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Abstract—"THIS PAPER IS ELIGIBLE FOR THE STUDENT
PAPER AWARD." There has been growing interest in computing
rate-distortion functions for real-world data, as they can provide
a theoretical benchmark for compression problems. However, a
generalized form of rate-distortion that includes side information
and coding for computing has been underexplored, despite
its relevance in modern compression problems. To address
this gap, we propose a new method for estimating the rate-
distortion function for computing with side information, using
a Lagrangian framework with neural network-parametrized
encoding and decoding strategies. This approach enables targeting
specific points on the rate-distortion curve through gradient-
based optimization. Our methodology is validated in synthetic
environments where rate-distortion functions are known, ensuring
accuracy in estimation. Additionally, we extend its application to
practical, high-dimensional channel state information compression
scenarios. We provide rate-distortion estimation results on these
scenarios, which in turn enables us to quantify the usefulness of
side information in the practical scenarios.

I. INTRODUCTION

The rate-distortion function [1], which characterizes the
optimal rate-distortion trade-off, serves as a theoretical bench-
mark for assessing the effectiveness of compression algorithms,
as highlighted in recent studies [2]–[5]. However, accurately
computing Shannon’s information measures, such as entropy
and mutual information which form the basis of rate-distortion
function, is notably challenging. This is particularly true in
scenarios involving real-world distributions where one must
rely solely on samples without any additional knowledge of
the distributions, or in cases involving high-dimensional input
sources. Closed-form solutions for these measures are generally
limited to specific circumstances, e.g., Gaussian sources.

A. Computing rate-distortion functions

An approach to numerically compute the rate-distortion
functions and associated information measures for general
distributions has been devised based on iterative algorithms
in 1972 by Blahut [6] and Arimoto [7]. Known collectively
as the Blahut–Arimoto algorithms, they have been adapted to
address multiterminal source coding settings [8].

However, these conventional iterative approaches face limita-
tions, especially when applied to high-dimensional or con-
tinuous sources [3]. To overcome these challenges, recent
studies have explored solutions utilizing neural networks or
advanced optimization techniques. The Restricted Boltzmann
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Fig. 1. Coding for Computing with Side Information. We consider a
configuration where switch (A) remains open while switch (B) is closed,
permitting access to side information at the decoder. The decoder aims to
compute a function Z = g(X,Y ); we let Ẑ and D denote the decoder’s
output and distortion, respectively.

Machines is integrated with neural networks to estimate
rate-distortion functions [2]. In [3], rate-distortion function
duality concepts, e.g., [9], is utilized in estimation methods. A
sandwich bound for rate-distortion function is introduced in
[4] through distribution parameterization with neural networks.
Notably, the Wasserstein gradient descent algorithm proposed
in [5], has demonstrated state-of-the-art performance for rate-
distortion estimation, without relying on neural networks.

B. Rate-distortion function for computing with side information

The rate-distortion function concept can be extended to
encompass scenarios where side information, correlated with
the input source, is available at the decoder, or at both the
encoder and decoder, as illustrated in Figure 1. This adaptation
is widely recognized as the Wyner-Ziv rate-distortion function
[10]. Additionally, the notion of the rate-distortion is further
broadened by considering communication systems where the
goal is to compute a function of the source. Such applications of
the Wyner-Ziv rate-distortion function are commonly referred
to as Coding for Computing [11].

Such a broader perspective of the rate-distortion function
is crucial for evaluating compression algorithms in practical
scenarios and understanding side information’s role in various
contexts. It also offers a way to quantify the relevance of
different types of side information for various sources.

While recent compression techniques increasingly incor-
porate side information [12]–[14] with specific objectives,
research on rate-distortion estimation with side information,
especially for continuous or large-dimensional distributions,
remains limited. Prior studies have focused on discrete sources
and side information [15], extending the Blahut-Arimoto Al-
gorithm but often struggle with high-dimensional distributions



particularly when there is no a priori knowledge of the
distributions.

