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Fundamental Limits to Exploiting Side Information
for CSI Feedback in Wireless Systems

Heasung Kim"“, Member, IEEE, Gustavo de Veciana

Abstract—In modern wireless systems, the feedback of
DownLink (DL) Channel State Information (CSI) from User
Equipment (UE) to Base Stations (BS) may require substantial
computational and feedback bandwidth overheads. A promising
approach to improve feedback efficiency is to leverage side
information which is correlated to DL CSI. Despite potential
of doing so, critical aspects remain underexplored in current
research, particularly the quantification of the benefits and the
inherent limitations of utilizing side information. This paper
addresses these gaps by introducing a novel algorithm to compute
the rate-distortion function for general compression scenarios
incorporating side information. We apply this algorithm to the
DL CSI feedback problem having UL CSI as the side information
and generate rate-distortion functions. Using the estimated rate-
distortion functions, we measure the gain of side information
over diverse feedback rates and UE mobility profiles. The
results reveal that the benefits of leveraging side information are
particularly significant for UEs characterized by high mobility
and constrained to operate at low feedback overheads.

Index Terms—Channel state information, compression, coding,
feedback, rate-distortion, side information, MIMO, FDD.

I. INTRODUCTION

FFICIENT Downlink (DL) Channel State Information

(CSI) feedback from User Equipment (UE) to Base
Station (BS) in wireless systems has emerged as a critical
problem, given that CSI is essential to enabling wireless net-
works to effectively minimize interference and maximize data
throughput. The primary challenge lies in the potentially high
feedback and computational overheads required, especially for
Multiple Input Multiple Output (MIMO) communications. To
enhance feedback efficiency, such systems can exploit side
information correlated with the DL CSI. This approach can
be viewed as a problem of compressing with side information,
where the UE compresses the DL CSI and transmits it to the
BS. The BS then uses such side information to decode the
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transmitted data, which aids in designing DL precoders or
directly recovering the DL CSI.

Despite extensive research into this problem, several funda-
mental aspects of compression with side information remain
underexplored. Key questions include: How can the value of
side information be quantified? and Under what conditions
is side information more or less valuable? The answers to
these questions are crucial to drive real-world system design
decisions, in particular in deciding whether to incorporate
additional features (side information) to enhance performance,
especially when constrained by computation resources.

The rate-distortion function can be used to address these
questions by characterizing the minimum achievable distortion
for a given rate, enabling one to quantify the value of side
information and observing the trends in the associated gains.
In the context of CSI feedback, distortion refers to the discrep-
ancy between the desired and estimated outputs of the decoder,
while rate pertains to the feedback rate. However, deriving
closed-form expressions for rate-distortion functions proves
challenging, and computational complexity persists even with
iterative methods, particularly when the distributions of the
input and side information are unknown, and the domain
extends over continuous or large discrete sets. Furthermore,
exploring rate-distortion functions within a generalized com-
pression framework with side information, aimed at computing
a desired output, remains an underexplored area despite its
increasing relevance in contemporary research.

To bridge these gaps, we introduce a novel algorithm to
estimate the rate-distortion function which is applicable to
generalized compression tasks taking side information into
account. Using this approach, we generate rate-distortion
curves for CSI feedback problems, exploit these findings to
quantify the value of side information. The estimated rate-
distortion functions provide not only theoretical benchmarks
for assessing the performance of practical compression algo-
rithms but also suggest potential system design principles.
Specifically, our contributions can be outlined as follows.

A. Contributions

Algorithm design. First, we present a generalized frame-
work for estimating the rate-distortion function for computing
desired output with side information. We formulate a
Lagrangian loss function where the minimization of this
function is achieved through specific encoding and decod-
ing schemes that can achieve point(s) on the rate-distortion
function. Our algorithm focuses on minimizing the loss by
parameterizing the conditional distributions of the codewords
for a given source and side information, as well as the
decoder. The algorithm is designed to alternatively update
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these parameters to efficiently minimize the Lagrangian loss.
Notably, our approach offers accurate rate-distortion estimates
for challenging high-dimensional or continuous input sources,
where conventional Blahut-Arimoto type algorithms do not
perform well.

Applications to theoretical and practical problems. We
validate our algorithm through both theoretical examples and
practical simulations. Initially, we confirm its efficacy by
considering scenarios characterized by known closed-form
rate-distortion functions, such as where the source and side
information have correlated Gaussian distributions. The results
show the numerical accuracy of our approach in estimating the
rate-distortion function. Furthermore, we extend our method-
ology to address the DL CSI feedback problem incorporating
uplink (UL) side information, thereby providing insights into
the potential gains of exploiting side information.

Simulation results. Our further analysis delves into the
CSI feedback problems in diverse environmental conditions
and considering UE mobility speeds going beyond static
DL CSI feedback scenarios prevalent in learning-based CSI
compression research. The results reveal that the benefits of
side information are particularly significant in low-rate regime
or high-mobility scenarios. Moreover, we discuss potential
system design principles informed by the results, paving the
way for enhanced efficiency and performance in practical
applications.

In the remaining sections, we discuss related work in Sec-
tion II, formalize the system model in Section III, and describe
our rate-distortion estimation algorithm in Section IV. We
validate our algorithm for the Gaussian source compression
in Section V and apply it to the CSI feedback problem in
Section VI. We conclude in Section VII, with proofs and
detailed simulation configurations provided in Appendices.

II. RELATED WORK
A. CSI Feedback in Wireless Communications

CSI feedback schemes are often inherently structured in
terms of a compression or packing problem, driven by the
high volume of data transmitted from UE to BS and con-
straints of limited bandwidth overheads and computational
resources.

1) Conventional Implicit CSI Feedback: Modern commu-
nication systems frequently employ an implicit CSI feedback
approach, wherein the UE communicates channel quality via
predefined indicators such as the Rank Indicator (RI), Pre-
coding Matrix Indicator (PMI), and Channel Quality Indicator
(CQI) [2]. Notably, the PMI feedback utilizes a codebook-
based method [3], [4], with significant research focusing on
the optimal design of these codebooks [5]. Solutions have
explored frameworks such as Grassmannian packing [6], [7],
[8] and Random Vector Quantization [9], [10].

Conventional implicit feedback methods often face lim-
itations in fully exploiting correlations across numerous
subcarriers in advanced systems, particularly with the advent
of MIMO technologies, which greatly increase the channel
information per UE. These challenges highlight the need
for more efficient feedback mechanisms to accommodate the
growing complexity of modern communication systems.
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2) Compressive Sensing and Learning-Based CSI Feed-
back: To enhance feedback efficiency, recent advancements
have introduced the use of compressive sensing [11], [12] and
deep learning-based methods [13]. Notably, with significant
advancements in learning-based image compression technolo-
gies, deep learning techniques have been applied to explicitly
compress CSI, aiming to minimize the distortion between the
input source, CSI, for the encoder of the UE and the decoder’s
output at the BS. These approaches predominantly utilize
parameterized deep neural networks and update the trainable
parameters in the direction of minimizing the distortion. Pio-
neering work in this area [14] employed convolutional and
fully connected layers, achieving superior performance over
traditional compression methods. Further innovations have
incorporated architectures inspired by the Inception block [15]
and attention mechanisms [16], with recent research focusing
on quantization and variable compression ratios to enhance
practicality [17], [18], [19], [20], [21], [22], [23].

