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Abstract—We observe that current Deep Learning (DL)-based
Channel State Information (CSI) encoder and decoder archi-
tectures achieve a distortion which is highly channel-dependent.
To exploit this, we propose a novel learning-based variable-rate
coding scheme to reduce overheads associated with CSI feedback.
To that end, we propose an architecture which combines (a)
training an efficient predictor for the distortion rate tradeoffs
achievable for a given channel, and (b) optimization of a decision
logic which allocates rates based on the predicted distortion.
We evaluate our approach on various wireless channel datasets
including the 3GPP 3D channel model and COST2100 with
Massive MIMO channel model, and show significant potential
reductions of up to 20% in the CSI feedback overhead.

I. INTRODUCTION

CSI feedback plays a crucial role in the realization of
wireless network coordination and performance. To increase
the transmission efficiency, modern communication systems
have adopted implicit feedback schemes, including information
such as a Rank Indicator (RI), a Precoding Matrix Indicator
(PMI), and a Channel Quality Indicator (CQI) [1]. Optimal
codebook design for implicit feedback has been intensively
studied with the goal of maximizing the achievable rate. The
Grassmannian packing problem, i.e., the problem of designing
a limited number of codewords to maximize the minimum
distance between them was extensively studied in [2], [3].
In addition, Random Vector Quantization (RVQ), a method
for selecting a codeword having the highest similarity in a
randomly generated codebook, has been studied theoretically
for various environments [4], [5]. However, because implicit
CSI feedback alone cannot inform the Base Station (BS) of
the channel gain and phase corresponding to each subcarrier,
it gives the BS limited flexibility in choosing the beamforming
vector to minimize interference and maximize rate.

In contrast to the implicit CSI, the explicit CSI feedback with
raw channel information regardless of the precoding method
gives the BS more flexibility for optimal precoding. However,
in modern communication systems, since the BS communi-
cates with the user equipment (UE) through multiple transmit
antennas on tens to thousands of subcarriers, transmitting raw
CSI is impractical in that it requires enormous computational
overhead and radio resources to the UE.

To enable explicit CSI feedback with a linear complexity,
the application of Deep Learning (DL) techniques has been
proposed for the design of CSI feedback encoder and decoder
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Fig. 1. The ground-truth CSI matrices (Hsmall,Hlarge) and the recovered CSI
matrices (Ĥsmall, Ĥlarge) from a 64-bit autoencoder. Even using the same
number of bits for CSI feedback, the achievable distortion varies greatly
depending on the CSI pattern.

[6]. DL-based approaches have outperformed existing methods
based on the compressed sensing ideas in terms of time
complexity and distortion minimization. In recent years, re-
search aimed at improving performance by designing effective
neural networks has been intensively conducted. In [7], the
Long Short-Term Memory (LSTM) structure was utilized to
exploit temporal correlation between successive channels. The
authors of [8] proposed the LSTM-based structure of recur-
rent compression and decompression modules and designed a
network using only a small number of parameters to reduce
the overhead caused by the complex or deep architecture of
the encoder/decoder. A convolutional LSTM-based structure
[9] and the inception neural network-based structure [10]
have also been proposed. In order to account for realistic
wireless communication systems, neural structures capable of
compressing CSI into binary information have been proposed
[11], [12]. In [11], a structure that can generate codes with
various feedback rates from the same encoder structure was
proposed along with the quantization technique. A magnitude-
adaptive phase quantization framework was proposed in [12],
which is robust for high compression schemes.

