the fraction of time

in the time interval [0, T ] that Θ̂
ϵ

Q (.) and Θ̂
ϵ

R(.) spend in a small
neighborhood of H∗ converges to one in probability as ϵ → 0 and
T → ∞.

Proof sketch. This result follows from an extension of Theorem
3.4 in Chapter 12 of [19] which relates asynchronous stochastic
approximation (10)–(11) to its associated differential inclusion
(27)–(31), and using Theorem 3 (regarding convergence of differ-
ential inclusion to H∗). Theorem 3.4 cannot be directly applied
mainly because condition (A3.8) (given in SEction 12.3.3, page
418 of [19]) concerning the time between the (asynchronous)
updates is not be satisfied in our problem setting (discussed later
in the proof). The details of extension are omitted for brevity and
are discussed in [21]. ■

We have the following corollary of Theorem 4 which says that
for small enough ϵ and after running RAQA for long enough, client
i’s RAQA parameter stays close to H∗

i (defined in (22)) most of
the time with high probability. The corollary can be proved using
Theorem 4 noting that the amount of time between updates is

bounded.
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orollary 1. Let Θ̂
ϵ
(0) ∈ H and Sϵ =

S
ϵ
. Then for each i ∈ N , the

ollowing holds: for any δ > 0, the fraction of segment indices for
hich

(
θi,s
)
1≤s≤Sϵ

is in a δ-neighborhood of H∗

i converges to one in
robability as ϵ → 0 and S → ∞.

.4. Proof of Theorem 1

We have now obtained all the intermediate results required to
rove Theorem 1 which is given below.

roof of Theorem 1. To show part (a) (i.e., (12)), let Ti(S)
measured in seconds) denote the time at which the download
f first S segments of client i completes. From (9) and (11), we
et below lower bound on bQ ,i,S :

Q ,i,S ≥ bQ ,i,0 + ϵ

⎛⎝τslot

⌊
Ti(S)
τslot

⌋
(
1 + β i

) − liS

⎞⎠
≥ bQ ,i,0 −

ϵτslot(
1 + β i

) + ϵ

(
Ti(S)(
1 + β i

) − liS

)
.

ence,

Ti(S)
lS

≤
(
1 + β i

)(
1 +

(
bQ ,i,S − bQ ,i,0 +

ϵτslot
(1+β i)

ϵliS

))
. (36)

Now, if we let Ki(S) denote the (random variable associated
ith) the number of slots which client i takes to download S
egments, then we can express the term appearing in the left
and side of above inequality as

Ti(S)
liS

=

τslot

∑S
s=1 lifi,s

(
q∗
i,s

)
1

Ki(S)
∑Ki(S)

k=1 r∗i,k

lS
+ o(S). (37)

ow note that any limit point of the sequence 1
KS

∑KS
k=1 r

∗

i,k is
lso a limit point of the sequence 1

Ki(S)

∑Ki(S)
k=1 r∗

i,k since we can
uniformly bound Ki(S) − Ki(S − 1). Thus, using (4), (37), (36) and
the fact that bQ ,i,S is bounded (see Lemma 1), we can conclude
that (12) also holds.

Next, we prove part (b) of Theorem 1 regarding the optimality
of RAQA. Using Corollary 1 (which says that

(
θi,s
)
1≤s≤Sϵ

essentially
onverges to H∗

i ) and Lemma 2(a) (which says that q∗

i (θi, fi) is a
ontinuous function of θi), we can conclude that for θπ

i ∈ H∗

i

lim
→∞

lim
ϵ→0

(
φSϵ

(((
q∗

i

(
θi,s, fi,s

))
i∈N

)
1≤s≤Sϵ

)
−φSϵ

(((
q∗

i

(
θπ
i , fi,s

))
i∈N

)
1≤s≤Sϵ

))
oes to zero in probability. Now, part (b) of Theorem 1 follows
rom the above observation and Theorem 2. ■

. Conclusions and future directions

We developed a simple online algorithm for optimizing asyn-
hronous streaming of bufferable information flows, well suited
or advanced wireless networks carrying DASH-based video and
udio, and with potential applications in streaming of AR/VR.
everal interesting extensions (e.g., more general QoE models,
ost constraints, discrete quality-rate tradeoffs) of the settings
onsidered in this paper and extensive evaluation using simu-
ations can be found in [21] where the focus is on DASH-based
ideo streaming.
Interesting future directions might include exploring the po-

ential for learning user preferences, and developing ‘RAQA-like’
lgorithms for networks with contention based medium access
otentially by modulating the back-off timers using information
bout parameters like b .
i,k
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ppendix. Proof of Theorem 3

roof. The proof of part (a) involves analysis of drift of the
yapunov function L(.). The choice of several terms in L(.) is moti-
vated by Lyapunov functions in [13,20], and has many novel ele-
ments. For instance, the term

