
Joint Update Rate Adaptation in Multiplayer Cloud-Edge
Gaming Services: Spatial Geometry and Performance Tradeoffs

Saadallah Kassir

The University of Texas at Austin

Austin, TX, USA

Gustavo de Veciana

The University of Texas at Austin

Austin, TX, USA

Nannan Wang

Fujitsu Network Communications

Richardson, TX, USA

Xi Wang

Fujitsu Network Communications

Richardson, TX, USA

Paparao Palacharla

Fujitsu Network Communications

Richardson, TX, USA

ABSTRACT
In this paper, we analyze the performance of Multiplayer Cloud

Gaming (MCG) systems. To that end, we introduce a model and new

MCG-Quality of Service (QoS) metric that captures the freshness

of the players’ updates and fairness in their gaming experience.

We introduce an efficient measurement-based Joint Multiplayer

Rate Adaptation (JMRA) algorithm that optimizes the MCG-QoS by

overcoming large (possibly varying) network transport delays by

increasing the associated players’ update rates. The resulting MCG-

QoS is shown to be Schur-concave in the network delays, leading to

natural characterizations and performance comparisons associated

with the players’ spatial geometry and network congestion. In

particular, joint rate adaptation enables service providers to combat

variability in network delays and players’ geographic spread to

achieve high service coverage. This, in turn, allows us to explore

the spatial density and capacity of compute resources that need to

be provisioned. Finally, we leverage tools from majorization theory,

to show how service placement decisions can be made to improve

the robustness of the MCG-QoS to stochastic network delays.

CCS CONCEPTS
•Networks→Networkperformancemodeling;Networkper-
formance analysis.

KEYWORDS
Multiplayer Cloud Gaming, Rate Adaptation, Network Resource

Provisioning, Service Placement, Edge Computing

ACM Reference Format:
Saadallah Kassir, Gustavo de Veciana, Nannan Wang, Xi Wang, and Paparao

Palacharla. 2021. Joint Update Rate Adaptation in Multiplayer Cloud-Edge

Gaming Services: Spatial Geometry and Performance Tradeoffs. In The
Twenty-second International Symposium on Theory, Algorithmic Foundations,
and Protocol Design for Mobile Networks and Mobile Computing (MobiHoc
’21), July 26–29, 2021, Shanghai, China. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3466772.3467048

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MobiHoc ’21, July 26–29, 2021, Shanghai, China
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8558-9/21/07. . . $15.00

https://doi.org/10.1145/3466772.3467048

1 INTRODUCTION
Multiplayer Cloud Gaming (MCG) is emerging as one of the possible

future dominant applications. Benefiting from the latest techno-

logical advances in communication networks, GPU virtualization,

and high-performance computing systems in the cloud and/or edge

network, this new Gaming as a Service business model is appeal-

ing to the three parties involved: gamers, game developers and

game service providers (GSPs) [8]. Unlike traditional online gaming

frameworks, the game is hosted at a remote server, allowing the

players to interact by sending regular updates and receiving a video

stream without the need for dedicated hardware or need to own the

game license. Multiple platforms are already being commercialized,

such as GeForce Now by Nvidia [3], Project xCloud by Xbox [5],

Google Stadia [2], Playstation Now [4], and Amazon Luna [1].

While such platforms are becoming increasingly popular, many

network design questions associated with delivering the best MCG-

Quality of Service (MCG-QoS) across players remain unexplored.

These include the choice of effective network architectures, resource

allocation/provisioning strategies, performance guarantees under

stochastic network congestion, or ensuring fairness amongst het-

erogeneous players. These technical challenges are likely to be exac-

erbated by the tight performance guarantees required by Extended

Reality (XR) enhanced collaborative applications/games [14].

Contributions.Akey challenge associatedwith supportingmul-

tiplayer games is that they may involve a (possibly large) num-

ber of geographically dispersed players increasing the games’ ex-

posure to congestion variations across a large set of network re-

gions/resources. This makes the MCG-QoS potentially volatile mak-

ing it particularly difficult to provide stable guarantees. In this paper,

we address this general challenge through four key contributions.

The first contribution is the introduction of a novel multiplayer

game model and MCG-QoS metric which captures the joint impact

of the network delays/congestion experienced over different time-

scales by the all the players participating in the game.

The second contribution is the development of a measurement-

based Joint Multiplayer Rate adaptation Algorithm (JMRA) geared

at ensuring that the information transmitted by all the players is

delivered and processed in a timely manner at the game server.

We show how players can overcome large network delays through

increased update rates to improve the MCG-QoS.

The third contribution lies in showcasing how GSPs can leverage

the benefits of JMRA to cost effectively provision network resources

so as to guarantee high service coverage. Leveraging tools from

multivariate majorization theory, we relate the MCG-QoS to the

https://doi.org/10.1145/3466772.3467048
https://doi.org/10.1145/3466772.3467048

MobiHoc ’21, July 26–29, 2021, Shanghai, China S. Kassir, G. de Veciana, N. Wang, X. Wang, P. Palacharla

player’s spatial configuration and identify the worst-case geometry

for a given “geographical spread". We show how the spread impacts

the MCG-QoS, and how GSPs might envision provisioning network

resources to meet service coverage requirements, e.g., by exploiting

edge computing to deliver services with tight timeliness constraints.

The fourth contribution consists in providing a basis to study the

MCG service placement problem using majorization theory. We pro-

pose a strategy that can be adopted by GSPs to make the MCG-QoS

robust to stochastic variations in the network delays/congestion.

We note that the framework we present in this work is not

limited to gaming applications. It is indeed also relevant to the

general setting of provisioning real-time collaborative cloud-based

services to geographically scattered participants/contributors, e.g.,

collaborative document editing, source code version control, etc.

Related Work. Multiple researchers have proposed approaches

to optimize the performance of MCG networks, in a wide variety

of settings, e.g., proposing energy-aware solutions [10] or cost-

effective resource allocation strategies, Virtual Machine (VM) place-

ment and network architectures subject to QoS constraints [12, 13,

16, 18]. However, this body of work does not place emphasis on

the impact that each individual player has on the overall gaming

experience. Other studies have focused on the interaction among

players. In [9], the authors distinguish the notions of absolute re-

sponse delay and inter-player delay which in turn allows them to

study the fairness among the players, and place the VM resources

accordingly. In [15], the authors solve a multi-objective optimiza-

tion problem to solve the network resource provisioning problem,

by minimizing both the worst inter-player delay and the network

operating cost. However, none of these works consider the effect

of adapting the players’ update rates to improve on the freshness

of the game state data received/computed at the server side. This

notion of freshness has been studied in the context of Cloud Gam-

ing in [22]. While the game server update rate is fixed, the authors

analyze the effect of synchronizing the game server’s and the play-

ers’ phases under stochastic network delays, to minimize the mean

Age-of-Information at the player side. Unlike this study, our focus

is on the player-to-server traffic, characterizing the timeliness of

the information processed at the game server side.

Paper Organization. This paper is organized as follows. In

Section 2, we present our system model and MCG-QoS metric.

We then introduce and study the properties of the JMRA algorithm

towards optimizing the MCG-QoS in Section 3. In Section 4, we

model and study the impact of the players’ geographical locations

on the MCG-QoS, and we deduce some approaches that can be used

by GSPs to provision the network resources. We then capitalize

on the models and performance characterization in Section 5 to

provide additional insights about service placement strategies to

face network delays variability. We conclude the paper in Section 6.

2 SYSTEM MODEL
2.1 Network Architecture
We consider a multiplayer cloud gaming system composed of three

entities, consistent with MCG network architectures studied in the

literature, see [12, 15, 23]:

(1) A setP of𝑛 players in a geographic configuration x = (x𝑖 , 𝑖 ∈
P), where x𝑖 ∈ R2 corresponds to the location of player 𝑖 .

(2) A Game-server (G-server) running on a VM in a compute

node at location g ∈ R2 that hosts the game, i.e., that keeps

track of the state of the game by receiving and processing

updates from the players.

(3) Rendering servers (R-servers) that receive aggregate state

information from the G-server, render the video feed and

stream it to the players. R-servers are typically placed closer

to the players than the G-server to reduce network conges-

tion, but they can also be colocated in the same datacenter.

2.2 Network Delay Variation Model
We model network delay variations happening on two different

time scales: (1) slow time-scale variations, happening on the order of

seconds or minutes, modeling overall network congestion level, and

(2) fast time-scale packet delay variations, happening on the order

of milliseconds or microseconds, modeling jitter and instantaneous

bottlenecks in the network. In this work, we investigate the effect

of slow time-scale variations due to network congestion, while

abstracting out the fast time-scale variations, using a point estimate,

e.g., the mean, median, or 90
th

percentile of this stochastic process

over a small time window, and over which the slow time-scale delay

variations are assumed to be constant. Hence, this point statistic

is itself slowly varying over time. We model the slow-variations

of this point statistic due to network congestion delays between

player 𝑖 and the G-server via a random variable 𝐷𝑡
𝑖
. In the sequel,

we loosely refer to it as the typical transport delay experienced

by player 𝑖 . In addition, we assume that the impact of the players’

updates on the network congestion they see is negligible.