Recent studies on DL-based CSI feedback have focused on
maximizing performance under a given number of feedback
bits, and have not provided a criterion for how many bits
to allocate for a given CSI. The data-driven DL-based en-
coder/decoder are trained with the goal of maximizing only
the average performance in a given dataset, and as a result,
the distortion that occurs in the encoding and decoding process
varies enormously across the CSI. Fig. 1 shows two CSI matrix
samples compressed and decoded by a 64-bit autoencoder,
which will be described in Section II. Even with compression
using the same number of bits, some samples show very low
distortion (Hsmall), while some samples show large distortion
(Hlarge). This imbalance in compression distortion can bring
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Fig. 2. A system model. The UE can feed back the CSI matrix H by selecting
one of the encoders with various feedback bits. The BS has the estimated CSI
matrix Ĥ through the corresponding decoder. Based on the estimated CSI
matrix, the BS designs a precoder and transmits a desired signal.

undesired results, for example, an excessive number of feed-
back bits can be allocated for easy-to-compress CSI, or a small
number of bits can be dedicated to the CSI matrix instances
with large distortion.

To effectively solve this problem, we propose a novel
approach, Variable-Rate Code (VRC) for CSI compression,
that allocates an appropriate number of bits to compress a
given CSI matrix based on distortion from lossy compression.
To the best of our knowledge, this approach represents the
first data-driven strategy to generate variable-rate codes for
CSI feedback. Our main contributions are as follows:

• We design a lightweight distortion estimator that predicts
how much distortion will occur when CSI is compressed
and decoded by various DL-based autoencoders.

• We propose an evolutionary strategy-based codeword
length selector that determines the optimal feedback
codeword length. By allocating many bits for compres-
sion only when a large amount of distortion is predicted,
we show that our proposed scheme significantly reduces
the average codeword length required to achieve the
desired distortion.

• To demonstrate the versatility of the proposed method,
we show that the number of feedback bits can be effec-
tively reduced by the proposed method for the existing
autoencoders and dataset [6], as well as the autoencoder
structure and dataset we provide.

II. SYSTEM MODEL AND FIXED-RATE CSI FEEDBACK

We consider a Multiple Input Multiple Output (MIMO)
channel where a BS communicates with a User Equipment
(UE) over Nsc subcarriers. The BS and the UE have M
antennas and a single antenna, respectively. On the n-th
subcarrier, the AWGN channel output yn ∈ C given the input
signal xn ∈ C is modelled as follows.

yn = hH
nvnxn + zn, 1 ≤ n ≤ Nsc, (1)

where hn ∈ CM×1 is a channel vector and zn ∈ C is the
corresponding AWGN. vn is a normalized precoding vector
whose power is 1, ||vn||2 = 1. We represent the CSI of all
subcarriers as a single matrix as HAF = [h1,h1, ...,hNsc

] and
HAF ∈ CM×Nsc . Note that HAF is a CSI matrix in the spatial-
frequency domain.

Fig. 3. The matrix in the first row represents the absolutes value of a randomly
selected CSI matrix HAF ∈ C8×257. Through the IFFT in the frequency
domain, we can obtain the information on the spatial-delay domain, HAD. To
reduce computational load, the near-zero region is cropped and the remaining
part is used as an ground-truth CSI H ∈ C8×32.

A. CSI Preprocessing

To reduce the computational overhead of the UE, the input
dimension of the CSI encoder fENC needs to be reduced. One
of the widely used efficient CSI preprocessing methods is
transforming a CSI matrix by using the Fourier transform to
handle CSI in the spatial-delay domain [6], [7]. For the sake
of readability, we briefly describe the method and provide Fig.
3. CSI in the spatial-frequency domain can be transformed to
spatial-delay domain via the Inverse Discrete Fourier Trans-
form (IDFT) or Inverse Fast Fourier Transform (IFFT). The
M × Nsc matrix in the first row of Fig. 3 represents the
absolute values of a given channel HAF. The matrix below
is the absolute value of the CSI in the spatial-delay domain
HAD, where HAD = HAFTIDFT and TIDFT is the IDFT matrix.
The CSI matrix in the spatial-delay domain HAD contains
some dominant column vectors in the delay domain, and the
columns corresponding to the high delay components are near-
zero vectors. By truncating the near-zero region and dealing
with the cropped remaining matrix H, which has a size of
M × Nnz, encoders and decoders can be designed to handle
matrices with relatively small dimension1.