∑
i∈N

(
1 + β i

)
li
(
m̂i − mπ

i

)2 allows
s to accommodate objectives involving variability terms and the
erms in

∑
i∈N bπ

i (liσ̂i − τslot ρ̂i) +
∑

i∈N σ π
i

∫ b̂i
b

(
hB
i (e) − bπ

i

)
de

hich allow us to accommodate the rebuffering constraints. Fur-
her, our convergence result is for a differential inclusion associ-
ted with an algorithm RAQA which, unlike those in [13,20], uses
synchronous updates. To just simplify the notation used in this
roof, we assume β i = 0 and ηi = 1.
Since (ρπ , bπ ) ∈ Xπ , there is some optimal solution

(((
qπ
i

(f )
)
f∈Fi

)
i∈N

, (rπ (c))c∈C
)
to OPTSTAT with ρπ

i = E
[
rπ
i (Cπ )

]
for

each i ∈ N and bπ as the associated optimal Lagrange multipliers
for the constraints (17) respectively.

Using the definition of L(.) and (27)–(31), we have that

dL
(
Θ̂(t)

)
dt

≤ −

∑
i∈N

li
ui(t)

(38)((
E
[
q∗

i (t)
]
− m̂i(t)

)
−

(
E
[(

q∗

i (t) − m̂i(t)
)2]

− v̂i(t)
))

+

∑
i∈N

2li
ui(t)

(
m̂i(t) − mπ

i

) (
E
[
q∗

i (t)
]
− m̂i(t)

)
+

∑
i∈N

libπ
i

ui(t)

(
E
[
Fπ
i

(
q∗

i (t)
)]

− σ̂i(t)
)

−

∑
i∈N

bπ
i

(
E
[
r∗

i (t)
]

τslot
− ρ̂i(t)

)
− χ2d5N

(
Θ̂(t), H̃

)
∑
i∈N

σ π
i

(
hB
i

(̂
bi(t)

)
− bπ

i

) (
1 −

li
ui(t)

)
∑
i∈N

(
hB
i

(̂
bi(t)

)
− bπ

i

)(E
[
liFπ

i

(
q∗

i (t)
)]

ui(t)
−

E
[
r∗

i (t)
]

τslot

)
.

For brevity, we have not explicitly indicated the dependence
of many terms above on Θ̂(t). For instance, ui(t) is shorthand
for ui

(
Θ̂(t)

)
, and E

[
liq∗

i (t)
]
is shorthand for E

[
liq∗

i

(̂
θi(t), Fπ

i

)]
where θ̂ (t) = (m̂ (t), b̂ (t)). Also, note that the last term is
i i i
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h
a
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ero-valued (see (32)). Term involving ẑbi
(
Θ̂(t)

)
has also been

dropped from right hand side of (38) as it is non-positive. To
see this, note that ẑbi

(
Θ̂(t)

)
≥ 0 which is equal to zero unless

bi(t) = b (from Eq. (29)) for which hB
i

(̂
bi(t)

)
= 0 ≤ bπ

i . Hence,∑
i∈N σ π

i

(
hB
i

(̂
bi(t)

)
− bπ

i

)
ẑbi
(
Θ̂(t)

)
≤ 0.

Consider the right hand side of (38), and group the terms con-
taining q∗

i (t) except those in the line with the term
(
m̂i(t) − mπ

i

)
to note that we have negative of a scaled (by 1/ui(t)) ver-
sion of the expectation of the objective of QAi

(̂
θi(t), fi

)
, i.e.,

E
[
Lπ
i φQ

(
q∗

i (t), θ̂i(t), Fπ
i

)]
. Recall that q∗

i (t) in the above calcula-

tions is a shorthand for q∗

i

(̂
θi(t), Fπ

i

)
. Now, let q

∗,mπ
i

i (t) denote

the shorthand for q∗

i

(̂
θ
(mπ

i )
i (t), Fπ

i

)
where θ̂

(mπ
i )

i (t) = (mπ
i , b̂i(t)),

i.e., θ̂i(t) with the first component set to mπ
i (defined in (18)).