2.3 Game Operation Model
The game’s operation model, depicted in Figure 1, can be summa-

rized in three stages.

(1) Player 𝑖 sends periodic updates at a rate 𝜌𝑖 updates per sec-

ond to the G-server, containing instructions from the game

controller (e.g., character’s movement, camera/headset rota-

tion) and experiences a typical transport delay 𝐷𝑡
𝑖
seconds.

(2) The G-server, in turn, forms periodic update batches by ag-

gregating and processing everything it has received from the

players every 𝜏 seconds. This model can be characterized by

two types of delays (1) the individual random waiting time

Figure 1: Figure of the game operation timeline

Joint Update Rate Adaptation in Multiplayer Cloud-Edge Gaming Services: Spatial Geometry and Performance Tradeoffs MobiHoc ’21, July 26–29, 2021, Shanghai, China

𝑊𝝆,𝑖 capturing the time between the latest update received

from player 𝑖 and the beginning of a typical compute cycle,

and (2) a shared batch compute delay to process the updates

aggregated in a batch, denoted by 𝑑𝑐 . We model this batch

compute delay 𝑑𝑐 (𝑠) as a deterministic differentiable convex

function of the game’s overall update load 𝑠 =
∑

𝑗 𝜌 𝑗 at the

G-server side. While the load is stochastic (as it depends

on the relative phases of the players’ update cycles and the

server’s compute cycles), we assume that the load variations

are negligible, and 𝑠 can be seen as the mean batch load. In

addition, we impose the constraint 𝑑𝑐 (𝑠) ≤ 𝜏 to ensure that

the G-server completes the processing of a batch before the

end of a compute cycle of period 𝜏 , see Figure 1.

(3) Once the aggregated game’s state is computed, the G-server

sends it to the R-servers, that will render the video feed in

𝑑𝑟 seconds and stream it back to the associated players.

In this paper we focus on the timeliness of the player to G-server

traffic, leaving the analysis of the round-trip loop as future work.

2.4 Game Timeliness Model
In our framework, we seek to ensure that the state of the game is

updated in a timely fashion. We use as our timeliness metric the

age of the game 𝐴d𝑡 ,𝝆 , conditioned on a given delay vector d𝑡 (a
realization of the random vector D𝑡 = (𝐷𝑡

𝑖
,∀𝑖 ∈ P)) and a choice

of update rate vector 𝝆 = (𝜌𝑖 ,∀𝑖 ∈ P), and defined as:

𝐴d𝑡 ,𝝆 = max

𝑖=1,...,𝑛
[𝑑𝑡𝑖 +𝑊𝝆,𝑖] + 𝑑𝑐 (

𝑛∑
𝑗=1

𝜌 𝑗) (1)

where 𝑊𝝆,𝑖 ∼ Uniform([0, 1

𝜌𝑖
]),∀𝑖 ∈ P as we assume that the

transmissions are asynchronous with the G-server’s batch process-

ing regular schedule, hence a typical compute batch starts to get

processed at a uniform random time in an interval of 1/𝜌𝑖 seconds.
In this formulation, the age of each player’s updates processed

at the G-server is the sum of the transport delay, waiting time at

the G-server, and batch compute delay. The age of the game is

then modeled as the maximum age of the each player’s updates

to capture the fact that stragglers considerably impact the quality

of experience of all the other players interacting on a common

virtual space. This formulation also hints at the need to ensure that

network resources are “fairly" shared among the players involved in

the game. This model also recognizes that the game’s age depends

jointly on the players’ update rates and the network delays. As

the update rates can be controlled, we identify a basic tradeoff

involving this decision. While larger update rates lead to smaller

waiting times, and help reduce the age of the game’s state, this also

results in larger computation delays, increasing the game’s age.

2.5 The JMRA Problem
Our objective is to solve the Joint Multiplayer Rate Adaptation

(JMRA) problem that ensures a small game age, defined as follows:

Problem 1: (Joint Multiplayer Rate Adaptation). Given the
current transport delay vector Dt = dt, and a desired age level 𝑎0,
the JMRA problem consists in finding the update rate vector that
maximizes the probability that the age of the game does not exceed
some desired level 𝑎0, i.e., solving:

𝝆∗ (d𝑡) = argmax

𝝆

{
P(𝐴d𝑡 ,𝝆 ≤ 𝑎0) : 𝑑𝑐 (

∑
𝑗

𝜌 𝑗) ≤ 𝜏

}
(2)

= argmax

𝝆
P(max

𝑖
[𝑑𝑡𝑖 +𝑊𝝆,𝑖] + 𝑑𝑐 (

∑
𝑗

𝜌 𝑗) ≤ 𝑎0)

s.t. 𝑑𝑐 (
∑
𝑗

𝜌 𝑗) ≤ 𝜏 (3)

= argmax

𝝆

𝑛∏
𝑖=1

P(𝑊𝝆,𝑖 ≤ 𝑎0 − 𝑑𝑡𝑖 − 𝑑𝑐 (
∑
𝑗

𝜌 𝑗))

s.t. 𝑑𝑐 (
∑
𝑗

𝜌 𝑗) ≤ 𝜏 (4)

= argmax

𝝆

𝑛∑
𝑖=1

log ©­«𝜌𝑖 · (𝑎0 − 𝑑𝑡𝑖 − 𝑑𝑐 (
∑
𝑗

𝜌 𝑗))
ª®¬
−

s.t. 𝑑𝑐 (
∑
𝑗

𝜌 𝑗) ≤ 𝜏 (5)

where we define 𝑥− = min[𝑥, 0]. We can now define the MCG

Quality of Service as follows:

Definition 1: (MCG-QoS). For a given transport delay vector d𝑡 ∈
R𝑛+, we define the MCG-QoS 𝑞(d𝑡) as:

𝑞(d𝑡) =
{
P(𝐴d𝑡 ,𝝆∗ (d𝑡) ≤ 𝑎0), if 𝝆∗ (d𝑡) exists,
0, otherwise,

(6)

i.e., the probability that the age constraint is met under JMRA.

In the sequel, we will present an efficient algorithm that solves

for 𝝆∗ (d𝑡), hence computing 𝑞(d𝑡), under slowly varying delays.

3 THE RATE ADAPTATION ALGORITHM
In this section, we derive the Joint Multiplayer Rate Adaptation

algorithm (JMRA), which jointly uses measured network delays to

solve the JMRA problem described in Problem 1. We then study

some of its properties, before evaluating its performance.

3.1 Algorithm Description
We envision an algorithm to be executed periodically at the G-server

side. At each iteration, the G-server characterizes the transport de-

lays to each player in the game. This can be done, for instance, by

estimating the distribution of the (fast time-scale) packet delays

experienced by previous updates in a sliding window, and com-

puting the desired point estimate, e.g., the mean, median or 90
th

percentile. We assume that the players and G-server can measure

time using synchronized clocks, hence the packet delays can be

estimated with reasonable accuracy. Based on this information, the

G-server re-optimizes the players’ update rates accordingly, hence

adapting to slow-time variations in the delays/congestion. Natu-

rally, the frequency of execution of the algorithm would depend on

the time scale for (slow) variations in the network delays’ statistics.

We describe below the procedure to optimize for the players’ update

rates given the vector of measured network delays d𝑡 .
Observe that Problem 1 is convex but it has a non-differentiable

cost function leading to slow convergence of a numerical solver. We

propose an alternative algorithm to compute the optimal update

MobiHoc ’21, July 26–29, 2021, Shanghai, China S. Kassir, G. de Veciana, N. Wang, X. Wang, P. Palacharla

rate vector, by decomposing the optimization problem into a set of

simpler (smooth) sub-problems. In addition, this analysis allows us

to extract some basic properties of the JMRA policy.

Our approach is to first consider the case where the aggregate

game server load 𝑠 =
∑

𝑗 𝜌 𝑗 is fixed and known. Under this assump-

tion, one can use the Lagrange multiplier procedure to solve for

the optimal 𝝆∗ (d𝑡 , 𝑠) in Problem 1 as a function of 𝑠 . We find:

𝜌∗𝑖 (d
𝑡 , 𝑠) = min

[
1

𝜇 (d𝑡 , 𝑠) ,
1

𝑎0 − 𝑑𝑡
𝑖
− 𝑑𝑐 (𝑠)

]
,∀𝑖 (7)

where 𝜇 (d𝑡 , 𝑠) is s.t.
∑
𝑗

𝜌∗𝑗 (d
𝑡 , 𝑠) = 𝑠 .

