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Video Quality Assessment on Mobile Devices:
Subjective, Behavioral and Objective Studies
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Abstract—We introduce a new video quality database that
models video distortions in heavily-trafficked wireless networks
and that contains measurements of human subjective impressions
of the quality of videos. The new LIVE Mobile Video Quality As-
sessment (VQA) database consists of 200 distorted videos created
from 10 RAW HD reference videos, obtained using a RED ONE
digital cinematographic camera. While the LIVE Mobile VQA
database includes distortions that have been previously studied
such as compression and wireless packet-loss, it also incorporates
dynamically varying distortions that change as a function of time,
such as frame-freezes and temporally varying compression rates.
In this article, we describe the construction of the database and
detail the human study that was performed on mobile phones
and tablets in order to gauge the human perception of quality
on mobile devices. The subjective study portion of the database
includes both the differential mean opinion scores (DMOS) com-
puted from the ratings that the subjects provided at the end of
each video clip, as well as the continuous temporal scores that the
subjects recorded as they viewed the video. The study involved
over 50 subjects and resulted in 5,300 summary subjective scores
and time-sampled subjective traces of quality. In the behavioral
portion of the article we analyze human opinion using statistical
techniques, and also study a variety of models of temporal pooling
that may reflect strategies that the subjects used to make the
final decision on video quality. Further, we compare the quality
ratings obtained from the tablet and the mobile phone studies
in order to study the impact of these different display modes on
quality. We also evaluate several objective image and video quality
assessment (IQA/VQA) algorithms with regards to their efficacy
in predicting visual quality. A detailed correlation analysis and
statistical hypothesis testing is carried out. Our general conclusion
is that existing VQA algorithms are not well-equipped to handle
distortions that vary over time. The LIVE Mobile VQA database,
along with the subject DMOS and the continuous temporal scores
is being made available to researchers in the field of VQA at
no cost in order to further research in the area of video quality
assessment.
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I. INTRODUCTION

G LOBAL mobile data traffic nearly tripled in 2010 for the
third consecutive year, exceeding three times the data

volume of the entire global Internet traffic just 10 years ago [1].
According to the Cisco Visual Networking Index (VNI) global
mobile data traffic forecast, mobile video traffic accounts for
nearly 50% of mobile traffic, and it is predicted that this per-
centage will steadily increase to more than 75% by 2015. As
smartphone usage explodes along with mobile enabled video
streaming websites such as Amazon Video on Demand, Hulu,
Itunes, Netflix and YouTube1, it is clear that video traffic on mo-
bile devices will continue to account for an increasingly signif-
icant portion of mobile data traffic. While this bodes well for
end-users able to watch HD quality video clips at the touch of a
button, the picture is not completely rosy for those who provide
the spectrum.

In early 2010 U.S. Federal Communications Commission
(FCC) Chairman Julius Genchowski summarized the problem
succinctly – “The record is pretty clear that we need to find
more spectrum” [3]. According to Peter Rysavy, a wireless
analyst, mobile broadband will surpass the spectrum available
in mid-2013 [4]. The paucity of bandwidth is evident from the
bandwidth caps that most of the wireless providers in the U.S.
have recently imposed on data-hungry users.

Given that video traffic accounts for a significant portion
of this mobile data traffic, the development of frameworks for
wireless networks is a topic of intense study. One particularly
promising direction of research is perceptual optimization of
wireless video networks, wherein network resource allocation
protocols are designed to provide video experiences that are
measurably improved under perceptual models.

The final receivers of most videos transported over wireless
networks are humans and therefore visual perception is the ul-
timate arbiter of the received visual experience. The human vi-
sual system (HVS) is complex and highly non-linear, so treating
video data as any other data in solving the resource alloca-
tion problem can lead to suboptimal end-user perceptual ex-
periences. The study of models for resource optimization that
model video traffic using perceptually relevant features is easily
motivated. A key ingredient in developing these tools is under-
standing and predicting user perception of video quality on mo-
bile devices by conducting large scale human/subjective studies.

1Netflix usage accounts for almost 30% of all downstream traffic during peak
hours; YouTube accounts for just over 11% (as of May 2011) [2].
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Here, we describe an extensive study that we have recently
conducted in order to gauge subjective opinion on HD videos
when displayed on mobile devices.

Several researchers have conducted subjective video quality
studies with various aims [5]–[10]. Significant effort has also
been applied to designing objective algorithms that are capable
of predicting visual quality with high correlation against subjec-
tive perception [11]–[14]. Previous subjective studies on VQA
have been performed on large format displays such as CRT/LCD
monitors, while typically distorted videos have included com-
pressed videos (H.264/MPEG), videos transmitted over wire-
less/IP channels [5], [6] and jittered and delayed videos [15],
[16]. While video quality on mobile devices has not been exten-
sively researched, there have been a few studies on the quality
assessment of videos on mobile devices.

Eichhorn and Ni performed a human study to evaluate the
quality of H.264 scalable video codec (SVC) encoded video
streams at QVGA and QQVGA resolutions on a 2.5-inch screen
[17]. Each of the six 8-second clips were encoded at two spatial
resolutions using 3 temporal layers and 4 quality layers. Thirty
subjects rated the visual quality of the videos yielding a differ-
ential mean opinion (DMOS) score for each of the videos in
the database. Based on the DMOS obtained, the authors ana-
lyzed the effect of reduced spatial resolution as well as reduced
temporal sampling and quality. While the analysis presented is
interesting, the low-resolution of the videos (QVGA/QQVGA)
relative to those displayed by current mobile devices, the fact
that some of the videos in the database were un-natural (eg., an-
imations) and the unavailability of the database limit its current
utility.

Knoche and colleagues evaluated image resolution require-
ments for MobileTV by conducting a large-scale human study
where over 120 subjects participated (although each video only
received 32 ratings) [18]. The subjects were asked to rate the
quality of videos which had gracefully decreasing encoding bit-
rates (using Microsoft Windows Video V8 codec) and varying
resolutions on a display of resolution 240 320. The results
presented are quite valuable, especially since the authors also
varied audio quality in the study. However, from an algorithm
design-perspective, the lack of pristine reference videos as well
as the manner in which some of the videos were artificially mod-
ified (eg., feeds from News which included text scrolls, pic-
ture-in-picture etc.), coupled with its unavailability again limits
the usefulness of the database.

Jumisko-Pyykko and Hakkinen performed a subjective study
where reference clips from video tapes were converted to digital
video, then compressed using a variety of video codecs (H.263,
H.264 etc.) [19]. The authors evaluated video-only as well as
audio-video quality on the Nokia 6600 and the S-E P800. As
with other studies of this nature, the very low frame-rates and
bit-rates relative to current technology and the lack of public
availability reduce the currency of the work.

Ries et al. evaluated the quality of five reference videos of
10-seconds each when compressed at varying frame-rates and
bit-rates using the H.264/AVC baseline encoder [20]. The au-
thors also detailed an algorithm that would evaluate the quality
of these videos so that the objective scores produced would cor-
relate well with the obtained human opinion scores. All of the

limitations of the above databases apply to this one as well.
Other studies on mobile devices include an investigation on con-
text and its effect on quality [21], and a study of the effect of
extremely low bit-rates on perceived quality [22].

Almost all of the above studies suffer from several of the
following problems: (1) the dataset is of insignificant size, (2)
the distortions and their severities considered are insufficient to
make judgments on perception of quality, (3) the videos were
obtained from unknown sources and contain unknown corrup-
tions, (4) the video resolutions are too small to be relevant in
today’s world, (5) the human studies were conducted on a single
device with a fixed display resolution and (6) the database is not
publicly available. Realizing the need for an adequate and more
modern resource, we have endeavored to create a database of
broad utility for modeling and analyzing contemporary wireless
video networks.

The LIVE Mobile VQA database consists of 200 distorted
videos evaluated by over 30 human subjects on a small mobile
screen, as well as 100 distorted videos evaluated by 17 subjects
on a larger tablet display. The source videos were shot using a
RED ONE digital cinematographic camera and the RAW data
so obtained was used in the study. The database consists of
videos at HD resolution (720p), distorted by a variety of distor-
tions including compression and wireless channel transmission
losses. More importantly, the LIVE mobile VQA database also
includes dynamically changing distortions resulting in percep-
tible quality fluctuations in the videos over time.

A brief summary of the distortions follows. (1) Compres-
sion, using the H.264 scalable video codec (SVC) [23] to com-
press the video at four different compression rates. (2) Wireless
channel packet-loss, where the H.264 compressed streams were
passed through a simulated wireless channel. (3) Frame-freezes,
including both live video freezes – loss of temporal continuity
after freeze, and stored video freezes – no loss of temporal con-
tinuity after freeze. (4) Rate adaptation, where the compres-
sion rate is dynamically varied within a video stream between
two compression rates. And finally, (5) Temporal dynamics,
where the compression rate is varied between multiple compres-
sion rates with different rate-switching structures within a single
video stream.

