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Abstract—This paper presents a theoretical analysis for a
self-driving vehicle’s velocity as it navigates through a random
environment. We study a stylized environment and vehicle
mobility model capturing the essential features of a self-driving
vehicle’s behavior, and leverage results from stochastic geometry
to characterize the distribution of a typical vehicle’s safe driving
velocity, as a function of key network parameters such as the
density of objects in the environment and sensing accuracy.
We then consider a setting wherein the sensing accuracy is
subject to a sensing/communication rate constraint. We propose
a procedure that focuses the vehicle’s sensing/communication
resources and estimation efforts on the objects that affect its
velocity and safety the most so as to optimize its ability to
drive faster in uncertain environments. Simulation results show
that the proposed methodology achieves considerable gains in
the vehicle’s safe driving velocity as compared to uniform rate
allocation policies.

Index Terms—Autonomous Driving, Safe Driving Speed, Com-
munication Resource Allocation, Situational Awareness

I. INTRODUCTION

The automotive industry is undergoing significant changes
tied to realizing the vision for autonomous vehicles, progres-
sively shifting driving and maneuvering decisions from the
driver to the vehicle itself. This emerging paradigm is tied
with new design challenges with perhaps the most important
one being the ability to achieve accurate situational aware-
ness. Clearly, the quality of a vehicle’s situational awareness
depends on sensor-equipped vehicles and environment, and
has a major impact on the safety level that can be guaranteed
for vehicles, along with their permissible speed. In this work,
we study a stylized vehicle mobility model proposed as a
caricature of complex real systems yet capturing their salient
features, and we use it to characterize the fundamental safe
driving speed of a vehicle evolving in an uncertain environ-
ment. We then study the effect that sensing/communication
constraints would have on the vehicle’s ability to progress
safely in random dynamic environments.

Related Work. A considerable number of researchers have
investigated systems involving objects moving through a ran-
dom environment. A set of papers used results from the
stochastic geometry literature to study the coverage probability
of a vehicle driving through a field of sensors each with
a disk coverage around it, thus forming a Boolean process
in space [1]–[5]. Some of these works studied the effect of
the environment’s mobility on the coverage probability, see,

e.g., [1], [4], [5]. However, none of these works considered
how the environment might impact the speed of vehicles, as
well as the effect of constrained communication and sensing
resources on the quality of the environment estimation, and
hence, the vehicle’s velocity.

In [6], the authors investigate traffic rules inspired by
particle physics to provide insight on improved collective
behavior in vehicular networks. While the authors study the
velocity of an elite particle (equivalent to the vehicle in our
framework) in a densely crowded environment, their focus is
to understand and propose a new collective behavior from the
objects/particles in the environment to facilitate the motion of
the elite particle, instead of the adaptive behavior of the latter.

By contrast, other works have proposed advanced methods
to adapt to random and unknown environments, see, e.g., [7],
sometimes leveraging tools from Reinforcement Learning [8].
The focus of these works is however on the environment
estimation and robot’s motion obstacle avoidance algorithms,
rather than on examining fundamental properties of the agent’s
velocity in such environments.

Contributions. The contributions of this paper are three-
fold. First, we propose an analytical framework based on
stochastic geometry to characterize the spatial distribution
of the vehicle’s safe driving velocity induced by a random
environment. We then formalize the idea that vehicles spend
more time in dense regions of the network and we relate the
vehicle’s spatial and temporal velocity distributions.

Second, we present results providing additional insights
on the sensitivity of the vehicle’s safe driving velocity with
respect to key system parameters such as the density of objects
in the environment, and the vehicle’s sensing capability.

Third, we examine settings wherein the environment estima-
tion accuracy is sensing/communication-dependent, and pro-
pose an efficient procedure allocating sensing/communication
resources so as to optimize the vehicles’ ability to drive faster
in uncertain environments.

Paper Organization. The paper is organized as follows. In
Section II, we introduce our network and vehicle mobility
models. In Section III, we characterize the spatial and temporal
distributions of the vehicle’s safe driving speed. We then dis-
cuss in Section IV the communication-dependent environment
estimation model and optimal data polling strategy. Finally,
Section V concludes the paper.