Observe that for any delay vector d𝑡 , and any choice of the sum-rate

𝑠 , two types of players can be distinguished. We have on one hand a

setS(d𝑡 , 𝑠) of support players, that will all pick the same update rate

of
1

𝜇 (d𝑡 ,𝑠) . These players see a transport delay to the G-server that

is too large to be able to fully adapt their update rate to compensate

for the large transport delays. We have from Equation 7, player

𝑖 ∈ S(d𝑡 , 𝑠) if 𝑑𝑡
𝑖
≥ 𝑎0− 𝜇 (d𝑡 , 𝑠) −𝑑𝑐 (𝑠). We have on the other hand

a set S(d𝑡 , 𝑠) of non-support players that can flexibly trade-off delay

for update rate, where 𝑖 ∈ S(d𝑡 , 𝑠) if 𝑑𝑡
𝑖
< 𝑎0 − 𝜇 (d𝑡 , 𝑠) − 𝑑𝑐 (𝑠).

The players in this set do not impact directly the MCG-QoS, except

by contributing to the total server congestion, as their respective

terms in the sum vanish after substituting 𝜌∗
𝑖
(d𝑡 , 𝑠). Equipped with

the notion of support set, we can state the following property:

Property 1: (Support Set Monotonicity in Transport Delays).
For a given delay vector d𝑡 ∈ R𝑛+, and sum update rate 𝑠 ∈ R+, if
𝑑𝑡
𝑖
≥ 𝑑𝑡

𝑗
, then 𝑗 ∈ S(d𝑡 , 𝑠) =⇒ 𝑖 ∈ S(d𝑡 , 𝑠). Thus, there are only

𝑛 + 1 possible support sets.

Wenowuse this property alongwith the solution of Equation 7 to

solve for the optimal load 𝑠 . After substituting 𝝆∗ (d𝑡 , 𝑠), Problem 1

reduces to solving the one dimensional problem:

𝑠∗ (d𝑡) = argmax

𝑠

𝑛∑
𝑖=1

[log
𝑎0 − 𝑑𝑡

𝑖
− 𝑑𝑐 (𝑠)

𝜇 (d𝑡 , 𝑠)]− (8)

s.t.

{∑𝑛
𝑖=1min(1

𝜇 (d𝑡 ,𝑠) ,
1

𝑎0−𝑑𝑡𝑖 −𝑑𝑐 (𝑠)
) = 𝑠

𝑑𝑐 (𝑠) ≤ 𝜏

This problem is still not easily solved as the cost function is

non-differentiable and the constraint set is non-convex. However,

by integrating more information about the support set, one can sim-

plify this problem further. Invoking Property 1, we can distinguish

𝑛 + 1 cases corresponding to the 𝑛 + 1 possible support sets. Let

S𝑚 (d𝑡) be the possible support set that contains𝑚 players with the

largest measured delays, for 0 ≤ 𝑚 ≤ 𝑛. Each sub-problem reduces

to solving for the optimal game server load 𝑠∗𝑚 (d𝑡) assuming that

S𝑚 (d𝑡) is the support set. For each sub-problem𝑚, the Lagrange

multiplier 𝜇 (𝑠, d𝑡) becomes 𝜇𝑚 (d𝑡 , 𝑠) and is dictated by the first

constraint in Equation 8. Without loss of generality, we index the

players in descending order of transport delays, and we get that:

𝜇𝑚 (d𝑡 , 𝑠)−1 = 1

𝑚

(
𝑠 −

𝑛∑
𝑖=𝑚+1

1

𝑎0 − 𝑑𝑡
𝑖
− 𝑑𝑐 (𝑠)

)
(9)

After substituting this constraint into the cost function of the

𝑚th
sub-problem U𝑚 (d𝑡 , 𝑠), the latter reduces to:

U𝑚 (d𝑡 , 𝑠) =
𝑚∑
𝑖=1

log(𝑎0 − 𝑑𝑡𝑖 − 𝑑𝑐 (𝑠)) (10)

+𝑚 · log(𝑠 −
𝑛∑

𝑖=𝑚+1

1

𝑎0 − 𝑑𝑡
𝑖
− 𝑑𝑐 (𝑠)

) −𝑚 · log(𝑚)

and the new sub-problem becomes:

𝑠∗𝑚 (d𝑡) = argmax

𝑠

{
U𝑚 (d𝑡 , 𝑠) : 𝜇𝑚 (d𝑡 , 𝑠) > 0, 𝑑𝑐 (𝑠) ≤ 𝜏

}
(11)

where U𝑚 (d𝑡 , 𝑠) is smooth and concave in 𝑠 over the range of

values where 𝜇𝑚 (d𝑡 , 𝑠) > 0 and the constraint set is convex. We

note that the range of 𝑠 values where 𝜇𝑚 (d𝑡 , 𝑠) > 0 can be found

by solving for the roots of the non-linear Equation 9. Hence, the

solution to this problem can be found using a convex optimization

solver, e.g., Gradient Ascent, alongwith a non-linear equation solver.

Finally, the optimal 𝑠∗ (d𝑡) is such that 𝑠∗ (d𝑡) = 𝑠𝑚∗ (d𝑡) where
𝑚∗ = argmax𝑚 U𝑚 (d𝑡 , 𝑠∗𝑚). We summarize JMRA in Algorithm 1.

Algorithm 1: Joint Multiplayer Rate Adaptation (JMRA)

Result: Solves for 𝝆∗ (d𝑡)
1 Estimate 𝑑𝑡

𝑖
, ∀𝑖;

2 Solve 𝑠0 =
∑𝑛
𝑖=1

1

𝑎0−𝑑𝑡𝑖 −𝑑𝑐 (𝑠0)
;

3 if 𝑠0 exists AND 𝑑𝑐 (𝑠0) < 𝜏 then
4 𝜌∗

𝑖
= 1

𝑎0−𝑑𝑡𝑖 −𝑑𝑐 (𝑠0)
,∀𝑖;

5 else
6 for m=1 to n do
7 Find range of feasible 𝑠 s.t. 𝜇𝑚 (d𝑡 , 𝑠) > 0;

8 Solve for 𝑠∗𝑚 (d𝑡) in Eq. 11 using Gradient Ascent;

9 end
10 Pick 𝑠∗ (d𝑡) = 𝑠𝑚∗ (d𝑡),𝑚∗ = argmax𝑚 U𝑚 (d𝑡 , 𝑠∗𝑚 (d𝑡));
11 Compute 𝝆∗ (d𝑡) = 𝝆∗ (d𝑡 , 𝑠∗ (d𝑡)) using Equation 7

12 end

3.2 Algorithm Analysis
In Section 3.1, we proposed and established the optimality of the

JMRA algorithm.We now study some interesting properties thereof,

and compare its performance to a baseline where all the players

share the same update rate. We start by stating a theorem that

relates the players’ update rates to their delays to the G-server.

Proposition 1: (Rate-Proximity Tradeoff). Given a delay vector
d𝑡 ∈ R𝑛+ and any players 𝑖, 𝑗 ∈ P, if 𝑑𝑡

𝑖
≥ 𝑑𝑡

𝑗
then 𝜌∗

𝑖
(d𝑡) ≥ 𝜌∗

𝑗
(d𝑡).

This proposition follows directly from Equation 7 and Prop-

erty 1. Intuitively, this property states that players experiencing

large transport delays, can compensate for this by increasing the

rate at which they send information to the game server. While a

unilateral increase in a player’s update rate increases the G-server

load, and hence all the players’ compute delays, the algorithm finds

the appropriate congestion level for the given player’s configura-

tion. An alternate interpretation would be that the players that

experience the smallest delays are willing to reduce their update

Joint Update Rate Adaptation in Multiplayer Cloud-Edge Gaming Services: Spatial Geometry and Performance Tradeoffs MobiHoc ’21, July 26–29, 2021, Shanghai, China

rates to allow players with larger transport delays to benefit from

increased communication/compute resources.

We now compare the performance of the JMRA algorithm with

one that distributes equal communication/compute resources among

the players. We introduce the Best Static Rate algorithm (BSR), that

solves Problem 1 subject to the additional constraint that all the

players’ update rates are the same. We note that this algorithm

outperforms any algorithm that uses a fixed update rate imposed

by the game designer, as the static update rate is still optimized

based on the delay vector. Hence, the reported performance of the

BSR algorithm should be viewed as as an upper-bound on what can

be achieved when players used fixed update rates. We compare the

two algorithms using the following performance metric:

Definition 2: (𝝐-Playable Games). A game is said to be 𝜖-playable
for a given transport delay vector d𝑡 ∈ R𝑛+, and 𝜖 ∈ [0, 1], if its MCG-
QoS function satisfies the condition 𝑞(d𝑡) > 1 − 𝜖 .