We collected and analyzed “summary” scores provided by
the subject at the end of the presentation, and also continuously
recorded scores that the subjects provided, thereby allowing re-
searchers to understand how temporal quality scores are col-
lapsed by the human into a final opinion score of the video. The
database enables a new avenue of research – behavioral mod-
eling of visual quality perception. Finally, the database and the
subjective opinion scores (including the temporal scores) are
being made available online in order to help further research in
the area of visual quality assessment.

While this database and the associated human opinions
scores and the analysis carried out below have tremendous
value to the video quality assessment community, other fields
of inquiry such as human behavior modeling; application
and content driven analysis of human behavior; device and
context-specific design of objective algorithms; video network
resource allocation and so on may also seek benefit from the
publicly available data.
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Through the rest of this paper, we describe the construction
of the database and perform an exhaustive analysis of the
subjective opinion scores obtained from the study – for both
the mobile and the tablet databases; a comparison between the
two databases is also performed. We also analyze the temporal
scores and evaluate various possible measures that explain how
temporal subjective scores are pooled by humans to produce
a final estimate of quality. Finally, we evaluate the perfor-
mance of a wide range of image and video quality assessment
(IQA/VQA) algorithms in terms of correlation with human per-
ception for each distortion and across distortion categories; the
analysis includes hypothesis testing and statistical significance
evaluation2.

II. SUBJECTIVE ASSESSMENT OF MOBILE VIDEO QUALITY

A. Source Videos

The source videos were obtained using a RED ONE digital
cinematographic camera. The sequences of REDCODE (.r3d)
images received from the MYSTERIUM sensor, using the RED
50 – 150 mm and 18 – 50 mm T3 zoom lens were stored as 12-bit
REDCODE RAW data, at a resolution of (2048 1152) at
frame rates of 30 fps and 60 fps using the REDCODE 42 MB/s
option to ensure the best possible acquisition quality. A tripod
was used in most scenes and the ISO was set in the range 100 to
360 according to the weather – ISOs of 100 or 200 were used for
outdoor scenes and 200 or 360 were used for indoor scenes; the
shutter speed varied between 1/48 to 1/60 s. The automatic white
balance mode was used. The RED drive was used to record the
videos.

The source videos were then downsampled to resolution 720p
(1280 720) and frame-rate of 30 fps, and the .r3d videos were
converted into uncompressed .yuv files using a combination of
the imresize (option: bicubic) function in MATLAB and Virtu-
alDub. All of the source videos in the database are of duration 15
seconds. A total of 12 videos were selected for this study from a
larger subset. These were chosen to be representative of a wide
variety of content types that the user might experience. Two of
these videos were used to train the subjects (see below) while
the rest of the videos were used to perform the actual study. The
list below describes each of the videos used in the study.

1) Friend Drinking Coke ( ): Shot at studio with tungsten
light and gel. It shows different light ratios on the face with
detailed muscle changes occurring under dim lighting. The
camera was fixed.

2) Two Swan Dunking ( ): Shot at Lady Bird Lake, Austin
Texas on a sunny morning. There are bright twinkles on
the waves, and swans are seen dunking into the water. The
camera tracked two of the swans.

3) Runners Skinny Guy ( ): Shot at a marathon race early
in the morning. Many runners show diverse contrasts and
colors and complex motions. The fixed camera zooms in
and out.

4) Students Looming Across Street ( ): Shot on the campus
of The University of Texas at Austin on a windy morning.
Walking students loom towards the camera.

2A highly condensed summary of the database appears in [24].

5) Bulldozer With Fence ): Shot at a construction area on
a sunny afternoon. Different exposures of light, shadowing
of trees, motion of bulldozer and complex textures produce
a variegated scene. The camera pans across the screen from
left to right.

6) Panning Under Oak ( ): Shot under a large oak tree under
a blue sky on a sunny afternoon. Many small leaves are
visible moving slowly.

7) Landing Airplane ( ): Shot at Austin-Bergstrom Interna-
tional Airport on a cloudy afternoon. The landing airplane
exhibits fast motion, and the background changes rapidly.
The camera tracked the airplane from upper right to lower
left.

8) Barton Springs Pool Diving ( ): Shot at Austin’s Barton
Springs Pool on a sunny afternoon. There are sparsely
moving people, and one diver who creates a splash. The
camera was fixed.

9) Trail Pink Kid ( ): Shot at a Lady Bird Lake trail on a
sunny morning. People walk or jog at various speeds in
different directions. The camera was fixed.

10) Harmonicat ( ): Shot at Zilker Park in Austin on a sunny
afternoon. A musician plays guitar and harmonica in front
of a tree. The camera zooms in and out.

11) Fountain Vertical ( ): Shot at LBJ Library fountain on the
campus of The University of Texas at Austin on a sunny
morning. The fountain jets water into the air in front of a
campus skyline. The camera was fixed.

12) Hyein BSP ( ): Shot at Austin’s Barton Springs Pool on
a sunny afternoon. A child with a colorful dress walks next
to the water. The camera pans the scene from right to left.

Fig. 1 shows sample frames from the various video sequences.

B. Distortion Simulation

Each of the reference videos were subjected to a variety of
distortions including: (a) compression, (b) wireless channel
packet-loss, (c) frame-freezes, (d) rate adaptation and (e) tem-
poral dynamics. In this section we detail how these distorted
videos were created.

1) Compression: We used the JM reference implementation
of the H.264 scalable video codec (SVC) to compress the 720p
HD reference videos [23], [25], [26]. Since the SVC imple-
mentation does not allow rate control for layers above the base
layer, we use fixed QP encoding. The QP was varied across
videos and layers in order to produce the target bit-rates for each
layer of every video. The videos were compressed using 6 SNR
layers (temporal and spatial scalability were not evaluated in
this study), and 4 of these layers ( ;

) were manually chosen for each video based on their
perceptual separation. As other authors have argued, ensuring
perceptual seperation between the videos in QA studies makes
it possible for humans (and algorithms alike) to produce consis-
tent judgements of visual quality [5], [6].

Since the video content is quite varied, the bit-rates for each
of these layers varies across videos; all videos were compressed
with rates between 0.7 Mbps and 6 Mbps. The choices of rates
were based on commonly-used parameters for transmission of
HD videos over networks as well as rates that are generally seen
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Fig. 1. Example frames of the videos used in the study. �� and �� were used for training the subjects while the rest of the videos were used in the actual study.
(a) fc. (b) sd. (c) rb. (d) ss. (e) bf. (f) po. (g) la. (h) dv. (i) tk. (j) hc. (k) fv. (l) hy.

on wifi networks. The videos were encoded with an intra pe-
riod of 16 and loss aware distortion optimization (LARDO) was
enabled with packet-loss rates set to 3%. Instead of fixing the
number of macroblocks per slice, the number of bytes per packet
was fixed at 200 bytes – as recommended for wireless transmis-
sion of H.264 coded video [27].

Thus, for each video, four compressed SVC streams were cre-
ated, yielding a total of 40 compressed videos.

2) Wireless Channel Packet-Loss: H.264 SVC compressed
videos were transmitted over a simulated wireless channel
in order to induce loss, thereby affecting perceptual quality.
The simulated channel was modeled using an IEEE 802.11-
based wireless channel simulator implemented in LabVIEW.
The system comprised of a single link channel with coding,
interleaving, QAM modulation, and OFDM modulation. A bit
stream containing 2,000,000 bits was sent through a frequency
selective channel with 5 taps at an SNR of 15 dB; 4QAM
and a 1/2 rate convolutional code were used. These kinds of a
bit-streams were sent 100 times, and for each transmission an
error trace was created by XORing the transmitted bit-stream
with the received bit-stream, which recorded the erroneous
bit-locations. These error traces were used to induce errors
in the compressed video streams. For each video, a random
error-trace from the set of 100 traces was picked and applied,
where a video packet was considered to be lost if one of the
bits of the packet was erroneous [27]. Since the SVC decoder
imposes certain requirements on decoding the video due to the
layered architecture, care was taken to ensure that the loss of
packets would not result in an error at the decoder.

Each of the compressed videos was transmitted over the wire-
less channel, resulting in a total of 40 wireless channel distorted
videos.

3) Frame-Freezes: Two kinds of frame-freeze models were
used to create distorted videos: frame freezes for (1) stored
video delivery and (2) live video delivery. In the case of stored
videos, frame-freezes do not result in the loss of a video
segment from the video, i.e., the videos maintain temporal
continuity after the freeze. On the other hand, frame-freezes in
live video delivery result in a loss of video segments, i.e., a lack
of temporal continuity.

For both of the above cases, the model for frame-freeze is
as follows. For every seconds of freeze (where the last frame
in the buffer is displayed on the screen until the next frame ar-
rives), the post-freeze video playback is of duration seconds
( ), i.e., the longer the user waits, the longer the post-freeze
playback. In our simulations we chose .

Three stored video freeze lengths were modeled: (i) 1 second
(short bursts of video playback with 8 freezes), (ii) 2 seconds
(longer video playback, with 4 freezes) and (iii) 4 seconds (2
freezes, longest continuous video playback); the live video
freeze length was set to be 4 seconds. In all cases, there was a
lead-in time of 3 seconds, i.e., the first 3 seconds of the video
playback did not incorporate a freeze. All frame-freezes were
simulated on uncompressed reference videos.