II. NETWORK AND MOBILITY MODEL

A. Network Environment Model
Consider a network wherein a vehicle is driving along a road

modeled as an infinite straight line in R2, say, without loss of
generality, in the positive x-axis direction. The road traverses
an environment composed of “objects” spatially distributed
according to a homogeneous Poisson Point Process (PPP). The
vehicle is aware of the existence and tracks all the objects that
lie within a circular sensing region St of radius r around it
at time t. As the situational awareness is enabled by noisy
sensor measurements, e.g., cameras or radars equipped on
the vehicle, or sensors located on the objects themselves and
communicating with it, the vehicle builds an estimate for the
position of each object in its sensing region. We denote as �t

the resulting PPP of estimated mean object locations at a given
time t, and we let �t = {(xi,t, yi,t) : i 2 N} denote
a realization of �t, where xi,t and yi,t correspond to the
Cartesian coordinates of object i, in the frame of reference
of a vehicle located at the origin at time t. The PPP �t has
a mean intensity � objects/m2, taking into account possible
misdetections and false-alarms that might occur in the object
tracking process.

In addition, there is an uncertainty region around each
estimated object’s mean location such that the vehicle has high
confidence that the object lies within it. For simplicity, we
shall assume that the uncertainty region of any object i is a
disk of radius �i. We shall examine different models for the
uncertainty region’s radius in the sequel. Figure 1 illustrates a
random realization of the described environment.

Fig. 1: Figure of a random environment realization, and the
vehicle located at the origin driving in the positive direction
along the x-axis; for r = 100m and �i = 13m, for all i. The
coordinates are expressed in meters.

B. Vehicle Velocity Adaptation Model
We shall assume that, in general, the vehicle wishes to drive

as fast as possible. However, as it progresses through a random
environment, it needs to adapt its velocity so as to ensure its
own safety, as well as that of its surroundings, given that it
is constrained to a maximum deceleration rate constraint of
a m/s2, i.e., it can brake to reduce its velocity by at most a
m/s per second. We shall consider the following environment-
aware velocity adaptation policy:

• When the vehicle is driving through the uncertainty
region of any object in its environment at time t, it sets
its velocity to vt = vmin > 0 m/s, assumed to be small
enough to ensure its safety and that no harm is done to
others, in spite of the object’s position uncertainty.

• When the vehicle is not driving through the uncertainty
region of any object, it sets its velocity so as to be able
to decelerate down to vmin m/s prior to the edge of the
next object’s uncertainty region, i.e., the next intersection
point between the road and any uncertainty region’s disk
ahead of the vehicle (shown in yellow in Figure 1). The
deceleration rate constraint induces a braking distance
db(v) = (v2�v2

min)
2a meters, i.e., by the time the vehicle

decelerates from velocity v down to vmin, it would have
traveled a distance of db(v) meters. Using basic geometry,
the distance di,t between the vehicle and the intersection
point between the road and the uncertainty disk of object i
such that �t \ St and |yi,t|  �i at time t is

di,t = xi,t �

q
�2
i � y2i,t. (1)

Hence, equating the braking distance to the smallest di,t,
the vehicle’s velocity vt m/s at time t in this environment
can then be expressed as:

vt =
r
v2min + 2a min

i: (xi,yi)2�t\St

di,t. (2)

• The vehicle’s velocity cannot exceed vmax m/s, model-
ing, e.g., any internal mechanical constraint or external
constraint such as the road’s speed limit for instance.

Note that we assume that objects behind the vehicle do not
impact its velocity. Thus, we shall restrict our analysis to the
region in front of the vehicle, as illustrated in Figure 1.

While other parameters could possibly be integrated into
this driving model, e.g., a maximum vehicle acceleration rate,
we shall examine the proposed stylized model capturing the
salient characteristics of our system, in an effort to keep the
analysis insightful, general and tractable.

III. VELOCITY CHARACTERIZATION

We first aim to characterize the vehicle’s ability to make
forward progress in the random environment described pre-
viously. In this section, we shall assume that for all i in
the sensing region, �i = �, and r > (v2

max�v2
min)

2a , i.e., all
the objects that can directly impact the vehicle’s velocity
are observable. To that end, we use tools from stochastic
geometry to derive its velocity distribution. In this section, we
first discuss the difference between the notions of spatial and
temporal velocity, and derive their respective distributions. We
then examine the sensitivity to key network parameters such
as � and �, and examine the extent to which they improve the
vehicle’s ability to progress safely through its environment.