To compare the performance of the JMRA and BSR update rate

selection algorithms, we characterize the probability of a game

being 𝜖-playable under randomly generated player configurations.

Towards evaluating the impact of the game’s spatial geometry, i.e.,

the relative placement of the players and the G-server, we consider

a setup where 𝑛 players are placed randomly and uniformly in a

disk of radius 𝑟 meters forming a player configuration X ∈ R𝑛×2,
while the G-server is placed in the center of the disk assumed to

be the origin, i.e., g = 0. In addition, we model the network delay

experienced by player 𝑖 to simply be a deterministic increasing

linear function of its distance to the G-server, hence:

𝑑𝑡𝑖 (x, g) = 𝛽1 + 𝛽2 · ∥x𝑖 − g∥2 (12)

where 𝛽1 captures the communication delay components that are

independent of the distance between the player and the G-server,

e.g., contention delay on the wireless interface, and 𝛽2 is a coeffi-

cient inversely proportional to the speed of light in fiber. We pick

values of 𝛽1 = 3 × 10
−3

seconds and 𝛽2 = 1 × 10
−8

seconds/meter,

consistently with empirical studies in WANs, see [17].

We also assume a specific model for the batch compute delay 𝑑𝑐 :

𝑑𝑐 (𝑠) = 𝑠 · 𝜏
𝑛 · 𝑘𝐺

(13)

where 𝑘𝐺 corresponds to the compute capacity reserved per player

resulting from the compute resources allocated to the G-server’s

VM. This functional form is motivated by the fact that the expected

number of updates received in a batch, i.e., in a window of 𝜏 seconds,

is 𝑠 · 𝜏 updates, while the overall compute capacity allocated for the

G-server’s VM is such that it can process 𝑛 · 𝑘𝐺 updates/second.

Equipped with these models, we compare in Figure 2 the likeli-

hood that a randomly generated game configuration is 𝜖-playable,

under the JMRA and BSR algorithms.

The figure clearly shows that JMRA outperforms the BSR al-

gorithm, as a random player configuration is more likely to lead

to a playable game configuration. The performance gap is most

significant for small 𝜖 , i.e., in the regime we expect to operate. For

instance, if a GSP seeks to offer high-quality games by picking 𝜖 = 0,

then around 79% of the randomly generated game configurations

can be supported under JMRA, while none can be supported under

BSR. The main takeaway of these results lies in the observation

that allowing flexibility in the choice of the players’ update rates

Figure 2: Comparison of the probability of the game being
𝜖-playable under JMRA and BSR algorithms as a function of
𝜖, under random players’ configurations; 𝑛 = 20, 𝑟 = 3×10

6m,
𝑎0 = 50ms, 𝜏 = 20ms, 𝑘𝐺 = 150 updates/s/player.

considerably improves the MCG-QoS, or equivalently, allows the

GSPs to deploy reduced network resources for a desired MCG-QoS.

4 SERVICE COVERAGE ANALYSIS AND
NETWORK RESOURCE PROVISIONING

So far we have presented an efficient algorithm to maximize the

MCG-QoS through joint multiplayer rate adaptation for a given

network congestion regime as captured by the network delay vector.

A GSP will, however, want to guarantee that newly instantiated

games are playable for configurations that are not “too spread-out"

and/or experiencing network congestion outliers. In this section, we

further introduce a model tying geometry to network congestion

and analyze the large-scale compute resources a GSP would need to

deploy (e.g., rent from spatially distributed cloud service providers)

so as to ensure that MCGs with a given geographical spread will

be playable under JMRA – i.e., ensure MCG service coverage.

4.1 Linking Players’ Spatial Geometry to
Network Congestion

To capture the relationship between players’ configuration geom-

etry and large-scale network congestion, we model the typical
transport delay vector D𝑡

experienced by the players, via a ran-

dom vector D𝑡
𝜹
= (𝐷𝑡

𝜹,𝑖
, 𝑖 ∈ P). It is parametrized by a distance

vector 𝜹 = (𝛿𝑖 , 𝑖 ∈ P), where 𝛿𝑖 is the distance from player 𝑖 to the

G-server and 𝐷𝑡
𝜹,𝑖

models the typical slow variations in transport

delay experienced by player 𝑖 a distance 𝛿𝑖 from the G-server.

Remark. We emphasize that this model is not intended to capture

the specific characteristics of congestion/delay variations as seen

at a particular location, but instead what would be typically experi-

enced by players in a large scale network to enable a study of the

large-scale resources the GSP would require.

Assumption 1: (Network Congestion Model).We assume for
any player configuration with associated distance vector 𝜹 ∈ R𝑛
that D𝑡 ∼ D𝑡

𝜹
where the entries of D𝑡

𝜹
are mutually independent

and furthermore for z ∈ R𝑛+ and 𝑖 ∈ P we have that1 E[𝐷𝑡
𝜹,𝑖

] ≤
E[𝐷𝑡

𝜹+z,𝑖] and D
𝑡
𝜹
≤icx D𝑡

𝜹+z.

1
As in[21], we define increasing convex dominance as X ≤icx Y ⇐⇒ E[𝜙 (X)] ≤
E[𝜙 (Y)], for all increasing convex 𝜙 : R𝑛 → R.

MobiHoc ’21, July 26–29, 2021, Shanghai, China S. Kassir, G. de Veciana, N. Wang, X. Wang, P. Palacharla

Intuitively players that are further away from the G-server would

on average experience higher transport delays, e.g., due to increased

propagation delay and number of hops traversed. Perhaps more im-

portantly with higher distances one might expect a higher variabil-

ity due to congestion on intervening network resources. The mul-

tivariate increasing convex (icx) ordering, assumed above, see [21],

partially captures an ordering in delay “variability" with distance.

As previously mentioned, the distribution of D𝑡
𝜹
reflects slowly

varying network congestion an MCG game will need to overcome

through rate adaptation. For simplicity, the GSP might provision

network resources respect to a point estimate of the transport delay

distributions, e.g., the mean, median or 90
th

percentile of the delay

distribution for each user, depending on the GSP’s risk tolerance.

In Section 5, we discuss how the risk of under-provisioning the

network due to variability in the network delays/congestion can

be curtailed by the GSP during network operation. We denote

as d̄𝑡 (x, g) the transport delay vector associated with the desired

network delay statistic, as a function of the player configuration x
and the G-server location g. For instance, ¯𝑑𝑡

𝑖
(x, g) = E[𝐷𝑡

𝜹 (x,g),𝑖],
where 𝛿𝑖 (x, g) = ∥x𝑖 − g∥2, if the GSP decides to provision the

network resources for the mean transport delays.

4.2 Characterization of Geographical Spread
We characterize the players’ geographical spread as follows:

Definition 3: (Geographical Spread). Let x ∈ R𝑛×2 be an 𝑛-
player configuration, we define the configuration’s geographical spread
𝜎 (x) as the radius of the smallest disk containing all the players, i.e.,:

𝜎 (x) = min

𝑟 ∈R+,c∈R2

{
𝑟 : ∥c − x𝑖 ∥2 ≤ 𝑟, ∀𝑖

}
(14)

Clearly, the larger 𝜎 (x) is, the more “spread out" the players are,

and hence, the harder it will be to find a server location that can

ensure the game is 𝜖-playable. We also introduce the notion of a

regular configuration, which will be useful to characterize the class

of configurations with 𝑛 players with a given geographical spread.

Definition 4: (Regular Configuration). An 𝑛 player configura-
tion of radius 𝑟 𝝎 (𝑛, 𝑟) ∈ R𝑛×2 is said to be regular iff all the players
are equispaced on a circle of radius 𝑟 .

For instance, the configuration 𝝎 (𝑛, 𝑟) such that 𝝎𝑖 (𝑛, 𝑟) = (𝑟 ·
cos

2𝜋 (𝑖−1)
𝑛 , 𝑟 · sin 2𝜋 (𝑖−1)

𝑛), 1 ≤ 𝑖 ≤ 𝑛 is a regular configuration.

4.3 Service Coverage Analysis
Next we focus our attention on how the players’ geographical

spread impacts the service coverage and the GSP’s network resource

provisioning strategies. We assume GSPs whose goal is to ensure

that games involving players with a given geographical spread

will find a G-server (with high probability) such that the game is

𝜖-playable. To that end, a GSP can control the density of compute

nodes, as well as the compute capacity allocated to the G-servers’

VMs. We study how these decisions are coupled and impacted by

the target games’ geographical spread to be supported.

