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Abstract—We study the performance of an opportunistic
scheduling scheme maximum quantile scheduling, i.e., scheduling
a user whose current rate is in the highest quantile relative to
its current rate distribution, in a wireless system. In a practical
scenario it is unlikely that users’ rate distributions are known at
the scheduler, and have to be estimated via measurement. Under
the assumption of fast fading, we prove a bound on the relative
penalty associated with such estimates, showing that number of
independent samples need only grow linearly with the number
of active users. This is a fairly limited cost, suggesting one could
track distributional changes in users’ channels. By contrast other
opportunistic scheduling schemes require estimating or setting
weights/thresholds that implicitly depend not only on the number
of users, but also their rate distributions, and possibly their traffic
characteristics. In other words the penalty associated with tuning
weights for other schemes can be higher than that associated
with estimating users’ rate distributions for maximum quantile
scheduling. This statement is supported by our simulation results.
Furthermore we prove that if rates are bounded and number
of users is high, maximum quantile scheduling is sum average
throughput maximizing subject to temporal fairness.

Index Terms—Scheduling, resource management, stochastic
majorization, cellular systems, wireless access.

I. INTRODUCTION

MOTIVATION. The scheduling of users’ data transmis-
sions at a wireless access point has recently attracted

a substantial amount of attention, e.g., [1]. A key feature of
wireless systems relative to the traditional wireline systems is
that, the channel capacity, or service rate, may exhibit temporal
variations. This allows one to consider scheduling policies
that choose to send to, or receive from, a user which at a
given point in time has the ‘best’, e.g., highest, capacity. Such
‘opportunistic scheduling’ can lead to good increases in the
aggregate capacity of a wireless systems, such as CDMA-
HDR, HSDPA [5].

In practice users’ channel capacity variations are unknown
and heterogenous, e.g., users close to an access point see
significantly different channel capacity than those further off.
Thus it is important to devise opportunistic schedulers that
do not starve some users, e.g., those with poor channels, to
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achieve some degree of fairness among users sharing an access
point. To this end many opportunistic scheduling schemes
have been devised that make decisions by selecting the user
that currently has the highest weighted channel capacity. In
practice the weights may be hard to determine, because they
depend in a complex way on the users’ channel capacity
distributions, the number of users, and the characteristics of
their traffic. Thus they either need to be estimated or tuned
based on the service users have received.

Unfortunately, the complex dependence of weights may
make them very sensitive to changes in the system, i.e.,
if a user’s traffic characteristics changes, or a user leaves
or enters the system (e.g., a mobile user comes out of the
shadow of a building), or the channel characteristics of a user
change, then the weights associated with all users may need
to change. Therefore, it is likely that a significant fraction
of time will be spent in estimating/tuning weights to their
‘ideal’ values. In fact, if the system is dynamic enough and/or
the tuning algorithm is not sensitive enough, one may never
converge, leading to poor throughput performance. Consider a
simple example. Due to the stochastic or time varying nature
of channel capacity and user’s traffic a measurement-based
opportunistic scheduler may be biased in favor of a user who
has not received service in the recent past or one that currently
has a high queue. While, this myopic approach is good for
short term fairness, the scheduler may end up serving a user
even though it is not currently experiencing a high channel
rate. This in turn decreases the achieved opportunism and long
term throughput the system can sustain. In heavily loaded
systems, at a given moment of time, it is very likely that
there exists a group of users which are starved. If those users
are served, others may become starved, leading to a cycle, in
which the level of opportunism and throughput are low.

Recently, distribution based opportunistic schedulers have
been proposed by several researchers under different guises
[8][6][9]. In this paper, we shall refer to this scheme as
maximum quantile scheduler. The idea is to schedule a user
whose current rate is highest relative to his own distribution,
i.e., in the highest quantile. This allows the scheme to exploit
opportunism and achieve fairness without weights, however,
instead one needs to estimate each user’s channel capacity
distribution. In this paper we will show that the throughput
penalty incurred from estimating users’ distributions is limited.

Contributions. Following are the contributions of this paper:

• We first show that if the achievable instantaneous rate of
users’ is bounded, then among the class of scheduling
policies that serve each user an equal fraction of time,
maximum quantile scheduling maximizes the long term
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system throughput when there is a large number of users.
Furthermore, we show that the marginal distribution
for the rate when users are selected for service under
maximum quantile scheduling can not be stochastically
dominated by any other non-idling scheduler.

