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Abstract— We investigate the benefits of channel-aware
(opportunistic) scheduling of transmissions in ad hoc networks.
The key challenge in optimizing the performance of such systems
is finding a good compromise among three interdependent
quantities: 1) the density of scheduled transmitters; 2) the quality
of transmissions; and 3) the long term fairness among nodes.
We propose two new channel-aware slotted CSMA protocols
opportunistic CSMA and quantile-based CSMA (QT-CSMA)
and develop new stochastic geometric models to quantify their
performance in terms of spatial reuse and spatial fairness. When
properly optimized, these protocols offer substantial improve-
ments in performance relative to CSMA—particularly, when the
density of nodes is moderate to high. In addition, we show that a
simple version of QT-CSMA can achieve robust performance
gains without requiring careful parameter optimization. The
quantitative results in this paper suggest that channel-aware
scheduling in ad hoc networks can provide substantial bene-
fits which might far outweigh the associated implementation
overheads.

Index Terms— Ad hoc networks, ALOHA, CSMA, O-CSMA,
opportunistic scheduling, quantile scheduling, QT-CSMA, spatial
fairness, spatial reuse.

I. INTRODUCTION

EVALUATING and optimizing the capacity of wireless ad
hoc networks has been one of the goals of the networking

and information theory research communities over the last
decade. Due to the inherent randomness in such networks, e.g.,
locations of nodes, wireless channels, and node interactions
governed by protocols, researchers have developed stochastic
models that can parsimoniously capture the uncertainty of such
environments while still giving insight on system performance
and optimization. Work based on stochastic geometric models
has perhaps been the most successful in terms of providing
reasonably realistic, yet mathematically tractable, results; see
[1]–[3]. This paper leverages this line of work to study the
performance of networks operated under two channel-aware
slotted CSMA type protocols.
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One of the important factors determining the performance of
a wireless network is the degree of spatial reuse. Spatial reuse
is a measure quantifying the degree of spectrum reuse per unit
space. In this work, we consider a random wireless network
using a single frequency band where nodes are uniformly
distributed in space. Every slot, each node decides whether or
not to transmit to its receiver based the activity of surrounding
nodes. A sparse or dense set of transmitters would have
low spatial reuse or and strong interference respectively. The
other important factor is spatial fairness which measures the
degree of fairness in the performance of spatially distributed
nodes. There will be inherent performance unfairness due
to the interaction of random node locations and contention
for media access. This can be mitigated by balancing the
transmission opportunity and success rates across spatially
distributed nodes. It is the Medium Access Control (MAC)
protocol that makes transmission decisions and thus shapes
the spatial reuse and fairness patterns nodes will see.

MAC protocols such as ALOHA, Opportunistic ALOHA
(O-ALOHA), and CSMA have been studied in detail, so we
briefly introduce and discuss them.

ALOHA is a basic MAC protocol in which spatially
distributed nodes simply transmit with a probability p.
A mathematical model for a spatial version of an ALOHA
based wireless ad-hoc network is presented in [1]; various
extensions capturing the impact of modulation techniques
on the transmission capacity have been studied; see [2].
Because transmitters contend independently, the transmission
probability p should be properly chosen as a function of node
density so as to achieve a high spatial reuse. This involves
finding a compromise between a high density of transmitters
and excessive interference which deteriorates the quality of
transmissions and accordingly leads to low spatial reuse.

In [4] and [5], the performance of an opportunistic version
of spatial ALOHA (O-ALOHA)1 was evaluated. In these mod-
els, only qualified transmitters, namely nodes whose channel
to their associated receivers have channel gain that exceeds
a threshold γ , can transmit with probability p. The result-
ing spatial reuse is thus affected by two parameters. When
properly tuned, this simple channel-aware MAC can increase
spatial reuse by roughly 40% relative to simple ALOHA.

Although O-ALOHA can significantly increase spatial reuse
by qualifying nodes seeing good channels, it still suffers
from collisions which limit its performance. Unlike ALOHA
based protocols, Carrier Sense based Medium Access (CSMA)

1The ALOHA considering channel state information (a.k.a opportunistic
ALOHA) in single hop network was introduced and studied in [6] and [7].
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Fig. 1. A realization of modified Matérn hardcore process: randomly
distributed points are the realization of marked Poisson point process where
each point has an independent identically distributed mark denoting its timer
value in [0, 1]. If a point has the smallest timer value in its neighborhood
(neighborhood is not shown here but formally defined later in (1)), then, it
is selected as a CSMA transmitter. Selected CSMA transmitters were drawn
inside boxes.

protocols achieve high spatial reuse by coordinating trans-
missions among neighboring nodes so as to avoid collisions.
In [8] and [9], a modified Matérn hardcore process model
for a spatial slotted CSMA protocol was introduced. Each
node contends with its ‘neighbors’ via a uniformly distributed
contention timer. The node with the earliest timer wins. As a
result the active transmitters end up being well separated; see
Fig. 1. The model suggests CSMA can increase spatial reuse
by roughly 25% over basic ALOHA.

In this paper, we extend the CSMA ad-hoc network model
introduced in [9] to study two simple channel-aware MAC
protocols. In the first scheme, named Opportunistic CSMA
(O-CSMA), we use a channel quality threshold γ, as intro-
duced in [4] and [5], to qualify nodes which participate in
the CSMA contention process. Optimizing the performance
of such networks requires selecting γ as a function of node
density and channel variation distributions. In the second
scheme, called QuanTile-based CSMA (QT-CSMA), nodes
contend based on the quantile of the channel quality to their
associated receivers. Doing so allows nodes to transmit when
their channel is the ‘best’ in their neighborhood. This also
ensures that each node gets a fair share of access opportunities
among the nodes in its neighborhood, and circumvents the
problem of choosing a density dependent qualification thresh-
old. This is particularly desirable if channel statistics seen
across nodes are heterogeneous. Quantile-based scheduling
approaches for downlinks in cellular networks were introduced
and studied in [10]–[13] and in the wireless LAN setting in
[14] and [15].

The performance metrics considered in this paper are spatial
averages of network performance, which means that the perfor-
mance metric captures an average over possible realizations of
nodes’ locations. This is particularly meaningful, since in real
world scenarios nodes are irregularly placed and/or motion
might make a performance metric which is a function of
nodes’ location less informative. To that end, we character-
ize the performance as seen by a typical node using tools

from stochastic geometry together with analytical/numerical
computation methods.

A. Contributions

This paper makes the following four contributions. First,
to the best of our knowledge, it presents the first attempt
to evaluate CSMA-based opportunistic MAC protocols in
ad-hoc networks, namely O-CSMA and QT-CSMA. Our new
stochastic geometry analysis captures the delicate interactions
between the channel gains and interference statistics underly-
ing the performance of opportunistically scheduled nodes in
ad-hoc networks.

Second, we evaluate the sensitivity of spatial reuse to
various protocol parameters, showing the advantages of
QT-CSMA over O-CSMA which in turn has substantially
better performance than ALOHA based schemes. To that end,
we characterize the interplay between the density of active
transmitters and the quality of transmissions in the function of
the qualification threshold γ and a carrier sense threshold ν.

Third, this paper is the first to evaluate the spatial fairness
realized by these protocols and shows that QT-CSMA can
achieve better fairness than CSMA. Specifically we introduce
and quantify a spatial fairness index among sets of nodes
sharing the same number of neighbors, which captures the
impact of random nodes’ placements.

Finally, we study tradeoffs between spatial fairness and
spatial reuse, and compare the Pareto optimal performance
points of O-CSMA with those of QT-CSMA. In particular, we
show that quantile-based CSMA without a qualification step
(QT0-CSMA) achieves a performance comparable to that of
O/QT-CSMA in terms of both fairness and density of success-
ful transmission, it is thus a robust and attractive choice from
an engineering perspective. An initial discussion of implemen-
tation considerations for such protocols can found in [16].

B. Related Work

Since the introduction of the IEEE 802.11 protocol, sev-
eral researchers have attempted to analyze multi-hop wireless
networks using the IEEE 802.11. [17] was one of the early
efforts which provided an analytical model for a given fixed
network and computed the lower bound on the sum throughput
of transmitter-receiver pairs for a given network. However,
the model’s simplified physical layer, the so-called protocol
model, did not account for the impact of aggregate interfer-
ence. Later, [18] provided a more sophisticated model which
takes into account various PHY and MAC layer parameters.
The authors propose a linear approximation of the access
probability of individual nodes as a function of its success
probability and developed a linear system relationship relating
the success probabilities and transmission probabilities of
nodes in a given network. This gave a reasonable approx-
imation of the per-node throughput, however, the work did
not reveal how the system was affected by various system
parameter selections or the inherent randomness in wireless
environment. Furthermore performance was evaluated for a
given fixed network, which does not provide insight regarding
typical ad hoc networks.
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The above limitations - i.e., not taking into account random
fading channel, random node locations, impact of aggregate
interference, and capture effect2 - are naturally addressed in
research based on stochastic geometric models; see [1]–[3],
[19], on which our work is based. In this line of work, the
performance metrics of interest are an average over random
environments (including fading, node locations, protocols,
etc), which can be more informative in terms of representing
typical behavior. Specifically the CSMA related work of
[9] and [8] used a spatial point process to model spatially
distributed wireless nodes using a CSMA-like MAC protocol.
These works successfully approximated the statistics of the
aggregate interference resulting from CSMA-like MAC nodes
by those of a non-homogeneous Poisson point process of
interferers. The approximation was validated via simulation
and was shown to match well. However, characterizing the
exact interference statistics is still very hard and has remained
an open problem. As a response to this, subsequent work in
[20] and [21] suggested an alternative approximation for the
performance of CSMA nodes which is accurate for asymptot-
ically sparse networks. Models capturing carrier sense mecha-
nism have also been successfully used to study cognitive radio
networking scenarios in [22]–[24].

Our work is different from the above work in the following
aspects. First, we build upon the CSMA model in [9] incorpo-
rating opportunistic CSMA scheduling schemes. We consider
the dependency among the channel gain of a scheduled node,
contention resolution mechanism, and the activity of the sur-
rounding nodes (or accordingly the statistics of interference),
which has to the best of our knowledge not been previously
explored. We elaborate a parameterized model which is flexi-
ble enough to be used to study various protocols from ALOHA
to QT-CSMA. Second, we consider the fairness for slotted
(or synchronized) CSMA networks. In particular, we study
how system parameters and opportunistic CSMA protocols can
change fairness characteristics of the slotted CSMA network.

C. Organization

In Section II we describe our system model, including
details for our two proposed opportunistic MAC protocols.
In Section III the transmission and success probability
of a typical node under the two MAC protocols are
derived. These will be used later to compute the two
performance metrics. In Section IV we compare the spa-
tial reuse of O-CSMA and QT-CSMA networks, and in
Section V the fairness of such networks is evaluated and
tradeoffs between spatial reuse and fairness are considered
under various parameter values. Conclusions are given in
Section VI.