We shall define first a useful service coverage metric that we

adopt in this framework, as a function of the delay vector d̄𝑡 (x, g).
Definition 5: (𝜖-Feasible Region). For a given player configura-
tion x ∈ R𝑛×2, we define the 𝜖-feasible region F𝜖 (x) to include all

G-server locations for which the game would be 𝜖-playable as:

F𝜖 (x) = {g ∈ R2 : 𝑞(d̄𝑡 (x, g)) > 1 − 𝜖}, (15)

Moreover, the area of region F𝜖 (x) can be expressed as:

|F𝜖 (x) | =
∬
R2
1{𝑞(d̄𝑡 (x, g)) > 1 − 𝜖}𝑑g (16)

Large feasible areas |F𝜖 (x) | are preferred as they are associated

with large likelihood to find a G-server that can support the MCG

service given the player configuration x, see Figure 3.

Figure 3: Example of an 𝜖-feasible region, with 𝑛 = 5 players.

To formally characterize the network provisioning problem, we

model the compute nodes to be deployed according to a homoge-

neous spatial Poisson Point Process (PPP) Φ(𝜆) of intensity 𝜆 com-

pute nodes/m
2
. The GSP aims to provision the network resources

so as to ensure an (𝑛, 𝜎, 𝜖, 𝛼, 𝜈)-service coverage, defined as:

Definition 6: ((𝑛, 𝜎, 𝜖, 𝛼, 𝜈)-Service Coverage). An MCG network
is said to ensure an (𝑛, 𝜎, 𝜖, 𝛼, 𝜈)-service coverage, for 𝑛 ∈ N, 𝜎 ∈
R+, 𝜖 ∈ [0, 1], 𝛼 ∈ [0, 1], 𝜈 ∈ N, if for any 𝑛-player configuration x
with a geographical spread less than 𝜎 :

P(|Φ ∩ F𝜖 (x) | ≥ 𝜈) ≥ 1 − 𝛼, (17)

i.e., if the probability that a randomly located game involving 𝑛

players with a geographical spread less than 𝜎 finds at least 𝜈 compute
nodes that would make the game 𝜖-feasible exceeds 1 − 𝛼 .

More formally, the GSP wishes to solve the network resource

provisioning problem described as follows:

Problem 2: (Network Resource Provisioning). The network re-
source provisioning problem consists in finding the smallest density
of compute nodes 𝜆 guaranteeing an (𝑛, 𝜎, 𝜖, 𝛼, 𝜈)-service coverage.

We note that while a single compute node falling inside an 𝜖-

feasible region may be enough to guarantee that the game is 𝜖-

playable, the GSPs may want to provision the network resources so

as to ensure that multiple compute node (𝜈 > 1) fall within the re-

gion for three reasons. First, such a choice increases load-balancing

flexibility across compute nodes in the network, which has been

shown to improve the service availability in large networks [18].

Second, it provides additional guarantees in case some feasible

servers are unable to support additional MCG instances due to

limited resources. Third, it improves the robustness to variability in

the transport delays experienced by the players, that may trigger

costly migrations of the G-server’s VM, more on this in Section 5.

Joint Update Rate Adaptation in Multiplayer Cloud-Edge Gaming Services: Spatial Geometry and Performance Tradeoffs MobiHoc ’21, July 26–29, 2021, Shanghai, China

(a) Area of the 𝜖-feasible region vs. the play-
ers’ geographical spread 𝜎 ; 𝑛 = 20, 𝑎0 = 50ms,
𝜏 = 20ms, 𝜖 = 0.

(b) Smallest feasible server density 𝜆min vs.
the players’ geographical spread 𝜎 ; 𝑛 = 20,
𝑎0 = 50ms, 𝜏 = 20ms, 𝜖 = 0, 𝛼 = 1 × 10

−4.

(c) Smallest feasible server density 𝜆min vs.
the players’ geographical spread 𝜎 ; 𝑛 = 20,
𝑎0 = 5ms, 𝜏 = 3ms, 𝜖 = 0, 𝛼 = 1 × 10

−4.

Figure 4: Figures of the impact of the geographical spread 𝜎 and the per-user compute capacity 𝑘𝐺 on the area of the 𝜖-feasible
region of an 𝑛 player regular configuration, and the induced minimum density 𝜆min of compute nodes required to guarantee
(𝑛, 𝜎, 𝜖, 𝛼, 1)-service coverage, in traditionalMCG andXR-MCG settings. For scale comparison, the distance fromNewYork City,
NY to Los Angeles, CA is on the order of 4 × 10

6 meters, while the area of the USA is on the order of 1 × 10
13 square meters.

We now state an important result, enabling the GSPs to solve

the network provisioning problem, defined in Problem 2, giving a

lower bound on |F𝜖 (x) | for any configuration of a given spread.

Theorem 1: (Lower-Bound on the 𝜖-Feasible Area). Let x ∈
R𝑛×2 be any configuration of 𝑛 players with geographic spread 𝜎 (x).
Under the JMRA algorithm, we have ∀𝜖 ∈ [0, 1]:

|F𝜖 (x) | ≥ |F𝜖 (𝝎 (𝑛, 𝜎 (x))) |. (18)

A proof of this theorem is found in Appendix A. An intuitive

interpretation is that regular configurations are the most “spread-

out" among the class of𝑛 players configurations with a geographical

spread equal to 𝜎 (x), hence leading to the smallest 𝜖-feasible region.

We now present a corollary of Theorem 1, allowing the GSPs to

solve the network resource provisioning problem. For tractability,

we shall present the case where 𝜈 = 1.

Corollary 1: (Smallest Server Density). Let Φ(𝜆) be a homoge-
neous PPP of intensity 𝜆 compute nodes/m2. The smallest compute
node density 𝜆min required to guarantee an (𝑛, 𝜎, 𝜖, 𝛼, 1)-service cov-
erage, for 𝑛 ∈ N, 𝜎 ∈ R+, 𝜖 ∈ [0, 1], 𝛼 ∈ [0, 1] is given by:

𝜆min (𝑛, 𝜎, 𝜖, 𝛼) =
− ln(𝛼)

|F𝜖 (𝝎 (𝑛, 𝜎)) | (19)

The proof directly follows from Theorem 1 and the fact that for

a PPP, see [6]: P(|Φ(𝜆) ∩ F𝜖 (𝝎 (𝑛, 𝜎)) | ≥ 1) = 1 − 𝑒−𝜆 |F𝜖 (𝝎 (𝑛,𝜎)) |
.

Now that we established the optimal strategy for GSPs to densify

the network, we study through numerical simulations how they

should dimension the G-server VMs’ compute capacity. Specifically,

Figure 4 exhibits results capturing the effects of the geographical

spread 𝜎 and the per-player compute capacity 𝑘𝐺 on the area of the

𝜖-feasible region corresponding to a regular configuration, and ul-

timately, on the required 𝜆min. The results presented correspond to

two different scenarios. In Figures 4a and 4b, we use parameters rel-

evant to classical MCG instances, e.g., involving players interacting

on a common virtual first-person shooter game, requiring a some-

what loose timeliness constraints (on the order of 100 milliseconds

end-to-end [11], or around 50 milliseconds for the player-to-server

leg). However, Figure 4 corresponds to an XR-MCG game setting,

where players are equipped with XR headsets, requiring much

tighter timeliness guarantees (on the order of 10 millisecond end-

to-end [14], or around 5 milliseconds for the player-to-server leg).

We study both scenarios separately. In these experiments, we adopt

the functional forms introduced in Equations 12 and 13 to model

the transport and batch computation delays.

The General MCG Setting. One can first observe in Figure 4a

that the area of the 𝜖-feasible region decreases with the players’ geo-

graphical spread𝜎 . This effect leads in turn to a sharp increase in the

required density 𝜆min, see Figure 4b, to compensate for the reduced

area. This rapid increase is explained by the fact that |F𝜖 (𝝎 (𝑛, 𝜎)) |
eventually vanishes as the players become too widely spread, lead-

ing to the vertical asymptotes shown in Figure 4b. Therefore, for

a fixed capacity per G-server’s VM instance, we witness a geo-

graphical spread limit after which densification can no longer help

in guaranteeing (𝑛, 𝜎, 𝜖, 𝛼, 𝜈)-service coverage. Supporting larger

spreads can then only be achieved by increasing the servers’ com-

pute capacity. One direct implication of this observation is that

GSPs that can perform efficient matchmaking, i.e., match players

in close proximity of each other, can afford to reduce the servers’

compute capacity 𝑘𝐺 , while keeping the server density reasonably

low. In addition, we recognize in Figure 4b a law of diminishing re-

turns on feasible 𝜎 with increasing 𝑘𝐺 , pointing to the existence of

a fundamental limit on the maximum geographical spread that can

be supported for any 𝑛-player game, regardless of the network re-

sources deployed and rate adaptation policy, due to the sole impact

of the transport delay on the age of the game, see Equation 1.