A total of 40 frame-freeze distorted videos (4 for each refer-
ence video) were thus obtained.

4) Rate Adaptation: Psychovisual studies have demonstrated
that humans are more sensitive to changes in a visual stimulus
than to the magnitude of the stimulus [28]. In order to investi-
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Fig. 2. Rate Adaptation: Schematic diagram of the three different rate-switches
in a video stream simulated in this study.

gate whether such behavior translates to judgments of temporal
quality, we simulated rate-changes as a function of time as the
subject views a particular video. Specifically, the subject starts
viewing the video at a rate , then after seconds switches
to a higher rate , then again after seconds switches back
to the original rate . Comparing such a rate-adapted stream
with the appropriate compressed stream may provide impor-
tant information regarding human behavioral responses to time-
varying video data rates.

Such a scheme may also reveal whether humans prefer
shorter durations of high quality content in the midst of a low
quality stream, or if they prefer to view the low quality stream
without any fluctuation in quality. Thus we may find answers
to questions like: Does exposing the viewer to better quality
increase his expectations, thereby reducing his quality rating
for the lower quality segment of the stream? From a resource
allocation perspective this condition will provide data that
will allow for better allocation of resources, where ‘better’ is a
function of the quality perceived by the end user. This condition
may provide answers to questions like: Given that the channel
is going to allow a rate higher than the current one for only
seconds before one is forced to revert back to the current rate,
should one switch to a higher rate for seconds, given that you
are currently at rate ?

It should be clear from the above discussion that such be-
havioral aspects of quality perception may be a function of the
difference between the initial rate and the final rate, as well as
of the initial rate itself. Hence, we simulate three different rate
switches, where and and . Al-
though the duration is another potential influence on human
behavior, because of on the length of the subject’s sessions, we
fixed .

The three rate-adaptations which are illustrated in Fig. 2
yielded to a total of 30 rate-adapted distorted videos.

5) Temporal Dynamics: In the previous section, we simu-
lated conditions that evaluated the effect that a single rate switch
has on perceived quality. One would imagine that the subjective
perception of quality is also a function of the number and lengths
of the rate-switches that occur in a stream. In order to evaluate
this, we simulated a multiple rate-switch condition, where the
rate was varied between to multiple times (3). This is il-
lustrated in Fig. 3. To ensure an objective comparison between
the multiple and single rate-change scenarios, the two condi-
tions are simulated such that the average bit-rate was the same
in both cases.

Apart from multiple switches, one may intuit that subjective
quality is also influenced by the abruptness of the switch, i.e.,
instead of switching directly between and , it may be
useful to evaluate conditions where the rate is first switched to
an intermediate level from the current level and then to the
other extreme. Studying responses to this condition may reveal
whether easing a user into a higher/lower quality regime is better

Fig. 3. Temporal Dynamics: Schematic illustration of two rate changes across
the video; the average rate remains the same in both cases. Left: Multiple
changes and Right: Single rate change. Note that we have already simulated
the single rate-change condition as illustrated in Fig. 2, hence we ensure that
the average bit-rate is the same for these two cases.

Fig. 4. Temporal Dynamics: Schematic illustration of rate-changes scenarios.
The average rate remains the same in all cases and is the same as in Fig. 3. The
first row steps to rate� and then steps to a higher/lower rate, while the second
row steps to � and then back up/down again.

than abruptly switching between these two regimes. It should be
clear that the intermediate rate may have an impact on the
perception of quality as well. Hence, we simulated the following
rate-switches: (1) – – , (2) – – , (3) –

– and (4) – – , as illustrated in Fig. 4. Again,
the average bit-rate remains the same across these conditions as
well as over the conditions in Fig. 3.

Notice that the rate-changes illustrated in Fig. 4 form dual
structures – including such models may also reveal whether the
user is influenced by the quality observed towards the end of
the video. Specifically, we seek to answer the question: Which
of the following scenarios is preferable: ending the video with
a high quality segment, or ending the video with a low-quality
segment? Again, in addition to supplying data on human behav-
ioral responses to time-varying video quality, answering these
kinds of questions may also facilitate making better resource al-
location decisions. A total of 50 distorted videos with varying
temporal dynamics were thus created.

While it is impossible to plot all of the various temporal dis-
tortions simulated here, Figs. 5 and 6, show two examples of
distorted frames from the distorted videos, along with the ref-
erence frames for comparison. The reader is invited to down-
load the freely available database, in order to better visualize
the distortions.

In summary, the LIVE Mobile VQA database consists of 10
reference videos and 200 distorted videos (4 compression + 4
wireless packet-loss + 4 frame-freezes + 3 rate-adapted + 5 tem-
poral dynamics per reference), each of resolution 1280 720 at
a frame rate of 30 fps, and of duration 15 seconds each.

C. Test Methodology

1) Design: A single-stimulus continuous quality evaluation
(SSCQE) study [29] with hidden [5], [6], [30] was conducted
over a period of three weeks at The University of Texas at
Austin, LIVE subjective testing lab. Each subject was asked
to view and rate the videos one video at a time. Each original,
uncompressed reference video was randomly placed amongst
the set of videos shown to each user in each session, although
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Fig. 5. Figure illustrating the spatial effect of the distortions simulated in this
study for a frame from video ‘rb’. Also plotted are the reference frame and a
zoomed area for comparison purposes.

Fig. 6. Figure illustrating the spatial effect of the distortions simulated in this
study for a frame from video ‘hc’. Also plotted are the reference frame and a
zoomed area for comparison purposes.

the subjects were unaware of their presence. The score that
the subjects gave these ‘hidden’ references is representative of
the bias that the subject carries. By subtracting the reference
video scores from those for the distorted videos, the biases are
compensated for yielding differential scores for each distorted
video. We believe that SS with hidden reference studies are
preferable to longer double-stimulus (DS) studies [5], [6].
Shorter studies make the study duration less likely to fatigue
the subjects, while allowing the subjects to evaluate a larger
set of conditions, for a given study duration. Perhaps most
importantly, a SS study design better models real video expe-
riences; typical users deploying mobile video devices in their
daily activities are unlikely to ever encounter side-by-side or
sequential back-to-back video comparisons. Moreover, unlike
a TV showroom, the visual distortions we are interested in are
display-device independent and occur in isolation. The choice
of a continuous scale as opposed to a discrete 5-point ITU-R
Absolute Category Scale (ACR) has advantages: expanded
range, finer distinctions between ratings, and demonstrated
prior efficacy [5], [6].

2) Display: The user interface was developed on Eclipse3

using the Android SDK, since the target platforms for the human
study were Android-based devices. Although the platform did
not allow for explicit control over the video buffer as is allowed
by the XGL toolbox [31] which we have previously used [5], [6],

3Eclipse is an integrated development environment (IDE) for JAVA, C, C++,
Perl amongst other languages, and is freely available: http://www.eclipse.org/.
It is also the recommended

no errors such as latencies were encountered while displaying
the videos. Since the Android platform does not allow for RAW
video playback, the RAW videos were embedded in a 3gp con-
tainer and compressed using the MPEG-4 codec via ffmpeg.
While this additional compression was undesirable, the choice
of the platform made this unavoidable. However, the bit-rate for
compression was with the QP set at 0 on ffmpeg,
and we were unable to detect any differences between the em-
bedded 3gp streams and the original YUV videos.

The videos were displayed on two devices – the Motorola
Atrix smartphone and the Motorola Xoom tablet. The Atrix
consists of a dual-core 1 Ghz ARM Cortex-A9 processor, with
1 GB RAM, ULP GeForce GPU and the Tegra 2 chipset. Videos
were displayed on the Atrix 4-inch Gorilla glass display with a
screen resolution of 960 540; the Atrix is capable of playing
out videos at 1080p and the processor was powerful enough to
avoid any buffering or playback issues when playing the high-
resolution content. The Xoom uses a 1 Ghz NVIDIA Tegra 2
AP20H dual-core processor with 1 GB RAM. Videos were dis-
played on the 10.1-inch TFT display with a screen resolution
of 1280 800. As with the Atrix, the Xoom had no problems
playing out 720p videos. The devices do not allow for calibra-
tion; however, the same devices (with brightness set at max)
were used throughout the course of the study.

3) Subjects, Training and Testing: The subjective study was
conducted at The University of Texas at Austin (UT) and in-
volved mostly undergraduate students, with a male majority.
The study was voluntary and no monetary compensation was
provided to the participants. The average subject age was be-
tween 22–28 years and the subjects were inexperienced with
video quality assessment, types of video distortion and concepts
underlying the perception of quality. Though no vision test was
performed, a verbal confirmation of soundness of (corrected) vi-
sion was obtained from the subject. At this juncture, it may be
prudent to explain our choice.