B. CSI Feedback Encoder and Decoder

The UE uses an encoder to compress H into binary infor-
mation and sends it to the BS. BS recovers the information
using a decoder. Fig. 2 represents the system model and the
process. We refer to the entire structure combining encoder and
decoder as an autoencoder, and exhibit the overall architecture
in Fig. 4.

Encoding. The ground-truth channel H is used as input and
fed to three independent convolution layers. The numbers and
tuples in the convolution layer description refer to the filter di-
mension and filter size, respectively. When a convolution layer
and a dense layer are connected, the output of the convolution
layer is vectorized. The dense layers are represented with their
depth and an activation function.

1In the Massive MIMO considered in [6], [7], where the number of
transmitter antennas is large as M ≫ 1, 2D-DFT is utilized to obtain a
sparse matrix in the angular-delay domain. These approaches to obtain a
sparse matrix exploit the duality between the spatial-frequency CSI and the
angular-delay CSI which has been studied in depth by [13].
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Fig. 4. The autoencoder architecture which consists of the encoder (left) and
the decoder (right).

Quantization. To achieve quantization, the last dense
layer of the encoder has a sign function as an activation
function. Since the sign function, sign(x) = 1 for x ≥ 0,
else -1, is non-differentiable at 0, the derivative of the sign
function at x = 0 is replaced by returning the gradient
generated by backpropagation as it is. The encoder’s output
is C ∈ {0, 1}l, which is an l-dimensional binary latent vector,
and this binary information is transmitted to the BS over the
feedback link. The encoder is denoted by fENC and we have
fENC(H; ΘENC) = C where ΘENC is a set of all trainable
encoder weights.

Decoding. The BS contains the decoder fDEC and it
expands the binary information C into an M × Nnz × 2-
dimensional vector using the dense layer with a linear ac-
tivation function. The expanded vector is reshaped into the
size of the original channel matrix, and the CSI is restored
by a residual decoding block consisting of three convolution
layers. CsiNet’s residual decoding block structure [6] was used
for our decoder but we modified hyperparameters. Since the
quantization process is included in the network architecture,
we chose an encoder structure in which H is fed in multiple
convolution layers so that the information of H can to be
compressed with various resolutions.

C. Distortion Metrics and Loss Function

Mean squared error. The most widely used distortion
metric is the mean squared error (MSE), which measures the
distance between two matrices as follows

dMSE(H, Ĥ) = E[||H− Ĥ||2] ≈ E[||HAD − ĤAD||2], (2)

where ||·|| indicates the Frobenius norm which is an entry-wise
matrix norm. The weights of the autoencoder can be updated
so as to reduce the distance between the input and output of
the autoencoder. Note that the DFT matrix is unitary so the
MSE between a true channel matrix and an estimated channel
matrix HAD − ĤAD, which are on the spatial-delay domain, is
equivalent to that on spatial-frequency domain.

Sine error. Distortion can be defined in various ways
depending on the purpose of optimization. If the goal is
to maximize the user’s signal-to-noise ratio (SNR), we can
directly maximize the SNR through supervised learning by
converting the output of the neural network into information
on the spatial-frequency domain. To directly maximize the
SNR as opposed to reducing the MSE between the ground-
truth and estimated channels, we propose a span-free dis-
tortion metric sine error (SE) dsine, where dsine(Ĥ,H) =
dsine(Ĥ, cH), ∀c ∈ R as follows

HAF ≈ TDFTZP (H), ĤAF ≈ TDFTZP (Ĥ), (3)

Ĥnml
AF = TDFTZP (Ĥ)diag(

1

||ĥAF,1||2
, ...,

1

||ĥAF,Nsc ||2
), (4)

dsine(H, Ĥ) = −E[|Tr(HH
AFĤ

nml
AF )|], (5)

where ZP (·) is M × (Nsc −Nnz)-size zero-matrix padding to
recover the spatial-delay domain information (Fig. 3). TDFT is
the discrete Fourier transform matrix and Ĥnml

AF is a column-
wise normalized precoding matrix. diag(·) is a diagonal matrix
with the input sequence as its diagonal elements and ĥAF,n

is the n-th column of ĤAF. This loss function allows the
output of the neural network in the spatial-frequency domain to
have normalized beamforming vectors for each subcarrier and
enables updating in the direction in which the vector and the
inner product of the actual channel are maximized. Using this
metric, we can measure the distortion in the spatial-frequency
domain even when the autoencoder receives a low-dimensional
M ×Nnz size matrix as an input.