Our contributions address these gaps through a neural
network-based estimation method for the rate-distortion func-
tion for computing with side information, along with applicable
methodologies:

C. Contributions

We present a generalized framework for estimating the rate-
distortion function for computing with side information. We
formulate a Lagrangian loss function where the minimization
of this function is achieved through specific encoding and
decoding schemes that can achieve point(s) on the rate-
distortion function. Our algorithm focuses on minimizing the
loss by parameterizing the conditional distributions of the
codewords for a given source and side information, as well as
the decoder. The algorithm is designed to alternatively update
these parameters to efficiently minimize the Lagrangian loss.

The effectiveness of our algorithm is validated through
numerical evaluation, particularly in cases where the rate-
distortion function is known, such as with correlated Gaussian
distributions for the source and side information. These sim-
ulations demonstrate that our algorithm consistently provides
a precise estimation of the rate-distortion function. Extending
beyond the synthetic data, we also apply our approach to
practical scenarios. This includes assessing the possible gains
when side information is available when considering channel
state information compression problems and illustrating the
practical relevance and applicability of our method to high-
dimensional sources.

II. SYSTEM MODEL AND PROPOSED METHOD

Consider the communication system illustrated in Fig. 1,
where switch (A) is open and (B) is closed. The primary
source and side information pair (X,Y ) is assumed to be
independently and identically distributed (i.i.d.), following a
joint distribution pX,Y (x, y). Here, x and y are realizations
of X and Y from the domains X and Y , respectively. The
codeword is represented by U from the domain U and the
output of the decoder is Ẑ ∈ Z , with D denoting a distortion
level and d being a distortion measure defined as a mapping
as d : Z ×Z → R+. For readability, we also let X̂ denote the
output of the decoder when the system aims to reconstruct the
original information X .

In our general framework we assume the objective is to
reconstruct a function Z = g(X,Y ), where Z is not necessarily
identical to X . In this setting, the corresponding rate-distortion
function determines the minimum necessary rate to compute
g(X,Y ) within a given distortion threshold D. The rate-
distortion function, denoted RD,C, is given as follows [16].

Definition 1 (Rate-distortion function for computing with side
information).

RD,C(D) = min
qU|X(u|x),f(u,y): E[d(Z,Ẑ)]≤D

I(X;U |Y ) (1)

Fig. 2. RD,C is convex with respect to distortion D. For a given slope s,
minimizing the y-intercept of a line originating from an achievable point
(D̂s, R̂s) in the rate-distortion region leads to a new y-intercept, which
corresponds to a line that is tangent to the RD,C curve at point(s) with the
same slope s.

where qU |X(u|x) is a conditional probability distribution of
U given X . Z and Ẑ are the desired function output and the
decoder output, respectively. f is a decoder taking u and side
information y as an input pair as f(u, y) = ẑ.

In this paper, we focus on developing a method to estimate
RD,C(D) for a general function, particularly in scenarios where
the joint distribution pX,Y (x, y) is unknown and a dataset of
N data points (xi, yi)

N
i=1 that are sampled from pX,Y (x, y) is

available. This setup is typical in real-world contexts, where
the exact distribution underlying a dataset is often not known.

We start with a Lagrangian formulation to address the
optimization problem defined in (1) by exploiting convexity
and non-increasing property of RD,C(D) with respect to the
distortion D. We can formulate an optimization problem for
finding the vertical intercept of the tangent with slope s(≤ 0)
to the rate-distortion curve as follows.

RD,C(Ds)− sDs = min
qU|X ,f

{I(X;U |Y )− sE[d(Z, Ẑ)]}. (2)

For a given slope s and a corresponding achievable (distortion,
rate) pair, (D̂s, R̂s) illustrated in Fig. 2, the y-intercept
at this line is R̂s − sD̂s. This intercept is equivalent to
I(X;U |Y ) − sE[d(Z, Ẑ)], attained by the specific encoding
and decoding schemes associated with qU |X , f corresponding
to (D̂s, R̂s). This y-intercept can be minimized through
optimization, adjusting the encoding and decoding schemes
accordingly.