• Under the assumption of fast fading, we prove a bound on
each user’s relative throughput penalty when maximum
quantile scheduling is based on empirical estimates of
users’ channel capacity distribution. The bound shows
that such penalties can be controlled if the number
of independent samples used to estimate the empirical
distribution is roughly proportional to the number of users
in the system.

• Using simulations, we compare the performance of
maximum quantile scheduling and other opportunistic
scheduling schemes when weights/distributions are esti-
mated via measurement. We find that maximum quantile
scheduling can have significantly better performance in
terms of throughput penalty and file transfer delay, e.g.,
up to 30% improvement. In other words, the penalty
associated with estimating distributions can be lower
compared to that associated with estimating weights.

Paper Organization. In Section II we discuss some prior
work in the area of opportunistic scheduling and intro-
duce some known features of maximum quantile scheduling.
Throughput performance and optimality of the scheme is
studied in Section III. We prove our bound on the relative
throughput penalty associated with measuring distributions in
Section IV. Simulation results comparing the performance of
maximum quantile scheduling to other schemes are presented
in Section V. Section VI concludes the paper.

II. REVISITING OPPORTUNISTIC SCHEDULING

A. System Model and Notation

We begin by introducing our system model and some
notations. For simplicity, we focus on downlink scheduling
from an access point to multiple users. Suppose time is divided
into equal sized slots, e.g., CDMA-HDR systems have a slot
duration of 1.67 ms [5]. During each slot, all users feedback
the data rate they can support and the access point decides
to serve at most one user in the slot. In the sequel we use
the terms ‘channel capacity’ and ‘rate’ interchangeably. For
analysis purposes, we make the following assumptions on
users’ channel capacity distribution(s) across.

Assumption 2.1: We assume the channel capacity (rate) for
each user is a stationary ergodic process and these processes
are independent across users. Further we assume that the
marginal rate distribution function for each user is continuous,
increasing, and is known a priori at the access point.

Discussion on the assumption. First the rate distributions
seen by users might indeed be roughly stationary and indepen-
dent across user. The assumption that the access point knows
the marginal distributions of the channel capacity processes
may seem unreasonable, but simple book keeping of the users’
current rate feedback can be used to estimate distributions.
This will be discussed in more detail in Section IV. Note that
channel capacities are not restricted to any specific distribu-
tion, i.e., users can undergo any fading process. This makes the

analysis presented applicable to real world scenarios. Further
note that we require the marginal distribution function of rates
to be continuous and increasing only for simplicity sake, the
results presented here can be extended to the discrete, non
increasing case also (see [7]).

System Scenario. Unless specified otherwise, we will
mostly focus on the ‘fixed saturated’ case, where the number
of users in the system does not change with time and each user
is infinitely backlogged. Such a scenario is an approximation
where the number of users in the system changes slowly and
packet queues for each user are always non empty at the access
point. This idealization is often studied in literature.

Notation. In the sequel we will let xi(t) denote the realiza-
tion of the rate of user i at time slot t, and let X i be a random
variable whose distribution is that of the rate of user i on a
typical slot. Recall that we will be assuming X i to be inde-
pendent across users but need not be identically distributed.
We denote the distribution function of X i by FXi(·). Note by
assumption FXi(·) is an increasing continuous function, this
allows us to have an inverse F−1

Xi (·) defined. The number of
users in the system is given by n.

B. Previous Work

The first opportunistic scheduling maximum rate scheduling
was first proposed in [1]. Here the user with maximum current
rate is served, i.e., user k(t) is selected for service on time
slot t if

k(t) ∈ arg max
i=1,...,n

xi(t).

This maximizes system throughput in a fixed saturated system,
but in a system where users have heterogeneous rate distribu-
tions, may neglect those with poor channels.

A myriad of approaches have been proposed to address
both unfairness/performance issues. A widely cited scheme
is proportional fair scheduling [2][3] which serves the user
whose current rate normalized by a moving average of his
allocated rate is the highest, i.e., user k(t) is served during
time slot t if

k(t) ∈ arg max
i∈i=1,...,n

xi(t)
μi(t)

, (1)

where

μi(t) = (1 − 1
tc

)μi(t − 1) +
1
tc

xi(t)1Si
pf

(t)

and tc is the moving average parameter, Si
pf (t) is the event

that user i gets served on slot t by the scheme, and 1Si
pf (t) is

the indicator function of Si
pf (t).