3) Advanced Feedback Frameworks: Other advancements
have extended the feedback framework to enhance per-
formance by incorporating distributed encoding techniques
[24], [25], where feedback from multiple correlated UEs is
collectively processed. Moreover, a multioutput autoencoder
framework has been proposed, featuring a global encoder
capable of generating codewords adaptable to various channel
environments, which are then decoded by multiple decoders
[26]. Additionally, to further refine the efficiency of commu-
nication systems, frameworks for joint denoising-compression
[27] and joint source-channel coding [28] have been devel-
oped, demonstrating the potential for integrated processing
modules to improve system performance.

4) CSI Feedback With Side Information: Despite the
substantial advancements in compression techniques and
frameworks, there remains a significant computational and
resource burden on the devices. To design more efficient
feedback frameworks, recent research has proposed utilizing
side information at the decoder. Methods based on recur-
rent neural networks leverage temporally correlated CSI as
side information to recover desired CSI [29], [30], [31].
Furthermore, UL CSI, typically acquired via pilot trans-
missions from the UE to the BS and correlated with DL
CSI due to frequency-invariant characteristics [32], [33],
has been utilized. In [34], the magnitude of UL CSI is
leveraged at the BS to improve compression performance,
while [35] explores the partial reciprocity of DL and UL
channels.

Despite these advancements, the theoretical perspective
quantifying the performance gains from such side informa-
tion remains underexplored. Current research largely focuses
on empirical improvements using advanced CSI frameworks,
yet a comprehensive theoretical understanding of the achiev-
able performance and the exact benefits of incorporating
side information is lacking. This gap highlights the need
for a more rigorous exploration of how these enhancements
translate across different wireless system environments. In
response to this gap, our study proposes an estimation of
the rate-distortion function specific to the CSI feedback
scenarios.
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Fig. 1. Coding for Computing with Side Information. We consider a
configuration where switch (A) remains open while switch (B) is closed,
permitting access to side information at the decoder. The decoder aims to
compute a function Z = g(X,Y); we let Z and D denote the decoder’s
output and distortion, respectively.

B. Computing Rate-Distortion Functions

The rate-distortion function, which characterizes the optimal
rate-distortion tradeoff, serves as an important theoretical
benchmark for assessing the effectiveness of compression
algorithms, as highlighted in recent studies [36], [37], [38],
[39]. However, the accurate computation of Shannon’s infor-
mation measures, such as entropy and mutual information,
which form the basis of the rate-distortion function, is notably
challenging. This is particularly true in scenarios where one
must rely solely on samples from real-world distributions with-
out prior knowledge of the distributions or in cases involving
high-dimensional input sources, which make data distribution
approximation significantly more complex. Indeed, closed-
form solutions for these measures are generally limited to
specific circumstances, e.g., Gaussian sources.

An approach to numerically computing the rate-distortion
functions and associated information measures for general
distributions has been devised based on iterative algorithms in
1972 by Blahut [40] and Arimoto [41]. Known collectively
as the Blahut-Arimoto algorithms, they have been adapted
to address multiterminal source coding settings [42]. How-
ever, these conventional iterative approaches face limitations,
especially when applied to high-dimensional or continuous
sources [37].

To overcome these challenges, recent studies have explored
solutions utilizing neural networks or advanced optimization
techniques. The Restricted Boltzmann Machine is integrated
with neural networks to estimate rate-distortion functions [36].
In [37], the rate-distortion function duality concept, e.g., [43],
is utilized in estimation methods. A sandwich bound for rate-
distortion function is introduced in [38] through distribution
parameterization with neural networks. In [44], neural estima-
tion methods with a generative model framework are utilized.
Notably, the Wasserstein gradient descent algorithm proposed
in [39] has demonstrated state-of-the-art performance for rate-
distortion estimation without relying on neural networks.

C. Rate-Distortion Function for Computing With Side
Information

The rate-distortion function concept can be extended to
encompass scenarios where side information, correlated with
the input source, is available at the decoder, or at both the
encoder and decoder, as illustrated in Figure 1. This adaptation
is referred to as the Wyner-Ziv rate-distortion function [45].
Additionally, the notion of the rate-distortion is further broad-
ened by considering communication systems where the goal
is to compute a function of the source. Such applications of
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the Wyner-Ziv rate-distortion function are commonly referred
to as Coding for Computing [46].

Such a broader perspective of the rate-distortion function
is crucial for evaluating compression algorithms in practical
scenarios and understanding side information’s role in various
contexts. It also offers a way to quantify the relevance of
different types of side information for various sources.

While recent studies have increasingly incorporated side
information with specific objectives in constructive compres-
sion algorithms [47], [48], [49], research on rate-distortion
estimation with side information, especially for continuous or
large-dimensional distributions, remains limited. Prior studies
have focused on discrete sources and side information [50],
extending the Blahut-Arimoto Algorithm, but often struggle
with high-dimensional distributions, particularly when there is
no a priori knowledge of the distributions. Recent contributions
in [51] have begun to employ neural networks for estimating
the rate-distortion function with side information. How-
ever, this work primarily concentrates on discrete codewords
and focuses on estimating variational upper bounds of the
Wyner-Ziv rate-distortion function.

We address these gaps through a neural network-based
direct estimation method for the rate-distortion function
for computing with side information, along with applicable
methodologies.

III. SYSTEM MODEL

Consider the communication system model depicted in
Figure 1 where switch (A) remains open and switch (B) is
closed. This system model focuses on minimizing the distor-
tion between a target output Z and its estimated counterpart
A through the optimized encoder and decoder modules. The
encoder receives an input source X and compresses it into
a codeword U. The decoder, utilizing this codeword along
with side information Y, produces the estimated output Z.
Notably, this framework permits the target output Z to differ
from the input source X, allowing Z to be any functional
output g(X,Y) tailored to specific system requirements. For
example, consider the application in the DL CSI feedback
systems from a UE to a BS. Rather than reconstructing the
original CSI X, the BS leverages the codeword U to gen-
erate precoding vectors, which are essential for efficient DL
transmission. In this context, Z would represent the precoding
vectors.

The source and side information pair (X,Y’) is indepen-
dently and identically distributed (i.i.d.), following the joint
distribution px y (z,y), where x and y are realizations from the
respective domains X and Y. The codeword U resides within
the domain ¢/, and the output from the decoder, A , belongs
to Z. The distortion level is denoted by D, with a distortion
measure d defined as d : Z x Z — R*. To facilitate clarity in
cases where the original information X is to be reconstructed,
ie., if g(X,Y) = X, the output of the decoder will be denoted
as X.

In this setting, the corresponding rate-distortion function
determines the minimum necessary rate to compute g(X,Y)
within a given distortion threshold D. The rate-distortion
function, denoted Rp, is given as follows [52].
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Fig. 2. Rp is convex with respect to distortion D. For a given slope s,
minimizing the y-intercept of a line originating from an achievable point
(Ds, Rs) in the rate-distortion region leads to a new y-intercept, which
corresponds to a line that is tangent to the Rp curve at point(s) with the
same slope s.