Next, we replace q∗

i (t) appearing in the above inequality with
q

∗,mπ
i

i (t), incorporate the correction term associated with this
replacement into a function ∆1

(
Θ̂(t)

)
, and rewrite (38) as

dL
(
Θ̂(t)

)
dt

≤ ∆1
(
Θ̂(t)

)
(39)∑

i∈N

li

(
1

ui(t)

(
E
[
q

∗,mπ
i

i (t)
]

− m̂i(t)
)

−
1

ui(t)

(
E
[(

q
∗,mπ

i
i (t) − mπ

i

)2]
− v̂i(t)

))
+

∑
i∈N

libπ
i

ui(t)

(
E
[
Fπ
i

(
q

∗,mπ
i

i (t)
)]

− σ̂i(t)
)

−

∑
i∈N

bπ
i

(
E
[
r∗

i (t)
]

τslot
− ρ̂i(t)

)
− χ2d5N

(
Θ̂(t), H̃

)
∑
i∈N

σ π
i

(
hB
i

(̂
bi(t)

)
− bπ

i

) (
1 −

l
ui(t)

)
∑
i∈N

(
hB
i

(̂
bi(t)

)
− bπ

i

)
⎛⎝E

[
liFπ

i

(
q

∗,mπ
i

i (t)
)]

ui(t)
−

E
[
r∗

i (t)
]

τslot

⎞⎠ ,

here

1
(
Θ̂(t)

)
= −

∑
i∈N

li
ui(t)

E
[(

φQ (q∗

i

(̂
θi(t), Fπ

i

)
, θ̂i(t), Fπ

i

)
−φQ

(
q∗

i

(̂
θ
(mπ

i )
i (t), Fπ

i

)
, θ̂

(mπ
i )

i (t), Fπ
i

)
−2

(
m̂i(t) − mπ

i

) (
q∗

i (t) − m̂i(t)
))]

. (40)

From the definition (32) of ui(t), we have that for each i ∈ N

umin:=
τslot lfmin

rmax
, umax:=

τslot lfmax

rmin
(41)

re lower and upper bounds respectively on ui(t).
If we group the terms containing q

∗,mπ
i

i (t) and r∗(t), we find
that the right hand side of (39) contains negative of scaled ver-
sions of optimal value of objective functions of QAi

(̂
θ
(mπ

i )
i (t), fi

)
(i.e., φQ

(
q∗

i (t), θ̂
(mπ

i )
i (t), fi

)
) and those of RA

(̂
b(t), c

)
(i.e., φR (r∗(t),

b̂(t), c
)
). Now using the optimality of q

∗,mπ
i

i (t) and r∗(t) with

espect to QAi

(̂
θ
(mπ

i )
i (t), fi

)
and RA

(̂
b(t), c

)
, and using the fact

hat qπ
i (f ) and rπ (c) are feasible solutions for these optimization

problems, we obtain the following inequality from (39) (obtained
11
by replacing q
∗,mπ

i
i (t) and r∗(t) with qπ

i (f ) and rπ (c) in (39)
nd adding the correction term ∆2

(
Θ̂(t)

)
associated with this

eplacement)

dL
(
Θ̂(t)

)
dt

≤ ∆1
(
Θ̂(t)

)
+ ∆2

(
Θ̂(t)

)
(42)∑

i∈N

li

(
1

ui(t)

(
mπ

i − ˜̂mi(t)
)

−
1

ui(t)

(
E
[(

qπ
i

(
Fπ
i

)
− mπ

i

)2]
− ˜̂vi(t)

))
∑
i∈N

libπ
i

ui(t)

(
σ π
i − ˜̂σi(t)

)
−

∑
i∈N

bπ
i

(
ρπ
i − ˜̂ρi(t)

)
∑
i∈N

σ π
i

(
hB
i

(̂
bi(t)

)
− bπ

i

) (
1 −

li
ui(t)

)
∑
i∈N

(
hB
i

(̂
bi(t)

)
− bπ

i

) ( σ π
i li

ui(t)
− ρπ

i

)
χ2d8N

(
Θ̂(t), H̃

)
+ l2

(
Θ̂(t)

)
,

here mπ
i , vπ

i and σ π
i are defined in (18)–(20), (and ρπ was

hosen at the beginning of the proof — see below (36))

2
(
Θ̂(t)

)
= −

1
τslot

E
[
φR (r∗(t), b̂(t), Cπ

)
(43)

−φR (rπ (Cπ ) , b̂(t), Cπ
)]

−

∑
i∈N

li
ui(t)