A. Spatial/Temporal Velocity Characterization
The first metric we will use to characterize the vehicle’s

ability to move forward in a random environment is its spatial
velocity, defined below.



Definition 1: (Spatial Velocity) The vehicle’s spatial velocity
is the velocity at which it is driving at a typical location on
the road.

The spatial velocity, that we denote by a random variable VS,
is a function of the random environment representing the
objects’ estimated locations and their uncertainty regions.

Interestingly, the spatial velocity metric does not fully cap-
ture what the vehicle experiences while progressing through its
environment. Indeed, a vehicle might spend most of its time
in the “densest” regions of the network, i.e., where several
objects are close to the road, as compared to emptier regions
where the vehicle can drive at higher speeds, hence spend less
time therein. To capture this phenomenon, we define the notion
of temporal velocity.

Definition 2: (Temporal Velocity) The vehicle’s temporal
velocity is the velocity at which it is driving at a typical time.

Theorem 1 below characterizes the distribution of the vehi-
cle’s spatial velocity, and the relation to its temporal velocity.
The proof can be found in Appendix A.

Theorem 1: (Velocity Distributions Characterization) The
c.d.f. of the spatial velocity VS is that of a mixed random
variable:

FVS(v) =

8
>><

>>:

0, 0  v < vmin,

1� e
��

⇣
⇡�2

2 + �
a (v2�v2

min)
⌘

, vmin  v < vmax,

1, v � vmax.
(3)

The temporal velocity VT is also mixed with masses as vmin

and vmax:

pVT(v) =
pVS(v)

v · E[ 1
VS
]
, for v 2 {vmin, vmax}, (4)

and continuous density for v 2 (vmin, vmax):

fVT(v) =
fVS(v)

v · E[ 1
VS
]
, for vmin < v < vmax. (5)

Note that VS and VT are mixed random variables with
discrete atom masses at vmin and vmax.

We emphasize that the temporal velocity is the right metric
to use when it comes to evaluating the vehicle’s “average
velocity” as it captures its progress through its environment.

B. Parameter Sensitivity Analysis

Equipped with the distributions for the vehicle’s spatial and
temporal velocity distributions, we now investigate the role
of the two major network parameters impacting the vehicle’s
ability to progress through its environment, namely the radius
of the uncertainty regions � and the density � of objects in
the network. Figure 2 depicts how these parameters impact the
mean vehicle velocity.

As can be surmised from the functional form of the pre-
viously presented velocity distributions, the mean velocity
decreases quickly as either � or � increase. We also note

(a) Plot of the mean spatial and
temporal velocity as a function of
�, for � = 0.01 objects/m2.

(b) Plot of the mean spatial and
temporal velocity as a function of
�, for � = 2m.

Fig. 2: Sensitivity Analysis of the mean spatial and temporal
velocity to � and �, for vmin = 1m/s, vmax = 30m/s, and
a = 3m/s2.

that the sensitivity to these parameters is much more dramatic
for the mean temporal velocity as compared to the mean
spatial velocity. This can be explained by the fact that, unlike
the vehicle’s spatial velocity, its temporal velocity is strongly
impacted by objects having uncertainty regions overlapping
with the road as the time spent in these regions can be made
arbitrarily large for a small enough vmin with the vehicle
making little forward progress. These observations suggest
that policies controlling these parameters, such as the one we
shall study in the sequel, might be effective at improving the
vehicle’s ability to progress quickly through its environment.

IV. MOBILITY ANALYSIS UNDER
SENSING/COMMUNICATION CONSTRAINED TRACKING

In the analysis presented in the previous section, we as-
sumed that the vehicle has access to an estimate of the
position of all the objects located in its sensing region with
the same accuracy, modelled by an uncertainty region with
radius � for all the objects. This model might be reasonable
in some scenarios, such as when the vehicle collects location
measurements from all the objects with the same accuracy, and
at the same sampling rate. However, collecting measurements
often comes at a cost, e.g., communication cost if the objects
are sending their own position estimates over a wireless
channel, or power consumption if the vehicle takes its own
measurements. In such a setting, it might be beneficial for
the vehicle to focus its available resources on estimating
more accurately the position of the objects that have the
largest impact on decreasing its velocity. In this section, we
propose and evaluate the performance of a general approach to
allocating communication/sensing resources so as to optimize
the vehicle’s ability to drive faster in uncertain environments,
subject to a sensing/communication data budget.