We note that while the initial model proposed in this paper does

not capture this effect, servers and players are in reality likely to

be more densely located in cities. When the player’s geographical

spread is small enough, e.g., games involving players in the same

city, then the GSPs can afford to provision compute nodes mostly in

cities as per Figure 4, and the G-server would be placed nearby the

players’ city. If, however, GSPs want to support games with higher

geographic spread, e.g., involving players across different cities,

MobiHoc ’21, July 26–29, 2021, Shanghai, China S. Kassir, G. de Veciana, N. Wang, X. Wang, P. Palacharla

then they may need to densify the compute nodes between the

cities, in the associated 𝜖-feasible regions that is intuitively close to

“center" of the players’ configuration.

The XR-MCG Setting. Comparing Figure 4b to Figure 4c, one

can highlight three key challenges faced by GSPs with extremely

tight timeliness constraints, e.g., supporting XR-MCG. The first

challenge is the need to ensure that the compute delay is as small as

possible. To this end, the compute capacity per player 𝑘𝐺 needs to

be large enough to guarantee that the constraint in Problem 1 can

be satisfied. Hence, XR-MCG instances require additional compute

capacity compared to traditional MCG games.

The second challenge is the need to ensure that the players’

geographical spread is small such that all the players are close

enough to the G-server, leading to low transport delays. This is

reflected by the scale of the horizontal axis, showing that XR-MCG

instances can only be supported by connecting local players, e.g., in

the same neighborhood/city, as opposed to the country/continent

scale for traditional MCG instances.

The third challenge is the need to heavily densify the network

to ensure small transport delays (and hence low variability under

Assumption 1) so as to meet the service coverage requirement with

a tight game age. The required density is on the order of 10
−9−10−8

compute nodes per square meter, which clearly calls for leveraging

the edge computing infrastructure to host the G-servers, in addition

to the (potentially colocated) R-servers. Hefty network resource

provisioning costs stemming from allocating considerable compute

power in densely deployed edge compute nodes are unavoidable

for XR-MCG GSPs to meet the tight game age constraint associated

with such types of applications.

5 MCG NETWORK MANAGEMENT
In Section 4, we showed how GSPs can ensure high service cov-

erage by appropriately provisioning the network resources. We

now assume that these resources have been provisioned, and we

use insights extracted from our previous analysis to investigate

strategies that can be adopted by GSPs to improve the MCG-QoS.

We study the particular problem of G-server placement, con-

sisting in selecting the best compute node to host the G-server’s

VM among a set of feasible options given a players’ configuration,

see Figure 3. Previously, we showed how the JMRA algorithm can

help to ensure that the spatial region that may contain feasible

servers has the largest area. This region is likely to contain multiple

compute nodes, all of them satisfying the game QoS requirement.

While this may imply that all of the options are equivalent in the

framework formulated in this paper, additional considerations such

as robustness to network delay variability may motivate the GSPs

to prefer some options over others. We now investigate how the

GSPs might go about selecting the G-servers’ VMs locations to

improve the robustness of the MCG-QoS under varying network

delays/congestion statistics. This is an important consideration, as

one can expect MCG sessions to potentially last several hours.

We first observe that JMRA can increase robustness to slow vari-

ations in network/congestion delays over time as the optimal choice

of update rate can adapt to such variations. However, this reactivity

feature of JMRA may not be sufficient to keep the game 𝜖-playable

under significant variations, or if the players are mobile. Indeed,

a change in the joint delay statistics experienced by the players

may induce a substantial change in the shape of the region F𝜖 (x)
causing a potential need to trigger a costly G-server VM migration.

Therefore, given the opportunity to select a server among multiple

feasible options, a simple strategy would be to select the one that

maximizes the expected value of the MCG-QoS, as it would keep

the game 𝜖-playable under the largest delay variations. Hence, the

GSPs might maximize a new service placement MCG-QoS:

Definition 7: (MCG-QoS for Service Placement). Given a player
configuration x ∈ R𝑛×2, and a feasible G-server location g ∈ R2, in-
ducing a distance vector 𝜹 ∈ R𝑛+, s.t. 𝛿𝑖 = ∥x𝑖 − g∥2, we define the
MCG-QoS 𝑞(𝜹) for service placement, for a given 𝜖 ∈ [0, 1], as:

𝑞(𝜹) = P(𝑞(D𝑡
𝜹) > 1 − 𝜖) (20)

i.e., the probability that the game remains 𝜖-playable under JMRA
and variable network congestion statistics.

Based on this MCG-QoS, we formally define the service place-

ment problem as follows:

Problem 3: (Service Placement). Given a player configuration
x ∈ R𝑛×2 and a realization 𝜙 of the spatial server deployment Φ,
inducing a set G(x, 𝜙) = {g1, . . . , gl} of 𝑙 𝜖-feasible server locations,
the service placement problem consists in finding server g∗ (x, 𝜙), s.t.:

g∗ (x, 𝜙) = arg max

g𝑘 ∈G(x,𝜙)

{
𝑞(𝜹) : 𝛿𝑖 = ∥x𝑖 − g𝑘 ∥2,∀𝑖

}
(21)

A straightforward way to solve Problem 3 would be to compute

the MCG-QoS for service placement assuming that each of the

candidate servers is selected to host the G-server, and choose the

one that maximizes it. However, computing the MCG-QoS function

may be impractical and computationally expensive as it involves

solving numerous optimization problems, and laboriously estimate

the distribution of 𝑞(𝜹) through advanced sampling techniques.

To overcome this issue, we envision a 3-step algorithm, that can

run in a centralized server, and that is aware of all the players’

locations and the map of compute nodes:

Step 1: Exploration. First, one needs to identify the search space
G(x, 𝜙) of candidate servers. This can be performed either by con-

sidering all the compute nodes within a vast region containing all

the servers “within reach" of any player, i.e., such that the transport

delay does not exceed the age constraint. As this solution would

likely lead to an excessively large search space, heuristics can be

leveraged to restrict the set to candidate servers, e.g., considering

the 𝑙 closest servers to the center of mass of configuration x.
Step 2: Elimination. Second, one can considerably simplify the

search space by only using the geometry of the players’ configura-

tion, as presented in Theorem 2.

Theorem 2: (Preferred G-Server Location). Given a player con-
figuration x ∈ R𝑛×2 and a compute node deployment 𝜙 , let g and
g′ ∈ G(x, 𝜙) be the coordinates of two servers inducing distance
vectors 𝜹 and 𝜹 ′, respectively. We have under Assumption 1:

𝜹 ≺𝑤 𝜹 ′ =⇒ 𝑞(𝜹) ≥ 𝑞(𝜹 ′) (22)

hence the server at location g is to be preferred over the one at g′.

where ≺𝑤 denotes the weak majorization ordering, see [19]. The

proof of this theorem can be found in Appendix B.

Joint Update Rate Adaptation in Multiplayer Cloud-Edge Gaming Services: Spatial Geometry and Performance Tradeoffs MobiHoc ’21, July 26–29, 2021, Shanghai, China

Using this result, some of the candidate servers can be eliminated

in 𝑂 (𝑙2) time only by inspecting the distance vectors induced by

the players’ configuration x and each potential server in G(x, 𝜙).
We note however that weak majorization is merely a partial order,

hence not any pair of distance vectors can be compared and this

procedure does not guarantee to single out the best candidate server.

In such a case, the algorithm needs to execute Step 3.

Step 3: Approximation. Third, once the number of candidate

servers has been reduced to only a few candidates, additional heuris-

tics can be exploited to select the final server. For instance,𝑞(d𝑡) can
be used as a surrogate for𝑞(𝜹), where d𝑡 can bemeasured/estimated

as discussed in Section 3. Finally the best compute node is confirmed

if its MCG-QoS function exceeds the desired level 𝜖 .

We assess the performance of the elimination step by studying

the effect of the size of the search space 𝑙 and the number of players

𝑛 on the average number of survivors (i.e., options that were not

eliminated in step 2), for a fixed players’ geographical spread and

density of servers. The average is taken over random player config-

urations of given spread, and over realizations of Φ. Clearly, values
close to 1 are associated with an effective elimination. In this exper-

iment, we initialize G(x, 𝜙) to contain the 𝑙 closest compute nodes

in 𝜙 to the center of gravity of the configuration x, as suggested in

Step 1. We present the results of this experiment in Figure 5.

Figure 5: Effect of the size of the search space 𝑙 and the
number of players 𝑛 on the average number of survivors;
𝜎 = 2 × 10

6m, 𝜆 = 4 × 10
−12 servers/m2.

One can observe that the average number of survivors increases

slowly with 𝑙 , as additional options are increasingly more likely to

be eliminated. This confirms that proximity to the center of gravity

of the player’s configuration is a valid criterion to initialize the

search space. In addition, the elimination step appears to be the

most effective in games involving a large number of players. Indeed,

larger values of 𝑛 lead to a hardening of the spatial distribution

of players, homogenizing it over a disk of radius 𝜎 , and bringing

the center of gravity closer to the center of this disk. This in turn

increases the likelihood for any sub-optimal server to find at least

one of the players being prohibitively far, hence making it more

likely to be eliminated as its associated distance vector will weakly

majorize the ones of servers that are closer to the center of gravity.