E
[(

φQ
(
q∗

i

(
˜̂
θ
(mπ

i )
i (t), Fπ

i

)
,
˜̂
θ
(mπ

i )
i (t), Fπ

i

)
−φQ

(
qπ
i

(
Fπ
i

)
,
˜̂
θ
(mπ

i )
i (t), Fπ

i

))]
,

nd .̃ is the projection of elements in H to the set H̃. Here

˜̂m(t),˜̂v(t), b̃(t), ˜̂σ(t), ˜̂ρ(t)) :=
˜̂Θ(t).

ue to the definition of H̃ (see (33)), ˜̂b(t) = b̂(t). Also, for each
∈ N ,

ĩ(t):=
(
˜̂mi(t), b̂i(t)

)
,
˜̂
θ
(mπ

i )
i (t):=

(
mπ

i , b̂i(t)
)
.

ote that we have replaced components of m̂(t), v̂(t), σ̂(t) and
(t) appearing in (39) with those of ˜̂m(t), ˜̂v(t), ˜̂σ(t) and ˜̂ρ(t)
espectively, and in (42), we have added the function l2 (.) defined
below to account for these replacements:

l2
(
Θ̂(t)

)
= −

∑
i∈N

li
((

˜̂mi(t) − m̂i(t)
)

(44)

−
1

ui(t)

(˜̂vi(t) − v̂i(t)
))

−

∑
i∈N

libπ
i

ui(t)

(
˜̂σi(t) − σ̂i(t)

)
−

∑
i∈N

bπ
i

(
˜̂ρi(t) − ρ̂i(t)

)
.

Since all terms above are bounded, there exists some large enough
finite constant χ4 such that

l2
(
Θ̂(t)

)
≤ χ4d8N

(
Θ̂(t), H̃

)
(45)

olds for any Θ̂(t) ∈ H. Thus, we can use the observations in (45)
long with (42) to conclude that

dL
(
Θ̂(t)

)
dt

≤ ∆1
(
Θ̂(t)

)
+ ∆2

(
Θ̂(t)

)
(46)∑

li

(
1

u (t)

(
mπ

i − ˜̂mi(t)
)

i∈N i
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+

+

L

∆

w

∆

N

r

∆

v̂

∈(
t
a

φ

i

−
1

ui(t)

(
E
[(

qπ
i

(
Fπ
i

)
− mπ

i

)2]
− ˜̂vi(t)

))
+

∑
i∈N

libπ
i

ui(t)

(
σ π
i − ˜̂σi(t)

)
−

∑
i∈N

bπ
i

(
ρπ
i − ˜̂ρi(t)

)
∑
i∈N

(
hB
i

(̂
bi(t)

)
− bπ

i

) (
σ π
i − ρπ

i

)
(χ3 + χ4 + χ5 − χ2) d8N

(
Θ̂(t), H̃

)
.

et χ2 = χ3 + χ4 + χ5 + 1, and let

(Θ) = ∆1 (Θ) + ∆2 (Θ) + ∆(b) (Θ) (47)
+∆(π,q) (Θ) + ∆(π,r) (Θ) + ∆3 (Θ) ,

here

(π,q) (Θ̂(t)
)

= −

∑
i∈N

li
ui(t)

(∑
i∈N

bπ
i

(
σ π
i − ˜̂σi(t)

)
+((

mπ
i − ˜̂mi(t)

)
−
(
vπ
i − ˜̂vi(t)

)))
,

∆(π,r) (Θ̂(t)
)

= −

∑
i∈N

bπ
i

(
ρπ
i − ˜̂ρi(t)

)
,

∆(b) (Θ̂(t)
)

=

∑
i∈N

(
hB
i

(̂
bi(t)

)
− bπ

i

) (
σ π
i − ρπ

i

)
,

∆3
(
Θ̂(t)

)
= −d5N

(
Θ̂(t), H̃

)
.

Hence, we can rewrite (46) as follows:

dL
(
Θ̂(t)

)
dt

≤ ∆
(
Θ̂(t)

)
. (48)

ext, we show that all the functions ∆1 (Θ), ∆2 (Θ), ∆(b) (Θ),
∆(π,q) (Θ), ∆(π,r) (Θ) and ∆3 (Θ), are non-positive for Θ ∈ H∗

so that ∆ (Θ) is non-positive for all Θ ∈ H∗, and that ∆ (Θ) < 0
for Θ /∈ H∗.