A. Problem Formulation
We shall assume that the object i’s uncertainty radius

�i = �i(⇢i) is in general a non-increasing function of the
object type and the sensing/communication rate ⇢i allocated to
it, modeling the fact that an increased sensing/communication
rate increases the estimation accuracy. The specific functional



form might be, for instance, a function of the measurement
quality, and is assumed to be known by the vehicle. It follows
from this and from Equation 1 that the distance between the
vehicle and object i’s uncertainty region di,t(⇢i) is a continu-
ous non-negative non-decreasing function of ⇢i. Thus, given a
sensing/communication rate budget b available to a vehicle, we
aim at optimally allocating the available resources among the
objects in the vehicle’s sensing region so as to maximize its
velocity. Hence, we solve the following optimization problem
at any time t:

arg max
⇢2Rnt

vt(⇢i), s.t.
X

i

⇢i  b, (6)

= arg max
⇢2Rnt

min
i:(xi,yi)2�t\St

di,t(⇢i), s.t.
X

i

⇢i  b, (7)

where the equality directly follows from the fact that vt
is an increasing function of mini:(xi,yi)2�t\St

di,t(⇢i) (see
Equation 2), and nt = |St|.

B. Max-Min Algorithm

To solve the optimization problem in Equation 7, we in-
terpret it as an utility max-min optimization problem. It has
been proven in [9], [10] that a simple algorithm solving it
starts with an all-zeros rate vector and increases the rate to
all the objects such that all their respective utilities always
remain equal and increase by the same amount until the
capacity constraint is reached. Algorithm 1 below proposes
a procedure finding an ✏-optimal rate vector ⇢ solving the
utility max-min fair flow-control problem with non-linear non-
decreasing utility functions with complexity O(ntb

✏ ), i.e., such
that k⇢� ⇢⇤

k1  ✏ where ⇢⇤ is the true optimal rate vector.

Algorithm 1: UTILITY MAX-MIN FAIR SOLVER

Data: b 2 R+, 1/✏ 2 N, {di,t(·), 8i}.
Result: Solves for ⇢

1 ⇢i = 0, 8i
2 for k=1 to 1/✏ do
3 m = argmini di,t(⇢i)
4 ⇢m = ⇢m + b✏
5 end
6 return ⇢

Alternatively, traditional gradient-based min-max optimiza-
tion problem solvers could also be used to solve Equation 7.
However, such general solvers have proved to execute con-
siderably slower in our experiments for a similar accuracy
level ✏ as compared to our algorithm, particularly when nt is
large [11].

Figure 3 shows how the vehicle can optimally allocate
its sensing/communication resources so as to maximize its
velocity in the same environment as in Figure 1. The objects
the furthest from the road are allocated little resources and
have the largest uncertainty regions, while the closest ones to
the road/vehicle get the most resources and their uncertainty
regions are smaller and tangent to the road.

Fig. 3: Figure of a random environment realization, and opti-
mally allocated sensing/communication resources; for b = 1,
r = 100m, and the uncertainty radius model in Equation 8.
The coordinates are expressed in meters.

C. Performance Analysis
We now evaluate the performance gains associated with

the proposed optimal measurement rate allocation policy,
and compare it to a simpler algorithm sharing the sens-
ing/communication rate equally to all the objects located in
the vehicle’s sensing region St at time t. In this section, we
augment the object placement and tracking model previously
proposed to include object mobility, as opposed to simply
studying a snapshot of the environment. Figure 4 below
exhibits the gains in terms of the mean temporal velocity
experienced by the vehicle, as a function of the density of
objects �. The mobility model adopted in our simulations is
an independent bivariate Brownian motion for all objects, with
standard deviation ⌫2 m2/s in both the x and y-coordinates.
Thus, at every time step of ⌧ seconds, each object moves in an
independent random direction characterized by a vector with x
and y component being drawn from a normal distribution with
mean 0m and variance ⌫2⌧ m2.

(a) Plot of the mean temporal ve-
locity as a function of �.

(b) Plot of the maximal velocity
probability as a function of �.