Definition 1: Rate-distortion function for computing with
side information

Rp(D) =

min

- Ixsuly), @
qux (ulo). f(wy): Ed(Z,2)|<D

where gy|x(u|r) is a conditional probability distribution of
U given X. Z and Z are the desired function output and the
decoder output, respectively. f is a decoder taking u and side
information y as an input pair as f(u,y) = Z. Note that the
system model implies that the Markov chain U—X—Y holds.

IV. RATE-DISTORTION ESTIMATION ALGORITHM

In this section, we focus on developing a method to estimate
Rp(D) for a general function, particularly in scenarios where
the joint distribution px y (z,y) is unknown and a dataset of
N data points (z;, ;)2 | that are sampled from px y (,y) is
available. This setup is typical in real-world contexts, where
the exact distribution underlying a dataset is often not known.

We start with a Lagrangian formulation to address the
optimization problem defined in (1) by exploiting convexity
and non-increasing property of Rp(D) with respect to the
distortion D. We can formulate an optimization problem for
finding the vertical intercept of the tangent with slope s(< 0)
to the rate-distortion curve as follows.

Rp(D,) — sD, = min {I(X;U|Y) - sE[d(Z, Z)]}. (2)

qu|x.f

For a given slope s and a corresponding achievable (distor-
tion, rate) pair, (lA)S,Rg) illustrated in Fig. 2, the y-intercept
at this line is R, — sD,. This intercept is equivalent to
I(X;U|Y) — sE[d(Z, Z)], attained by the specific encoding
and decoding schemes associated with gy |x, f correspond-
ing to (D, R,). This y-intercept can be minimized through
optimization, adjusting the encoding and decoding schemes
accordingly.

Due to the convexity of Rp, the lowest achievable value of
the vertical intercept corresponds to Rp(Ds) — sDs where the
distortion D, and rate Rp(Ds) is a point that lies on the Rp
curve itself. By determining a point on the Rp curve for each
slope s and then varying s, we can estimate the Rp curve.

To facilitate estimation using a given dataset, we reformulate
the optimization term in (2) as detailed in Appendix A:

QU\X(U|X) s 5
e oo 3y | -z 21} @

min
qu|X >
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where quy (uly) = >, c x Px|y (2]y)qu x (u|z) (When X is a
discrete random variable) and Z = f(U,Y’). This formulation
enables the computation of expectation terms using Monte
Carlo estimation with data points following the distribution
gxv,u(z,y,u). Here, we use the notation ¢ to represent a
probability distribution influenced by gy x and f, while p
has been used to denote distributions independent of gy x
and f.

To proceed with this approach, we parameterize the key
components of the optimization problem using a neural
network-based model. First, we represent the conditional
distribution gy x (u|z) as qu|x (u|z; @) wWhere 8, denotes
a set of parameters for gy x. Similarly, we parameterize
the decoding function with a set of parameters Q4. as
f(u,y; Oaec)-

It should be noted that the parameterization of
qu|x (u|z; 8p,) directly determines the related marginal
and joint distributions, such as qy|x vy, qujy, and gx y,u
under the fixed px,y. These distributions, governed by the
parameter set 6y,, are thus denoted as qu|x,y;0,,» qU|v;0
and gx,y,u.,,-

In addressing the problem (3), however, a major challenge
arises from this parametric approach: as we parameterize
qu|x» the distribution qr7|y deterministically depends on both
the parameterized qyx and the joint distribution of the
input source and side information, px y, and its computation
presents difficulties; we further elaborate on these challenges
and our approaches to addressing them in Sec. IV-A. In
summary, we begin with the Lagrangian optimization problem
for the rate-distortion function, also known as the supporting
hyperplane method. We employ neural networks to parame-
terize the key components of our loss function in (3). This
optimization strategy draws parallels with the conventional
Blahut-Arimoto algorithms [40], [41] in terms of formulating
the Lagrangian loss, while also drawing inspiration from recent
works [38], which has achieved state-of-the-art results in rate-
distortion estimation through neural networks. In the following
subsections, we delve into a comprehensive explanation of
our proposed algorithm, detailing the steps and techniques
involved.

po?

A. Algorithm

The proposed method is detailed in Algorithm 1. This algo-
rithm iteratively computes the gradient of the loss function (3)
over T training iterations and updates the relevant parameters
to minimize the loss.

Line 3. Specifically, in each iteration, a minibatch with
size b, B = {(zi,y:)}’_,, is sampled. To estimate the
expectation Ex y,p{logqu|x(U|X) — logquy (U|Y)], it is
necessary to generate data point triples (z;,y;,u;) following
the distribution px y (2,¥)qu|x (u|; @p). For each sampled
pair (x;,y;), a corresponding u; is drawn from the distribution
quix (u|x;0p). This sampling results in triples (2, ys, u;)
that adhere to the joint distribution ¢xyvuy(z,y,u) =
px,v (%, y)qu x (u|z; Opo).

Utilizing these samples, we compute the average gradi-
ent of the loss function, which involves the computation of

the expected value of log %. This corresponds to
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Algorithm 1 Estimation of Rate-Distortion Function for Computing With Side Information at Decoder

. Input: Slope s, dataset {x;,y;}2 ,, initialized sets of parameters 00, Opr, Ogec

:forr=0to T do

1
2
3
4.
5: Update 6 < 0po — Vganl and Ogec < Ogec — Vo, L1
6 for 7 =0 to 7" do

7

8

9

Update 6y < 6y — Vg, Lo

Sample minibatch B = {(x;,1;)}?_; and sample {u;}?_; from {qy|x=q, }'_;
Compute VL; = V3 Z?:l[log(QU|X(ui|xi§ Opo) — log quiy (wilyi; Opr)] —

s[d(g(zi, yi), (i, yi; Odec))]

Sample minibatch B’ = {(x;,y;)}’_; and sample {u;}?_; from {qy|x—s, }'—;
Compute VL, = V1 Z?:ﬂlog(QU\X(ui\xi; 0p0) — log quy (wilys; Opr)]

10 qU\X(U‘X?HPO)
] qU|y;6p (UY)
is formulated as

based on the parameterization where gy .,

QU\Y;GPO(U\?J) = Z pX|Y(x|y)QU\X,Y;0po (ulz,y)
reX

- ZPXIY($|7J)QU\X(U\9£;0PO).

reX

“4)

The efficient computation of gy .g,, is critical, as it needs
to be executed for multiple instances to obtain the average of
the log probability. However, this computation of (4) presents
a substantial challenge due to the unknown nature of the
distribution px |y, with only sample-based access available.
Furthermore, using sampling approaches for the estimation of
the sum over X is non-trivial when domain & is a high-
dimensional space and the data instances are limited. To
address this issue, we leverage the following lemma, with its
proof detailed in Appendix B.