II. SYSTEM MODEL

A. Node Distribution and Channel Model

We model an ad-hoc wireless network as a set of trans-
mitters and their corresponding receivers. Transmitters are

2If two transmitters happen to send their packets to the same receiver, the
one with a higher signal strength can be received with non-zero probability.
This is called the capture effect.

randomly distributed on R2 as a marked homogeneous
Poisson Point Process (PPP) # =

{
Xi , Ei , Ti , Fi , F′

i

}
, where

$ ≡ {Xi }i≥1 is the PPP with density λ denoting the set of
transmitters’ locations and Ei is an indicator function which
is equal to 1 if a node Xi transmits and 0 otherwise. The value
of Ei is determined by the MAC protocol used and the activity
of other nodes

{
X j

}
j ̸=i . Ti denotes the timer value used by

node Xi for contention resolution with its neighboring nodes.
Node Xi transmits if it has the smallest timer value in its
neighborhood. The value of Ti is determined by the timer
selection algorithm. We assume that the distance between
a transmitter and its associated receiver is r . The direction
from a transmitter to its receiver is randomly and uniformly
distributed on [0, 2π]. Throughout this paper, we only consider
the performance as seen by a typical receiver.

Let Fi =
(
Fij : j

)
be a vector of random variables Fij

denoting the fading channel gain between the i th transmitter
and the receiver associated with the j th transmitter. In this
work, we consider i.i.d. block fading channel model, in which
a fading gain is independently sampled for the duration of each
time slot with an identical distribution. Note that Fii denotes
the channel gain from the i th transmitter to its associated
receiver. We assume that the random variables Fij are identi-
cally distributed (i.i.d.) with mean µ−1, i.e., Fij ∼ F , with
cumulative distribution function (cdf) G (x) = P (F ≤ x).
Let F′

i = (F ′
i j : j) be the vector of random variables F ′

i j
denoting the fading gain between the i -th transmitter and the
j -th transmitter. These are assumed to be symmetric3 and i.i.d,
i.e., F ′

i j = F ′
j i and F ′

i j ∼ F . In this paper, we only consider the
Rayleigh fading case where F has an exponential distribution
with G (x) = 1 − exp(−µx) for x ≥ 0, but other fading
models could be considered. Let ∥x∥ denote the norm of
x ∈ R2 and ∥x − y∥α be the path loss between two locations
x ∈ R2 and y ∈ R2 where the pathloss exponent α > 2.
Then, the interference power that the j -th receiver at location
y experiences from the i -th transmitter at location x is then
given by Fij ∥x − y∥−α .

B. Signal to Interference and Noise Ratio Model

The performance of a receiver is governed by its signal to
interference plus noise ratio (SINR). Under the model given
above, the SINR seen at the i -th receiver is

SINRi = Fii r−α

I$\{Xi } + W
,

where I$\{Xi } = ∑
j :X j∈$\{Xi } E j Fj i

∥∥Yi − X j
∥∥−α is the

aggregate interference power4, or so-called shot noise, and
W is the thermal noise power. We shall focus on interfer-
ence limited networks, where the impact of thermal noise is
comparatively negligible, so let W = 0. The reception model
we consider is the so-called outage reception model, where a
receiver can successfully decode a transmission if its received
SINR exceeds a decoding threshold t .

3Unlike F ′
i j , Fi j is not symmetric, i.e., Fi j ̸= Fji .

4Yi is the receiver associated with transmitter Xi .
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C. Carrier Sense Multiple Access Protocols

We consider a slotted CSMA network, where nodes com-
pete with each other to access a shared medium. Carrier
sensing is followed by data transmission at each slot. Each
node contends with its ‘neighboring’ nodes using a (uniformly
distributed on [0, 1]) timer value. The timer value is indepen-
dent of everything else and each node transmits if it has the
smallest timer value in its neighborhood and defers otherwise.
CSMA provides a way to resolve contentions among nodes but
does not take advantage of channel variations. In what follows,
we introduce two distributed opportunistic CSMA protocols
which take advantage of channel variations amongst transmit-
ters and their receivers: opportunistic CSMA (O-CSMA) and
Quantile-based CSMA (QT-CSMA).

Under O-CSMA, nodes whose channel gains are higher
than a fixed threshold γ qualify to contend; we call this the
qualification process. We assume that channel quality Fii is
available to transmitter Xi at each slot. Qualified nodes in
turn, contend for transmission with their neighbors on that
slot. Specifically, let $γ = {Xi ∈ $ | Fii > γ } denote the set
of qualified nodes or contenders. Note that $γ is a subset of
$ which is generated by independent marks with probability

pγ = P(F > γ ),

so it is a homogeneous PPP with density λγ ≡ λpγ . Each
contender Xi ∈ $γ has a set of qualified nodes with which it
contends. We say two transmitters Xi and X j contend if the
received interference they see from each other is larger than
the carrier sense threshold ν, i.e., if F ′

i j

∥∥Xi − X j
∥∥−α

> ν

and by symmetry F ′
j i

∥∥Xi − X j
∥∥−α

> ν. We call the set of
contenders for a qualified node i its neighborhood and denote
it by

N γ
i =

{
X j ∈ $γ s.t. F ′

j i

∥∥Xi − X j
∥∥−α

> ν, j ̸= i
}

. (1)

Contending nodes are not allowed to transmit simultaneously
since they can potentially interfere with each other. To avoid
collisions, in every slot each node X j in $γ picks a random
timer value Tj which is uniformly distributed on [0, 1]. At
the start of each time slot, node X j starts its own timer
which expires in Tj . Each node senses the medium until its
own timer expires. If no node (in its neighborhood) begins
transmitting prior to that time, then, it starts transmitting,
otherwise it defers. Under this mechanism, a node Xi
transmits only if the node’s timer value is the minimum in its
neighborhood, i.e., when Ti is equal to min j :X j ∈N γ

i ∪{Xi } Tj .
Note that this timer value based carrier sense model could be
easily extended to incorporate RTS-CTS based carrier sense
mechanism but to simplify we will not consider this here.

Note that the qualification process is a mechanism for
selecting nodes with high channel gains. (all qualified nodes
have channel gains larger than γ .) The posterior channel
distribution after qualification is that of F given that F > γ ,
so it is given by a shifted exponential distribution

Gγ (x) ≡ P(F < x |F > γ ) = (1 − exp−µ(x−γ ))1{x ≥ γ }.
(2)

The qualification process not only increases the signal strength
but also reduces the number of interferers, so we can expect

more successful transmissions. However, the parameter γ
should be chosen judiciously; otherwise there will either be
too many transmitting nodes generating too much interference
or too few transmitting nodes resulting in low spatial reuse.
Neither case is desirable. Note that when γ = 0 this model
corresponds to the standard CSMA model analyzed in [9].

Under QT-CSMA there is also a qualification process with
threshold γ . However, the active transmitters in a neighbor-
hood are selected based on the quantile of their current chan-
nel gain; we refer to this as quantile scheduling. Specifically,
we assume that channel quality Fii is available to transmitter
Xi , and at each slot a qualified transmitter Xi computes its
channel quantile5 Qi = Gγ (Fii ) using the distribution for
the channel gain Fii conditioned on Fii > γ . This transforms
the channel distribution to a uniform distribution on [0, 1],
which serves both as a relative indicator of channel quality
and to determine the timer for collision avoidance. More
precisely, under QT-CSMA, Xi sets its timer value Ti to
1 − Qi and senses the medium until its timer expires. If no
transmitting node is detected prior Ti , then, the node accesses
the medium, otherwise it defers. In other words, node Xi
transmits only if it has the highest quantile in its neighborhood,
i.e., if Qi = Qmax

i where Qmax
i ≡ max j :X j∈N γ

i ∪{Xi } Q j . Let
Fmax

i,γ = G−1
γ

(
Qmax

i

)
be the channel fade of a transmitting

node Xi or the channel fade given node Xi transmits, where
G−1

γ (·) is the inverse function of Gγ (·). Let Nγ
i =

∣∣N γ
i

∣∣; then
Fmax

i,γ is a Nγ
i + 1th order statistic, i.e.,

Fmax
i,γ = max

[
F1,γ , F2,γ , . . . , FNγ

i +1,γ

]
, (3)

with the random variables Fj,γ i.i.d. The distribution of Fmax
i,γ

conditioned on Nγ
i = n is given by

P
(

Fmax
i,γ ≤ x |Nγ

i = n
)

= (1−exp−µ(x−γ ))n+11{x ≥ γ }. (4)

Thus QT-CSMA further exploits opportunism beyond the
qualification process. Unlike O-CSMA, a QT-CSMA node
transmits only when it has the best channel condition in its
neighborhood, which should further improve its likelihood of
successful transmission. One may surmise that QT-CSMA may
work well even without the qualification phase since quantile
scheduling will fully take advantage of opportunistic node
selection gain (so-called multi-user diversity). This will be
explored later. We shall denote QT-CSMA with γ = 0 by
QT0-CSMA.

D. Notation

For a positive random variable I , let LI (s) = E
[
e−s I ] be

the Laplace transform of I . Given a countable set C, let |C|
be the cardinality of C. Let 1{·} denote the indicator function
and let Bl ≡ b(0, l) denote a ball centered at the origin with
radius l. R+ denotes the set of non-negative real numbers. Let
$ be a stationary point process and Y be a property of $. We
let P0! denote the reduced Palm probability of $. Intuitively,
the probability that $ satisfies the property Y under P0! is
the conditional probability that $ \ {0} satisfies property Y

5In practice, this requires the knowledge of Gγ .
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TABLE I

SUMMARY OF NOTATIONS

given that $ has a point at 0. This will be denoted as follows:
P($\{0} ∈ Y|0 ∈ $) = P0($\{0} ∈ Y) = P0!($ ∈ Y). We
define $0 as a point process $ given 0 ∈ $ and we define $0!

as a point process with the distribution of $0\{0}, i.e., $0! ≡
$0\{0}. E0 denotes Palm expectation, which is interpreted as
the conditional expectation conditioned on a node at the origin;
see [19] and [25] for detailed definitions. For convenience a
summary of notation discussed so far, and introduced in the
sequel is provided in Table I.

III. TRANSMISSION PERFORMANCE ANALYSIS

In this section, we derive expressions for the access and
transmission success probabilities which in turn are used
to compute the density of successful transmissions for our
opportunistic scheduling schemes. We begin by defining per-
formance metrics and restating some suitable modified results
from [4], [9] to fit our setting.

A. Spatial Reuse

As a measure of spatial reuse, we will use the density of
successful transmissions which is defined as the mean number
of nodes that successfully transmit per square meter. This is
given by

dsuc = λpt x psuc, (5)

where λ denotes the density of transmitters, pt x denotes the
transmission probability of a typical transmitter, and psuc

denotes the transmission success probability6. This metric
not only measures the level of spatial packing through λpt x
but also the quality of transmissions through psuc, which
captures the interactions (though interference) among spatially
distributed nodes.