Fig. 4: Optimal rate allocation algorithm performance eval-
uation, for vmin = 1m/s, vmax = 30m/s, a = 3m/s2, and
⌫2 = 5m2/s.

These results assume that object i’s uncertainty radius �i is
related to the measurement rate ⇢i allocated to it as follows:

�i(⇢i) = min
h
20,

p
20/⇢i

i
, 8i. (8)

This functional form captures the essential features of the
estimation error as a function of the sampling rate, as the



uncertainty region radius is proportional to the error variance,
itself inversely proportional to the number of sample (or
sampling rate in a given time frame), while the �i is capped
at a large maximum value if no rate is allocated to object i
belonging to the sensing region.

Figure 4a exhibits the considerable mean (temporal) ve-
locity gains that can be achieved with the max-min fair
sensing/communication rate allocation procedure, particularly
in a low object density regime. This algorithm is evidently
effective even in dynamic environments, and reduces substan-
tially the mean velocity’s sensitivity to the density of objects.
In addition, Figure 4b showcases the fact that the proposed
algorithm allows the vehicle to drive for a considerably larger
fraction of time at maximal velocity compared to the baseline
algorithm allocating an equal measurement rate to all objects
in the sensing region.

V. CONCLUSION

In this work, we investigated the effect that a random
environment might have on the safe driving velocity of an
autonomous vehicle, while estimating its environment in real
time. Our stylized system model enabled us to precisely
characterize the spatial and temporal velocity experienced by
a vehicle driving through its environment by using stochastic
geometry. We then examined measurement rate limited sce-
narios, and argued that the vehicle ought to focus its limited
measurement rate budget on estimating with high accuracy
the nearby objects impacting its velocity the most. We pro-
posed a formal approach to optimizing sensing/communication
resource allocation so as to maximize the vehicle’s flow in
its environment, and showed that it can achieve considerable
velocity gains compared to equal rate allocation policies in
dynamic environments.

APPENDIX A
THEOREM 1 PROOF

Proof. Let t be the time at which the vehicle hits a typical
location on the road, say the origin. Defining the braking
distance Di,t at time t induced by object i 2 �t as Di,t =h
Xi,t �

q
�2 � Y 2

i,t

i

+
, where x+ = max[x, 0], and adopting

the convention that Di,t = 1 when |Yj,t| > �, the spatial
velocity VS can be formally expressed as:

VS = min{
r
v2min + 2a min

i:(xi,yi)2�t\St

Di,t, vmax} (9)

= min
i:(xi,yi)2�t\St

min{
q
v2min + 2aDi,t, vmax} (10)

Additionally, we define the velocity gap Vgap = vmax � VS,
which, using Equation 10 can also be expressed as

Vgap = max
i:(xi,yi)2�t\St


vmax �

q
v2min + 2aDi,t

�

+

, (11)

which has the form of the so-called extremal shot noise, see
[12], [13], with response function

h(x, y) =


vmax �

r
v2min + 2a

h
x�

p
�2 � y2

i

+

�

+

. (12)

It follows that Vgap has the following distribution:

P(Vgap  v) = e��
RR

R2 {h(x,y)>v}dxdy, 8v 2 R+. (13)

For the response function expressed in Equation 12, we have

ZZ

R2

{h(x, y) > v}dxdy =

Z �

��

Z (vmax�v)2�v2
min

2a +
p

�2�y2

0
dxdy (14)

=
⇡�2

2
+

�

a
((vmax � v)2 � v2min). (15)

Now, we get by the change of variables Vgap = vmax � VS, we
have for any vmin < v < vmax:

P(vmax�Vgap > vmax � v) = e��(⇡�2

2 + �
a ((vmax�v)2�v2

min)) (16)

() P(VS > v) = e��(⇡�2

2 + �
a (v2�v2

min)) (17)

() P(VS  v) = 1� e��(⇡�2

2 + �
a (v2�v2

min)). (18)

The second part of the theorem follows from the observation
that the vehicle’s temporal velocity is equivalent to its time-
weighted spatial velocity. Particularly, we obtain the distribu-
tion of the temporal velocity by biasing the spatial velocity’s
one by a factor of 1

v (and renormalizing the distribution
accordingly) as the time �t spent by the vehicle on a road
segment of length �d is inversely proportional to its velocity,
i.e., �t = �d

v .
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