Lemma 1: Consider a fixed set of parameters 0,, and the
scenario where the side information Y is available only at the
decoder. Then we have

qU|X(U|X7 0]10)
quiy (U]Y)

Based on this lemma, we conclude that instead of exe-
cuting the summation in (4) to derive qyy,g, for a given
qu|x (u|z; 8, ), we can model the distribution of U given Y as
quiy (uly; @) where 8, denotes a set of free parameters and
then use the parameterized distribution qg|y (u|y; @) as an
argument for the problem (5). The solution of (5) will lead to
quy (v|y; Opr) = qu|ye,, (uly) as long as the parametrization
of qu|y (u|y; @) is expressive enough.

Lines 4-5. By wusing the parametrized functions
QU|X(U|-T§ Bpo)’ QU|Y(U‘:U§ 0pr)» and f(u,y;0uc), in Line 4,
we compute the gradient of (3). Subsequently, in Line 5, the
parameters 6}, and .. are updated to minimize the loss.

Lines 6-9. At the end of each iteration, we update
quy (uly; @) by solving (5) based on the newly updated
quix (u|x;0p0) to correctly compute the main loss function
(3) in the subsequent iteration. Problem (5) can be solved
through gradient descent updates of the set of parameters 6,
as described in Lines 7-9 of Algorithm 1. More specifically,
for each inner-iteration (occurring 7’ times), we sample a
minibatch and obtain pairs {(z;,v:,u;)}’_,. We then update
0, to minimize the objective in (5). Practically, we have
found that setting 7' = 1 and reusing the same minibatch

&)

argminEx y, |log

g = qQU|Y;6,-
qu |y

B for B’ not only offers computational efficiency but also
recovers the optimal result for Gaussian settings (as detailed in
Sec. V).

B. Parameterization

In Algorithm 1, we utilize three distinct parameterized mod-
els: qux (u]z; 0po), qu)y (uly; Opr), and f(u, y; Ogec). Various
parameterization setups exist, including Gaussian, uniform
distribution-based parameterizations, and more sophisticated
forms relevant to modern machine learning research [53].
In our study, we opt for Gaussian distributions for param-
eterization. For example, in sampling from the distribution
quix (u|x;0p), the random variable U is assumed to fol-
low a Gaussian distribution characterized by mean fi(x; 0p,)
and variance X(z;6,,), both of which depend on the given
realization x. The functions p and ¥ can be designed in
various ways, depending on the specifics of the problem, where
they take x as input and output the corresponding mean and
variance. We provide more details on the implementation in
Sec. V.

The choice of parameterization and the construction of these
functions yield a point that represents an upper bound on
the rate-distortion curve. This is because the variable spaces
for the minimization problem in (3) are constrained by the
assumptions inherent in the chosen distribution models. We
can easily show the following:

Proposition 1: Consider any sets of parameters
{0po, Opr, Ouec } and corresponding parameterized distributions
and  functions  qu|x(u|z;0p),  quiy(uly; Op),  and
f(u,y;0dec). Let D = E[d(Z, f(U,Y;04.))] denote its dis-

‘ZU\X(UIX§GPO):|
quy (U|Y;0y) |

Proposition 1 shows that the rate-distortion point estimated
by our algorithm is on or above the true rate-distortion curve
Rp. This implies that if a compression algorithm achieves a
rate-distortion point above the estimated curve produced by
our method, it is assured that such a point does not lie on
the true rate-distortion curve, and there is a gap between the
theoretical limit and the constructive algorithm. In practical
scenarios where the joint distribution (X,Y, Z) is unknown,
the expectation in Proposition 1 can be approximated using
the dataset {z;,y;}2 ;. Although the estimated mean obtained
through the Monte Carlo method may not strictly satisfy the
inequality, for sufficiently large B, the algorithm’s expected
behavior can still be effectively tracked.

tortion. Then we have Rp(D) <Ex vy [log
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V. RATE-DISTORTION FUNCTION ESTIMATION FOR
2-COMPONENT WHITE GAUSSIAN NOISE

To assess the effectiveness of our algorithm, we initially
focus on scenarios where the true rate-distortion function with
side information is known as a closed-form. By comparing
this known rate-distortion function to the estimates produced
by our method, we can reliably measure the accuracy of our
algorithm.

A. Problem Description

We adopt a scenario from [46, Sec. 11.3], featur-
ing a 2-component White Gaussian Noise (2-WGN(P, p))
source, where (X,Y) forms pairs of i.i.d. jointly Gaus-
sian random variables. Each pair in the sequence (Xi,Y7),
(X2,Y3),...,(X,,Y,) is correlated by Y = X +WW where the
distributions of X and W have zero mean, E[X] = E[W] =0,
and variance E[X?] = P and E[W?] = N. With a squared
error distortion measure d, the rate-distortion function Rp is
given as follows [45].

o) e L1 (20 Y 0k @

Our objective is to apply our algorithm to estimate rate-
distortion points and assess its accuracy in mapping these
points on the true rate-distortion curve (6).

B. Configuration

To implement our approach, we employed a multi-layer
perceptron (MLP) to model qy|x (ulx;0p0), quiy (uly; Opr),
and  f(u,y;0uc). Specifically, for qy|x(u|r;0,) and
quiy (uly; Op), we use a single-layer MLP that takes an
n-dimensional input and outputs a 2n-dimensional vector,
half for mean and half for variance, to model an n-
dimensional independent multivariate Gaussian distribution.
For f(u,y;04c), we used a 2-layer MLP with leaky ReLU
activation, which takes (u,y) as an input and outputs an
n-dimensional Z.

C. Results

In Fig. 3, we set P = 1,n = 10, and provide sim-
ulation results for various N values in {0.5,1.0,1.5,2.0}.
Each subplot displays the Rp curves, alongside four rate-
distortion points estimated by our algorithm for different
slopes s € {—1,—2,—4,—8}. The autoencoder model processes
the sequence (X,Y) of length n for compression, and the
element-wise distortion-rate values are evaluated for each
scenario. These distortion-rate pairs are expected to lie within
the single-letter rate-distortion function (6). We also plot R(D)
curves, which correspond to the true rate-distortion function
without side information. y-axis has natural units (Nats) and
x-axis represents mean squared error distortion. The dashed
lines associated with each of the estimated points correspond
to the learning trajectory, i.e., the achieved (distortion, rate)
points during the training process.

In Figure 3, our algorithm demonstrates a consistent ability
to estimate points on the rate-distortion curve Rp. A decrease
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Fig. 3. Compression of Gaussian sources with varying N: The solid lines
represent the known rate-distortion functions with and without decoder side
information, Rp(D) and R(D), respectively. The estimated rate-distortion
points (Ds, Rp(Ds)) for four values of s obtained through our algorithm
are also shown, along with their trajectory during the optimization phase. We
observe that the estimated rate-distortion points forming Rp (D) align closely
with the true rate-distortion function Rp (D), exhibiting a negligible gap.
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Fig. 4. Compression of Gaussian sources with varying P: Similar to the
results in Figure 3, our estimated rate-distortion points Rp (D) align closely
with the true rate-distortion function with side information Rp (D).

in the value of s leads to points on the left side of the curve,
indicative of higher rates and lower distortion. Notably, an
increase in noise N on the side information results in a higher
rate for a given distortion, causing Rp (D) to converge towards
R(D). Our method effectively estimates points on Rp across
various scenarios. In Figure 4, as we increase P while keeping
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N = 1, we again observe that our estimated rate-distortion
points are closely aligned with the true rate-distortion function
with side information Rp (D). We also note that our learning
trajectory reflects the fact that our algorithm acts as an upper-
bound, with no points estimated below the true rate-distortion
function Rp(D).