More recently, [4] proposed strategies that maximize sum
throughput under fairness constraints. For example, they show
that a scheduling policy of the form

k(t) ∈ arg max
i=1,...,n

[xi(t) + νi], (2)

maximizes the sum throughput subject to constraints on the
fraction of time each user i is served in a fixed saturated
regime. Here νi is a weight associated with user i that ensures
that users get served the desired fraction of time. Similar
optimal schemes were proposed for rate and utility based
fairness.
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While the optimality characteristics of these schemes are
desirable, in practice they would require estimating thresholds
νi which are complicated functions of users’ requirement and
rate distributions. In Section V, we show that such estimates
may converge slowly, leading to loss in performance.

C. Maximum Quantile Scheduling

Maximum quantile scheduling has been independently pro-
posed by [8] as a ‘CDF based scheme’, while [6] proposed
a ‘score based scheduler’, and [9] proposed a ‘distribution
fairness’ based scheduler.

Let us briefly introduce this scheme in the fixed saturated
regime. The main idea is to schedule a user whose rate is
highest compared to his own distribution, i.e., serve user k(t)
during slot t if

k(t) ∈ arg max
i=1,...,n

FXi(xi(t)). (3)

It is well known that FXi(X i) is uniformly distributed on
[0, 1]. Let U i := FXi(X i), then U i is also uniformly dis-
tributed on [0, 1]. Under Assumption 2.1, maximum quantile
can be thought of as picking the maximum among independent
realizations of users’ (i.i.d.) U i’s on every slot. Thus, maxi-
mum quantile is equally likely to serve any user on a typical
slot, and all users get served an equal fraction, i.e., 1

n

th
of

time. Furthermore, let U (n) := max[U1, . . . , Un], then again
from Assumption 2.1

Pr(U (n) ≤ u) = un, ∀u ∈ [0, 1], (4)

and the rate distribution seen by user i on a slot that it
gets served is the same as F−1

Xi (U (n)). Therefore, the average
throughput seen by user i is given by Gi

mq(n)[8],

Gi
mq(n) =

E[F−1
Xi (U (n))]

n
=

E[X i,(n)]
n

,

where X i,(n) is maximum of n i.i.d. copies of X i, i.e.,
X i,(n) := max[X i

1, . . . , X
i
n], where X i

j ∼ X i, ∀j =
1, . . . , n. Note that by contrast, even if users’ rate distributions
were known, it is not easy to evaluate the individual and
system throughput for other schemes discussed in the previous
subsection.

Maximum quantile scheduling has several desirable prop-
erties and simulation results show that it has good throughput
performance (see [8][7] for details). However, as discussed
earlier, it is important to understand performance penalty
associated with estimating users’ rate distributions.

III. PERFORMANCE OF MAXIMUM QUANTILE

SCHEDULING IN FIXED SATURATED SYSTEM

In this section we study the performance of maximum
quantile scheduling in terms of the amount of opportunism
exploited, and the throughput achieved by the scheme. Due
to lack of space, we omit the proofs for theorems presented
in this section, the reader can refer to Chapter 2 of [7] for
details.

‘Opportunistically’ Optimal. Suppose we consider as mea-
sure of opportunism achieved by user i as the quantile of
the rate achieved by the user, i.e., FXi(xi(t)) whenever it is

served. A high quantile means a high degree of opportunism
and E[

∑n
i=1 FXi(X i)1Si

β
] denotes the overall expected op-

portunism realized by a scheduling scheme β. (Here Si
β is the

event that user i is selected for service on typical slot by β.) It
should be clear that maximum quantile scheduling maximizes
the system opportunism.