B. Previous Results

Below we briefly introduce several key results that we will
use in the sequel.

Proposition 1 (Laplace Transform of Shot-Noise for
Non-homogeneous Poisson Field–[9, Sec. 18.5.2]): Let $h =
{Xi , Fi } be an independently marked non-homogeneous PPP
in R2 with spatial density h(x). Then, the Laplace transform
of the associated shot-noise interference

I$h (w) =
∑

i:(Xi ,Fi )∈$h

Fi ∥Xi − w∥−α

at location w ∈ R2 is given by

LI$h (w)(s) = E
[
e−s I$h (w)

]

= exp
{
−

∫

R2
1 − LF

(
s

∥x − w∥α

)
h(x)dx

}
.

6Note that in this work pt x corresponds to the fraction of active transmitters
in a slot and psuc is the fraction of receivers successfully receiving data
given that their corresponding transmitters are active in the slot. dsuc gives
the density of transmitter and receiver pairs which transmit and receive in the
slot. This type of snapshot analysis does not require random variables to have
a time index.
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In particular, if Fi ∼ F is an exponential random variable
with rate µ, we have

LI$h (w)(s) = exp
{
−

∫

R2

h(x)

1 + µ
s ∥x − w∥α dx

}
. (6)

Proposition 2 (Mean Neighborhood Size–[9, Sec. 18.3]):
The number of neighbors of a typical node under the model
in Section II is Poisson with mean

N̄γ
0 = E

[
Nγ

0

]

= E0!

⎡

⎣
∑

i:Xi ∈$γ

1
{

Fii > ν ∥Xi∥α
}
⎤

⎦

= λγ
∫

R2
exp

{
−νµ ∥x∥α}

dx

= 2πλγ ((2/α)

α(νµ)2/α
. (7)

Proposition 3 (Conditional Transmission Probability Under
CSMA Protocol–[9, Corollary 18.4.3]): For the O-CSMA
model given in Section II with qualified transmitter density
λγ, the probability that a qualified node x1 ∈ R2 transmits
given there is a transmitter x0 ∈ R2 with ∥x1 − x0∥ = τ which
transmits (i.e., wins its contention), i.e., P(E1 = 1|E0 = 1,
{x0, x1} ⊂ $γ , ∥x1 − x0∥ = τ ) ≡ h(τ,λγ ), is

h
(
τ,λγ ) =

2
b(τ,λγ )−N̄γ

0

(
1−e−N̄

γ
0

N̄γ
0

− 1−e−b(τ,λγ )
b(τ,λγ )

) (
1 − e−νµτα)

1−e−N̄
γ
0

N̄γ
0

− e−νµτα

(
1−e−N̄

γ
0

(N̄γ
0 )2 − e−N̄

γ
0

N̄γ
0

) ,

(8)
where

b
(
τ,λγ

)

= 2N̄γ
0 − λγ

∫ ∞

0

∫ 2π

0
e
−νµ

(
xα+

(
τ 2+x2−2τ x cos θ

) α
2
)

xdθdx .

(9)

The function h(·), shown in the Fig. 2a as blue solid curve,
denotes the density of non-homogenous Poisson point process
at a location τ away from an active transmitter. Unlike the den-
sity of a homogenous PPP which is just a constant, that of the
interferers has very low density around the origin and constant
density for large τ . This non-homogeneous density captures
the impact of the carrier sense mechanism and controlled
interference in CSMA networks. This is an exact result and
it will be used below to build the best Poisson approximation
for active CSMA transmitters. In Section III-D.2, we further
develop the two-fold measure to capture its dependency on the
channel gain and the number of neighboring nodes.

C. O-CSMA

1) Access Probability of a Typical Transmitter: The access
probability is the probability that a typical node transmits.
As described earlier, under O-CSMA, only nodes who qualify
can contend, so the network after the qualification process is
indeed equivalent to a CSMA network with node density λγ .
The channel distribution function of a qualified node, say Xi is
given by (2). Let Ei = 1{Fii > γ , Ti < min j :X j ∈N γ

i
Tj } be the

Fig. 2. h(·) in blue line is a function computed in (8). ũ(·) is a function
we computed above for N0 = n ≥ 0 and t0 ∈ [0, 1). (a) ũ(τ ) is shown for
various number of n. If n is larger, i.e., many transmitters are seen by the
center node y0, then node y1 will also see many nodes and accordingly have
low transmission probability. (b) ũ(τ ) is shown for various number of t0. If t0
is large, y0 is will lose in contention with high probability. Accordingly y1
will have high transmission probability.

transmission indicator for Xi ∈ $, i.e., which indicates if Xi
qualifies and wins the contention process in its neighborhood,
and $γ

M = {Xi ∈ $|Ei = 1} be the set of active transmitters.
We define the transmission probability of the typical node
(which is at the origin) as

pop
t x (λ, γ , ν) = P0

(

F00 > γ , T0 < min
j :X j ∈N γ

0

Tj

)

. (10)

Note that the two events in (10) are independent. To compute
the probability of the second event, we condition on T0, i.e.,

P0

(

T0 < min
j :X j ∈N γ

0

Tj

)

=E0
T0

[

P0

(

T0 < min
j :X j ∈N γ

0

Tj | T0

)]

.

(11)
The conditional probability in the above expectation is the
probability that X0 has no neighboring node whose timer value
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is less than T0, i.e.,

P0!
(
{X j ∈ $ s.t. Fj j > γ , F ′

j0 > ν
∥∥X j − X0

∥∥α
,

j ̸= 0, Tj < T0} = ∅ | T0

)
. (12)

The density measure of such nodes at location x ∈ R2 with
Fj j = f1,Fj0 = f2 and Tj = m is

+(dm, d f1, d f2, dx) = 1 {m < T0} dm1 { f1 > γ } G(d f1)

×1
{

f2 > ν ∥x∥α}
G(d f2)λdx . (13)

Thus, the conditional void probability of such nodes, i.e.,
(12), is

exp
{

−
∫

R2

∫ ∞

0

∫ ∞

0

∫ 1

0
+(dm, d f1, d f2, dx)

}

= exp
{
−T0 pγ

∫

R2
1 − G

(
ν ∥x∥α)

λdx
}

= exp
{
−T0 pγ N̄0

}
.

Substituting (14) into (11) gives

pop
t x (λ, γ , ν) = 1 − exp

{
−pγ N̄0

}

N̄0
. (14)

Note that the spatial mean number of contenders for a typical
node under O-CSMA is given by pγ N̄0 since individual nodes
qualify with probability pγ . The case with γ = 0 (or pγ = 1)
corresponds to the pure CSMA scheme without a qualification
step.

2) Transmission Success Probability of a Typical Receiver:
Next, we compute the transmission success probability of
a receiver associated with a typical active transmitter. This
is equivalent to the success probability of the receiver of
transmitter X0 = 0 given X0 ∈ $

γ
M :

pop
suc (λ, γ , ν, t) = P0!

(
F00r−α

I
$

γ
M

> t | F00 > γ

)
, (15)

where
I$γ

M
≡

∑

j :X j∈$
γ
M

Fj0
∥∥X j − (0, r)

∥∥−α (16)

is the interference seen at the receiver at (0, r)7. Note that in
(15) we could replace P0! and I$γ

M
by P0 and I$γ

M \{0}.
We shall denote the shot noise as seen by the receiver

a distance r away from an active transmitter at the origin
by I$γ

M
. When we refer to the shot noise outside P0(·), we

will use I
$

γ 0!
M

instead of I$γ
M

to explicitly denote that

X0 ∈ $γ 0
M . Then, the shot noise of interest can be written

as
I
$

γ 0!
M

≡
∑

j :X j ∈$
γ 0!
M

Fj0
∥∥X j − (0, r)

∥∥−α
. (17)

For notational simplicity let Fγ be a random variable with the
distribution function (2) which is independent of F00. Then,
(15) can be rewritten as follows by conditioning on Fγ :

P0!
(

Fγ > trα I$γ
M

)
= EFγ

[
P0!

(
Fγ > trα I$γ

M
| Fγ

)]
.

(18)

7Due to the symmetry of PPP, we can simply assume that the receiver at
distance r from its transmitter is placed at (0, r).

Note that it is hard to compute (18) since $γ 0!
M is a point

process induced by the qualification process followed by the
CSMA protocol, which has dependency among node locations.
It is called the Matérn CSMA process [9]. Thus, follow-
ing [9], we approximate the shot noise I

$
γ 0!
M

with I
$

γ 0!
h

=
∑

j :X j∈$
γ 0!
h

Fj0
∥∥X j − (0, r)

∥∥−α which is a shot noise seen

at the receiver of X0 in a non-homogeneous PPP $
γ
h with

density λγ h (τ,λγ ) for τ > 0, where λγ ≡ pγ λ and h(τ,λ)
is the conditional probability that a CSMA transmitter at
distance τ from the origin be active conditioned on an active
CSMA transmitter at the origin with the density of nodes
being λγ ; see (8). Since h is a function which converges to 0
as τ → 0, and converges to pop

t x as τ → ∞, it captures well
the modification of the interference due to the presence of the
transmitter at the origin. The h function (blue solid curve) is
shown in Fig. 2a for certain parameter set. Using this approach
we have that

P0!
(

Fγ > trα I$γ
M

)
≈ EFγ

[
P0!

(
Fγ > trα I$γ

h
| Fγ

)]
.

(19)
Let ξh(x) be the probability density function of I

$
γ 0
h \{0}, then,

using an indicator function, we can rewrite the right hand side
of (19) as

EFγ

[∫ ∞

−∞
ξh(x)1

{
0 < x <

Fγ

trα

}
dx

]
. (20)

Clearly 1
{

0 < x <
Fγ

trα

}
is square integrable for r > 0 and

t > 0, and ξh(x) is also square integrable8. Then by applying
the Plancherel-Parseval Theorem in [26, Ch. 3.3, p.157] to
(20) followed by a change of variables, (20) becomes

∫ ∞

−∞
LI

$
γ 0!
h

(
2iπ trαs

) LFγ (−2iπs) − 1

2π i s
ds. (21)

Noting that LFγ (s) = µ
µ+s e−sγ , we get that

pop
suc (λ, γ , ν, t)

≈
∫ ∞

−∞
LI

$
γ 0!
h

(
2iπrα ts

) µ
µ−2iπs exp {2iπsγ } − 1

2iπs
ds. (22)

The last step is to compute the Laplace transform LI
$

γ 0!
h

(s)

which is given as

LI
$

γ 0!
h

(s) = exp
{
−λγ

∫ ∞

0

∫ 2π

0

h (τ,λγ ) τdθdτ

1 + µ f (τ, r, θ) /s

}
, (23)

where f (τ, r, θ) =
(
τ 2 + r2 − 2τr cos θ

) α
2 . Replacing (23)

into (22) gives a numerically computable integral form for the
outage probability.