We decided to forego formal screening for visual acuity
(e.g., Snellen test) and color vision (Ishihara), instead using
informal confirmation of normal corrected acuity directly from
each subject. This approach follows our continuing philosophy
towards conducting large-scale image and video quality subjec-
tive studies: rigorous visual screening of subjects, such as we
routinely do in our other vision science work, may bias results
as compared to a ‘typical user’.

Regarding chromatic perception, we are not (yet) conducting
color quality studies nor is there any evidence that that any of
the distortions that we are studying are correlated in any manner
with color deficiency. One could disregard this, and assume that
chromatic perception has an effect on the quality rating provided
in the current setup. In this case, a very conservative high-end
estimate of chromatic disability is that as many as 8% of the
population has some, even very minor color deficiency. Even
then, for those videos that were viewed the least (17 times) the
chances are less than 1% that as many as 4 subjects might be
color affected in the smallest way. However, taking into ac-
count that nearly all color blind persons are deuteranomalous or
“green weak” which causes at most small differences in the per-
ception of hues, these figures become even more remote. There
is a less than 20% chance that any other form of color blindness
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might appear in even one subject in the course of the study, and
in line with our philosophy of a ‘typical viewer’, we would nat-
urally welcome such persons.

Since creating a truly unrestricted “mobile” setting is near
impossible, using mobile devices that are “real world” and by
not forcing any specific viewing distance, nor demanding per-
fect acuity, but rather a reasonably representative slice, we be-
lieve that the database is far more realistic than one created in
a controlled setting. Of course, studies of visual quality in dif-
ferent environments such as that in [22], remain valuable. While
looser restrictions, e.g., exiting the laboratory entirely, might al-
leviate biases that might be introduced due to a rigid lab setup,
and while a completely non-rigid setup might simulate real-life
better, it also introduces a number of variables that cannot be
controlled. Human studies are highly subjective in nature, and
human viewing and rating experience is a function not only of
the stimulus seen but also of the mental and physical state of the
subject. Consider, for example, mobile viewing in the hot sun
(discomfort, hard to see the screen, etc.) by someone feeling
impatient against a lazy office executive viewing content in air
conditioning. Ratings can vary drastically for the same con-
tent based on the state and environment of the subject. In other
words, with such lack of control the results could quickly be-
come meaningless. In our opinion, our setup supplies a happy
median, while still obtaining statistically meaningful results. By
ensuring a semblance of uniformity across subjects, the ratings
provided are more or less related to the stimulus. Given our in-
complete understanding of how the human rates visual stimuli
(as our objective QA analysis will demonstrate), attempting to
understand and model human behavior in random scenarios may
be best tackled at a later date.

While our philosophy in this regard does not necessarily ac-
cord with published (and largely outdated) industry standards,
we have discussed our view with other vision scientists and re-
ceived general accord. Aside from the fact that most of the pub-
lished standards are severely dated, and even setting aside the
exceedingly important point that they bear little relevance to a
study of this type of videos with temporal distortion variations
and using digital mobile monitors (e.g., BT. 500-11 [29] is all
about studio quality videos, viewing on CRT screens, etc., which
are clearly not relevant in a mobile context), it is important
that academic researchers and vision scientists, like ourselves,
not feel bound by industry-mandated standards of conduct re-
garding any kind of studies. Notwithstanding that such recom-
mendations have definite value for standardization within cer-
tain realms, for advancing science it is not a good thing: rather,
they are limiting and could impede timely advances.

We believe that this approach allows for greater freedom and
realism in designing large scale studies such as the one de-
scribed here, using mobile devices likely to be used in highly
diverse conditions and for which there exist no guidelines.

Each subject attended two separate sessions as part of the
study such that each session lasted less than 30 minutes, and the
sessions were separated by at least 24 hours, in order to mini-
mize fatigue [29]. Informal after-study feedback indicated that
the subjects did not experience any uneasiness or fatigue during
the course of the sessions. Each session consisted of the sub-
ject viewing 55 videos (50 distorted + 5 reference), and a short

Fig. 7. Study Setup: (a) The video is shown at the center of the screen and
an (uncalibrated) bar at the bottom is provided to rate the videos as a function
of time. The rating is controlled using the touchscreen. (b) At the end of the
presentation, a similar calibrated bar is shown on the screen so that the subject
may rate the overall quality of the video.

training set (6 videos) preceded the actual study. The videos in
the training session spanned the entire range of video quality
that the user was bound to see during the course of the study;
the distortions were a subset of the distortions used in the actual
study. The videos were shown in random order across subjects
as well as within a single session for a subject. Care was taken
to ensure that two consecutive sequences did not belong to the
same reference content, to minimize memory effects [29].

The videos were displayed on the center of the screen with
an un-calibrated continuous bar at the bottom, which was con-
trolled using the touchscreen. The subjects were briefed about
the bar during the training session. Before the video was played,
a screen indicating that the video was ready for playback was
displayed. Once the subject hit ‘play’ the video played on the
screen. The subjects were asked to rate the videos as a function
of time i.e., provide instantaneous ratings of the videos, as well
as to provide an overall rating at the end of each video. We sam-
pled the scores at the rate at which the video was played out, so
that a single score was available per frame, i.e., at 30 fps. Ide-
ally, the sampling rate should be at least as fast as the amount of
time it takes a human to react (approx. 220 ms) and a sampling
rate of 30 fps, which is much higher than this reaction time, en-
sures that the data captured does not miss out on human opinion
owing to poor sampling.

At the end of each video a similar continuous bar was
displayed on the screen, although it was calibrated as “Bad”,
“Fair”, and “Excellent” by markings, equally spaced across the
bar. Although the bar was continuous, the calibrations served
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Fig. 8. DMOS scores for all video sequences: (a) Mobile Study, (b) Tablet Study; the associated histograms of scores for (c) the Mobile Study and (d) the Tablet
Study; DMOS standard deviation histograms for (e) the Mobile Study and (f) the Tablet Study.

to guide the subject. Once the quality was entered, the subject
was not allowed to change the score. The quality ratings were
in the range 0–5. The instructions to the subject are reproduced
in the Appendix.

Fig. 7 shows the various stages of the study.

D. Processing of the Scores

A total of thirty-six subjects participated in the mobile study
and seventeen subjects participated in the tablet study. The mo-
bile study was designed so that 18 subjective ratings were ob-

tained for each of the 200 videos in the study. 100 distorted
videos from this set of 200 distorted videos were used for the
tablet study, and thus each of the 100 videos in the tablet study
received ratings from 17 subjects. The subject rejection proce-
dure in [29] was used to reject two subjects from the mobile
study, while no subjects were rejected from the tablet study. The
scores from the remaining subjects were then averaged to form a
Differential Mean Opinion Scores (DMOS) for each video. The
DMOS is representative of the perceived quality of the video.
Specifically, let denote the score assigned by subject to
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TABLE I
MOBILE STUDY: RESULTS OF �-TEST BETWEEN THE VARIOUS COMPRESSION-RATES SIMULATED IN THE STUDY. A VALUE OF ‘1’ INDICATES THAT THE ROW IS

STATISTICALLY SUPERIOR (BETTER VISUAL QUALITY) THAN THE COLUMN, WHILE A VALUE OF ‘0’ INDICATES THAT THE ROW IS STATISTICALLY WORSE

(LOWER VISUAL QUALITY) THAN THE COLUMN; A VALUE OF ‘�’ INDICATES THAT THE ROW AND COLUMN ARE STATISTICALLY EQUIVALENT.
EACH SUB-ENTRY IN EACH ROW/COLUMN CORRESPONDS TO THE 10 REFERENCE VIDEOS IN THE STUDY

TABLE II
MOBILE STUDY: RESULTS OF �-TEST BETWEEN THE FRAME-FREEZES SIMULATED IN THE STUDY. A VALUE OF ‘1’ INDICATES THAT THE ROW IS STATISTICALLY

SUPERIOR (BETTER VISUAL QUALITY) THAN THE COLUMN, WHILE A VALUE OF ‘0’ INDICATES THAT THE ROW IS STATISTICALLY WORSE

(LOWER VISUAL QUALITY) THAN THE COLUMN; A VALUE OF ‘�’ INDICATES THAT THE ROW AND COLUMN ARE STATISTICALLY EQUIVALENT.
EACH SUB-ENTRY IN EACH ROW/COLUMN CORRESPONDS TO THE 10 REFERENCE VIDEOS IN THE STUDY

the distorted video in session , the score assigned
by subject to the reference video associated with the distorted
video in session , the total number of rating received for
video and let be the number of test videos seen by subject

in session . The difference scores are computed as

The DMOS (after subject rejection) is then

DMOS values ideally range continuously from 0 (excellent
quality) to 5 (worst quality); however small negative values as
possible due to the nature of DMOS computation.

DMOS was computed only for the overall scores that the sub-
ject assigned to the videos. Fig. 8 plots the DMOS scores across
distorted videos for the mobile and tablet studies, and shows
the corresponding histograms for the DMOS and the associ-
ated standard deviation in order to demonstrate that the distorted
videos span the entire quality range. The average standard error
in the DMOS score was 0.2577 across the 200 distorted videos
for the mobile study and 0.2461 across the 100 distorted videos
for the tablet study.