D. Autoencoder Training

The autoencoder for the fixed-rate CSI feedback is trained
to minimize distortion according to the desired metric and the
problem is defined as follows.

minimize
ΘENC,ΘDEC

E[d(H, Ĥ)] (P1a)

subject to Ĥ = fDEC(C; ΘDEC),C = fENC(H; ΘENC)
(P1b)

To solve this problem, we use a gradient-based update with
respect to ΘAE = ΘENC

⋃
ΘDEC, ∇ΘAEE[d(H, Ĥ)]. In particu-

lar, we initialize the autoencoder by starting learning with the
MSE loss function in (2) and finally solve the problem P1 by
updating the weights again with the loss function in function
(5). Detailed hyperparameter settings and learning techniques
are covered in Section V.

III. VARIABLE-RATE CODE FOR CSI FEEDBACK

In this section, we assume that we have NAE CSI au-
toencoders each with a different number of feedback bits,
{l1, l2, ..., lNAE} = L. We design a variable-rate coding scheme
by selecting an appropriate autoencoder according to the
channel characteristics. More specifically, we can choose the
optimal autoencoder for each CSI matrix by solving the
following two problems. The first is the distortion estimation
problem. We aim to estimate the distortion resulting from
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Fig. 5. The architecture of the distortion estimator D̂. This shallow neural
network can estimate the distortions d̂ from the NAE autoencoders.

each autoencoder without passing the CSI matrix through
the autoencoders, in order to minimize the computational
complexity of the UE. The second problem is a codeword
length allocation problem with a codeword length selector that
determines how many bits to devote to compress a given CSI
matrix based on the estimated distortion value. The estimated
distortion becomes a clear criterion for how easy or difficult
to compress a given CSI instance. Based on this information,
we propose algorithms to minimize the average number of
feedback bits.

A. Design of Distortion Estimator

Distortion d resulting from the autoencoder with the code-
word length l is denoted by d(H, Ĥ; l). We build a lightweight
neural network, a distortion estimator D̂ as depicted in Fig.
5, to estimate the true distortion from each autoencoder. The
distortion estimator aims to approximate multiple distortion
values d = (d(H, Ĥ; l1), ..., d(H, Ĥ; lNAE)) by taking only a
given sample as input. The set of weights of the distortion
estimator ΘD can be updated in direction of minimizing the
mean-squared error between the true and estimated distortion,
E[||(D̂(H; ΘD) − d)||2]. The estimated distortion is denoted
by d̂ and d̂i is the i-th element of the vector d̂. This
function allows us to rapidly estimate the distortion caused by
compression without going through the autoencoder directly.
The estimated distortion gives us a clear criterion for how
many bits we need to compress a given CSI matrix.

B. Design of Feedback Codeword Length Controller

We can obtain a variable-rate coding scheme by designing
a controller that allocates an appropriate codeword length l
to a given CSI matrix. The purpose of this subsection is to
design the codeword length controller based on the distortion
estimator D̂. We denote the function as CL (Codeword Length
controller) and ΘCL represents the set of all the parameters
for CL. It takes a CSI matrix H as an input and allocates
an appropriate length as CL(H; ΘCL) = l for the matrix
and l ∈ {l1, l1, ..., lNAE}. Exploiting the distortion estimator
D̂, we design CL to have a simple and natural logic as
follows: it measures the distortion of the CSI matrix and
allocates more feedback bits if the distortion is large for a low
number of bits. The detailed logic is specified in Algorithm
1. A CSI matrix observed by the UE, H, is an input of the
function. Through the distortion estimator D̂, the distortion
values d̂ = (d̂1, ..., d̂NAE), which are expected to be caused
from the available NAE autoencoders, are estimated. Then,
one can check whether the estimated distortion d̂1, which is
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True
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Fig. 6. The entire flowchart including CL where NAE = 3. D̂ estimates
the distortion of a given CSI matrix H for each autoencoder, d̂1, d̂2, and d̂3.
Based on the decision boundaries, ATH,1 and ATH,2, one of the encoders are
selected and codeword C is generated.