D. QT-CSMA

1) Access Probability of a Typical Transmitter: Comput-
ing the access probability of a typical QT-CSMA node is
not much different from that of an O-CSMA node. Under

8Note that the pdf of Poisson shot noise stemming from a PPP with finite
density is square integrable; see [4]. The existence of a Poisson point process
the shot noise of which dominates I

$
γ 0!
h

implies that the pdf of I
$

γ 0!
h

is

square integrable.
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QT-CSMA, a node can transmit if its timer expires first or
equivalently if it has the highest quantile in its neighborhood.
Let Ei be the transmission indicator of node Xi ∈ $,
i.e., Ei = 1

{
Fii > γ , Qi > max j :X j ∈N γ

i
Q j

}
. Let $γ

M =
{Xi ∈ $ s.t. Ei = 1} be a thinned version of $ contain-
ing only active transmitters. Then, using a technique simi-
lar to that used above, the access probability of a typical
node X0 at the origin under QT-CSMA is computed as
follows:

pqt
t x (λ, γ , ν) = E0

[
pγ

Nγ
0 + 1

]

= 1 − exp
{
−pγ N̄0

}

N̄0
. (24)

Since all Qi s are uniform random variables, the result is the
same as (14).

2) Transmission Success Probability of a Typical Receiver:
Next we compute the transmission success probability of a
receiver associated with a typical transmitter X0 at the origin.
To determine the success probability, we need to characterize
the fading gain Fmax

0,γ and the interference power that the
receiver experiences. We shall explicitly denote the fact that
Fmax

0,γ depends on Nγ
0 by writing Fmax

0,γ (Nγ
0 ) in what follows.

The aggregate interference from concurrent active transmitters
in $γ 0!

M to the receiver of X0 is given by I
$

γ 0!
M

as in (17).
Then, the success probability of a typical QT-CSMA receiver
is

pqt
suc(λ, γ , ν, t) = P0!(Fmax

0,γ (Nγ
0 ) > trα I$γ

M
). (25)

Unlike in (18), Fmax
0,γ (Nγ

0 ) is no longer independent of
I
$

γ 0!
M

. To see this intuitively, consider two extreme cases.

First, suppose Fmax
0,γ (Nγ

0 ) has a very small value, say ϵ;
then, this implies the channel gains of X0’s neighbors are
concentrated within the small interval [0, ϵ]; so, the neighbors
of X0’s neighbors are not likely to defer their transmissions,
which in turn means X0’s receiver would experience a
somewhat stronger interference. By contrast, if Fmax

0,γ (Nγ
0 )

has a large value, say ω, then, the fading gains of X0’s
neighbors are distributed on [0,ω], which is more likely to
cause their neighbors to defer. This on average makes the
interference level seen at the receiver smaller than in the
previous case.

That is, I
$

γ 0!
M

depends on both Nγ
0 and Fmax

0,γ (Nγ
0 ). By

conditioning on Nγ
0 and Fmax

0,γ (Nγ
0 ), (25) can be written as

E0!
[
P0!

(
Fmax

0,γ (Nγ
0 ) > trα I$γ

M
| Nγ

0 , Fmax
0,γ (Nγ

0 )
)]

. (26)

As in (18), we approximate I
$

γ 0!
M

for a given Nγ
0 = n and

Fmax
0,γ (Nγ

0 ) = x by a random variable I$γ
u

denoting the inter-

ference induced by a non-homogeneous Poisson point process
$

γ
u with density λγ u(n, x, τ,λ, γ ), where u(n, x, τ,λ, γ ) is

the conditional probability that a node y1 transmits conditioned
on the following facts: 1) y0 transmits, i.e., E0 = 1, 2)
Nγ

0 = n, 3) Fmax
0,γ (Nγ

0 ) = x or equivalently y0’s timer
value T0 is given by t0 = 1 − Gγ (x), 4) both y0 and y1
belong to $γ, and 5) y1 is τ away from y0. This can be
written as

u(n, x, τ,λ, γ ) = P
(
E1 = 1|E0 = 1, Nγ

0 = n,

Fmax
0,γ (Nγ

0 ) = x, {y0, y1} ⊂ $γ , ∥y0 − y1∥ = τ
)
. (27)

Using the fact that 1 − Gγ (x) is a one-to-one mapping from
[γ ,∞] to [0, 1], we can rewrite (27) as

u(n, x, τ,λ, γ ) = P
(
E1 = 1|E0 = 1, Nγ

0 = n,

T0 = t0(x), {y0, y1} ⊂ $γ , ∥y0 − y1∥ = τ
)
. (28)

Note that the probability (28) is a function of n, t0, τ and λγ ;
so it is convenient to use the function ũ such that

u(n, x, τ,λ, γ ) = ũ(n, 1 − Gγ (x), τ,λγ ).

It is shown in Appendix VII that this function is given by
(29) and it is shown at the bottom of this page. Unlike h(τ,λ)
in (8) which is the function of only τ and λ, ũ(n, t0, τ,λ)
is a function of n and t0 (or x) as well, which means it can
captures the impact of the number of neighboring nodes and
the instantaneous channel. The impact of number of neighbors
is shown in Fig. 2a and the impact of the channel (or timer
value t0) is shown in Fig. 2b.

Fig.2a exhibits plots for ũ(n, t0, τ,λ) for λ = 1, ν = 0.5,
t0 = 0.5 and for n = 0, . . . , 20. Observe how ũ changes as
the distance τ between y0 and y1 changes. As τ gets larger,
y1 behaves like a typical node in space which is not affected
by the existence of y0. The latter case is verified by the fact
that all curves ũ converge to the value 1−e−N̄0

N̄0
as τ → ∞,

which is indeed the transmission probability of a typical
CSMA node. As τ gets small, there is a strong correla-
tion between y1 and y0 which are likely to be neighbors.
The behavior of ũ in this case depends on the value of
n. In particular, if n = 0, ũ increases as τ → 0; since
y1 will see no contenders as is the case for y0, while
if n > 0, as τ → 0, y1 will see one or more con-
tenders as seen by y0, and it will be more likely that
y1 is a neighbor of y0. If y1 is a neighbor of y0, then due to
the condition {E0 = 1}, y1 must have a timer value larger than
t0, so the conditional transmission probability ũ approaches 0.

ũ(n, t0, τ,λ) = N̄0G(ντα)

n + (N̄0 − n)G(ντα)

{
(1 − e−t0 N̄0(1−ps))

N̄0(1 − ps)

+(1 − t0)e−N̄0(1−ps)
n∑

k=0

k!
ηk+1

⎛

⎝1 − e−η
k∑

j=0

η j

j !

⎞

⎠
(

n
k

)
pk

s (1 − ps)
n−k

}
, (29)

where ps = ps(τ ) = 2 − b(τ,λ)

N̄0
, and η = N̄0(1 − ps)(t0 − 1).
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As n increases, y1 is more likely to be preempted by y0 and
its neighbors, thus ũ decreases.

Fig.2b shows the impact of y0’s timer value, t0, on ũ for
ν = 0.5 and n = 5. Note that the condition {E0 = 1} implies
that n neighbors of y0 have timer values between t0 and 1.
Thus, if t0 gets large, y1 will transmit with high probability
since the neighbors of y0 will have timer values larger than t0,
which can be easily preempted by y1’s timer. While if t0 gets
small, y1 is more likely to be preempted by y0’s neighbors,
so ũ decreases in this case.

In summary, (26) can be approximated by

E0!
[
P0!

(
Fmax

0,γ (Nγ
0 ) > trα I$γ

u
| Nγ

0 , Fmax
0,γ (Nγ

0 )
)]

. (30)

Let ξn,x
u be the conditional pdf of I

$
γ 0!
u

given Nγ
0 = n and

Fmax
0 (Nγ

0 ) = x , so, (30) can be rewritten as

E0!
[∫ ∞

−∞
ξ

Nγ
0 ,Fmax

0,γ (Nγ
0 )

u (y)1

{

0 ≤ y ≤
Fmax

0,γ (Nγ
0 )

trα

}

dy

]

,

(31)

where 1{0 ≤ y ≤ Fmax
0,γ (Nγ

0 )

trα } and ξn,x
u are both square

integrable; see [4]. Applying the Plancherel-Parseval Theorem
to evaluate the last equation, and performing a change of
variables gives

pqt
suc(λ, γ , ν, t) ≈ E0!

[ ∫ ∞

−∞
L

I
N

γ
0 ,Fmax

0,γ (N
γ
0 )

$
γ
u

(2iπrαts)

×
exp

{
2iπs Fmax

0,γ (Nγ
0 )

}
−1

2iπs
ds

]
. (32)

Note that the expectation in (32) is with respect to Nγ
0 and

Fmax
0,γ (Nγ

0 ), and I n,x

$
γ 0!
u

is a random variable with cdf P0!(I$γ
u

<

z|Nγ
0 = n, Fmax

0 (Nγ
0 ) = x). We have

LI n,x

$
γ 0!
u

(s)

= exp
{
−λγ

∫ ∞

0

∫ 2π

0

ũ(n, 1−Gγ (x), τ,λγ )τdθdτ

1+µf (τ, r, θ)/s

}
. (33)

Replacing (33) into (32) gives the numerically computable
approximation of pqt

suc.

IV. SPATIAL REUSE

In this section, we compare the spatial reuse achieved by
O-CSMA versus that of QT-CSMA. To better understand the
results and the behavior of the protocols as a function of λ, γ ,
and ν, we first study how transmission probability and success
probability change as functions of the parameters, and then we
compare the performance of O-CSMA and QT-CSMA. A brief
performance comparison between O-ALOHA and O-CSMA
follows.

A. System Behavior and Parameter Sensitivity

1) Density of Active Transmitters λpt x: In Fig. 3, we show
the density of active transmitters λpt x as a function λ. As λ
increases, a higher number of active transmitters is achieved,
which saturates to a value we will call the asymptotic density
of active transmitters.

Fig. 3. The density of active transmitters for O/QT-CSMA increases and
saturates as λ increases due to the carrier sense in CSMA protocol. Increasing
the qualification threshold γ reduces the density of qualified transmitters
without affecting the asymptotic density of active transmitters λdens (ν); so
the effect is a shift of the curves to the right hand side. Increasing carrier
sense threshold ν increases λdens (ν) since it makes the mean size of a typical
transmitter’s neighborhood smaller.

Definition 1 (Asymptotic Density of Active Transmitters):
For a given carrier sense threshold ν, the asymptotic density
of active transmitters λdens(ν) is defined as

λdens(ν) ≡ lim
λ→∞

λpop
t x (λ, γ , ν) = lim

λ→∞
λpqt

t x (λ, γ , ν).