At this juncture, it may be prudent to comment on the distri-
bution of the subjective ratings. Note that in the current study,
the scale ranges from 0–5, with the maximum DMOS rating for
the mobile study component being 3.8, and that for the tablet
study is 3.5 both of which are at least 75% of the available scale.
By comparison, the widely used LIVE VQA database [5] uses
50% of the scale, and the VQEG Phase I database [8] uses 50%
(525) and 70% (625) of the entire scale. In our view, in studies
of video quality that varies, use of the entire scale would cast
the study into question. A set of ratings that use the entire scale
would imply that every single subject thought that at least one
(if not more) of the distorted videos were the worst videos they
have seen (since these are DMOS scores the scale is reversed 5
is a horrible video), which is almost always impossible.

We believe that studies of this nature are designed not to en-
force the designer’s view of the scale and the distortions on the
subject but rather extract the opinion of the subject himself. It
is hence that we do not compel the subject to utilize the entire
scale in the ratings, instead using the training session as a ‘nor-
malizer’ for the range of quality the subject is likely to see in
the study. A DMOS of 3.8 for a distorted video implies that the
video can get worse and still be within the limits of the subject.

For all further analysis, we assume that the DMOS scores
sample a Gaussian distribution centered around the DMOS
having a standard deviation computed from the differential
opinion scores across subjects.

E. Evaluation of Subjective Opinion

We analyzed the distorted videos with respect to the subjec-
tive DMOS for each of the videos and the associated standard
deviations of DMOS across the subjects on the mobile and the
tablet studies. For each of the subsections below, we conduct a
t-test between the Gaussian distributions centered at the DMOS
values (and having a associated, known standard deviation) of
the conditions we are interested in comparing at the 95% confi-
dence level. Since the conditions being compared are functions
of content, we compared each of the 10 reference contents sep-
arately for each pair of conditions. In the tables that follow, a
value of ‘1’ indicates that the row-condition is statistically su-
perior to the column-condition, while a ‘0’ indicates that the row
is worse than a column; a value of ‘ ’ indicates that the row and
column are statistically indistinguishable from each other. For
example, in Table I, for all the 10 contents, videos compressed
at rate have statistically better visual quality than those com-
pressed at rate , while they are statistically worse than those
compressed at a rate . Further, for the tablet study, we com-
pared the results obtained from the tablet study to those obtained
from the mobile study across all distortions as well as for each
distortion subsection.

1) Mobile Study: The results from the statistical analysis are
tabulated in Tables I–VII. Due to the dense nature of the content,
we summarize the results in the following paragraphs. Note that
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TABLE III
MOBILE STUDY: RESULTS OF �-TEST BETWEEN THE VARIOUS RATE-ADAPTED DISTORTED VIDEOS SIMULATED IN THE STUDY. A VALUE OF ‘1’ INDICATES THAT

THE ROW IS STATISTICALLY SUPERIOR (BETTER VISUAL QUALITY) THAN THE COLUMN, WHILE A VALUE OF ‘0’ INDICATES THAT THE ROW IS STATISTICALLY

WORSE (LOWER VISUAL QUALITY) THAN THE COLUMN; A VALUE OF ‘�’ INDICATES THAT THE ROW AND COLUMN ARE STATISTICALLY EQUIVALENT.
EACH SUB-ENTRY IN EACH ROW/COLUMN CORRESPONDS TO THE 10 REFERENCE VIDEOS IN THE STUDY

TABLE IV
MOBILE STUDY: RESULTS OF �-TEST BETWEEN THE VARIOUS COMPRESSION-RATES AND THE RATE-ADAPTED VIDEOS SIMULATED IN THE STUDY. A VALUE OF

‘1’ INDICATES THAT THE ROW IS STATISTICALLY SUPERIOR (BETTER VISUAL QUALITY) THAN THE COLUMN, WHILE A VALUE OF ‘0’ INDICATES THAT THE ROW

IS STATISTICALLY WORSE (LOWER VISUAL QUALITY) THAN THE COLUMN; A VALUE OF ‘�’ INDICATES THAT THE ROW AND COLUMN ARE STATISTICALLY

EQUIVALENT. EACH SUB-ENTRY IN EACH ROW/COLUMN CORRESPONDS TO THE 10 REFERENCE VIDEOS IN THE STUDY

TABLE V
MOBILE STUDY: RESULTS OF �-TEST BETWEEN MULTIPLE RATE SWITCHES AND A SINGLE RATE SWITCH. A VALUE OF ‘1’ INDICATES THAT

THE ROW IS STATISTICALLY SUPERIOR (BETTER VISUAL QUALITY) THAN THE COLUMN, WHILE A VALUE OF ‘0’ INDICATES THAT THE ROW

IS STATISTICALLY WORSE (LOWER VISUAL QUALITY) THAN THE COLUMN; A VALUE OF ‘�’ INDICATES THAT THE ROW AND COLUMN

ARE STATISTICALLY EQUIVALENT. EACH SUB-ENTRY IN EACH ROW/COLUMN CORRESPONDS TO THE 10 REFERENCE VIDEOS IN THE STUDY

TABLE VI
MOBILE STUDY: RESULTS OF �-TEST BETWEEN THE VARIOUS TEMPORAL-DYNAMICS DISTORTED VIDEOS SIMULATED IN THE STUDY. A VALUE OF ‘1’

INDICATES THAT THE ROW IS STATISTICALLY SUPERIOR (BETTER VISUAL QUALITY) THAN THE COLUMN, WHILE A VALUE OF ‘0’ INDICATES THAT THE ROW

IS STATISTICALLY WORSE (LOWER VISUAL QUALITY) THAN THE COLUMN; A VALUE OF ‘�’ INDICATES THAT THE ROW AND COLUMN ARE STATISTICALLY

EQUIVALENT. EACH SUB-ENTRY IN EACH ROW/COLUMN CORRESPONDS TO THE 10 REFERENCE VIDEOS IN THE STUDY

TABLE VII
MOBILE STUDY: RESULTS OF �-TEST BETWEEN THE VARIOUS WIRELESS PACKET-LOSSES SIMULATED IN THE STUDY. A VALUE OF ‘1’ INDICATES

THAT THE ROW IS STATISTICALLY SUPERIOR (BETTER VISUAL QUALITY) THAN THE COLUMN, WHILE A VALUE OF ‘0’ INDICATES THAT THE

ROW IS STATISTICALLY WORSE (LOWER VISUAL QUALITY) THAN THE COLUMN; A VALUE OF ‘�’ INDICATES THAT THE ROW AND COLUMN

ARE STATISTICALLY EQUIVALENT. EACH SUB-ENTRY IN EACH ROW/COLUMN CORRESPONDS TO THE 10 REFERENCE VIDEOS IN THE STUDY

the text only provides a high level description of the results in
the table, the reader is advised to thoroughly study the table in
order to better understand the results.

Compression (Table I): This table confirms that the dis-
torted videos were perceptually separable. Notice that each
compression rate is statistically better (perceptually) than the
next lower rate over all content used in the study.

Frame-Freeze (Table II): For frame-freezes, the following
trend is seen across most of the contents: longer freezes are pre-
ferred to shorter freezes, which lead to choppy playback, im-
plying playback immediately after the buffer receives data is
less desirable than waiting before playback. We also observe

that pauses of 4 seconds are seemingly tolerable. For the frame-
freezes with lost segments (real-time freezes), one would con-
jecture that lost segments are important and became evident
when the segments are about 4 seconds long or larger. Further,
it seems that shorter freezes (choppy playback) are regarded as
worse than lost frames.

Rate Adaptation (Tables III and IV): While conventional
wisdom might dictate that people do not prefer fluctuations in
video quality, our study seems to indicate that it is preferable
to switch to a higher rate if possible, especially if the duration
of the higher rate is at least half the duration of the lower rates.
Further, if one is capable of maintaining a continuous rate at a
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Fig. 9. Mobile Study: Statistical significance analysis of the distortion categories in this studies. Refer text for label explanation. Each (non-white) block represents
the results of hypothesis testing for the 10 different video contents in this study. Dark (black) gray levels indicate that the row distortion is statistically superior
(better visual quality) than the column; the lightest gray-levels indicates that the row is statistically worse than the column, while mid-grey levels represents that the
row and column are statistically equivalent. For example, � is always statistically superior to � and � , while for � versus�� , one of the � compressed
videos is superior to�� and one of them is equivalent, while the rest are statistically worse.

TABLE VIII
CORRELATION AND RESULTS OF THE WILCOXON SUM-RANK TEST FOR EQUAL MEDIANS (IN PARENTHESIS – HYPOTHESIS/�-VALUE) BETWEEN DMOS SCORES

FROM THE MOBILE AND TABLET STUDIES. A VALUE OF ‘1’ IN THE BRACKETS INDICATES THAT THE DMOS SCORES FROM THE TWO STUDIES HAVE DIFFERENT

MEDIANS, WHILE A VALUE OF ‘0’ INDICATES THAT THE MEDIANS ARE STATISTICALLY INDISTINGUISHABLE AT THE 95% CONFIDENCE LEVEL

value higher than the base rate of the switch (eg., – –
versus ), the continuous higher rate is preferred.