expected to occur when the autoencoder corresponding to the
smallest bit is used, is smaller than the parameter ATh,1. If an
autoencoder (fENC,l1 , fDEC,l1 ) with a small number of bits is
expected to cause distortion smaller than the desired threshold
ATh,1, CL allocates l1 for the CSI matrix. If the estimated
distortion is greater than the threshold, d̂1 > ATh,1, then
the estimated distortion that will occur from the autoencoder
corresponding to the next larger bit is checked. The same logic
can be repeated with all the autoencoders that the UE has at
its disposal. That is, one can continuously check whether the
distortion which is below a certain level is observed even when
compressed through autoencoder using as few bits as possible.

The thresholds ATh,1, ..., ATh,NAE−1 can be optimized ac-
cording to the desired goal. Our ultimate goal is to minimize
the average number of feedback bits (P2a) while achieving
a distortion no more than DTH using the given autoencoders
(P2b) and following Algorithm 1 (P2c).

Algorithm 1 Function CL(·): CodeLength Selector
1: Input: H
2: Parameters: ΘCL = (ATh,1, ATh,2, ..., ATh,NAE−1)

3: Estimate distortion values D̂(H; ΘD) = d̂ ∈ RNAE

4: for i = 1 to NAE − 1 do
5: if d̂i, < ATh,i then
6: Return li (Use li-bit AE), (Algorithm Ends)
7: end if
8: end for
9: Return lNAE (Use lNAE -bit AE), (Algorithm Ends)

minimize
ΘCL

E[L] (P2a)

subject to E[d(H, fDEC,l=L(fENC,l=LH))] < DTH,
(P2b)

L = CL(H; ΘCL) (P2c)

CL can radpily determine the codeword length using only the
parameters ΘCL. Since the cardinality of the set ΘCL is equal
to NAE − 1, this is a low-dimensional optimization problem.
Covariance matrix adaptation evolution strategy (CMA-ES)
[14], which is naturally suited to this case, is used to optimize
the NAE−1 variables for problem P2. CMA-ES is a numerical
optimization method based on an evolutionary strategy and a
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Fig. 7. The actual negative distortion (vertical axis, True NSNR) caused
by the autoencoder and the estimated negative distortion by D̂. The more
concentrated the data is on the dash line of each subplot, the higher the
accuracy of the distortion estimator. For AE that devotes higher bits, both the
predicted distortion and the actual distortion show small values. CL allocates
a larger number of bits to samples where large distortion is expected.

derivative-free optimization method. It is well known that the
technique can effectively search the domain of the variables
to be optimized with the efficient recombination and mutation
techniques. In this way, we obtain the thresholds that can
lead the UE to use the smallest average number of bits while
maintaining the average distortion below the desired level.

Fig. 6 shows the flowchart of the proposed algorithm that
consists of three steps, the distortion estimation, codeword
length selection, and encoding-decoding process.