6 CONCLUSION
In this paper, we studied fundamental questions that arise in the

design of MCG systems. We introduced an MCG-QoS capturing the

freshness of the information processed by the G-server, as well as

the joint impact of the variable delays experienced by the players.

We proposed JMRA, an efficient measurement-based joint update

rate adaptation algorithm maximizing the MCG-QoS. We then re-

lated the game’s geometry to the network delays experienced by the

players, and showed how GSPs can benefit from JMRA to combat

the effect of geographical spread and slow-variability in the network

delays/congestion, through effective network resource provisioning

and service placement. We note that MCG player matchmaking,

i.e., finding the best set of players to match on the same G-server,

is a network operation problem that is complementary to service

placement, and is also worth studying. Given the analytical frame-

work presented in this paper, the matchmaking problem might be

reduced to a clustering problem aiming at finding the partition

of players that minimizes the geographical spread of the induced

configurations. We intend to study this problem in future work.

APPENDIX
A Proof Theorem 1:

Proof. In this proof, we restrict our attention to a regionR(x, 𝑎0),
where R(x, 𝑎0) = {y ∈ R2 : ∥y∥2 ≤ 𝜂 + 𝜎 (x)}, and 𝜂 is such that

𝑑𝑡 (𝜂) = 𝑎0. Defining R(x, 𝑎0) in this way leads to the following ob-

servation: g ∉ R(x, 𝑎0) =⇒ 𝑞(x, g) < 1−𝜖,∀x ∈ R𝑛×2,∀𝜖 ∈ [0, 1].
Therefore, F𝜖 (x) ⊂ R(x, 𝑎0), allowing us to study it by only con-

sidering points in R(x, 𝑎0). We now prove a useful lemma.

Lemma 1: (Stochastic Majorization of Max Distance). Let x
and x′ ∈ R𝑛×2 be any two configurations of 𝑛 players, where 𝜎 (x) ≥
𝜎 (x′), and let G be a random G-server coordinate vector uniformly
distributed onR(x, 𝑎0). Define𝚫,𝚫′ ∈ R𝑛+ to be the random vectors of
induced distances between G and each point in x and x′, respectively.

If max𝑖 Δ𝑖 ≤st
max𝑖 Δ

′
𝑖
, then under the JMRA algorithm

|F𝜖 (x) | ≥ |F𝜖 (x′) |,∀𝜖 ∈ [0, 1] . (23)

Proof. We start this proof by noting that

|F𝜖 (x) | =
∬

R(𝑎0,x)
1{𝑞(d̄𝑡 (x, g)) > 1 − 𝜖}𝑑g

= |R(𝑎0, x) | · EG [1{𝑞(d̄𝑡 (x,G)) > 1 − 𝜖}]

Similarly, |F𝜖 (x′) | = EG [1{𝑞(d̄𝑡 (x′,G)) > 1−𝜖}]. Hence |F𝜖 (x) | ≥
|F𝜖 (x′) |,∀𝜖 ∈ [0, 1] ⇐⇒ EG [1{𝑞(d̄𝑡 (x,G)) > 1 − 𝜖}] ≥
EG [1{𝑞(d̄𝑡 (x,G)) > 1 − 𝜖}],∀𝜖 ∈ [0, 1].

Furthermore, we note that 1{𝑞(d𝑡) > 1 − 𝜖} =
1{max𝝆

{
P(𝐴D𝑡

𝜹
,𝝆 ≤ 𝑎0 | D𝑡

𝜹
= d𝑡) : 𝑑𝑐 (∑𝑗 𝜌 𝑗) ≤ 𝜏

}
> 1 − 𝜖}

is a symmetric function of the delay vector d𝑡 , see Equation 5,

and decreasing in each of the components of this random vector.

Besides, the indicator function returns non-negative values, less

than or equal to 1. Therefore, 1{𝑞(D𝑡
𝚫
) > 1 − 𝜖} is a symmetric

joint survival function of the random delay vector D𝑡
𝚫
, hence of the

random distance vector 𝚫. Now we have:

max

𝑖
Δ𝑖 ≤st

max

𝑖
Δ′
𝑖

⇐⇒ P(max

𝑖
Δ𝑖 ≤ 𝑡) ≥ P(max

𝑖
Δ′
𝑖 ≤ 𝑡),∀𝑡 ∈ R

⇐⇒ P(Δ1 ≤ 𝑡, · · · ,Δ𝑛 ≤ 𝑡) ≥ P(Δ′
1
≤ 𝑡, · · · ,Δ′

𝑛 ≤ 𝑡),∀𝑡 ∈ R

⇐⇒ max

𝑖
Δ𝑖 ≤slo

max

𝑖
Δ′
𝑖

MobiHoc ’21, July 26–29, 2021, Shanghai, China S. Kassir, G. de Veciana, N. Wang, X. Wang, P. Palacharla

⇐⇒ E[𝜓 (𝚫)] ≥ E[𝜓 (𝚫′)],∀𝜓 ∈ C.

where C is the class of symmetric joint survival functions. The

definition of the symmetric lower orthant ordering and its proper-

ties can be found in [20, 21]. The result follows from the fact that

1{𝑞(d̄𝑡 (x,G)) > 1 − 𝜖} ∈ C,∀𝜖 ∈ [0, 1]. □
We now proceed to prove the theorem. The proof is subdivided

in two parts: we first show that for any player configuration x in a

disk of radius 𝜎 (x) moving the players to the boundary of the disk

reduces |F𝜖 (x) |; we then show that equispacing the players on the

boundary of the disk minimizes this area.

Part 1: Equalizing the radial coordinate components. In
this part, we construct a coupling between any configuration of

players x, of geographical spread 𝜎 (x) and the configuration x′

of players having the same polar angular coordinates, as in x, but
all the polar radial coordinate components equal to 𝜎 (x), i.e., all
the players are located on the boundary of the circle centered at

the origin and of radius 𝜎 (x). We observe that under configura-

tion x′ region R(x, 𝑎0) can be partitioned into 𝑛 sectors, where

sector R ′
𝑘
(x, 𝑎0) is defined to be the region of points such that

player 𝑘 is the furthest player, or equivalently, R ′
𝑘
(x, 𝑎0) = {g ∈

R(x, 𝑎0) : argmax𝑖 Δ
′
𝑖
= 𝑘}. Similarly, we define R𝑘 (x, 𝑎0) = {g ∈

R(x, 𝑎0) : argmax𝑖 Δ𝑖 = 𝑘}. Since no adjacent players are sep-

arated by an angle larger than 𝜋 , by construction of the circle

of radius 𝜎 (x) to be the circle of smallest radius encompassing

all the players, it is clear that ⟨x𝑘 , g⟩ ≤ 0,∀g ∈ R𝑘 (x, 𝑎0),∀𝑘 and

⟨x′
𝑘
, g⟩ ≤ 0,∀g ∈ R ′

𝑘
(x, 𝑎0),∀𝑘 . Nowwe have:max𝑖 𝛿𝑖 = 𝛿𝑘 = ∥x𝑘−

g∥2 =

√
∥x𝑘 ∥22 + ∥g∥2

2
− 2⟨x𝑘 , g⟩ ≤

√
∥x′

𝑗
∥2
2
+ ∥g∥2

2
− 2⟨x′

𝑗
, g⟩ =

𝛿 ′
𝑗
= max𝑖 𝛿

′
𝑖
, where the inequality follows from the facts that

∥x𝑘 ∥2 ≤ ∥x′
𝑗
∥2, ⟨x𝑘 , g⟩ ≤ 0, ⟨x′

𝑗
, g⟩ ≤ 0, and the angle between

x𝑘 and g being equal to the one between x′
𝑗
and g, by construc-

tion. Therefore, for any realization g ∈ R(x, 𝑎0) we have max𝑖 𝛿𝑖 ≤
max𝑖 𝛿

′
𝑖
, thus max𝑖 Δ𝑖 ≤ max𝑖 Δ

′
𝑖
, almost surely. It follows that

max𝑖 Δ𝑖 ≤st
max𝑖 Δ

′
𝑖
, hence we get from Lemma 1, |F𝜖 (x) | ≥

|F𝜖 (x′) |,∀𝜖 ∈ [0, 1].
Part 2: Equalizing the angular coordinate components. In

this part, we prove that for any configuration x such that all the

players are on the boundary of a circle of radius 𝜎 (x), spacing the
players regularly on the boundaryminimizes |F𝜖 (x) |. In this setting,
the player configuration can be parametrized by 𝜽 the vector of

differential angles between adjacent players on the circle.