To show non-positivity of ∆(b)
(
Θ̂(t)

)
, note that complemen-

tary slackness conditions for (17) in OPTSTAT implies that σ π
i =

ρπ
i

τslot
if bπ

i > 0. Further, feasibility of the optimal solution (with

respect to (17)) implies that σ π
i ≤

ρπ
i

τslot
i ∈ N .

Next, consider ∆(π,q)
(
Θ̂(t)

)
. Since ˜̂Θ(t) ∈ H̃, and

((
qπ
i

(fi))fi∈Fi

)
is the unique optimal solution (using Lemma 4(a)), we

can show that ∆(π,q)
(
Θ̂(t)

)
≤ 0 and

∆(π,q) (Θ̂(t)
)

= 0 only if ˜̂m(t) = mπ and ˜̂v(t) = vπ . (49)

Using similar arguments along with Lemma 4(b), we can show
that ∆(π,r)

(
Θ̂(t)

)
≤ 0.

Next, consider ∆1
(
Θ̂(t)

)
. Using Lemma 3(c), we can show that

∆1
(
Θ̂(t)

)
≤ 0. Next, consider ∆2

(
Θ̂(t)

)
. Since q∗

i

(
˜̂
θ
(mπ

i )
i (t), fi

)
and r∗(t) are optimal solutions to QA

(
˜̂
θ
(mπ

i )
i (t), fi

)
and RA

(̂
b(t), c

)
espectively, ∆2

(
Θ̂(t)

)
≤ 0.

Also, ∆3 (Θ) = −d5N
(
Θ̂, H̃

)
is non-positive, and

3
(
Θ̂(t)

)
= 0 only if ˜̂m(t) = m̂(t),

(̃t) = v̂(t) and ˜̂ρ(t) = ρ̂(t). (50)

Next, we argue that ∆
(
Θ̂(t)

)
= 0 only if

(̂
ρ(t),

(
hB
i

(̂
bi(t)

))
i∈N

)
Xπ . Suppose that ∆

(
Θ̂(t)

)
= 0. Then, ∆(π,q)

(
Θ̂(t)

)
+ ∆(π,r)

Θ̂(t)
)
+∆3

(
Θ̂(t)

)
= 0, and from (49) and (50), we can conclude

hat m̂(t) = mπ and v̂(t) = vπ . We also have that ∆2
(
Θ̂(t)

)
= 0,

nd hence
R ( ∗

(̂ ) ˆ )

r b(t), c , b(t), c =

12
φR (rπ (c) , b̂(t), c
)
, ∀ c ∈ C,

φQ
(
q∗

i

(
˜̂
θ
(mπ

i )
i (t), fi

)
,
˜̂
θ
(mπ

i )
i (t), fi

)
=

φQ
(
qπ
i (fi) ,

˜̂
θ
(mπ

i )
i (t), fi

)
, ∀ fi ∈ Fi, ∀ i ∈ N ,

where recall that
˜̂
θ
(mπ

i )
i (t) =

(
mπ

i , b̂i(t)
)
. Hence, rπ (c) is an

optimal solution to RA
(̂
b(t), c

)
for each c ∈ C, and qπ

i (fi) is an

optimal solution to QA
(
˜̂
θ
(mπ

i )
i (t), fi

)
for each fi ∈ Fi and i ∈ N .

Now, we can use KKT conditions and associated optimal Lagrange

multipliers for QA
(
˜̂
θ
(mπ

i )
i (t), fi

)
and RA

(̂
b(t), c

)
to build optimal

Lagrange multipliers including bπ satisfying KKT conditions for
OPTSTAT.

Then, using (21), we can conclude that

∆
(
Θ̂(t)

)
= 0 only if

(̂
ρ(t),

(
hB
i

(̂
bi(t)

))
i∈N

)
∈ Xπ (51)

Now, the above discussion along with (49), (50), and (51) allow
us to conclude that for almost all t

dL
(
Θ̂(t)

)
dt

≤ ∆
(
Θ̂(t)

)
where ∆

(
Θ̂
)

≤ 0 ∀ Θ ∈ H, ∆ (Θ) < 0 ∀ Θ /∈ H∗. (52)

This completes proof of part (a) of the theorem.
Proof of part (b) can be completed using (52) and an ap-

propriate choice of a continuous function bounding ∆ (Θ) from
above (obtained by replacing 1

ui(t)
with 1

umax
, where umax is defined

n (41), in the constituent functions of ∆ (Θ)) so that the new
function also satisfies (52) after replacement of ∆ (Θ) in (41). The
details omitted for brevity and can be found in [21]. ■
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