Temporal Dynamics (Tables V and VI): Our analysis
indicates that multiple rate switches are preferred over fewer
switches, if the subject is able to view the high quality video
for longer duration. There is a plausible explanation for this
behavior. Our hypothesis is that when shown high quality video
for a long time, the bar of expectation is raised, and when the
viewer is exposed to low quality segments of the video, s/he
assigns a high penalty than on videos containing high quality
segments of shorter duration. The subject might view the short
high quality segments as attempts to improve the viewing
experience, thereby boosting overall perception of quality. An
even more likely explanation is that long low-quality video
segments preceded by much higher quality segments evoke a
strong negative response. Of course, our results are conditioned
on the degree of quality separation between the low and high
quality segments and may not generalize to switches between
quality levels exhibiting a lesser degree of quality separation.

Our results also indicate that switching to an intermediate rate
before switching to a higher rate is preferred over multiple large-
magnitude rate switches, and that the end quality of the video
makes a definite impact on perceived quality (see for example,

– – versus – – in Table VI).

Wireless (Table VII): The wireless results mirror the com-
pression results, demonstrating the perceptual separability of the
videos in the study.

Finally, in order to visualize how different distortions affect
visual quality, Fig. 9 plots a visual map of the statistical signif-
icance values for all possible pairs of distortions. The map is
comprehensive in that it encompasses all of the videos from the
study; the caption explains the figure’s interpretation in detail.

2) Tablet Study: We compare the results from the tablet
study to those from the mobile study for each distortion
category and across all the distortions considered here, and
tabulate the (linear) correlation coefficient between these two
studies in Table VIII. In the table, we also report the results
from a Wilcoxon sum-rank test for equal medians – a value
of ‘1’ in the brackets indicates that the DMOS scores from
the two studies have different medians, while a value of ‘0’
indicates that the medians are statistically indistinguishable
at the 95% confidence level. Also reported are the -values.
The results indicate that while the data is correlated and that
the medians are statistically indistinguishable, the degree of
correlation is a function of the distortion category. Specifically,
for the frame-freeze case, the perception of visual quality varies
significantly as a function of the display resolution.

We performed an analysis similar to that for the mobile data-
base and since our results are similar to those for the mobile
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Fig. 10. Tablet Study: Statistical significance analysis of the distortion categories in this studies. Refer text for label explanation. Each (non-white) block represents
the results of the hypothesis testing for the 10 different contents in this study. Dark (black) gray levels indicate that the row distortion is statistically superior (better
visual quality) than the column; the lightest gray-levels indicates that the row is statistically worse than the column, while mid-grey levels represents that the row
and column are statistically equivalent. For example, � –� –� rate change is statistically better than � and � across all videos, however, for the � – �
– � versus F4, while most videos are statistically better than F4, 2 of the videos are worse, while one of them is equivalent to F4.

case, we refrain from reporting those tables here4; instead, as in
the mobile case, we report a visual map of the distortions and
their statistical significance in Fig. 10.

F. Evaluation of Temporal Quality Scores

Recall that we collected subjective opinion scores on time-
varying video quality by asking the subject to rate the quality of
the video as a function of time. These temporal opinion scores
were obtained at a sampling rate equal to that of the frame-rate
of the video (i.e., 1/30 fps) for all distortions, except for the
frame-freezes where the scores were collected at a rate such that
the temporal scores spanned the same support as those for other
distortions. Thus a total of 450 temporal scores were collected
for each 15 second video. The temporal scores so obtained were
then processed as in [32], in order to produce a temporal MOS
(z-score) for each video. Specifically, let be the score
assigned to the video by subject in session , where each
video is of length . We computed:

(1)

(2)

(3)

4The interested reader is directed to the supplementary material for the asso-
ciated tables from the tablet study.

and finally,

(4)

where is the mean opinion score recorded over time
for video and is the number of subjects in the study (after
subject rejection, as described earlier).

We analyzed how these temporal scores contribute to the
overall perception of visual quality, i.e., how temporal scores
might be pooled to reproduce the DMOS that the subject
assigned the video at the end of the presentation. The analysis
below is simplistic, but much work remains on developing
good behavioral models of temporal quality judgements of
dynamically changing video distortions. Our first attempt at
understanding this new problem is detailed in [32].

We evaluate three different methods of temporal pooling: (1)
Mean, (2) Percentile pooling [11], [33], [34], and (3) Memory-
effect based pooling.

The temporal mean serves as the baseline and is simply the
time-average of . Percentile pooling was proposed in
[11], [33], [34] as a method of spatially collapsing image quality
scores while emphasizing severe errors. There is some evidence
that this type of pooling may relate to the visual quality of videos
as well [35]. Here, we sorted the temporal scores in ascending
order and averaged the lowest 5% of the sorted scores to produce
a single quality score for each video.

One may conjecture that human quality decisions are heavily
influenced by the visual quality perceived in the last segment
prior to rating. To investigate this claim, we averaged quality
scores from a time-window spanning the last frames of the
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TABLE IX
MOBILE STUDY: CORRELATION COEFFICIENT BETWEEN THE TEMPORALLY POOLED SUBJECTIVE SCORES AND THE DMOS FOR VARIOUS POOLING STRATEGIES

TABLE X
TABLET STUDY: CORRELATION COEFFICIENT BETWEEN THE TEMPORALLY POOLED SUBJECTIVE SCORES AND THE DMOS FOR VARIOUS POOLING STRATEGIES

video, where is varied between 1–3 seconds in steps of 1
second.

In Tables IX and X, we tabulate the correlation coefficient be-
tween the DMOS (as obtained previously) and each of the four
pooling strategies, for each distortion as well as across all distor-
tions, for the mobile study and for the tablet study respectively.

Note that the correlations should ideally be negative, since we
are comparing the MOS with DMOS; the small positive corre-
lations in the tables are meaningless, and imply that the pooling
strategy does not correlate well for those distortion categories.

Tables IX and X indicate that while the temporal and per-
centile pooling strategies are poor approaches to collapsing tem-
poral scores (especially for the frame-freezes and the temporal
dynamics case), the memory-effect pooling seems to function
better, lending credo to the observation that humans are influ-
enced by the last few seconds of viewing when assessing overall
quality. We note that this effect was not observed in the study
of [32], but this may have been due to the shorter durations of
those videos. We also note that while the Memory-effect does
help, the overall improvement achieved is not great, which may
be due to the short durations of the clips used in this study. While
the videos in this study were at least 50% longer than those in
[5], [32], they are still short relative to the kind of memory ef-
fects that can occur.

The tables also indicate that, while most pooling strategies
work for videos exhibiting uniform visual quality over time
video (for example, compression), almost all pooling strate-
gies performed poorly when the quality changes dynamically
– either when the compression rate is varied (eg., temporal dy-
namics) or if the video freezes. One could conjecture that a good
behavioral model of temporal quality pooling should improve
correlation with DMOS, and that such temporal pooling models
could profitably be incorporated into existing VQA algorithms
to provide better predictions of overall visual quality. Finally,
we note that temporal pooling had a greater impact in the tablet
study than the mobile study. It is possible that the resolution of
the display makes dynamically varying distortions even more
perceptible on a device with a larger form factor (notice that for
compression and wireless distortions the correlations are similar
to those for the mobile study). The results seem to indicate that

TABLE XI
LIST OF FR 2D IQA ALGORITHMS EVALUATED IN THIS STUDY

temporal pooling strategy should account for display resolution
as well.

III. EVALUATION OF ALGORITHM PERFORMANCE

We evaluated a wide variety of full-reference (FR) IQA algo-
rithms against the human subjective scores collected. Table XI
lists these algorithms, all of which are available as part of the
Metrix Mux toolbox [36]. The reader is referred to the citations
for details on these approaches.

The FR IQA algorithms were applied on a frame-by-frame
basis and the average score across time used as a final measure
of quality. Since it is unclear how FR QA algorithms may be
used for frame-freezes (an interesting and important problem
for the future), we did not include this case in our evaluation
below.

We also evaluated two FR VQA algorithms – Visual Quality
Metric (VQM) [11] and the MOtion-based Video Integrity Eval-
uation (MOVIE) index [12]. VQM was obtained from [44] while
MOVIE is freely available at [45]. The version of VQM that we
used (CVQM v13) requires input videos in YUV422p format
encased in an avi container. The YUV420p videos were con-
verted to YUV422p using ffmpeg, then placed in an avi con-
tainer (no compression was used). These algorithms were also
not evaluated for their performance on frame-freezes.