IV. NUMERICAL RESULTS

A. Simulation Settings

We consider a system with a center frequency of 2.53 GHz.
The number of subcarriers used by each UE is Nsc = 257,
and the subcarrier spacing is 15000 Hz. The BS has M = 8
transmit antennas and the UE has a single antenna. The

TABLE I
Performance comparison for the fixed-rate AEs with MSE, SE, and VRC

Average of Codeword Length / Average NSNR / Standard Deviation of NSNR

MSE SE VRC-d̂ VRC-d

8 / 0.50 / 0.20 8 / 0.56 / 0.18 8 / 0.56 / 0.18 8 / 0.56 / 0.18
16 / 0.55 / 0.18 16 / 0.57 / 0.17 12.27 / 0.58 / 0.17 10.44 / 0.58 / 0.16
32 / 0.61 / 0.17 32 / 0.63 / 0.16 30.63 / 0.63 / 0.15 21.44 / 0.63 / 0.13
64 / 0.69 / 0.15 64 / 0.70 / 0.14 49.61 / 0.68 / 0.13 51.97 / 0.69 / 0.14

location of the UE is uniformly distributed on the disc with a
radius of 500m centered at the BS. The speed and the direction
of the UE are uniformly distributed over [0,2] km/h and [0,2π],
respectively. To generate the dataset, we use the 3D channel
model of the 3GPP technical report 36.873 [15] through
Quasi Deterministic Radio Channel Generator (QuaDRiGa)
[16]. The parameter setting for the channel realization follows
the Terrestrial Urban Macrocell parameters extracted from
measurements in Berlin [17].

We construct NAE = 4 autoencoders with the feedback
codewords of lengths l ∈ {8, 16, 32, 64} (bits). We let the

autoencoder takes a 8×32 size complex CSI matrix as an input,
i.e., Nnz = 32. To update the weights of the each autoencoder
as depicted in Fig. 4, we adopt the Cosine Annealing Learning
Rate (CALR) [18] technique together with the Adam optimizer
[19] where the learning rate varies over [1e-3,1e-5]. The
number of data samples for training, validation and testing
is 100,000, 20,000, and 10,000, respectively. The batch size is
set to 100, and the training is done over 600 epochs.

B. Performance Analysis

Distortion Estimation and VRC. The four subplots in
Fig. 7 show the distortion estimation results of our four fixed-
rate AEs. The vertical axis represents the actual Normalized
SNR (NSNR)2 and the horizontal axis represents the NSNR
predicted by the distortion estimator. Note that NSNR can
be interpreted as a negative distortion. For autoencoders with
a more the number of feedback bits, we can see that the
distortion values of the samples cluster in the upper right,
which means better compression performance. Markers and
colors indicate how many bits the CL has allocated for each of
the 10,000 test CSI instances when DTH = 0.63 with d̂ for P2.
For example, the CSI samples marked with a red pentagram
indicate that they were assigned to a 64-bit autoencoder. We
observe that the higher the distortion predicted (the lower the
NSNR predicted), the more the bits are allocated.

Table 1 shows the performance comparison of the autoen-
coders trained using MSE, sine error (SE), and VRC.

MSE vs. SE loss. The autoencoders trained with SE perform
better than the autoencoders trained with MSE in terms of
NSNR. The performance gap between the autoencoders using
SE and MSE narrows as the length of the codeword increases.
VRC is constructed using the four SE-based autoencoders that
show better performance in NSNR.

Fixed-rate vs. Variable-rate. Compared to the fixed-rate
AEs trained with SE, VRC-d̂ which selects the rate adaptively
based on the estimated distortion d̂ requires relatively fewer
bits to achieve similar reliability (NSNR). VRC-d indicates
the result from solving P2 with the true distortion d instead
of the estimated distortion d̂ (line 3, Algorithm 1). We can
see that it require fewer bits than VRC-d̂. That is, when the
UE knows the actual distortion value, i.e. by performing both
the encoding and decoding, the number of bits required can
be reduced more efficiently.