VI. RATE-DISTORTION FUNCTION ESTIMATION FOR FDD
CSI COMPRESSION WITH SIDE INFORMATION

In this section, we will employ our rate-distortion estimation
algorithm to investigate rate-distortion functions specific to the
Frequency Division Duplexing (FDD) CSI feedback problem.
Our primary objective is to explore fundamental questions
regarding the use of side information in wireless CSI feed-
back systems, guided by the key inquiries regarding: (1) the
application of Rate-Distortion Estimation in quantifying the
gain from side information; (2) evaluating the performance of
constructive algorithms relative to rate-distortion predictions;
(3) the enhancement provided by side information in scenarios
of limited feedback; (4) the influence of client mobility on the
achievable rate-distortion function; and, (5) the corresponding
gains associated with exploiting of side information.

We note that these questions are crucial as they elucidate the
quantifiable gains from utilizing side information and its effec-
tiveness in enhancing wireless network performance across
diverse operational environments. In the following subsection,
we elaborate on the CSI feedback framework for FDD MIMO
communication systems, exploring the problems and benefits
of compression across varying mobile UE at different speeds.

A. Problem Description

We consider practical CSI feedback scenarios including
feedback delays and apply our proposed algorithm to derive
rate-distortion curves. We examine MIMO systems as illus-
trated in Figure 5, where the UE and BS communicate across
ng subcarriers employing ny BS transmit antennas with
a single UE antenna. Each feedback interval involves the
UE estimating the DL CSI, HY), from the BS’s downlink
transmission, which includes CSI Reference Signals (CSI-
RS). This information is then compressed and fed back to the
BS. The BS simultaneously estimates UL CSI, HSL+ Y. and
receives the compressed DL CSI feedback from the UE. The
ultimate goal for the BS is to estimate HI()tLJr Y. The superscript
-(®) denotes the time slot, highlighting the changes in the CSI
over time.

Predicting future CSI corresponding to the target DL data
transmission, Hl()tlj’ Y s a critical challenge in MIMO systems
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Fig. 6. A pair of samples is depicted, with DL CSI on the left-hand side and
UL CSI on the right-hand side. In the compression problem, the objective
is to reconstruct DL CSI while leveraging UL CSI, which serves as side
information. Both DL CSI and UL CSI possess shared frequency-invariant
characteristics, making the side information beneficial for reconstructing DL
CSL

due to the adverse impacts of feedback delays on system
performance. This challenge is closely related to the concept of
channel aging [54], [55], [56], which describes the modelling
of variation in channel characteristics from the time they are
estimated to when they are actually utilized [57].

In this setting, we will consider the Normalized Mean
Squared Error (NMSE) as a distortion metric, defined as
E[|Z — Z|13/||Z||3], where || - ||2 is elementwise square norm.
We measure the distortion over the cropped angular-delay
domain, as detailed in Appendix C. Then, the desired comput-
ing output Z corresponds to HSLJr Y ox corresponds to Hgﬁ,
and Y corresponds to HSELJr b,

It is important to note that the desired output Z is not
necessarily a deterministic function of the input source X and
the side information Y. This is because even with perfect
knowledge of the previous downlink CSI, Hgﬂ, and the side
information, HSLJ“ 1), the future downlink CSI cannot be fully
recovered due to inherent randomness. Formally, this scenario
can be modeled as a noisy Wyner-Ziv Coding problem [58],
where the desired output is correlated with the input source
and side information but includes noise, and the noiseless
input source is not available at the encoder. In this context,
H]()tg can be viewed as a noisy observation of H](Dt; 1), which
is correlated with Hglj_ Y. The encoder designs a codeword
based solely on the noisy observation Hl()tﬁ, while the decoder
has access to the side information HI(JtLJr Y Under this system
model, the corresponding rate-distortion function RNV%(D) is
defined as follows [58], [59].

R5Y(D) = I(X;UJY)

min
qux,fEld(Z,2)]<D

)

where a Markov chain (Z,Y) — X — U holds. It is evident
that our proposed approach can be directly applied even
within this noisy Wyner-Ziv compression framework without
requiring any modifications, as the rate-distortion function can
be obtained through the equal optimization problem under the
different Markov chain.

The use of UL CSI as side information is based on
the insight that UL CSI, generally obtained through pilot
transmissions from the UE to the BS, shares a correlation
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with DL CSI due to frequency-invariant characteristics [32],
[33]. Figure 6 illustrates DL and UL CSI samples captured
on the same time slot but represented in two distinct domains.
The first row displays the normalized DL and UL CSI in the
Spatial-Frequency domain, with the y-axis representing the
number of antennas and the x-axis representing the subcarrier
count. In the second row, both CSI instances are represented
in the Angular-Delay domain, derived by applying the Inverse
Fast Fourier Transform (IFFT) to the spatial-frequency domain
instances and subsequently truncating the higher delay com-
ponents. Notably, in the Angular-Delay domain, the DL and
UL CSI demonstrate partial overlap in the dominant elements,
underscoring the frequency-invariant features shared between
them.

B. Configuration

Following the 3GPP specification, the feedback delay is
fixed to 5ms [60], [61]. A CSI instance X characterized by
the setting ny = 8 transmit (Tx) antennas and ny, = 667
subcarriers. UL CSI also has the same parameters. The BS
antennas are vertically polarized, as specified in [62]. In our
numerical evaluation, we adopt the CDL-C channel model
outlined in [63]. Specifically, for the implementation of UL
and DL CSI, we select center frequencies of 1.9 GHz and
2.1 GHz, respectively, with a subcarrier spacing of 15 kHz.
To account for a 5 ms feedback delay, we first generate
time-correlated channel and delay coefficients with a delay
spread of 300ns. These coefficients are then used to derive
spatial-frequency domain representations. Subsequently, the
spatial-frequency domain channel is divided based on the DL
and UL bandwidth configurations described earlier.

In Appendices VII-A and VII-B, detailed configurations for
parameterizing distributions, data preprocessing methods, and
neural network training methods are provided.

C. Constructive Neural CSI Compression Algorithms

For the sake of comparison, we consider a fixed-rate com-
pression task for the same system model and implement
CSI compression algorithms utilizing the same processing
architecture detailed in Sec. VII-B. It is pertinent to recall
that for rate-distortion estimation, our approach entails an
encoder that yields the mean and variance for the codeword
probability distribution qi7|x, a core element of the Lagrangian
loss function. This formulation ensures that the autoencoder
architecture avoids an information bottleneck, as the output
dimension of the encoder is not reduced.