Not Stochastically Dominated. Maximum quantile schedul-
ing has an optimality in terms of the rates seen by users in the
typical slots in which they are served. Let us first introduce
the concept of stochastic dominance, we say that a random
variable Y stochastically dominates random variable V , if ∀v,
Pr(Y > v) ≥ Pr(V > v), this is denoted as Y ≥st V .
Let Ri

mq represent the rate distribution seen by user i when
selected for service on a typical slot by maximum quantile
scheduling, and let

−→
Rmq = (R1

mq, . . . , R
n
mq), i.e., the vector

of random variables representing the rate distributions. Let−→
Rβ = (R1

β , . . . , Rn
β) be the same quantity for another distinct

non idling scheduling scheme β that may not serve all users
an equal fraction of time. By distinct we mean that the scheme
does not always pick the same user as maximum quantile, and
by non idling, we mean that the scheme will never choose to
not serve a user in the slot. Then our claim (formally stated
below) is that

−→
Rβ �≥st −→

Rmq , i.e., ∃j = 1, . . . , n, such that
Rj

β �≥st Rj
mq .

Theorem 3.1: Consider a fixed saturated system with n
users, whose channel capacity variations satisfy Assump-
tion 2.1. Then for any distinct non idling scheduling scheme
β,

−→
Rβ �≥st −→Rmq.

Note that a scheduling scheme γ is known to be Pareto
optimal if there exists no other scheduling scheme that is
able to give an equal or higher average throughput to all the
users than that received by users under γ. Theorem 3.1 can
be thought to be a weak form of Pareto optimality in terms
of rate seen in a typical slot. We now show that maximum
quantile is not Pareto optimal in terms of average throughput.

Not Pareto Optimal. We illustrate this with a simple two
user system with ON-OFF channels. (The example can be
extended to the continuous case.) The ON and OFF channel
states correspond to rates 1 and 0 respectively. User 1 and
2 have an ON probability of 0.6 and 0.4 respectively. Here
maximum quantile will serve User 1 a rate of 0.42, and User
2 a rate of 0.32. However, it can be shown that maximum
quantile may sometimes serve User 2 in OFF state, even
though User 1’s channel is ON. Therefore, it is possible to
improve performance while still serving each user an equal
fraction of time. Consider a scheme that always serves the
user with the highest instantaneous rate and breaks ties 7

24

th

of times in favor of User 1. Such a scheme will give User 1 a
rate of 0.43, and User 2 will get a rate of 0.33. Hence one can
give better performance to both the users, while maintaining
temporal fairness.

Throughput Optimal for Large Number of Users. Even
though maximum quantile is not Pareto optimal, it does
achieve good system throughput performance. If the rates
achievable by users in a system are bounded, then maximum
quantile scheduling is sum throughput optimal among policies
that serve all users an equal fraction of time as the number of
users increases. Our claim is formally stated below.
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Theorem 3.2: Consider a n user fixed saturated system
using maximum quantile scheduling. Suppose each user has
a finite maximum instantaneous rate. Then under Assump-
tion 2.1 as n → ∞, each user is likely to be served at
its maximum rate, so maximum quantile scheduling is sum
throughput optimal among scheduling policies that serve all
users equally.

Summarizing, even though maximum quantile is not Pareto
optimal, it gives good throughput.

IV. PENALTY DUE TO ESTIMATING DISTRIBUTIONS

Let us study the throughput penalty incurred by maximum
quantile scheduling due to estimation of rate distributions of
users. Recall that Assumption 2.1 required the rate distribution
functions, i.e., FXi(·) of each user be known at the access
point. This is unlikely, however suppose the quantile of the
current rate of a user is estimated using the previous m
samples of the user’s rate. The empirical distribution of user
i during slot t based on m previous samples is denoted by
F̃m,t

Xi (·) and is given by

F̃m,t
Xi (x) =

1
m

m∑
j=1

1{X i(t − j) ≤ x}. (5)

Note that the above way of estimating is similar to the
score function described in [6], however there, no attempt was
made to theoretically evaluate the throughput penalty due to
incorrect estimation.

Thus maximum quantile scheduling of users based on
estimated distributions, would choose user k(t) for service
during slot t if

k(t) ∈ arg max
i=1,...,n

F̃m,t
Xi (xi(t)),

with ties being broken arbitrarily. It can be shown that for
any user on any slot t, F̃m,t

Xi (X i(t)) is uniformly distributed
on {0, 1

m . . . , 1}. Therefore, it is easy to see that even with
estimated distributions, maximum quantile scheduling will still
serve each user an equal fraction of time.

Calculating the penalty due to estimation seems to be
intractable under slow fading, therefore we add an additional
assumption of fast fading, i.e., rate realizations of a user in
a slot is independent across slots. Even though this is usually
not true, independence of samples can be roughly ensured by
taking samples that are sufficiently apart in time or using some
scheme, e.g. ‘opportunistic beamforming’ [3].