Note that λdens(ν) is not the function of γ , since numerator
exp{−pγ N̄0} in pop/qt

t x (λ, γ , ν) vanishes as λ → ∞; see (14)
and (24). It is easy to show that λdens(ν) = 1/N̂0, where
N̂0 = N̄γ

0 /λγ = E[
∫
R2 1

{
F ′ > ν ∥x∥α

}
dx] is the mean

neighborhood area of a typical transmitter. Note that since
each active transmitter “occupies” an area of average size N̂0,
intuitively, we can have at most 1

N̂0
active transmitters per unit

space in the asymptotically dense network (a network with
λ → ∞). Note that both O-CSMA and QT-CSMA have the
same asymptotic density of transmitters λdens(ν) due to the
transmitter selection process of the CSMA protocol.

As γ increases, the density of qualified transmitters, λpγ ,
decreases, which accordingly decreases λpt x , but the limiting
value λdens(ν) is not affected. As ν increases, the mean neigh-
borhood area N̂0 gets smaller, which allows a higher density
of active transmitters, and accordingly λdens(ν) increases as a
function of ν.

2) Success Probability of O-CSMA: Fig. 4a shows the suc-
cess probability pop

suc(λ, γ , ν, t) as a function of λ for various
γ and ν values. The general behavior of pop

suc(λ, γ , ν, t) is
as follows. As γ increases, the signal quality at receivers
improves and at the same time the density of active transmit-
ters goes down, which results in reduced interference at the
receiver. Thus, increasing γ increases SINR at receivers, and
thus increases the success probability. If ν increases, the mean
neighborhood area goes down, resulting in a higher number
of active transmitters, which accordingly generate a stronger
aggregate interference. Thus both the received SINR and
success probability are decreased. As λ increases the success
probability pop

suc(λ, γ , ν, t) converges to a value strictly less
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Fig. 4. The success probability versus the density of transmitters for
various ν and γ . (a) The success probability of O-CSMA decreases as
λ increases, but converges to a value between 0 and 1 since interference
I
$

γ 0!
M

converges to I
$dens0!

M
in distribution. If the qualification threshold γ

increases, it increases Fγ so the success probability increases, and the limiting
value limλ→∞ pop

suc(λ, γ , ν, t) also increases. However, if the carrier sense
threshold ν increases, it increases the density of active transmitters, which
accordingly increases interference, which deteriorates the success probability.
(b) As λ increases, the success probability of QT-CSMA decreases at first, but
bounces and converges to 1 due to the increasing gain from opportunistic node
selection. As the qualification threshold γ increases, the success probability
increases due to the improved channel quality. While, if carrier sense range
ν increases, the success probability decreases due to increased aggregate
interference power.

than 1, i.e.,

lim
λ→∞

pop
suc(λ, γ , ν, t) = lim

λ→∞
P0!

(
Fγ > trα I$γ

M

)
< 1. (34)

This is because Fγ is exponentially distributed with an infi-
nite support and I

$
γ 0!
M

converges in distribution to a random

variable I$dens0!
M

≡ ∑
i:Xi ∈$dens0!

M
Fi0 ∥Xi∥−α , where $dens0

M
is a Matérn CSMA point process with a density λdens(ν)
given an active transmitter at the origin. The convergence of
I
$

γ 0!
M

is formally shown in [16]. Since both random variables

have infinite support in R+, P0!
(

Fγ > trα I$γ
M

)
converges

to a positive value between 0 and 1. It is not easy to
find the limit since this would require characterizing I$dens0!

M
.

3) Success Probability of QT-CSMA: Fig. 4b shows the
success probability pqt

suc(λ, γ , ν, t) as a function of λ for

various γ and ν values. The general behavior of
pqt

suc(λ, γ , ν, t) is as follows. As γ increases, the interference
seen at the receiver decreases due to the reduced density of
active transmitters. However it is not clear how the received
signal strength would change. Indeed, increasing γ should
shift Fγ to the right hand side (improving the channel quality)
but, at the same time, it decreases the size of neighborhood,
thus reducing the opportunistic node selection gain. Fig. 4b
suggests that the positive effect is larger than the negative
effect, and, as ν increases, pqt

suc(λ, γ , ν, t) decreases due to
the increased interference. One thing to note is that if the
density λ becomes large enough, then the success probability
increases and eventually converges to 1 due to the gain from
opportunistic node selection with the best channel condition.

Precisely, if λ → ∞ while ν, γ < ∞ are kept fixed, we
have

lim
λ→∞

pqt
suc(λ, γ , ν, t)= lim

λ→∞
P0!

(
Fmax

γ (Nγ
0 ) > trα I$γ

M

)
= 1.

(35)
This result can be intuitively understood as follows. As λ
increases, Nγ

0 and Fmax
γ (Nγ

0 ) increase (meaning
limλ→∞ P(Nγ

0 > x) = 1 and limλ→∞ P(Fmax
γ (Nγ

0 ) > x) = 1
for all fixed x > 0), and I

$
γ 0!
M

converges in distribution
to a random variable I$dens0!

M
; see [16]. The success

probability of O-CSMA and QT-CSMA are compared in the
following proposition.

Proposition 4: Under the same parameter set t , γ , ν, and
λ, the success probability of QT-CSMA is never less than
O-CSMA, i.e., pqt

suc(λ, γ , ν, t) ≥ pop
suc(λ, γ , ν, t).

This directly follows from a stochastic ordering relation :
Fmax

γ ≥st Fγ ; see (3).
Remark 1: Note that this implies that the density of suc-

cessful transmissions of QT-CSMA is always higher than that
of O-CSMA, i.e., dqt

suc(λ, γ , ν, t) ≥ dop
suc(λ, γ , ν, t) for a given

parameter set t, γ , ν and λ.
Remark 2: The above observations suggest that the effects

of adjusting γ and ν are similar in that both control the amount
of interference in the network versus the opportunistic node
selection gain which are achieved. However, this does not
imply that O-CSMA can optimize its performance by optimiz-
ing only one of them while fixing the other, but interestingly
this seems to work for QT-CSMA. In the following sections,
we will further explore the possibility of reducing the number
of parameters for QT-CSMA.

B. Performance Comparison of O-CSMA and QT0-CSMA

We evaluate the performance of a network under various
system parameters and suggest a reasonable choice of ν which
makes QT0-CSMA robust to changes in the environment9.
Note that it is no surprise to find that QT-CSMA always does
better than O-CSMA under the same parameter set as shown
in Proposition 4. Thus, we focus instead on the comparison
between QT0-CSMA (QT-CSMA with γ = 0) and O-CSMA.

9In this work we assume that t and r are fixed. t is determined from a
given transmission rate requirement and r is simply assumed to be fixed for
mathematical simplicity.
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Fig. 5. The density of successful transmissions for QT-CSMA, QT0-CSMA, and O-CSMA versus ν were shown under various values of γ for λ = 0.01,
0.1, 1, and 10. ν = 0.5 is a good choice for both QT0-CSMA and O-CSMA under various γ . Only simulations results were used for choosing the suggested
ν value.

1) Choosing Carrier Sense Threshold ν: The carrier sense
threshold ν controls the size of the virtual exclusion region
around transmitters inside which no other transmitters will
transmit. The size of the guard zone is directly related to
the spatial reuse through the density of active nodes and
generated network interference. Large ν (or small guard zone)
increases the density of active transmitters, but at the same
time it could introduce strong network interference. One the
other hand, small ν (or large guard zone) induces the low
density of concurrent active transmitters, which results in
weak network interference and accordingly high transmission
success probability. Thus, selecting appropriate ν is very
important for network performance. The difficult part is that
this is an optimization problem over two variables ν and γ .
However, we show that there exist a good choice of ν which
is mostly insensitive to the change of γ .

In the sequel we show that ν = 0.5 is a reason-
able choice for both QT0-CSMA and O-CSMA. In Fig. 5,
the density of successful transmissions for QT0-CSMA and

O-CSMA/QT-CSMA are shown for λ = 0.01, 0.1, 1, and 10.
The optimal ν maximizing the spatial reuse of QT0-CSMA
depends on λ. However, ν = 0.5 is a near optimal choice for
all λ. The optimal ν for O-CSMA also depends on λ. When λ
= 0.01 or 0.1, any ν greater than 0.1 is a reasonable choice.
While, when λ = 1 or 10, the optimal ν depends on the choice
of γ ; optimal ν for λ = 1 increases from 0.2 (when γ = 0.2)
to 0.9 (when γ = 1), and optimal ν for λ = 10 increases
from 0.4 (when γ = 0.5) to 2 (when γ = 2.5). Even with this
dependency, ν = 0.5 for O-CSMA is a good choice for the γ
values. Based on these observations, we argue that ν = 0.5 is
a choice which not only results in high spatial reuse but also
makes protocols robust to a wide range of γ and λ.

2) Choosing the Qualification Threshold γ: Once the carrier
sense threshold ν is chosen, the qualification threshold γ
can be chosen for the given ν. In Fig. 6, the impact of
the qualification threshold γ on the spatial reuse is shown
for various λ values. In a sparse network (λ = 0.1), it is
better not to have the qualification process since it reduces the
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Fig. 6. The impact of qualification threshold γ on the density of successful
transmissions is plotted for various λ. In sparse network (λ = 0.1) setting
γ = 0 maximizes spatial reuse since node density is low. In dense networks,
there exist an optimal γ for O-CSMA (black solid lines) which is the function
of network density. Note that QT-CSMA (blue lines with cross marker) with
γ = 0 corresponds to QT0-CSMA. Note that the spatial reuse of QT0-CSMA
is quite high even without qualification process. In this figure, only simulations
results were shown.

density of active transmitters. The loss in the number of active
transmitters due to increased γ is larger than the gain from
the increased success probability. Note that it also applies to
sparse networks with λ < 0.1.

For an intermediate density network (λ = 1), it is required
to optimize γ for O-CSMA (and for O-ALOHA as well) to
improve spatial reuse. However, unlike O-CSMA, optimizing
γ for QT-CSMA does not give much improvement. Setting
γ = 0 is a simple but effective solution. Note that it also
applies to intermediate networks with λ ≈ 1.

In a dense network (λ = 10), O-CSMA requires the
optimization of γ , while QT-CSMA does not; simply setting
γ = 0 is an optimal choice. Note that it also applies to
dense networks with λ > 10. Through above cases, we
observe that γ needs to be optimized for O-CSMA (and
O-ALOHA as well as shown in Fig. 6) to achieve high spatial
reuse. However, the optimal γ depends on λ. Considering the
difficulty of estimating λ in practice and likelihood the density
is non-homogeneous, optimizing γ for O-CSMA is not a
practical approach. In this sense, QT0-CSMA is an attractive
engineering choice since it does not require the optimization
of γ while providing reasonably high performance which is
as high as the maximum performance of QT-CSMA. Due to
the absence of qualification process, QT0-CSMA is easy to
configure and robust to changes in λ.