Due to the convexity of RD,C, the lowest achievable value
of the vertical intercept corresponds to RD,C(Ds)− sDs where
the distortion Ds and rate RD,C(Ds) is a point lies on the RD,C
curve itself. By determining a point on the RD,C curve for each
slope s and then varying s, we can estimate the RD,C curve.

To facilitate estimation using a given dataset, we reformulate
the optimization term as follows.

min
qU|X ,f

{
EX,Y,U

[
log

qU |X(U |X)

qU |Y (U |Y )

]
− sE[d(Z, Ẑ)]

}
, (3)

where qU |Y (u|y) =
∑

x∈X pX|Y (x|y)qU |X(u|x) (when X is a
discrete random variable) and Ẑ = f(U, Y ). This formulation
enables the computation of expectation terms using Monte
Carlo estimation with data points following the distribution
qX,Y,U (x, y, u). Here, we use the notation q to represent a



Algorithm 1 Estimation of Rate-Distortion Function for Computing with Side Information at Decoder
1: Input: Slope s, dataset {xi, yi}Ni=1, initialized sets of parameters θpo, θpr, θdec
2: for t = 0 to T do
3: Sample minibatch B = {(xi, yi)}bi=1 and sample {ui}bi=1 from {qU |X=xi

}bi=1

4: Compute ∇L1 = ∇ 1
b

∑b
i=1[log(qU |X(ui|xi;θpo)− log qU |Y (ui|yi;θpr)]− s[d(g(xi, yi), f(ui, yi;θdec))]

5: Update θpo ← θpo −∇θpoL1 and θdec ← θdec −∇θdecL1

6: for t′ = 0 to T ′ do
7: Sample minibatch B′ = {(xi, yi)}bi=1 and sample {ui}bi=1 from {qU |X=xi

}bi=1

8: Compute ∇L2 = ∇ 1
b

∑b
i=1[log(qU |X(ui|xi;θpo)− log qU |Y (ui|yi;θpr)]

9: Update θpr ← θpr −∇θprL2

probability distribution influenced by qU |X and f , while p has
been used to denote distributions independent of qU |X and f .

To proceed with this approach, we parameterize the key
components of the optimization problem using a neural network
based model. First, we represent the conditional distribution
qU |X(u|x) as qU |X(u|x;θpo) where θpo denotes a set of
parameters for qU |X . Similarly, we parameterize the decoding
function with a set of parameters θdec as f(u, y;θdec).

It should be noted that the parameterization of qU |X(u|x;θpo)
directly determines the related marginal and joint distributions,
such as qU |X,Y , qU |Y , and qX,Y,U under the fixed pX,Y . These
distributions, governed by the parameter set θpo, are thus
denoted as qU |X,Y ;θpo , qU |Y ;θpo , and qX,Y,U ;θpo .

In summary, we begin with the Lagrangian optimization
problem for the rate-distortion function, also known as the
supporting hyperplane method. We employ neural networks to
parameterize the key components of our loss function. This
optimization strategy draws parallels with the conventional
Blahut-Arimoto algorithms [6], [7] in terms of formulating the
Lagrangian loss, while also drawing inspiration from recent
works [4], which has achieved state-of-the-art results in rate-
distortion estimation through neural networks.

In the following subsections, we delve into a comprehensive
explanation of our proposed algorithm, detailing the steps and
techniques involved. We will also discuss the methods used
for parameterizing the components in our framework.

A. Algorithm

The proposed method is detailed in Algorithm 1. This algo-
rithm iteratively computes the gradient of the loss function (3)
over T training iterations and updates the relevant parameters
to minimize the the loss.