Algorithm Correlations Against Subjective Opinion

Tables XII and XIII, tabulate the Spearman’s rank ordered
correlation cofficient (SROCC) between the algorithm scores
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TABLE XII
MOBILE STUDY: SPEARMAN’S RANK ORDERED CORRELATION COEFFICIENT (SROCC) BETWEEN

THE ALGORITHM SCORES AND THE DMOS FOR VARIOUS IQA/VQA ALGORITHMS

TABLE XIII
TABLET STUDY: SPEARMAN’S RANK ORDERED CORRELATION COEFFICIENT (SROCC) BETWEEN

THE ALGORITHM SCORES AND THE DMOS FOR VARIOUS IQA/VQA ALGORITHMS

TABLE XIV
MOBILE STUDY: LINEAR (PEARSON’S) CORRELATION COEFFICIENT (LCC) BETWEEN

THE ALGORITHM SCORES AND THE DMOS FOR VARIOUS IQA/VQA ALGORITHMS

and DMOS for the mobile and tablet studies, Tables XIV and
XV tabulate the Pearson’s (linear) correlation coefficient (LCC)
and Tables XVI and XVII, tabulate the root mean-squared-error
(RMSE) between the algorithm scores (after non-linear regres-
sion, as prescribed in [46]5) and DMOS.

There are two immediate takeaways from the combined ta-
bles. First, that multiscale matters as the display size is reduced.
Indeed, the two true wavelet decomposition based algorithms
– VSNR and VIF – yielded the best overall performance, ex-
ceeding that of true video QA algorithms – the single-scale
VQM and the MOVIE index, which is partially-multiscale but
omits high frequencies. Multiscale SSIM also does quite well,
although it overweights mid-band frequencies. A lesson here is
that true multiscale is advisable to achieve scalability against

5Except for MOVIE, where the fitting failed; instead the logistic specified in
[8] was used.

variations in display size, resolution and viewing distance, sug-
gesting future refinements of VQA algorithms.

Secondly as Table XII shows, almost all algorithms fail to
reliably predict overall subjective judgements of dynamic dis-
tortions – on the set of “temporal-dynamics” distorted videos
and to some extent, the set of “rate-adaptation” videos. Some
algorithms such as VQM, NQM and VIF perform reasonably
well on the wireless distorted videos. For the rate-adaptation
case, MS-SSIM and MOVIE were the top performers; how-
ever, there clearly remains significant room for improvement.
Overall, VSNR, VIF, MS-SSIM and NQM are seemingly well
correlated with human perception, while the single-scale UQI is
the weakest of the lot probably since it captures the narrowest
range of frequencies. The widely criticized PSNR holds its own
against compression and wireless distortions, since, while it is
not multiscale, it captures high frequency distortions.
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TABLE XV
TABLET STUDY: LINEAR (PEARSON’S) CORRELATION COEFFICIENT (LCC) BETWEEN

THE ALGORITHM SCORES AND THE DMOS FOR VARIOUS IQA/VQA ALGORITHMS

TABLE XVI
MOBILE STUDY: ROOT MEAN-SQUARED-ERROR (RMSE) BETWEEN THE ALGORITHM SCORES AND THE DMOS FOR VARIOUS IQA/VQA ALGORITHMS

TABLE XVII
TABLET STUDY: ROOT MEAN-SQUARED-ERROR (RMSE) BETWEEN THE ALGORITHM SCORES AND THE DMOS FOR VARIOUS IQA/VQA ALGORITHMS

The results of algorithms against subjective judgments of
videos viewed on the tablet show some interesting contrasts
(Table XIII). Whilst VSNR was the top performer for com-
pression in the mobile case, it does not do as well for the tablet
case, where multiscale is less of a factor (at finer scales), with
MOVIE and NQM eclipsing it and VIF the clear top performer.
Since VSNR is a human visual system (HVS)-based measure
which takes the number of pixels per visual degree into ac-
count, one could conjecture that a recalibration of VSNR based
on the viewing distance and form factor of the tablet might
boost performance. While all the algorithms still have trouble
predicting judgments of dynamic distortions, MOVIE suc-
cessfully predicts judgements of rate-adaptation. On wireless
distortions, VIF again does well, as does MOVIE, while VSNR
again sees a drop in performance. The performance increase
of MOVIE in the tablet wireless case over the mobile case is
instructive. Since MOVIE is only partially multiscale and has
only been tested against human judgments of videos viewed on

larger screens than mobile phones, it is not surprising that its
performance improves on videos displayed on screens with a
larger form factor. As in the case of VSNR, a recalibration of
MOVIE as a function of the form factor, or by making it fully
multiscale, would likely improve its performance on smaller
screen sizes. PSNR is again close to the end of the pack, with
the single-scale UQI being the worst performer.

A. Hypothesis Testing and Statistical Analysis

1) Inter-Algorithm Comparisons: We performed a statistical
analysis of the algorithm scores in order to gauge if the corre-
lations tabulated above were significantly different from each
other. In order to evaluate this, we use the method of [5], [46],
where the -statistic is used to evaluate the difference between
the variances of the residuals produced after a non-linear map-
ping between the two algorithms being compared. We perform a
similar statistical analysis and report the results in Tables XVIII
and XIX for the mobile and the tablet studies respectively. A
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TABLE XVIII
MOBILE STUDY: STATISTICAL ANALYSIS OF ALGORITHM PERFORMANCE. A VALUE OF ‘1’ IN THE TABLES INDICATES THAT THE ROW (ALGORITHM) IS

STATISTICALLY BETTER THAN THE COLUMN (ALGORITHM), WHILE A VALUE OF ‘0’ INDICATES THAT THE ROW IS WORSE THAN THE COLUMN; A VALUE OF ‘�’
INDICATES THAT THE ROW AND COLUMN ARE STATISTICALLY IDENTICAL. WITHIN EACH ENTRY OF THE MATRIX, THE FIRST FOUR SYMBOLS CORRESPOND

TO THE FOUR DISTORTIONS (ORDERED AS IN THE TEXT), AND THE LAST SYMBOL REPRESENTS SIGNIFICANCE ACROSS THE ENTIRE DATABASE

TABLE XIX
TABLET STUDY: STATISTICAL ANALYSIS OF ALGORITHM PERFORMANCE. A VALUE OF ‘1’ IN THE TABLES INDICATES THAT THE ROW (ALGORITHM) IS

STATISTICALLY BETTER THAN THE COLUMN (ALGORITHM), WHILE A VALUE OF ‘0’ INDICATES THAT THE ROW IS WORSE THAN THE COLUMN; A VALUE OF ‘�’
INDICATES THAT THE ROW AND COLUMN ARE STATISTICALLY IDENTICAL. WITHIN EACH ENTRY OF THE MATRIX, THE FIRST FOUR SYMBOLS CORRESPOND

TO THE FOUR DISTORTIONS (ORDERED AS IN THE TEXT), AND THE LAST SYMBOL REPRESENTS SIGNIFICANCE ACROSS THE ENTIRE DATABASE

value of ‘1’ in the tables indicates that the row (algorithm) is
statistically better than the column (algorithm), while a value
of ‘0’ indicates that the row is worse than the column; a value
of ‘ ’ indicates that the row and column are statistically iden-
tical. In Tables XVIII and XIX, we evaluate this hypothesis for
each distortion category as well as for all distortions considered
together.

Tables XVIII and XIX validate our observations from the cor-
relations – NQM, VIF, VQM perform well, although interest-
ingly, NQM is the only algorithm that is statistically superior
to PSNR overall for the mobile study, while VIF is superior to
PSNR in the tablet study, where MOVIE also performed well.

2) Comparison With the Theoretical Null Model: We also
performed an analysis to evaluate whether algorithm perfor-
mances were different from the theoretical null model [5], [46].
Given that we have performed all analysis up to this point using
DMOS scores from the database, and given that humans ex-
hibit inter-subject variability , it is important not to penalize an
algorithm if the differences between the algorithm scores and
DMOS can be explained by the differences between the indi-
vidual subjective scores and the DMOS. This variance between
the differential opinion scores (DOS) and the DMOS is used as
a measure of the inherent variance of subjective opinion, and we
analyze whether the variances of differences between the algo-
rithm scores and DOS are statistically equivalent to that of DOS
and DMOS. Our analysis unfolds as in [5]. Specifically, we com-
pute the ratio between (a) the variances ( ) of residuals
between the differential opinion scores (DOS) and algorithm

scores (after non-linear regression) and (b) the variances ( )
of residuals between the differential opinion scores (DOS) and
DMOS for each distortion as well as across all distortions. The
ratio of two variances is the -statistic and
at the 95% confidence level, for the degrees of freedom ex-
hibited by the numerator and denominator, one can compute
the threshold -ratio. If the computed -statistic exceeds the
threshold -ratio, then one accepts the null hypothesis – i.e.,
the algorithm performance is equivalent to the theoretical null
model – else, one rejects the null hypothesis. In Tables XX and
XXI we report the -statistic for each distortion and for all dis-
tortions for each of the algorithms considered here, as well as the
threshold -ratio for the mobile and tablet study respectively.
Fields marked in bold indicate acceptance of the null hypothesis.
The tables indicate that across distortions, there does not exist a
single algorithm that is equivalent to the theoretical null model,
except VIF on the wireless distorted videos. Clearly, there re-
mains much work to do on video quality assessment, both on de-
veloping fully scalable VQA algorithms and especially towards
understanding human reactions to temporal video dynamics and
how to model them.