3) Robustness of QT0-CSMA: Fig. 7 exhibits the above
data from a different perspective: the density of successful
transmissions for QT0-CSMA and O-CSMA versus λ. In
Fig. 7 we plot both analysis and simulation results to show
how well they match. For comparison, ALOHA, CSMA and
O-ALOHA are also plotted using our model. The figure
confirms the behavior of ALOHA for increasing node density.
Unlike ALOHA, the density of successful transmissions of
CSMA does not converge to 0 as λ increases due to carrier
sensing and controlled network interference. As mentioned

Fig. 7. The density of successful transmissions versus λ was shown for
ν = 0.5. We plotted both simulation and analytical results for comparison.
In case of (O-)ALOHA, we plotted only analytical results since simulation
results were identical.

earlier, to take advantage of channel variations, ALOHA can
qualify users based on channel threshold, which we call
O-ALOHA.

O-CSMA with a similar threshold mechanism works as
follows. As λ gets larger, dop

suc(γ ,λ) increases as the result
of the increasing density of active transmitters; however it
converges to fixed values since both the density of active
transmitters and success probability converge. If λ gets large,
dop

suc increases and converges to a value less than λdens .
QT0-CSMA performs better than O-CSMA for all λ values.

This proves that the robustness of QT0-CSMA; quantile-based
scheduling without qualification can fully take advantage of
opportunistic node selection gains in the wide range of λ
provided that ν is properly chosen.

V. SPATIAL FAIRNESS

A. Unfairness in CSMA Networks

In this section, we compare the degree of “spatial fairness”
achieved by O/QT-CSMA protocols. It has been reported that
non-slotted CSMA networks are unfair [27], [28]. The two
main reasons are the irregularity in the network topology and
protocol behaviors that lead to starvation for some nodes.
There have been efforts towards improving fairness by tuning
protocols, for example, adjusting carrier sense range [29] or
using node specific access intensity [28], [30], [31].

In slotted systems, unfairness is reduced since all nodes’
contention windows are reset every slot, which prevents star-
vation. However, unfairness due to irregularities in network
topologies remains. We will show in this section that our
opportunistic scheduling schemes can improve fairness.

B. Spatial Fairness

We define two spatial fairness indices which capture a
fairness of the long-term (time-averaged) performance across
nodes in space. The first captures the heterogeneity in perfor-
mance due to nodes’ locations. Recall that the performance
of node, say Xi , is affected by the remaining nodes and
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their locations, i.e. $\{Xi } and channel gains Fi and F′
i . Let

fi ($, Fi , F′
i ) be a bounded function associated with Xi ∈ $

denoting its performance. Then, E
[

fi
(
$, Fi , F′

i

) | $ = φ
]

denotes the time-average (or equivalently, the average w.r.t. Fi
and F′

i ) of Xi ’s performance given $ = φ. To evaluate the fair-
ness of E

[
fi

(
$, Fi , F′

i

) | $ = φ
]

across nodes Xi ∈ $ = φ
in space we introduce Jain’s fairness index10, where

FI = lim
l→∞

(∑
i:Xi ∈φ∩Bl

E
[

fi
(
$, Fi , F′

i

)
| $ = φ

])2

|φ ∩ Bl |
∑

i:Xi ∈φ∩Bl

(
E

[
fi

(
$, Fi , F′

i

) | $ = φ
])2 .

(36)
Given the spatial ergodicity of homogeneous PPPs; see [25],
and simple algebra, it is easy to see that (36) becomes

FI =
(
E0 [

E
[

f0
(
$, F0, F′

0

)
| $

]])2

E0[(E [
f0

(
$, F0, F′

0

) | $
])2]

, (37)

where F0 and F′
0 denote the channel fading of a typical node

at the origin and accordingly E
[

f0
(
$, F0, F′

0

)
|$

]
denotes the

performance seen by the node X0.
The second fairness index captures the heterogeneity in

performance across nodes seeing different neighborhood size.
We, let f̃i (Ni , Fi , F′

i ) be a finite performance metric associated
with Xi , where Ni is the number of neighbors of Xi . Then,
E

[
f̃i (Ni , Fi , F′

i )|Ni = n
]

denotes the time-averaged (or Fi

and Fi ’-averaged) value associated with Xi given Xi has
a neighborhood of size Ni = n. The corresponding Jain’s
fairness index is given by

F̃ I =

(
E0

[
E

[
f̃0

(
N0, F0, F′

0

)
| N0

]])2

E0
[(

E
[

f̃0
(
N0, F0, F′

0

) | N0

])2
] . (38)

Unlike (37), (38) does not capture a performance variability
across nodes with the same number of contenders. However,
(38) is a useful metric which is computable in many cases.
Depending on the performance metric f () of interest, we
sometimes have FI = F̃I. In the sequel, we will focus on
F̃I as our measure of spatial fairness.

C. Spatial Fairness for Conditional Access Probability

We first evaluate spatial fairness for nodes’ conditional
access probability. We will show how nodes’ random locations
impact this metric. We need the following assumption.

Assumption 1 (Contention Neighborhood Based on Mean
Channel Gain): We assume that F ′

i j is deterministic with F ′
i j =

1
µ , i.e, the contenders of node Xi are the set of nodes located
in the disc b(Xi , (νµ)−α).

Under this assumption, the neighbors of a node are not
affected by fading, so the size of a node’s neighborhood
stays fixed, e.g., might be based on the average channel gain.

10Jain’s fairness index for a given positive allocation x = (xi : i =
1, . . . , n) is given as FIx = (

∑n
i=1 xi )

2

n
∑n

i=1 x2
i

. Note that the maximum value of

FI is 1 which is achieved when all xi s have the same value. If total resource
b = ∑n

i=1 xi is allocated equally only to k entities out of n, e.g, xi = b
k for

i = 1, . . . , k and xi = 0 for i = k + 1, . . . , n, then, we have FIx = k/n.
See [32].

This might be a reasonable assumption in a system, where
each node’s contending neighbors are dynamically maintained
based on the average fading gains to the node. Note that
Fij is still a random variable, i.e., only the fading between
transmitters has been changed. Let

Nγ
s,i = Nγ

s,i ($) =
∣∣{X j ∈ $γ : 1/(µ

∥∥Xi −X j
∥∥α

)>ν, i ̸= j
}∣∣

be a random variable denoting the size of Xi ’s neighborhood
under the static fading Assumption 111, it corresponds to
the number of nodes inside a disk b(Xi , (νµ)−

1
α ). This is

a Poisson random variable with mean λπ(νµ)−
2
α . Recall

that a node with n contenders accesses the channel with
probability pγ

n+1 . This corresponds to the fraction of time the
node accesses the channel. We will call this quantity the
conditional access probability of the node to differentiate
it from the access probability (e.g., pop

t x or pqt
t x ) which is

interpreted as the fraction of nodes transmitting in space in a
typical slot. Note that since the conditional access probability
depends only on Nγ

s,i , so we have that E[ fi ($, Fi , F′
i )|$] =

E[ f̃i (Nγ
s,i , Fi , F′

i )|N
γ
s,i ] = pγ

Nγ
s,i +1

. Thus we have following

lemma regarding spatial fairness index on conditional access
probability.

Lemma 1: If f̃i (Nγ
s,i , Fi , F′

i ) = 1 {Fii > γ , Ei = 1}, or
equivalently E[ f̃i (Nγ

s,i , Fi , F′
i )|N

γ
s,i ] = pγ

Nγ
s,i +1

under the

Assumption 1, the two spatial fairness indices are equal as
follows:

FIac = F̃ I ac =

(

E0

[
pγ

N
γ
s,0+1

])2

E0

⎡

⎣
(

pγ

N
γ
s,0+1

)2
⎤

⎦

= e
N̄γ

s,0 +e
−N̄

γ
s,0 −2

N̄γ
s,0

(
Ei(N̄γ

s,0 )−log N̄γ
s,0−η

) , (39)

where N̄γ
s,0 = E[Nγ

s,0], Ei (x) = −
∫ ∞
−x t−1e−t dt is the

exponential integral function, and η = 0.5772 . . .. is the Euler-
Mascheroni constant. Note that these fairness indices are the
function of N̄γ

s,0.
Proof is given in Appendix VIII.

Fig.8a shows the fairness index for the conditional access
probability under O/QT-CSMA versus N̄γ

s,0 (ν). If N̄γ
s,0(ν) is

small, almost every contending node is selected for transmis-
sion. Transmitters have conditional access probability close
to pγ , so that the fairness index is close to 1. If N̄γ

s,0(ν) is
relatively small, as N̄γ

s,0 (which is mean and the variability
of the number of contenders) increases, the variability in the
conditional access probability, across nodes increases resulting
in a decrease in fairness. However, if N̄γ

s,0(ν) is moderate, the
fairness index eventually increases again since, in this regime,
the variability of the conditional access probability pγ

Nγ
s,0+1

decreases and converges to 0, which in turn increases fairness.
Note that the fairness curve has a minimum of approaching
≈ 0.73 when N̄γ

s,0 ≈ 3.

11Note the difference between Nγ
s,i and Nγ

i , where the latter is the number
of neighbors without the static fading assumption.
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Fig. 8. Fairness index on conditional access probability and successful
transmission versus the mean number of contenders N̄γ

s,0 (ν) under static
fading vector assumption. (a) The fairness index on conditional access
probability decreases as the mean number of contenders N̄γ

s,0 decreases, but
it rises soon as N̄γ

s,0 increases. The fairness has minimum value ∼ 0.73
when N̄γ

s,0 ≈ 3. This applies to both O-CSMA and QT-CSMA. (b) Quantile
scheduling increases fairness significantly because, under QT-CSMA, nodes
with larger neighborhood size have a higher success probability, which
compensates its low conditional access probability.

D. Spatial Fairness of the Conditional Probability
of Successful Transmissions

In this section, we consider fairness for the conditional
probability of successful transmissions. Specifically, we show
that opportunistic CSMA schemes can, to a certain extent,
remove topological unfairness. We first define spatial fairness
for the conditional probability of successful transmissions.

For O-CSMA, we define pγ

n+1 p̄op
suc(γ , n) as the conditional

probability of successful transmissions of a typical transmitter
with n neighbors, where pγ

n+1 is the conditional access prob-
ability and p̄op

suc(γ , n) is the conditional success probability
conditioned on the transmitter having n contenders, which is
given by

p̄op
suc(γ , n) = P0!