In contrast to this architecture, for deterministic fixed
codeword generation, we directly enforce a constraint on
the encoder’s output size. Specifically, consider a N-bit
compression of the given DL CSI. To implement this, we
configure the encoder output size to be gg:\([‘gd), where Ngpg
denotes the dimension of the embedding vector and B is a
base of the codeword. By setting B to 16 (greater than 2), we
employ a hexadecimal code to reduce the encoder output size.
The output is then reshaped into a Tog N ( By X NEpg-Size matrix,
forming a total of ; ( B) embeddlng vectors. Subsequently,
each embedding Vector is quantized by replacing it with the
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Fig. 7. Autoencoder architectures. (Top) For rate-distortion estimation, the
autoencoder uses a Gaussian codeword distribution parameterized by a neural
network that outputs the mean and variance. (Bottom) For the fixed-rate
compression tasks, the Vector Quantized-Variational AutoEncoder (VQ-VAE)
structure is applied where the encoder’s output is quantized using embedding
vectors, generating codewords through their indices.

nearest embedding vector in a trainable codebook. Following
this, the indices of the embedding vectors become the code-
words, as depicted in Figure 7. Additional details can be found
in Appendix VII-C.

We note that the comparison between our proposed rate-
distortion estimation and the performance of the fixed-rate
compression algorithm offers insights into whether the fixed-
rate compression approach, which constitutes the majority
of standardized CSI feedback, performs comparably with the
rate-distortion benchmark.

D. Results

1) Rate-Distortion Framework Utilization: Can rate-
distortion estimation be utilized to assess the advantages
of incorporating side information in wireless systems? In
Figure 8, four distinct curves are presented: the estimated rate-
distortion curve with side information, RD, the one without
side information, R, the rate-distortion curve derived from
the constructive compression algorithm with side information
(compression with SI), and that without side information
(compression). The five points plotted on Rp and R denote
distinct estimated rate-distortion points, with their positions
corresponding to specific s values: —100, —10, —1, —0.1, and
—0.01 arranged from left to right. R(D), the estimated R(D),
is obtained by using the approach of [38] and using the same
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Fig. 8. CSI feedback for static UEs: Comparison of the estimated rate-

distortion function, estimated rate-distortion function with side information,
and (distortion, rate) points achieved by the neural compression algorithms.

neural architectures but which ignores the side information.
By adjusting s values, we explore distortion levels from
0 dB to approximately —24 dB, connecting these points
linearly to serve as an upper bound for the estimated
rate-distortion curves. The rate-distortion curves from the con-
structive algorithms are generated by varying the compression
bit rates as N € {16, 32, 64,128} and connecting the points.

It is observed that introducing UL CSI for DL CSI compres-
sion is beneficial as, for all non-negative D, Rp(D) < R(D).
Using this result, one can quantify the estimated gain from side
information either by assessing the improvement in achievable
distortion at a specific feedback rate or by evaluating the
reduction in the required rate to achieve a target distortion.
Our subsequent analysis will show that there is often a non-
negligible gap between the minimum distortion achievable
with and without side information, highlighting the crucial role
side information may play in enhancing system performance.

2) Utilization of the Estimated Rate-Distortion Function as
a Benchmark: How close is the achievable performance of
constructive algorithms versus the estimated rate-distortion
functions? The estimated rate-distortion functions can serve
as benchmarks for evaluating the effectiveness of constructive
compression algorithms. By varying the feedback rate of
these algorithms, which operate at a fixed rate, one can
measure the resulting distortion and compare the performance
against the established rate-distortion functions. Recall that
the proposed rate-distortion estimation algorithm provides an
upper bound for the true rate-distortion function, setting a
performance target that constructive algorithms are expected to
meet or exceed. If the performance of a constructive algorithm
falls below this benchmark, it clearly indicates an area for
improvement.

The neural compression algorithm incorporating side infor-
mation, achieved a rate-distortion curve that establishes an
upper bound of Rp, and the discrepancy between Rp and the
constructive CSI compression algorithm’s performance signals
room for improvement. For example, in the case of around 80
Nats/sample, we may anticipate a potential improvement of
about 1 dB. Notably, this gap is less pronounced in scenarios
with lower rates, as shown in Figure 8.
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Fig. 9. Estimated rate-distortion functions and performance of the constructive
CSI compression algorithms with different UE speeds. Unlike the static UE
case (v = 0 m/s), the estimated rate-distortion functions corresponding to v =
5,10 m/s show asymptotic achievable distortion limits (L1-L4). Moreover, as
UE speed v increases, the gain of the side information—indicated by the gap
between Rp(D) and R(D)-becomes greater.

3) Side Information Gains Under Limited Feedback: In
wireless systems operating with limited CSI feedback, how are
the benefits of side information affected?

The impact of side information on performance, both
in terms of the rate and distortion, varies across different
feedback regimes. The benefits of side information are par-
ticularly notable at lower CSI feedback rates, as illustrated in
Figure 8. For instance, in regions where the rate is near zero,
a gain of about 2.5 dB is expected from UL side information.
This advantage diminishes with increased feedback resources;
for example, at 150 Nats/Sample, the gain is observed to be
near zero.

However, this trend, i.e., the diminishing relative side infor-
mation gain as the feedback rate increases, does not hold if
the UE exhibits high mobility, a topic we will explore further
below.

4) Impact of UE Mobility on Rate-Distortion Trends: What
trends emerge under varying mobility conditions?

Now we extend our analysis to include feedback scenarios
for UE with mobility. Figure 9 illustrates the estimated rate-
distortion functions across various UE speeds (Om/s, Sm/s,
and 10m/s), with prior rate-distortion estimation results at
v = Om/s depicted in Figure 8 for reference. Each set of
lines, enclosed within ellipses, corresponds to results observed
within the same UE speed environment. Each vertical lines
labeled L1 to L4 have points of lowest achievable distor-
tion attained through rate-distortion tradeoffs from UEs with
mobility.

As UE mobility increases, the achievable distortion for
a given rate without side information deteriorates, reach-
ing a plateau despite increasing the rate. Specifically, when
v=0m/s, distortion continually decreases with increasing rate.
However, at v = 5m/s and v = 10m/s, distortion diminishes
with rate escalation, converging to approximately —6 dB and
—2 dB (see L2 and L4), respectively, even at high com-
pression rates exceeding 100 Nats. This phenomenon arises
from the inability to perfectly predict future CSI solely based
on outdated information. The stochastic nature of channel
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variations over time, compounded by mobility, renders com-
plete modeling challenging. This trend still persists even when
side information is available. In contrast to the v = Om/s
scenario, the asymptotes L1 and L3 suggest that achieving
distortions of approximately —7 dB and —4 dB represents
fundamental limits achievable through rate increase.

It is important to note that the trend of diminishing side
information gain with increased feedback does not apply in
these mobility scenarios. For instance, in the case of moderate
mobility (v =5m/s), even at high feedback rates exceeding 150
Nats/Sample, side information is expected to still contribute
over 1 dB gain. Similarly, at high mobility (v = 10m/s) with
feedback rates around or above 100 Nats/Sample, a substantial
gain of about 3dB from side information is still anticipated.
These observations highlight that in scenarios with higher
mobility, side information retains its value, providing benefits
that cannot be compensated for by merely increasing feedback
rates.

5) Impact of UE Mobility on the Benefit of Side Informa-
tion: How does UE mobility influence the relative benefit of
side information?