Line 3. Specifically, in each iteration, a minibatch with size
b, B = {(xi, yi)}bi=1, is sampled. To estimate the expectation
EX,Y,U [log qU |X(U |X) − log qU |Y (U |Y )], it is necessary to
generate data point triples (xi, yi, ui) following the distribution
pX,Y (x, y)qU |X(u|x;θpo). For each sampled pair (xi, yi), a
corresponding ui is drawn from the distribution qU |X(u|x;θpo).
This sampling results in triples (xi, yi, ui) that adhere to the
joint distribution qX,Y,U (x, y, u) = pX,Y (x, y)qU |X(u|x;θpo).

Utilizing these samples, we compute the average gradient
of the loss function, which involves the computation of

the expected value of log
qU|X(U |X)

qU|Y (U |Y ) . This corresponds to

log
qU|X(U |X;θpo)

qU|Y ;θpo (U |Y ) based on the parameterization where qU |Y ;θpo

is formulated as

qU |Y ;θpo(u|y) =
∑
x∈X

pX|Y (x|y)qU |X,Y ;θpo(u|x, y)

=
∑
x∈X

pX|Y (x|y)qU |X(u|x;θpo). (4)

The efficient computation of qU |Y ;θpo is critical, as it needs to
be executed for multiple instances to obtain the average of the
log probability. However, this computation of (4) presents
a substantial challenge due to the unknown nature of the
distribution pX|Y , with only sample-based access available.
Furthermore, using sampling approaches for the estimation
of the sum over X is non-trivial when domain X is a high-
dimensional space and the data instances are limited. To address
this issue, we leverage the following lemma, with its proof
detailed in Appendix B.

Lemma 1. Consider a fixed set of parameters θpo and scenario
where the side information Y is available only at the decoder.
Then we have

argmin
q̂U|Y

EX,Y,U

[
log

qU |X(U |X;θpo)

q̂U |Y (U |Y )

]
= qU |Y ;θpo . (5)

Based on this lemma, we conclude that instead of exe-
cuting the summation in (4) to derive qU |Y ;θpo for a given
qU |X(u|x;θpo), we can model the distribution of U given Y as
qU |Y (u|y;θpr) where θpr denotes a set of free parameters and
then use the parameterized distribution qU |Y (u|y;θpr) as an
argument for the problem (5). The solution of (5) will lead to
qU |Y (u|y;θpr) = qU |Y ;θpo(u|y) as long as the parametrization
of qU |Y (u|y;θpr) is expressive enough.

Lines 4-5. By using the parametrized functions
qU |X(u|x;θpo), qU |Y (u|y;θpr), and f(u, y;θdec), in Line 4,
we compute the gradient of (3). Subsequently, in Line 5, the
parameters θpo and θdec are updated to minimize the loss.

Lines 6-9. At the end of each iteration, we update
qU |Y (u|y;θpr) by solving (5) based on the newly updated
qU |X(u|x;θpo) to correctly compute the main loss function
(3) in the subsequent iteration. Problem (5) can be solved
through gradient descent updates of the set of parameters θpr
as described in Lines 7-9 of Algorithm 1. More specifically,



for each inner-iteration (occurring T ′ times), we sample a
minibatch and obtain pairs {(xi, yi, ui)}bi=1. We then update
θpr to minimize the objective in (5). Practically, we have found
that setting T ′ = 1 and reusing the same minibatch B for B′
not only offers computational efficiency but also provides a
tight upper bound on the rate-distortion function relative to
theoretical optimality (as detailed in Sec. III).

B. Parameterization

In Algorithm 1, we utilize three distinct parameterized
models: qU |X(u|x;θpo), qU |Y (u|y;θpr), and f(u, y;θdec). A
conventional approach to parameterizing distributions involves
assuming a specific distribution form and then parameteriz-
ing its moments, such as the mean and variance. Various
parameterization setups exist, including Gaussian, uniform
distribution-based parameterizations, and more sophisticated
forms relevant to modern machine learning research [17]. In our
study, we opt for Gaussian distributions for parameterization.
For example, in sampling from the distribution qU |X(u|x;θpo),
the random variable U is assumed to follow a Gaussian
distribution characterized by mean µ(x;θpo) and variance
Σ(x;θpo), both of which depend on the given realization x. The
functions µ and Σ can be designed in various ways, depending
on the specifics of the problem, where they take x as input
and output the corresponding mean and variance.