(
Fγ > t I$γ

M
rα|Nγ

s,0 = n
)

,

≈ E0!
Fγ

[∫ ∞

−∞
L

I
n,Fγ

$
γ
u

(2iπrα ts)
e2iπs Fγ − 1

2iπs
ds

]

, (40)

where I
n,Fγ

$
γ 0!
u

is the interference seen by a typical receiver
conditioned on that its associated transmitter has n neighbors.
Accordingly, the fairness index is given by

F̃I
op
suc =

(
E0

[
pγ

Nγ
s,0+1

p̄op
suc(γ , Nγ

s,0)

])2

E0

[(
pγ

Nγ
s,0+1

p̄op
suc(γ , Nγ

s,0)

)2
] . (41)

For QT-CSMA, we take a similar approach. We define
pγ

n+1 p̄qt
suc(γ , n) as the conditional probability of successful

transmission of a typical transmitter with n neighbors, where
pγ

n+1 is the conditional access probability and p̄qt
suc(γ , n) is

the conditional success probability of a typical receiver con-
ditioned on that its associated transmitter has n contenders,
which is given by

p̄qt
suc(γ , n) = P0!

(
Fmax

0,γ (Nγ
s,0) > t I$γ

M
rα|Nγ

s,0 = n
)

.

≈ E0!

⎡

⎣
∫ ∞

−∞
L

I
n,Fmax

0,γ (n)

$
γ
u

(2iπrαts)
e2iπs Fmax

0,γ (n)−1
2iπs

ds

⎤

⎦.

(42)

The fairness metric we use in this section corresponds to the
second type (38) only, and the corresponding fairness index
of successful transmission is given by

F̃I
qt
suc =

(
E0

[
pγ

Nγ
s,0+1

p̄qt
suc(γ , Nγ

s,0)

])2

E0

[(
pγ

Nγ
s,0+1

p̄qt
suc(γ , Nγ

s,0)

)2
] . (43)

Using (33) and Nγ
s,0 ∼ Poisson(N̄γ

s,0), F̃I
qt
suc can be numeri-

cally computed.
F̃I

op
suc and F̃I

qt
suc are plotted in Fig.8b for γ = 0. The

figure shows that the spatial fairness on the conditional
access probability of successful transmissions achieved by
QT0-CSMA is improved versus that of O-CSMA. The gain
is significant in the regime where N̄γ

s,0 is less than or equal to
roughly 10. In this regime, QT0-CSMA increases the success
probability of receivers a lot. This reduces the performance
differences among nodes caused by different conditional
access probabilities(or topologies) since nodes with a large
number of neighbors and low conditional access probability
have a higher success probability. In other words, the higher
success probability compensates the low conditional access
probability, which decreases the variability in performance. In
the regime where N̄γ

s,0 is large (or ν is small), the density of
concurrent transmitters becomes small, which generates weak
interference. Thus, most nodes succeed in their transmissions
with high probability irrespective of the number of neighbors,
so in this regime there is no much gain from opportunism
increasing the success probability. Thus, QT0-CSMA and
O-CSMA have almost the same performance. As γ increases,
fairness decreases and eventually converges to the fairness
curve of O-CSMA where γ → ∞ since there is little
difference between p̄qt

suc and p̄op
suc.
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So far, we have shown that opportunistic CSMA can
improve fairness. However, with this result only, it is not
clear how these protocols tradeoff the density of successful
transmissions versus fairness. We consider this next.

E. Tradeoff Between Spatial Fairness and Spatial Reuse

In this section we consider the tradeoff between spatial
reuse and spatial fairness which is due to the randomness of
node locations, contention and protocols. To explore this, we
introduce following notions.

• (FD-Fair) We call (a, b) an achievable FD-pair if a
fairness index a and density of successful transmissions
b can be achieved for a given protocol parameter choice.

• (Dominance) For FD-pairs (a, b) and (c, d) ∈ R2
+, we

say that the (a, b) dominates (c, d) if a ≥ c and b ≥ d .
This relation is denoted by (c, d) ≼ (a, b).

• (Dominated set) For a given FD-pair (a, b), the set of
FD-pairs dominated by (a, b) is defined as follows.

+(a, b) =
{
(x, y) ∈ R2

+ s.t. (x, y) ≼ (a, b)
}

Note that (a, b) ∈ +(a, b). In particular, we define the
dominated set for O-CSMA, for a given t and λ, by

1op(λ, t) =
⋃

γ≥0,ν≥0

+
(

F̃I
op
suc ( λ, γ , ν, t ), dop

suc ( λ, γ , ν, t )
)

.

(44)
The dominated set for QT-CSMA is similarly defined. The
dominated set QT0-CSMA for a given t and λ is defined as

1qt
0 (λ, t) =

⋃

ν≥0

+
(

F̃I
qt
suc ( λ, 0, ν, t ), dqt

suc ( λ, 0, ν, t )
)

.

(45)
Three dominated sets for λ = 1, decoding SIR target

t = 1 are exhibited in Fig. 9. The area surrounded by red
dashed curve, the solid black curve, and the dotted blue curve,
denotes the dominated set of QT0-CSMA, QT-CSMA, and
O-CSMA respectively. In Fig. 9, we plotted several curves
of pairs

(
F̃Isuc ( λ, γ , ν, t ), dsuc

)
for O-CSMA to show how

we computed the dominated set of O-CSMA. Each curve was
drawn for various ν values from 0.02 to 612 for a given γ .
We then computed the dominated set of the union of the
curves. Note that we used spatial reuse results from simulation
for accuracy, and spatial fairness from analytical computation
since it is too hard to get reliable statistics for spatial fairness
from simulation.

Note that the dominated set of QT-CSMA is larger than
(dominates) that of O-CSMA. This gain comes from the joint
improvement of spatial reuse and fairness performance. Also
notable is that the dominated set of QT0-CSMA is quite large
although it has one less parameter. This shows again the
effectiveness of quantile-based approach in taking advantage
of dynamic channel variations and multi-user diversity.

VI. CONCLUSION

In this paper, we considered spatial reuse and fairness for
wireless ad-hoc networks using two different channel-aware
CSMA protocols. We used an analytical framework based

Fig. 9. Comparison of the dominated sets of O-CSMA, QT-CSMA and
QT0-CSMA.

on stochastic geometry to derive the transmission probability
and success probability for a typical node, and from there
two spatial performance metrics, the density of successful
transmissions and the spatial fairness index, respectively,
were computed. The computations were based on the on
approximation of the interference in a CSMA network via a
non-homogenous Poisson process. By capturing the delicate
interactions among system parameters (qualification thresh-
old γ, carrier sense threshold ν), the density of transmitters,
aggregate interference, and spatial reuse and fairness, we
showed that QT-CSMA achieves a higher spatial reuse and
fairness than O-CSMA, and more interestingly the simple
version of QT-CSMA with one less parameter achieves robust
spatial reuse for a wide range of node densities. To better
understand the interactions between joint spatial reuse and
fairness performance, we characterized the dominated sets
of spatial fairness-reuse pair under QT/O-CSMA. Although
O-CSMA has one more parameter to adjust, its domi-
nated set was smaller than that of QT-CSMA. Surprisingly,
QT0-CSMA which has one less parameter has dominated set
which is as large as that of QT-CSMA. This shows that QT0-
CSMA is not only easy to configure and robust but also has
high performance.

VII. DERIVATION OF ũ(n, t0, τ ,λ)

In this appendix, we derive ũ for n ∈ {0, 1, 2, . . .}, t0 ∈
[0, 1), τ > 0, and λ > 0, which is defined as

ũ(n, t0, τ,λ) = P(E1 = 1 | E0 = 1, N0 = n,

T0 = t0, {y0, y1} ⊂ $, |y0 − y1| = τ ).

Let $ = {Xi } be an homogeneous PPP with density λ. N0 is
the number of neighbors of y0 and T0 is the timer value of y0.
In the sequel, we omit the conditioning events {y0, y1} ⊂ $
and |y0 − y1| = τ for simplicity. By applying Bayes’ rule, we
have

P(E1 = 1 | E0 = 1, N0 = n, T0 = t0)

= P(E1 = 1, E0 = 1 | N0 = n, T0 = t0)
P(E0 = 1 | N0 = n, T0 = t0)

. (46)
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The denominator is simply given by

P(E0 = 1 | N0 = n, T0 = t0) = (1 − t0)n (47)

since for y0 to transmit, all its n neighbors should have timer
values larger than t0 independently. To compute the numerator,
we condition on the event that y0 and y1 are neighbors, i.e.,
{y1 ∈ N0} =

{
F ′

01 > ν ∥y0 − y1∥α
}
, then by the law of total

probability we have

P(E1 = E0 = 1 | N0 = n, T0 = t0)

= P(E1 = E0 = 1, y1 ∈ N0 | N0 = n, T0 = t0)︸ ︷︷ ︸
=0

+ P(E1 = E0 = 1 | N0 = n, T0 = t0, y1 /∈ N0)︸ ︷︷ ︸
c

(48)

× P(y1 /∈ N0 | N0 = n, T0 = t0).︸ ︷︷ ︸
d

(49)

If y0 and y1 can see each other, it is impossible for both to
transmit at the same time, so the first term is equal to 0. We
denote the second and third terms by c and d respectively.

A. Computing c in (48)

The term c is a conditional probability given on that y0
and y1 do not see each other. However, they may share
some neighbors; so to compute this term we need to further
condition on the event that some of y0’s contenders are also
seen by y1. Let K = N0 ∩ N1 be the set of shared neighbors
between y0 and y1 and K (τ ) ≡ |K| be the number of them.
Note that K (τ ) ∼ Poisson(K̄ (τ )) where the mean K̄ (τ ) is
given by

K̄ (τ ) = E
∑

Xi ∈$

1
{

F ′
i0 >ν ∥Xi −y0∥α

}
1

{
F ′

i1 >ν ∥Xi −y1∥α
}

= λ

∫

R2
P(Fi0 > ν ∥x∥α)P(Fi1 > ν ∥x − y1∥α)dx

= λ

∫ 2π

0

∫ ∞

0
e
−µν

(
rα+(τ 2+r2−2τr cos θ)

α
2
)

rdrdθ . (50)

By conditioning on the number of shared neighbors, K (τ ), we
rewrite c as

c =
n∑

k=0

akbk (51)

where

ak ≡ P(E0 = E1 = 1 | N0 = n, T0 = t0, K (τ ) = k, y1 /∈ N0),

bk ≡ P(K (τ ) = k | N0 = n, T0 = t0, y1 /∈ N0). (52)

1) Computing bk: bk is the probability that two nodes y0
and y1 share k common contenders conditioned on y0 having n
contenders. Since each contender of y0 is independently seen
by y1, the number of shared contenders K (τ ) given N0 = n
is a Binomial random variable with parameters n and ps(τ ),
where ps(τ ) is the probability that one of y0’s neighbors is
seen by y1. Then, we have

bk = P(K (τ ) = k | N0 = n, T0 = t0, y1 /∈ N0)
a= P(K (τ ) = k | N0 = n, y1 /∈ N0)

=
(

n
k

)
pk

s (τ )(1 − ps(τ ))n−k, (53)

where in a=, we used the fact that {T0 = t0} is independent of
{K (τ ) = k}, and ps(τ ) is computed as

ps(τ ) = P(X ∈ N1 | X ∈ N0)

a= E [P(X ∈ N1, X ∈ N0 | X)]
E [P(X ∈ N0 | X)]

= λ
∫
R2 P(F ′

0 > ν ∥x∥α)P(F ′
1 > ν ∥x − y1∥α)dx

λ
∫
R2 P(F > ν ∥x∥α)dx

= K̄ (τ )

N̄0
. (54)

In a=, we conditioned on the location of X in R2. Using (9),
(54) can be rewritten as ps(τ ) = 2 − b(τ,λ)

N̄0
.