We now calculate the average throughput achieved by users
under maximum quantile scheduling based on estimated distri-
butions. Since we are interested in the stationary behavior, we
simplify notation from F̃m,t

Xi (·) to F̃m
Xi(·). Following theorem

gives the performance of this scheme, see Theorem 2.4.1 in
[7] for proof.

Theorem 4.1: Consider a n user fixed saturated system us-
ing maximum quantile scheduling, where the rate distributions
in such a system are estimated via (5) based on m independent
samples of a user’s channel. Then under Assumption 2.1, the
average throughput achieved by user k is given by

G̃k
mq(n, m) =

E[F−1
Xk (Ũn,m)]

n
,

where Ũn,m is a continuous r.v. on [0, 1] having a probability
density function

fŨn,m
(u) =

m∑
j=0

(
m
j

)
uj(1− u)m−j ((j + 1)n − jn)

(m + 1)n−1
. (6)

Recall that Ri
mq represents the rate distribution seen by user

i when selected for service on a typical slot by maximum
quantile scheduling (with perfect distribution knowledge). Let
R̃i,m

mq denote the same quantity for maximum quantile schedul-
ing when distributions are estimated using m independent
samples.

We show that R̃i,m
mq and Ri

mq are ‘closely related’ random
variables, i.e., the rate seen by a user when served under em-
pirical distributions is similar to that seen when distributions
are perfectly known. This is used to show that the average
throughput of a user when empirical distributions are used
is less than or equal to that achieved when distributions are
perfectly known, i.e., G̃k

mq(n, m) ≤ Gk
mq(n) and bound the

relative throughput penalty due to estimation. Our result is
stated below, the proof is given in Appendix A.

Theorem 4.2: Consider a fixed saturated system with n
users using maximum quantile scheduling. Then under As-
sumption 2.1 and fast fading ∀n, m,

(
m + 1

n
(1 − (

m

m + 1
)n)) ≤ Pr(R̃i,m

mq ≤ r)
Pr(Ri

mq ≤ r)
≤ 1, ∀r,

and
Gk

mq(n) ≥ G̃k
mq(n, m), ∀m,

and the relative throughput penalty is bounded by

|Gk
mq(n) − G̃k

mq(n, m)|
Gk

mq(n)
≤ 1 − m + 1

n
(1 − (

m

m + 1
)n).

To understand the scaling of the number of independent
samples m required to limit the throughput penalty, note
that for a reasonably large n, if m scales linearly with n,
then ( m

m+1 )n = (1 + 1
m )−n ≈ e−

n
m . Expanding e−

n
m and

simplifying, we get that the relative throughput penalty is
equal to

1 − m + 1
m

+
m + 1

n
(
1
2
(
n

m
)2 − . . .),

which is upper bounded by n
2m . Then to achieve a relative

error less than ε, at most n
2ε samples are needed, e.g., to

achieve an error less than 5%, at most 10n samples are needed.
In other words for a given error bound, the number of samples
required will at worst grow linearly with the number of users.

Simulations. To validate these results, we ran some simula-
tions. Our setup consists of two classes of users having a mean
signal to noise ratio (SNR) of 2 and 0.1, with both classes
experiencing Rayleigh fading and containing an equal number
of users. The channel capacity for all users is fast fading, i.e.,
rate supported by users is independent across slots, and the
slot size is set to 1.67 msec. The bandwidth associated with
each user is 500 KHz and we assume that coding achieves the
Shannon rate. Unless specified otherwise, this setup will be
used throughout the paper for simulations.

We first observed the throughput penalty for different values
of n and m. The value of n is varied from 8 to 16 to 32,
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quantile scheduling, due to estimated distributions with increasing number of
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Fig. 2. Relative throughput penalty for 10 users with slow Rayleigh fading
channel capacities.

while m is varied by a factor of 2 from 8 to 256 for a given
value of n. As shown in Figure 1, the bound is clearly met, in
fact the results indicate that our bound is quite conservative
(which is not surprising, since the bound is distribution free).
For example, a relative throughput penalty of around 1% is
achieved with only 64 samples for 8 users, whereas the bound
suggests 5%.