We provide more details on the implementation in Sec. III.
The choice of parameterization and the construction of these
functions yield a point that represents an upper bound on the
rate-distortion curve. This is because the variable spaces for the
minimization problem in (3) is constrained by the assumptions
inherent in the chosen distribution models. Thus, while these
parameterizations facilitate the computational tractability of the
problem, they also inherently define the limits of the solution
space explored in the optimization process.

III. NUMERICAL EVALUATION

In order to evaluate our algorithm’s efficacy, our initial
step involves scenarios where the true rate-distortion function
for computing with side information is known in closed
form. Beyond these environments, we consider estimating the
rate-distortion function for practical problem associated with
channel state information (CSI) compression [18], incorporating
side information.

A. 2-Component White Gaussian Noise

We adapt a scenario from [11, Sec. 21.1], featuring
a 2-component White Gaussian Noise (2-WGN(P, ρ))
source, where (X,Y ) forms pairs of i.i.d. jointly
Gaussian random variables. Each pair in the sequence
(X1, Y1), (X2, Y2), . . . , (Xn, Yn) has zero mean
(E[X] = E[Y ] = 0), equal variance (E[X2] = E[Y 2] = P ),
and a correlation coefficient ρ = E[XY ]/P . With
a squared error distortion measure d and a function
g(X,Y ) = (X + Y )/2, RD,C is given by

RD,C(D) = max
{1

2
log

(P (1− ρ2)

4D

)
, 0
}
. (6)

Fig. 3. Compression of Gaussian sources: Rate-distortion functions for
computing with side information for various ρ and the estimated points.

To implement our approach, we employed a multi-layer
perceptron (MLP) to model qU |X(u|x;θpo), qU |Y (u|y;θpr),
and f(u, y;θdec). Specifically, for qU |X(u|x;θpo) and
qU |Y (u|y;θpr), we use a single-layer MLP that takes an n-
dimensional input and outputs a 2n-dimensional vector, half
for mean and half for variance, to model an n-dimensional in-
dependent multivariate Gaussian distribution. For f(u, y;θdec),
we used a 2-layer MLP with leaky ReLU activation, which
takes (u, y) as an input and outputs an n-dimensional ẑ.

In Fig. 3, we set P = 1, n= 100, and provide simulation
results for various ρ values in {0.2, 0.4, 0.6, 0.8}. Each subplot
displays the RD,C curves, alongside four rate-distortion points
estimated by our algorithm for different slopes s. We also
plot RC curves, which refers to the rate-distortion function for
computing without side information, which can be obtained
by setting ρ = 0. y-axis has natural units (Nats) and x-axis
represents mean squared error distortion. The dashed lines
associated with R̂D,C(D) corresponds to the learning trajectory,
i.e., the achieved (distortion, rate) points during the training
process.

Our algorithm consistently estimates points on RD,C within
a small tolerance of less than 1e-3. A decrease in the s value
corresponds to points on the left side of the curve, indicating
higher rates and lower distortion. As can be seen, a higher
correlation ρ results in a larger gap between RC(D) and
RD,C(D), and our method effectively estimates points on RD,C
regardless of various ρ values.

B. Applications to CSI Compression

This subsection focuses on the compression of Frequency
Division Duplex Downlink (DL) Channel State Information
(CSI), an area of growing interest in wireless research [18].



1) Setup: The objective is to compress the DL CSI, X , at
the User Equipment (UE) side. The UE then transmits this
compressed information, or codeword U , to the Base Station
(BS). The aim is to minimize the Normalized Mean Squared
Error (NMSE), defined as E[∥X − X̂∥22/∥X∥22], where X̂ is
the decoder output and ∥ · ∥2 is elementwise square norm.