The advantage of including side information becomes more
pronounced with higher UE speeds. As the speed increases, the
utility of the older CSI is increasingly ineffective. In contrast,
when UL CSI is available as side information, it provides the
decoder with more current and reliable information, enhancing
its ability to accurately predict the DL CSI, thereby widening
the performance gap between scenarios with and without side
information.

In instances where the feedback codeword from the UE
stems from significantly outdated CSI—typically associated
with high UE speeds—the correlation between the desired
output and side information can surpass that of the outdated
CSLI. This observation is evident in comparison with the distor-
tion performance L5 and L4, where L5 represents distortion
achieved solely based on side information without feedback,
and L4 denotes the rate-distortion point achieved at high
rates, believed to converge to the lowest achievable distortion.
Notably, L5 < L4, indicating that side information conveys
more meaningful insights for the desired output. This trend is
also observed in the fixed-rate compression schemes with side
information. Specifically, compression with side information at
v = 10 m/s and zero feedback rate yields better performance
than 128-bit compression schemes without side information.
At v=0m/s and v=>5m/s, on the other hand, possessing large
information of the input source proves more informative than
relying solely on side information.

E. Discussion

Our key findings can be summarized as follows. First, we
observe that leveraging side information in a low-rate regime is
advantageous, particularly when the channel remains relatively
stable, as depicted in Figure 8. This is especially relevant
in scenarios where it is critical to conserve the UE’s power
by limiting the feedback link. In such scenarios, it may be
advantageous for the BS to utilize side information to realize
those benefits.
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Furthermore, for high-mobility UEs, employing side infor-
mation is significantly beneficial. The simulation reveals that
performance with more than 100 Nats without side information
deteriorates to about —2 dB, which is significantly poorer
than the performance achievable with side information even
at nearly zero rates. In such cases, the benefits of investing in
the processing of UL CSI may be expected to outweigh the
costs, leading to notable performance enhancements.

The estimated rate-distortion functions incorporating side
information for UEs with mobility indicate the existence of
sweet spots achieving near the lowest feasible distortion at a
reduced rate—specifically, 50 Nats at —6 dB NMSE for 5 m/s
UEs, and 40 Nats for —4 dB NMSE for 10 m/s UEs. These
findings suggest that there might be no benefit in increasing the
feedback rate beyond a certain threshold for moving UEs and
underscore the necessity for a mobility-dependent feedback
rate control to enhance system efficiency further.

The recovered CSI obtained by minimizing distortion has
wide-ranging applications, including interference mitigation at
the BS or as a key enabler for precoding strategies. In the
subsequent subsection, we explore the gain of side information
in DL transmission, particularly its impact on Bit-Error-
Rate (BER) performance. This analysis seeks to translate the
observed gain of side information in rate-distortion tradeoffs
into benefits for downstream tasks in wireless communication
systems.

1) Applications to DL Transmission: The recovered CSI
can be employed for precoding in DL transmission. Naturally,
more accurately recovered CSI is expected to result in reduced
BER. To assess the impact of UL side information in DL
transmission scenarios, we evaluate constructive CSI compres-
sion algorithms—both with and without side information—by
comparing their respective BER performance across various
feedback rates and UE mobility conditions.

To achieve this, the recovered CSI of size 8 x 667 complex
matrix is transposed, with each of the eight-dimensional vec-
tors corresponding to a precoding vector for one of the 667
subcarriers. Each vector is normalized to have a Euclidean
norm of one. BER measurements are then performed across a
range of Signal-to-Noise Ratios (SNRs) from —2 dB to 3 dB,
based on the implemented precoding strategy.

The results shown in Fig. 10 reveal consistent trends regard-
ing the relationship between UE mobility and the benefits
of side information. For static UEs with v = 0 m/s, side
information yields notable performance gains in the low-rate
feedback region, where limited knowledge of the original
source data exists. As the feedback rate increases, the side
information’s impact diminishes, aligning with observations
from Section VI-D-3. The middle subplot of Fig. 10 presents
BER-SNR curves for UEs moving at v = 5 m/s. Similar
to the findings in Section VI-D-4, UE mobility introduces
a notable gain in the high-feedback-rate region, contrasting
with the behavior observed for static UEs. The bottom subplot
provides the results for high-mobility UEs (v = 10 m/s). In
this scenario, side information continues to provide positive
gains in high rate region. It is also observed that for schemes
utilizing fewer than 64 feedback bits with side information
and ones without side information, the BER performance
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Fig. 10. BER vs. SNR curves for scenarios with v = 0, 5, and 10 m/s
(top to bottom). The value of UL side information is more pronounced in the
low-rate feedback region for static UEs. In contrast, high-mobility UEs can
benefit from side information at high-rate region, as it provides more relevant
and updated information compared to the outdated CSI.

are similar potentially due to the reduced accuracy of CSI
recovery, as these schemes exhibit distortion levels exceeding
—3 dB (see Fig. 9).

In summary, these additional analysis shows that side infor-
mation is particularly valuable in low-rate feedback scenarios
for low-mobility UEs. Conversely, for high-mobility scenarios,
side information can provide benefits in the high-feedback-rate
region.

F. Limitations, Potential Extensions, and Future Directions

1) Neural Network Models and Underlying Codeword Dis-
tribution: The proposed rate-distortion estimation method
relies on the parameterizing distributions via neural networks.
In this study, we utilized the model from [15] for the angular-
delay domain representation of CSI. Our methodology for
estimating the rate-distortion function with side information,
along with the fixed-rate compression scheme utilizing UL
side information, offers high flexibility, allowing the use of
various existing parameterized models for processing CSI
feedback.

However, as discussed in IV-B, neural network-based opti-
mization may yield suboptimal performance if the set of
representable distributions defined by the parameters does not
include the true distribution or if the optimization process itself
is suboptimal.

Potential improvements in the estimation accuracy could be
achieved by employing more advanced architectures, such as
the Transformer [64], known for its superior representational
capabilities, or by exploring alternatives to the parameterized
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Gaussian distribution to potentially achieve a tighter rate-
distortion curve. Additionally, increasing the number of data
samples and employing advanced optimization techniques
to solve the Lagrangian minimization problem more accu-
rately can help narrow the estimation gap. That said, these
approaches would introduce trade-offs, as larger and more
complex models may increase computational challenges in
optimization.

2) Side Information at Encoder and Decoder: The pro-
posed rate-distortion estimation method can be readily
extended to cases where side information is provided at
the encoder as well, corresponding to the scenario where,
in Figure 1, the switch (A) is closed. For instance, when
the decoder’s objective is to recover input source X, and side
information is available at both the encoder and decoder, the
rate-distortion function Rgp (D) is given as follows [46].

Rep(D) = min I(X;UlY). (8
qu|x,y (ulz,y),2=f(u,y): E[d(X,X)]<D
For a given negative slope value s, a corresponding point on
Rgp(D) is achieved by solving the following problem:

Ao [log 2T slace, 01}

qu|y (U |Y)
(©))
Similarly, it is

expected that the parameterization of
quix,y (U|X,Y), quiy (U|Y), and f can be adapted to solve
the problem. This scenario, where side information is available
at the encoder, is anticipated to model situations where the
CSI feedback encoder incorporates some UE information, such
as the UE’s speed, with the BS being aware of this side
information (i.e., mobility-aware feedback), or other available
information.