2) Computing ak: ak can be rewritten as

ak =
∫ 1

0
P(E1 = E0 = 1 | N0 = n,

T0 = t0, K (τ ) = k, T1 = t1, y1 /∈ N0)dt1

by conditioning on the event that the timer of y1 is equal to
t1, i.e., {T1 = t1}. Note that either all the shared neighbors in
K have timer values larger than t1, i.e., {T c

j ≥ t1,∀C j ∈ K}
where T c

j is the timer value of contender C j ∈ K, or there
exist one or more neighbors with timer value(s) smaller than t1,
i.e., {∃C j s.t . T c

j < t1}. Using the law of total probability, the
probability inside the integral can be written as (55), (56) and
(57) and it is shown at the top of the next page. Let (55), (56),
and (57) be ak1, ak2, and ak3 respectively. We have ak3 = 0
since if there exists a neighbor with timer value strictly smaller
than t1, it prevents y1 from transmitting, so E1 cannot be 1.
ak2 is the probability that all shared neighbors in K have timer
values larger than t1, which is simply given as Ak2 = (1− t1)k

since each timer is independent and uniform in [0, 1]. Before
we compute ak1, we need to define several random variables.

• Let N1 ∼Poisson(N̄0) be a random variable denoting the
number of contenders of y1.

• Let N1x ∼Poisson(N̄1x ) be a random variable denoting
the number of contenders of y1 which are not shared by
y0. Note that N1x + K = N1 and N̄1x = N̄0(1 − ps).

• Let N<t1
1x ∼Poisson(N̄<t1

1x ) be a random variable denoting
the number of contenders of y1 which are not shared
by y0 and with timer values smaller than t1. Note that
N̄<t1

1x = t1 N̄1x = t1 N̄0(1 − ps).
To compute ak1, we consider the following two sub-cases t1 ≤
t0 and t0 < t1. If t1 ≤ t0, then

• y1 transmits (or E1 = 1) only if it finds no additional
neighbors who have timer values smaller than t1 and are
not seen by y0, i.e, if N<t1

1x = 0, and
• y0 transmits (or E0 = 1) only if all T c

j ∼ Uniform[t1, 1],
∀C j ∈ K, are larger than t0, which happens with proba-

bility
(

1−t0
1−t1

)k
and remaining n−k contenders have timer

values larger than t0, which happens with probability
(1 − t0)n−k .

Note that, as in the previous case, {E0 = 1} and {E1 = 0} are
conditionally independent; so that we have

ak1 = e−N̄
<t1
1x

(1 − t0)n

(1 − t1)k if t0 ≥ t1. (58)
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P(E1 = E0 = 1 | N0 = n, T0 = t0, K = k, T1 = t1, y1 /∈ N0)

= P(E1 = E0 = 1 | N0 = n, T0 = t0, K = k, T1 = t1, y1 /∈ N0, T c
j ≥ t1∀C j ∈ K)

︸ ︷︷ ︸
≡ak1

(55)

× P
(

T c
j ≥ t1∀C j ∈ K | N0 = n, T0 = t0, K = k, T1 = t1, y1 /∈ N0

)

︸ ︷︷ ︸
≡ak2=(1−t1)k

(56)

+ P(E1 = 1, E0 = 1 | N0 = n, T0 = t0, K = k, T1 = t1, y1 /∈ N0, ∃C j s.t . T c
j < t1)

︸ ︷︷ ︸
≡ak3=0

(57)

× P(∃C j s.t . T c
j < t1 | N0 = 1, T0 = t0, K = k, T1 = t1, y1 /∈ N0).

If t0 < t1,
• y0 transmits (or E0 = 1) if n − k neighbors have timer

values larger than t0, which happens with probability
(1 − t0)n−k , and

• y1 transmits (or E1 = 1) only when it finds no additional
neighbors who have timer values smaller than t1 and do
not see y0, i.e., N<t1

1x = 0.
Note that, as in the previous case, {E0 = 1} and {E1 = 0} are
conditionally independent; so we have

ak1 = e−N̄
<t1
1x (1 − t0)n−k if t0 < t1. (59)

ak1 in the above two cases can be written as follows using
indicator functions:

ak1 = e−t1 N̄0(1−ps)
(

(1 − t0)n

(1 − t1)k 1{t1 ≤ t0}

+(1 − t0)n−k1{t0 < t1}
)
.

Unconditioning with respect to the event {T1 = t1} in ak1ak2
gives (60) and it is shown at the top of the next page where
in a=, ( (a, x) =

∫ ∞
x ta−1e−t dt is the incomplete gamma

function with ((a) ≡ ((a, 0) and η = N̄0(1 − ps)(t0 − 1). In
b= we used the fact that ((k+1,η)

((k+1) = ∑k
j=0

η j

j ! e−η. Replacing
(60) and (53) in (52) gives

c = P(E1 = E0 = 1|N0 = n, T0 = t0, y1 /∈ N0) =
n∑

k=0

akbk .

(61)

B. Computing d in (49)

We now compute d = P(y1 /∈ N0 | N0 = n, T0 = t0)
in (49). Note that {N0 = n} and {y1 /∈ N0} are not independent
since it is likely that y1 is the neighbor of y0 if N0 = n is
large, but {y1 /∈ N0} and {T0 = t0} are independent since being
neighbor of a node does not depend on timer values. Thus, we
have d = P(y1 /∈ N0|N0 = n). Applying Bayes’ rule, we get

d = P(y1 /∈ N0, N0 = n)

P(N0 = n)

= P(N0 = n | y1 /∈ N0)P(y1 /∈ N0)

P(N0 = n)
, (62)

where we have

P(N0 = n | y1 /∈ N0) = N̄n
0

n! e−N̄0 (63)

and

P(y1 /∈ N0) = P(F ′
10 < vτα) = G(ντα) (64)

for the numerator. To compute the denominator12 in (62),
namely P(N0 = n), we need to consider whether y1 is seen
by y0 or not. Using the law of total probability, we have

P(N0 = n) = P(N0 = n | y1 ∈ N0)P(y1 ∈ N0)

+P(N0 = n | y1 /∈ N0)P(y1 /∈ N0)

= N̄n−1
0

(n − 1)!e−N̄0
(
1 − G(ντα)

) + N̄n
0

n! e−N̄0 G(ντα)

= N̄n−1
0

(n−1)!e
−N̄0

(
1+

(
N̄0

n
− 1

)
G(ντα)

)
. (65)

Note that as expected P(N0 = n) → P(N0 = n | y1 /∈ N0) as
τ → ∞ (or G(τ ) → 1), and P(N0 = n) → P(N0 = n | y1 ∈
N0) as τ → 0 (or G(τ ) → 0). Then, replacing (63), (64), and
(65) in (62) gives the following for n ≥ 0,

d = N̄0G(ντα)

n + (N̄0 − n)G(ντα)
. (66)

Recall that d is the probability that y1 is not the neighbor of
y0 given N0 = n. Thus, d → 1(d → 0) as τ → ∞(τ → 0)
makes sense.

C. Computing ũ

Now, replacing term c in (61) and d in (66) to (49) gives

P(E1 = E0 = 1|N0 = n, T0 = t0)

= N̄0G(ντα)

n + (N̄0 − n)G(ντα)

n∑

k=0

akbk .

12Recall that P(N0 = n) is indeed P (N0 = n | ∥y0 − y1∥ = τ ).
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ak =
∫ 1

0
e−t1 N̄0(1−ps)

(
(1 − t0)n1 {t1 ≤ t0} + (1 − t0)n−k(1 − t1)k1 {t0 < t1}

)
dt1

= (1 − t0)n
∫ t0

0
e−t1 N̄0(1−ps)dt1 + (1 − t0)n−k

∫ 1

t0
(1 − t1)ke−t1 N̄0(1−ps)dt1

a= (1 − t0)n

(
1 − e−t0 N̄0(1−ps)

N̄0(1 − ps)
+ (t0 − 1)e−N̄0(1−ps) (((k + 1, η) − ((k + 1))

ηk+1

)

b= (1 − t0)n

⎛

⎝1 − e−t0 N̄0(1−ps)

N̄0(1 − ps)
+ (1 − t0)e−N̄0(1−ps)k!

ηk+1

⎛

⎝1 − e−η
k∑

j=0

η j

j !

⎞

⎠

⎞

⎠ . (60)

Finally, (46) is given by

ũ = N̄0G(ντα)

n + (N̄0 − n)G(ντα)

(
1 − e−t0 N̄0(1−ps)

N̄0(1 − ps)
+ (1 − t0)

×e−N̄0(1−ps)
n∑

k=0

k!
ηk+1

⎛

⎝1 − e−η
k∑

j=0

η j

j !

⎞

⎠

×
(

n
k

)
pk

s (1 − ps)
n−k

)
,

where ps = ps(τ ) = 2 − b(τ,λ)
N̄0

and η = N̄0(1 − ps)(t0 − 1).

VIII. PROOF OF LEMMA 1

The numerator can be computed using the fact that Nγ
s,0 ∼

Poisson(N̄γ
s,0) as follows:

(

E0

[
pγ

Nγ
s,0 + 1

])2

=
(

pγ

∞∑

n=0

1
n + 1

(N̄γ
s,0)

n

n! e−N̄γ
s,0

)2

=
(

pγ e−N̄γ
s,0

N̄γ
s,0

( ∞∑

n=0

(N̄γ
s,0)

n

n! − 1

))2

=
p2
γ e−2N̄γ

s,0

(
eN̄γ

s,0 − 1
)2

(N̄γ
s,0)

2
.

The denominator could be computed as follows:

E0

⎡

⎣
(

pγ

Nγ
s,0 + 1

)2
⎤

⎦ = p2
γ E0

[
1

(Nγ
s,0 + 1)2

]

= p2
γ

∞∑

n=0

1
(n + 1)2

(N̄γ
s,0)

n

n! e−N̄γ
s,0

=
p2
γ e−N̄γ

s,0

N̄γ
s,0

( ∞∑

n=1

(N̄γ
s,0)

n

n · n!

)

.

Using
∑∞

n=1
xn

n·n! = Ei(x) − log x − η [33, 8.214.2, p. 884]
with (67) and (67), we get (39).
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