To enhance compression efficiency, uplink (UL) CSI can
be utilized as side information Y . This is based on the
observation that UL CSI is typically acquired (available) via
pilot transmissions from the UE to BS, and is correlated with
DL CSI due to frequency-invariant characteristics [19], [20].

2) Simulation environment configuration: A CSI instance X
characterized by the setting (ntx,nsc), with ntx = 8 represents
the number of transmit antennas and nsc = 667 denotes the
number of subcarriers. UL CSI also has the same parameters.
Our numerical evaluation use the Quasi Deterministic Radio
channel generator [21]. We model channel distributions with
3GPP-3D antenna configurations, setting DL and UL center
frequencies at 1.91GHz and 2.11GHz, respectively. UEs are
randomly placed within a 300m diameter area around a centrally
located BS, in an urban microcell environment with non-line-
of-sight conditions.

3) Training configuration: We employ the Adam optimizer
with a learning rate varying from 5e-4 to 1e-6 and a minibatch
size of 100.

4) Parameterization of distributions: CSI instances are
preprocessed by converting to the angular-delay domain via
Inverse Fast Fourier Transform (IFFT) and trimming high-
delay near-zero regions, following existing CSI preprocessing
methods [22], [23]. This results in an 8×32 complex valued
matrix, with 8 angular and 32 cropped delay components.
We utilize inception block-based [24] encoding and decoding
schemes [25] for the distribution parameterization. The encoder
outputs a 2×8×32 matrix, divided into mean matrix of 8× 32
and variance matrix of 8×32 for qU |X(u|x;θpo). The same
structure is used for qU |Y (u|y;θpr). The decoder, f(u, y;θdec),
takes two 8× 32 complex valued matrices (codeword and side
information) as input, processes them through a linear layer
followed by the inception block-based decoder, outputting an
8× 32 complex matrix. This output undergoes zero-padding
and FFT for spatial frequency domain recovery.

5) A constructive neural CSI compression algorithm: For
further analysis, we implement CSI compression algorithms
using fixed rates (codeword lengths) with the same architecture
used in Sec. III-B4. Consider lcl sized binary codeword for
the compression. For efficient implementation, we take 16 as
a new base and consider codewords of length l = lcl/ log2(16)
to maintain cardinality. The encoder outputs a vector Ue ∈
R

lcl
log2(16)

×NEbd where NEbd is an embedding dimension. This
vector is quantized using a trainable codebook of 16 different
NEbd-dimensional vectors, based on [26]. The encoder transmits
indices of these vectors via a wireless link to the BS, forming
codeword U . The BS reconstructs Ue using these indices and
the corresponding vectors in the codebook. The same decoder
modules are then applied. We vary binary codeword lengths
lcl ∈ {64, 128, 256, 512}, NEbd = 8, set the loss function as

3dB
2dB

0.7dB

Fig. 4. CSI Compression: Comparison of the estimated rate-distortion function,
estimated rate-distortion function with side information, and (distortion, rate)
points achieved by the neural compression algorithm.

the NMSE, and employ the same optimization techniques to
reduce distortion.

6) Results: In Figure 4, we illustrate the estimated rate-
distortion function R̂D,C along with R̂C, which is the estimated
RC by [4] and using the same neural architectures but which
ignores the side information. By adjusting s values (-0.1, -1, -10,
-100), we explore distortion levels from 0dB to approximately
-14dB, connecting these points linearly to serve as an upper
bound for the true rate-distortion curves.

As expected, introducing UL CSI for DL CSI compression is
beneficial as R̂D,C < R̂C, especially at lower CSI feedback rates.
For instance, with no DL CSI transmission (0 nats/sample),
the BS can still retrieve reasonable information from UL CSI,
achieving -3dB NMSE. At a feedback rate of 40 Nats/Sample,
the gain from UL CSI side information is approximately 2dB.
This advantage diminishes with increased feedback resources;
for example, at 400 Nats/Sample, the gain is around 0.7dB.