When the VRC is used, the desired performance can be
achieved by variously adjusting DTH and at the same time,
the minimum number of bits can be achieved by varying
the rates. Among the distortion performance achievable using
the VRC, Table I shows the performance of the VRCs most
similar to the ones obtained from fixed-rate autoencoders in
terms of the distortion. Note that if the distortion decreases
monotonically in the length of the latent vector, no additional
gain can be obtained through distortion estimation and code

2We normalized the channel of each subcarrier and also normalized the
precoding vector to only observe the change in SNR according to csi feedback.
Transmission power and noise variance were assumed to be 1. We refer to
the SNR measured in this environment as NSNR.
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Fig. 8. The difference in compression distortion among samples is also
observed in the COST2100 dataset (outdoor setting) using CsiNet [6]. D̂
can estimate distortion of CsiNet and our proposed scheme allocates more
floating point numbers to the CSI instances that are expected to generate
large distortion.

STD=-9.69 dBSTD=-8.68 dB

Fig. 9. True and estimated distortion achieved by 48-F AE (left) and VRC-d̂
(right). 48-F CsiNet with CA uses 48 bits to achieve -2.58dB and VRC-d̂ uses
46.69 bits to achieve -2.61dB. Moreover, The standard deviation (imbalance)
of the distortion was mitigated from -8.68dB to -9.69dB.

length allocation. However, since some CSI instances show
similar distortion at different compression rates, VRCs exploit
them to reduce the required number of bits.

From Table I, we observe that VRC can reduce distortion
imbalance among the CSI instances while achieving better or
similar overall performance.

Performance comparisons on COST2100 dataset with
CsiNet. We reproduce CsiNet with 4 different compression
ratios, for example, 32-F indicates that the AE compresses
CSI as 32 floating point numbers. CALR method is adopted
(CsiNet with CA) and all other hyperparameter settings and
performance metric follow the original paper [6]. For this
experiment, normalized MSE is used for the autoencoder
training.

The distortion difference among the CSI instances is also
observed for CsiNets trained for the COST2100 outdoor
dataset [6]. Fig. 8 shows that the distortion resulting from
CsiNet with the various number of feedback bits is predictable.
As a more the number of feedback bits is allowed, we observe

that the predicted distortion and actual distortion samples
are clustered in the lower left (low distortion). The markers
distinguished by color and shape show what autoencoder
the proposed method uses to compress each sample when
DTH = −2.59 dB with d̂. The higher distortion is predicted,

TABLE II
Performance comparison for CsiNet, CsiNet with CA, and VRC

Average of Codeword Length / Average NMSE (dB) / Standard Deviation (dB)

CsiNet[6] CsiNet with CA VRC-d̂ VRC-d

- 16 / -1.26 / -8.39 16 / -1.26 / -8.39 16 / -1.26 / -8.39
32 / -1.93 32 / -2.14 / -8.34 31.02 / -2.10 / -8.51 31.98 / -2.20 / -9.23
- 48 / -2.58 / -8.68 46.69 / -2.61 / -9.69 41.80 / -2.60 / -10.05
64 / -2.81 64 / -3.10 / -8.61 61.10 / -3.00 / -9.02 62.67 / -3.09 / -8.69

the proposed method allocates a larger number of floating
numbers for compression. Fig. 9 shows that VRC-d̂ can
achieve better performance while mitigating the performance
imbalance among the CSI instances. From Table II, it is
observed that VRC-d̂ and VRC-d performs better than the
fixed-rate approaches in terms of feedback efficiency and
distortion balance.

V. CONCLUSION AND FUTURE DIRECTIONS

This paper brings attention to the possible benefit of
using variable-rate coding for CSI feedback by observing
the significant difference in distortion among CSI instances
under fixed-rate data-driven DL-based CSI feedback schemes.
We devise a way to exploit these differences by designing
distortion estimator that can estimate distortion due to the lossy
compression using various fixed-rate feedback autoencoders.
Based on the estimated distortion values, the proposed method
selects the number of feedback bits by choosing an appro-
priate autoencoder for each CSI instance. The experimental
results show that the proposed scheme reduces the number of
bits required to achieve the desired average distortion while
reducing the distortion imbalance among the CSI instances.
The variable-rate feedback approach is expected to reduce the
feedback overhead and imbalance, especially in the coordi-
nated multipoint environment where users may be required to
send CSI feedback associated with multiple BSs.
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