We start by deriving an expression for P(max𝑖 Δ𝑖 ≥ 𝑡 | ∥G∥2, 𝜽),
the conditional c.d.f. of max𝑖 Δ𝑖 , given ∥G∥2 = 𝑟 and parametrized

by 𝜽 ∈ [0, 2𝜋]𝑛 , where ∑
𝑖 𝜃𝑖 = 2𝜋 . One can show that:

P(max

𝑖
Δ𝑖 ≥ 𝑡 | ∥G∥2 = 𝑟, 𝜽) =

∑
𝑘 min[𝛾 (𝑡, 𝑟), 𝜃𝑘/2]

𝜋
(24)

where 𝛾 (𝑡, 𝑟) = 𝜋 − cos
−1 (max[min[𝜎 (x)

2+𝑟 2−𝑡2
2𝑟𝜎 (x) , 1],−1]).

We observe that P(max𝑖 Δ𝑖 ≥ 𝑡 |∥G∥2 = 𝑟, 𝜽) is symmetric

and concave in 𝜽 , it is therefore Schur-concave in 𝜽 . Let 𝜽 ′
pa-

rametrize the equispaced configuration, i.e., 𝜃 ′
𝑖

= 2𝜋
𝑛 ,∀𝑖 , then

clearly 𝜽 ′ ≺ 𝜽 ,∀𝜽 ∈ [0, 2𝜋]𝑛 , where ∑
𝑖 𝜃𝑖 = 2𝜋 . We say that

𝜽 ′
is majorized by 𝜽 . Therefore, from Schur-concavity, we have

P(max𝑖 Δ
′
𝑖
≥ 𝑡 | ∥G∥2 = 𝑟, 𝜽 ′) ≥ P(max𝑖 Δ𝑖 ≥ 𝑡 | ∥G∥2 = 𝑟, 𝜽),∀𝑟 ,

which implies that P(max𝑖 Δ
′
𝑖

≥ 𝑡) ≥ P(max𝑖 Δ𝑖 ≥ 𝑡),∀𝜽 ∈
[0, 2𝜋]𝑛 , by integrating over all values of 𝑟 so as to span R(x, 𝑎0).

It follows that max𝑖 Δ𝑖 ≤st
max𝑖 Δ

′
𝑖
, hence we get from Lemma 1,

|F𝜖 (x) | ≥ |F𝜖 (x′) |,∀𝜖 ∈ [0, 1]. □

B Proof of Theorem 2
Proof. We know that 𝑞(𝜹) = P(𝑞(D𝑡

𝜹
) > 𝜖) is a Schur-concave

function in 𝜹 as 𝑞(d𝑡) is Schur-concave in d𝑡 , see [19]. The Schur-
concavity property of 𝑞(d𝑡) directly follows from the fact that the

function is symmetric in the entries of d𝑡 , and concave in d𝑡 , see
section 3.2.5 in [7]. In addition, from Assumption 1, we know that

∀z ∈ R𝑛+, D𝑡
𝜹
≤icx D𝑡

𝜹+z. Since 𝑞(d
𝑡) is decreasing and concave in

d𝑡 , we have 𝑞(𝜹) = P(𝑞(D𝑡
𝜹
) > 1 − 𝜖) ≥ P(𝑞(D𝑡

𝜹+z) > 1 − 𝜖) =

𝑞(𝜹 + z), i.e., 𝑞(𝜹) is decreasing in 𝜹 . Therefore, 𝑞(𝜹) is a Schur-
concave decreasing function in 𝜹 , thus given 𝜹 and 𝜹 ′ ∈ R𝑛+ be

two distance vectors induced by two feasible game servers, 𝜹 ≺𝑤

𝜹 ′ =⇒ 𝑞(𝜹) ≥ 𝑞(𝜹 ′), as argued in [19]. □

ACKNOWLEDGMENTS
This work was made possible by the support of Fujitsu Networks

Communications, and the NSF Awards CNS-1731658 and ECC-

1809327.

REFERENCES
[1] 2020. Amazon Luna. Retrieved Nov. 15, 2020 from https://www.amazon.com/

luna/landing-page Accessed Nov. 15, 2020.

[2] 2020. Google Stadia. Retrieved Sep. 15, 2020 from https://stadia.google.com/

[3] 2020. Nvidia GeForce. Retrieved Sep. 15, 2020 from https://www.nvidia.com/en-

us/geforce-now/

[4] 2020. PlayStation Now. Retrieved Sep. 15, 2020 from https://www.playstation.

com/en-us/explore/playstation-now/

[5] 2020. Project xCloud. Retrieved Sep. 15, 2020 from https://www.xbox.com/en-

US/xbox-game-pass/cloud-gaming/home

[6] F. Baccelli and B. Błaszczyszyn. 2010. Stochastic geometry and wireless networks.
Vol. 1. Now Publishers Inc.

[7] S. Boyd and L. Vandenberghe. 2004. Convex optimization. Cambridge university

press.

[8] W. Cai et al. 2016. A Survey on Cloud Gaming: Future of Computer Games. IEEE
Access (2016).

[9] Y. Chen, J. Liu, and Y. Cui. 2016. Inter-player Delay Optimization in Multiplayer

Cloud Gaming. In IEEE CLOUD 2016.
[10] S. Chuah, C. Yuen, and N. Cheung. 2014. Cloud gaming: a green solution to

massive multiplayer online games. IEEE Wireless Communications (2014).
[11] M. Claypool and K. Claypool. 2006. Latency and player actions in online games.

Commun. ACM (2006).

[12] Y. Deng et al. 2018. The Server Allocation Problem for Session-Based Multiplayer

Cloud Gaming. IEEE Transactions on Multimedia (2018).
[13] E. Dhib et al. 2016. Modeling Cloud gaming experience for Massively Multiplayer

Online Games. In 2016 13th IEEE Annual CCNC.
[14] M. S. Elbamby et al. 2018. Toward Low-Latency and Ultra-Reliable Virtual Reality.

IEEE Network (2018).

[15] Y. Gao, L. Wang, and J. Zhou. 2019. Cost-Efficient and Quality of Experience-

Aware Provisioning of Virtual Machines for Multiplayer Cloud Gaming in Geo-

graphically Distributed Data Centers. IEEE Access (2019).
[16] H. Hong et al. 2015. Placing Virtual Machines to Optimize Cloud Gaming Experi-

ence. IEEE Transactions on Cloud Computing (2015).

[17] S. P. Kasiviswanathan, S. Eidenbenz, and G. Yan. 2011. Geography-based analysis

of the internet infrastructure. In 2011 Proceedings IEEE INFOCOM.

[18] S. Kassir et al. 2020. Service Placement for Real-Time Applications: Rate-

Adaptation and Load-Balancing at the Network Edge. In 2020 7th IEEE
CSCloud/2020 6th IEEE EdgeCom.

[19] A. Marshall, I. Olkin, and B. Arnold. 1979. Inequalities: theory of majorization and
its applications. Springer.

[20] M. Shaked and G. Shanthikumar. 1997. Supermodular stochastic orders and

positive dependence of random vectors. Journal of Multivariate Analysis (1997).
[21] M. Shaked and G. Shanthikumar. 2007. Stochastic orders. Springer Science &

Business Media.

[22] R. D. Yates et al. 2017. Timely cloud gaming. In IEEE INFOCOM 2017 - IEEE
Conference on Computer Communications.

[23] Y.Lin and H.Shen. 2016. CloudFog: Leveraging fog to extend cloud gaming for

thin-client MMOG with high quality of service. IEEE TPDS (2016).

https://www.amazon.com/luna/landing-page
https://www.amazon.com/luna/landing-page
https://stadia.google.com/
https://www.nvidia.com/en-us/geforce-now/
https://www.nvidia.com/en-us/geforce-now/
https://www.playstation.com/en-us/explore/playstation-now/
https://www.playstation.com/en-us/explore/playstation-now/
https://www.xbox.com/en-US/xbox-game-pass/cloud-gaming/home
https://www.xbox.com/en-US/xbox-game-pass/cloud-gaming/home

	Abstract
	1 Introduction
	2 System Model
	2.1 Network Architecture
	2.2 Network Delay Variation Model
	2.3 Game Operation Model
	2.4 Game Timeliness Model
	2.5 The JMRA Problem

	3 The Rate Adaptation Algorithm
	3.1 Algorithm Description
	3.2 Algorithm Analysis

	4 Service Coverage Analysis and Network Resource Provisioning
	4.1 Linking Players' Spatial Geometry to Network Congestion
	4.2 Characterization of Geographical Spread
	4.3 Service Coverage Analysis

	5 MCG Network Management
	6 Conclusion
	A Proof Theorem 1:
	B Proof of Theorem 2

	Acknowledgments
	References