IV. DISCUSSION AND CONCLUSION

We described a human study to assess video quality which
was conducted on multiple mobile platforms and encompassed a
wide variety of distortions, including dynamically-varying dis-
tortions as well as uniform compression and wireless packet-
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TABLE XX
MOBILE STUDY: ALGORITHM PERFORMANCE VS. THE THEORETICAL NULL MODEL. LISTED ARE THE �-RATIOS I.E., RATIO OF (A) VARIANCES OF

RESIDUALS BETWEEN THE DIFFERENTIAL OPINION SCORES (DOS) AND ALGORITHM SCORES AND (B) VARIANCES OF RESIDUALS BETWEEN THE

DIFFERENTIAL OPINION SCORES (DOS) AND DMOS FOR EACH DISTORTION AS WELL AS ACROSS ALL DISTORTIONS. ALSO LISTED IS THE THRESHOLD

�-RATIO. THE ALGORITHM IS STATISTICALLY EQUIVALENT TO THE NULL MODEL IF THE �-RATIO IS GREATER THAN THE THRESHOLD �-RATIO.
BOLD FONT INDICATES STATISTICAL EQUIVALENCE TO THE THEORETICAL NULL MODEL

TABLE XXI
TABLET STUDY: ALGORITHM PERFORMANCE VS. THE THEORETICAL NULL MODEL. LISTED ARE THE �-RATIOS I.E., RATIO OF (A) VARIANCES OF RESIDUALS

BETWEEN THE DIFFERENTIAL OPINION SCORES (DOS) AND ALGORITHM SCORES AND (B) VARIANCES OF RESIDUALS BETWEEN THE DIFFERENTIAL OPINION

SCORES (DOS) AND DMOS FOR EACH DISTORTION AS WELL AS ACROSS ALL DISTORTIONS. ALSO LISTED IS THE THRESHOLD �-RATIO. THE ALGORITHM IS

STATISTICALLY EQUIVALENT TO THE NULL MODEL IF THE �-RATIO IS GREATER THAN THE THRESHOLD �-RATIO. BOLD FONT INDICATES STATISTICAL

EQUIVALENCE TO THE THEORETICAL NULL MODEL

loss. The large size of the study and the variety that it offers al-
lows one to study and analyze human reactions to temporally
varying distortions as well as to varying form factors from a
wide variety of perspectives. We make a number of further ob-
servations that may prove useful—from the perspective of un-
derstanding human reactions to complex, time varying distor-
tions and from the algorithm design perspective.

An obvious conclusion from our analysis is that time-varying
quality has a definite impact on human subjective judgments of
quality, and this impact is a function of the frequency of oc-
currence of significant distortion changes and of the differences
in quality between segments. Humans seemingly prefer longer
freezes over shorter ones – this is not terribly surprising since
choppy video playback is not pleasing at all. However, what is
surprising about the frame-freeze distortion is that humans ap-
pear to be far more forgiving of lost segments than they are of
choppy quality. This has interesting implications for those sup-
plying real-time video delivery. It is also prudent to note that
while choppy playback is the worst offender, lost segments start
to matter relative to small reductions in choppiness. Further,
this preference is dependent upon the content being displayed.
It would be interesting to study whether the same results hold
true when viewing sports – a viewer may prefer choppy play-
back in this case as opposed to him missing out on the footage

of that all important goal being scored. On the flip side, in ap-
plications such as video chatting it is possible that our results
will be further validated. The data in this study seems to indicate
that designers should use algorithms for resource allocation that
penalize semi-filled buffers over those that penalize completely
empty buffers.

The data from the rate adaptation and temporal dynamics dis-
tortions, while somewhat contrary to popularly held notions on
human perception of quality are intuitive and interesting. The
first observation is that humans are not as unforgiving as one
would imagine them to be. In fact they seem to reward attempts
to improve quality. As we summarized in the temporal dynamics
discussion, when the user is subjected to a long spell of good
quality video, s/he has seemingly taken that level of quality
for granted, and when the provider switches to a much lower
quality level, he is severe with his rating of quality. On the con-
trary, faster rate changes seemingly push the user to believe that
the provider is attempting to maximize his quality of experi-
ence and hence these videos are given higher quality scores.
Another explanation is that less rapid rate changes can pro-
duce long periods of low-quality video bracketed by segments
of high-quality videos. In this case, the low quality may be re-
garded as more enduring, and hence, more annoying. Due to
the limitations of study sessions we were unable to include the
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other condition – – – – here, not only is there high
quality at the end, but there is also a segment of poor quality in
the middle. From the current data it is difficult to predict how
the user may react to this situation. Of course, variations on the
rate of fluctuation in quality is another area to explore.

The field of analyzing continuous-time human opinion
scores of quality is one that is still nascent. We explored a
small set of preliminary temporal pooling ideas drawn from
the literature or from conventional wisdom. Our results, while
encouraging, still do not completely explain human responses
to temporally varying distortions. For compression and wireless
distortions, the mean of human opinion across time is a good
indicator of the final quality – possibly owing to the fact that
with stagnant quality, the human simply picks the mean when
providing continuous quality scores. What is surprising is the
performance of percentile pooling. This strategy works well for
larger screen displays (albeit using an indirect method to assess
its performance – pooling of objective scores [11], [33], [34]),
but humans are seemingly more forgiving of poorer quality
when viewing videos on smaller form factors. The observations
from the memory-effect pooling are intriguing. While the mean
of continuous quality scores is poor indicator of the final quality
for videos with dynamically varying distortions, memory-effect
based pooling seems to better capture human responses. With
a change in the device form factor however, even this pooling
strategy begins to fail. This implies that there is a lot more work
to be done in understanding how humans integrate continuous
quality scores and produce the final summarized score that they
give each video. This is even more true for the frame-freeze
distortions. It is unclear at this point how humans rate the
effects of frame-freeze distortions on the temporal perception
of video quality.

While a lot more can be said with regards to the human data,
in the interest of space we now move our discussion to the ob-
jective algorithms. To us, the main takeaway from the analysis
is that scalability, which requires multiscale processing, is a de-
sirable property to assess the quality of videos of diverse sizes,
resolutions and display forms. Single-scale algorithms such as
VQM and SS-SSIM, which do well on videos shown on larger
screens, may not accurately predict the quality of videos dis-
played on smaller screens.

Results from the temporally varying distortions are both dis-
appointing and encouraging at the same time. It seems that for
smaller rate variations, the algorithms manage to do resonably
well in predicting quality, however with increased variation in
the temporal distortion patterns, the algorithms fail. While this
may be due to a multitude of factors, one possible reason could
be the temporal pooling strategy applied. For the IQA algo-
rithms, our strategy was simply to use the temporal mean of
the frame-level scores, while the VQA algorithms pooled the
predicted temporal scores as they were designed to do (eg.,
MOVIE uses the mean). In light of the results from our tem-
poral pooling analysis of human scores and recent research in
temporal pooling strategies for objective algorithms [32], [35],
it seems very likely that algorithm performance can be improved
by employing more appropriate strategies for integrating quality
scores over time. Incorporating knowledge of the device and
human responses to temporal quality as a function of the form

factor should lead to additional benefits. Clearly, there remains
ample room for developing better VQA algorithms – since none
of the algorithms are equivalent (or even close) to the theoretical
null model.

We hope that the new LIVE mobile VQA database of 200 dis-
torted videos and associated human opinion scores from over 50
subjects will provide fertile ground for years of future research.
Given the sheer quantity of data, we believe that our foregoing
analysis is the tip of the ice-berg of discovery. We invite further
analysis of the data towards understanding and producing better
models of human behavior when viewing videos on mobile plat-
forms. Other fields of inquiry that may benefit from this data-
base include human behavior modeling; application and content
driven analysis of human behavior; device and context-specific
design of objective algorithms; video network resource alloca-
tion over time and many others. Given the explosion of mobile
devices, and associated load on bandwidth, we believe that the
work presented here and the observations made with regards
to human behavior will serve as essential tools in modeling
video delivery over wireless networks. The database is avail-
able at no charge to researchers at: http://live.ece.utexas.edu/re-
search/quality/live_mobile_video.html.

APPENDIX

INSTRUCTIONS TO THE SUBJECT

You are taking part in a study to assess the quality of videos.
You will be shown a video at the center of your screen and there
will be a rating bar at the bottom, which can be controlled by
using your fingers on the touchscreen. You are to provide the
quality as function of time – i.e., move the rating bar in real-time
based on your instantaneous perception of quality. The extreme
left on the bar is bad quality and the extreme right is excellent
quality. At the end of the video you will be presented with a
similar bar, this time calibrated as ‘Bad’, ‘Poor’ and ‘Excellent’,
from left-to-right. Using this bar, provide us with your opinion
on the overall quality of the video. There is no right or wrong
answer, we simply wish to gauge your opinion on the quality of
the video that is shown to you.
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