The neural compression algorithm, incorporating side infor-
mation, achieved a rate-distortion curve situated between R̂D,C
and R̂C. Given that R̂D,C establishes an upper bound of RD,C,
the discrepancy between RD,C and the real CSI compression
algorithm’s performance signals room for improvement. For
example, in the case of 177 Nats/sample, we may anticipate
an improvement exceeding 1dB. Notably, this gap is less
pronounced in scenarios with lower rates, allowing one to have
a conjecture that the actual performance of the CSI compression
algorithms is closer to R̂D,C.

IV. DISCUSSION

In this paper, we propose a new algorithm for estimating the
generalized rate-distortion function, with a specific emphasis on
the rate-distortion function for computing with side information.
This approach can offer estimated rates for given distortion
levels and also enables the formulation of reliable conjectures
about the benefits of side information at varying compression
rates. Such a methodology is anticipated to be valuable in
practical system design, allowing system designers to effectively
measure the potential gains from side information against its
processing costs through informed estimations.
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APPENDIX A
PROBLEM FORMULATION (3)

The definition of conditional mutual information leads to the following formulation

min
qU|X(u|x),f

{
I(X;U |Y )− sE[d(Z, Ẑ)]

}
(7)

= min
qU|X(u|x),f

{ ∑
X ,Y,U

qX,Y,U (x, y, u) log
pY (y)qX,Y,U (x, y, u)

pX,Y (x, y)qY,U (y, u)
− sE[d(Z, Ẑ)]

}
(8)

This can be equivalently expressed as

min
qU|X(u|x),f

{
E
[
log

qU |X,Y (U |X,Y )

qU |Y (U |Y )

]
− sE[d(Z, Ẑ)]

}
(9)

Here, the expectation is taken with respect to the joint distribution of (X,Y, U). For given realizations of X and Y , the
conditional distribution of the codeword U is determined solely by X based on the communication model that we deal with.
This restriction arises from the system model, which does not allow for the codeword to be controlled based on side information.
Consequently, this simplifies to qU |X,Y (U |X,Y ) = q(U |X), thereby completing the proof.

APPENDIX B
PROOF OF LEMMA 1

We start with the following equation:

qU |X(U |X;θpo) = qU |X,Y ;θpo(U |X,Y ). (10)

This equation stems from the premise that the distribution of codeword U is deterministic on X when it is given. Following
this, we have

argmin
q̂U|Y

EX,Y,U

[
log

qU |X(U |X;θpo)

q̂U |Y (U |Y )

]
= argmin

q̂U|Y

EX,Y [KL(qU |X(U |X;θpo)∥q̂U |Y (U |Y ))]

= argmin
q̂U|Y

EX,Y [KL(qU |X,Y ;θpo(U |X,Y )∥q̂U |Y (U |Y ))]

= argmin
q̂U|Y

EX,Y

[∑
U

qU |X,Y ;θpo(u|X,Y ) log
qU |X,Y ;θpo(u|X,Y )

q̂U |Y (u|Y )

]
= argmin

q̂U|Y

EY

[∑
X

∑
U

pX|Y (x|Y )qU |X,Y ;θpo(u|x, Y ) log
qU |X,Y ;θpo(u|x, Y )

q̂U |Y (u|Y )

]
= argmin

q̂U|Y

EY

[∑
X

∑
U

qU,X|Y ;θpo(u, x|Y ) log
qU |X,Y ;θpo(u|x, Y )

q̂U |Y (u|Y )

]
= argmin

q̂U|Y

EY

[∑
X

∑
U

qU,X|Y ;θpo(u, x|Y ) log
qU |X(u|x;θpo)

q̂U |Y (u|Y )

]
= argmax

q̂U|Y

EY

[∑
X

∑
U

qU,X|Y ;θpo(u, x|Y ) log q̂U |Y (u|Y )
]

= argmax
q̂U|Y

EY

[∑
U

qU |Y ;θpo(u|Y ) log q̂U |Y (u|Y )
]
. (11)

As both qU |Y ;θpo and q̂U |Y are probability distributions, applying Gibbs’ inequality completes the proof.
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