3) Different Types of Side Information, Distortion Mea-
sures, and Objectives: There are different types of use-
ful side information for signal design including historical
uplink/downlink CSI and non-Radio Frequency (RF) data,
such as GPS and LiDAR. Integrating this information into
RF tasks like beamforming shows promise for advancing
wireless systems [65], [66]. Moreover, ray-tracing techniques
in modern digital twin systems can provide highly accurate
channel estimates that closely correlate with true CSI [67],
[68], [69]. Analysis using our estimation method to quantify
the benefits of integrating those information in downstream
tasks is expected to provide useful insights for future wireless
networks. Additionally, applying our approach to scenarios
with different objectives and distortions, such as the average
cosine similarity across channel vectors or the BER in the DL
communication channel, would also be an interesting direction
for future research.

min
qu|Xx,Y >

VII. CONCLUSION

In this paper, we propose a new algorithm for estimating
the generalized rate-distortion function, with a specific empha-
sis on the rate-distortion function for computing with side
information. We apply this algorithm to the DL CSI feedback
problem having UL CSI as the side information and generate
rate-distortion functions. Using the estimated rate-distortion
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functions, we measure the gain of side information across
different feedback rates and UE mobility profiles. The results
signal that the benefits of side information depend significantly
on environmental factors and are most pronounced for UEs
with high mobility and low feedback overheads. We expect
that such observation can aid practical system design, helping
to decide whether to incorporate side information to enhance
performance at an extra cost.
APPENDIX A
PROBLEM FORMULATION (3)

The definition of conditional mutual information leads to
the following formulation.

min
qu|x (ulz), f

{Mwayﬂmﬂzm§

{ Z ax,v,u (2, y,u)

X yu
pxy (@, y)av.u(y, u)
This can be equivalently expressed as

in @P%%KNUKW
au x (ulz), f qu)y (U]Y)

= min
qu|x (ulz), f

(10)

x lo

(1)

}ﬁmzm@.
(12)
Here, the expectation is taken with respect to the joint dis-
tribution of (X,Y,U). For given realizations of X and Y,
the conditional distribution of the codeword U is determined
solely by X based on the communication model that we
deal with. This restriction arises from the system model,
which does not allow for the codeword to be controlled
based on side information. Consequently, this simplifies to
quix,y (U|X,Y) = q(U|X), thereby completing the proof.

APPENDIX B

PROOF OF LEMMA 1

We start with the following equation:
QU|X(U|X§ 9po) = QU\X7Y;GPO(U|Xa Y)-

This equation stems from the premise that the distribution of
codeword U is deterministic on X when it is given. Following
this, we have

13)

UlX; 0,
argminEx v, [log —qU‘X( | P )]

qu|y QU|Y(U‘Y)
= argmin Ex,y [KL(qu|x (U|X; 0po) lGuy (UY))]
qu|y
= argmin Ex y [KL(qux,v;6,, (U|X, V)4 )y (U]Y))]
qu|y
= argminEx y [Z qu|X,Y:6, (U X, Y)
qu|y u

(log qu|x,v 6, (ulX,Y) —log QU\Y(U|Y))}

= argmin Ey [ZleY($|Y)QU\X,Y;9p0(u|xv Y)
qu|y x.u

(log qu|x,v 6, (ulz,Y) —log QUIY(U|Y>)}

= argmin Ey [Z qU,x|Y:0,, (U, 7| Y)
qu|y XU
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(10g quix v-0,, (ul, Y) = log quy (ulY)) |

= argminEy {Z qU,x|Y 0, (U, 2|Y)
qu|y xu

(log qu|x (u]z; B0) — log QUIY(U|Y))}

= argmax Ey Z U, XY, (U |Y) log Guiy (u]Y)

qu|y

XU
= argmax Ey ZqU‘y;gm(u\Y) log Guy (u]Y) (14)
qu|y

u

As both qy7|y.e,, and gy |y are probability distributions, apply-
ing Gibbs’ inequality completes the proof.

APPENDIX C
SIMULATION CONFIGURATION IN SEC. VI

A. Training Configuration

We utilize the Adam optimizer [70] with a cosine annealing
learning rate scheduler [71], where the learning rate ranges
from Se-4 to le-6, alongside a minibatch size of 100. We set
T =2x10%and T’ = 1.

B. Parameterization of Distributions

CSl instances are preprocessed by converting to the angular-
delay domain via Inverse Fast Fourier Transform (IFFT) and
trimming high-delay near-zero regions, following existing CSI
preprocessing methods [14], [29]. This results in an 8 x 32
complex-valued matrix, with 8 angular and 32 cropped delay
components. We utilize inception block-based [72] encoding
and decoding schemes [15] for the distribution parameteriza-
tion. The encoding module processes the input source using
the specified encoding scheme, producing an output of size
2x8x 32, which corresponds to a real-valued 8 x 32 complex
matrix. This output is then expanded to a 1024-dimensional
representation via a linear layer. The expanded representa-
tion is subsequently divided into two components, each with
dimensions 2 x 8 x 32, representing the component-wise mean
and variance for gy x (u|z;6),). The same structure is used
for gy (u]y; Opr). The decoder, f(u,y; Ogec), takes two 8 x 32
complex-valued matrices (codeword and side information) as
input. Initially, the codeword is processed through a linear
layer and then concatenated with the side information. Subse-
quently, this concatenated information is fed into an inception
block-based decoder [15], outputting an 8 x 32 complex matrix.

C. A Constructive Neural CSI Compression Algorithm

In this subsection, we describe the implementation of the
constructive CSI compression algorithm. By adjusting the
output of the encoder while maintaining the same processing
architectures of both the encoder and decoder, a deterministic
N -bit compression algorithm can be devised. Consider N
sized binary codeword for the compression. For efficient
implementation, we take B = 16 as a new base and consider
codewords of length | = N/ log,(16) to maintain cardinality.

X NEbd

A, cl
The encoder outputs a vector U, € Rlee2(16) where Ngpq
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is an embedding dimension, which is achieved by adjusting
the size of the linear transformation layer of the encoding
module in [15]. This vector is then quantized using a trainable
codebook of 16 different Ngpq-dimensional vectors, based on
[73]. The quantized output is denoted by U.. The encoder
transmits indices of these vectors via a wireless link to the
BS, forming codeword U. The BS reconstructs U, using these
indices and the corresponding vectors in the codebook. The
same decoder modules are then applied. We have Ngpg = 8
and set the distortion function as the NMSE.

The codebook containing the embedding vectors is also
trainable. This is achieved by penalizing the loss function
such that the quantized output of the encoder is encouraged
to be close to the corresponding embedding vectors, while
simultaneously guiding the embedding vectors to be close to
the encoder output. Specifically, for given instances z, z, and
u, we use the penalized loss function [73] as

d(z,2) + B(llsgUe] — ullf + [[Ue = sqlu]lf), (15

where sg represents the stop-gradient operator. This operator
treats its input as a constant, effectively blocking the gradient
propagation through the input. We set 5 equal to the elemen-
twise variance of Hpy and update all trainable parameters in
the direction of minimizing the penalized loss.
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