We also plot the selection error probability in the figure, i.e.,
the fraction of slots where the user selected with maximum
quantile is not chosen due to error in estimation of distribution.
As the plot indicates, this can be quite high. Our analysis
(not included in this paper) shows that the number of samples
required to achieve a given error probability grows roughly
as O(n2). Therefore, even though mistakes may be made in
selecting the user with the highest quantile, the throughput
penalty in making an error is not large.

Let us consider the bound under slow fading now. The need

for m independent samples immediately suggests the need for
sampling m coherence time intervals to achieve the required
penalty. We ran simulations to confirm this conjecture. The
simulation consisted of two (earlier described) classes of slow
Rayleigh fading users with 5 users each, we aimed for a
penalty of 5%. The Doppler spread for the channels was varied
from 10 Hz to 50 Hz in steps of 10 Hz. Let fD denote the
Doppler spread, then the coherence time can be estimated
using the formula 9

16πfD
[10]. Given the coherence time, the

number of slots needed to estimate the rate distributions can
be ascertained. The simulation results are plotted in Figure 2,
which shows that the required penalty is met in all cases.
Note that in our simulations we found that for Doppler spread
of 10 Hz, 932 slots were needed. This corresponds to 1.55
seconds (slot size is 1.67 msec), it may be reasonable to
expect the system to be stationary for such a period because
the Doppler spread is quite low, i.e., users/objects are moving
quite slowly. In other words, even though very slowly fading
systems may require a large number of samples to achieve
the desired penalty, it may also be reasonable to expect such
channels to be stationary over large periods of time.

Discussion of the bound. Theorem 4.2 has several interest-
ing implications, which we discuss below.

• The bounds shows that the relative throughput penalty
due to estimation of users’ distribution can be bounded
for i.i.d. samples of any distribution.

• The theorem is strong in the sense that it shows a relation-
ship between distributions (and not just the average) of
rates seen by the user in both the empirical and perfectly
known distribution cases.

• The number of samples needed to achieve small penalty
is only linear in the number of users. This is limited
(at least for the fast fading case) because slot sizes are
usually milliseconds long.

• The dependence of penalty on the number of users is
significant. Even if the number of users are changing with
time, to achieve a certain penalty, a system designer only
needs to estimate the ‘average’ number of users that will
be competing for service. We reiterate here that this is
unlike other weight based schemes which are dependent
on users’ distribution or traffic characteristics.

• The dependence on only the number of users also allows
us to conjecture that if users’ channel are stationary for
roughly O(n2) slots (under fast fading), then the desired
penalty will be met.

Summarizing, maximum quantile scheduling under esti-
mated distribution case is not only fair, suffers from fairly
limited penalty, but is quite easy to design for and to imple-
ment.

V. SIMULATION BASED COMPARISON WITH WEIGHT

BASED SCHEMES

Let us now compare the performance of maximum quantile
scheduling to other schemes via simulations. First we compare
the maximum sum throughput scheme described by (2), with
maximum quantile scheduling when weights and distributions
have to be estimated. Next we modify the setup to consider
the case where the number of users dynamically vary with
time, and observe the time of file transfer.
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maximum sum throughput and maximum quantile scheduling schemes, with
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A. Throughput Penalty Comparisons

Recall that if the users’ weight νi are properly set in (2),
then the scheme maximizes sum throughput under temporal
fairness. However in practice the weights for each user needs
to be estimated, we investigate the sensitivity of system
throughput to errors in these weights by performing two
controlled experiments.

In the first experiment, there are 5 users in each class (with
the previously described setup), and the weights νi for all
users are initialized to 0. We train the weights for m slots
according to the stochastic approximation algorithm suggested
in [4], and observe the average penalty in performance due to
errors in weights on the (m + 1)st slot. We refer the reader
to [4] for details on the training algorithm. We evaluate two
performance parameters, the fraction of time low SNR users
are served, and the relative penalty in throughput achieved by
those users as compared to that achieved when weights are
perfectly known.

The algorithm for estimating the νi’s has parameters
(w, δ, δi) that need to be set, we first set these parameters equal
to those suggested in [4]. However, the scheduling scheme
served the users with low average SNR less than 0.1% of
time even with m = 2000 (which demonstrates the difficulty
in setting measurement based weights). Hence we changed the
parameters to w = 0.005, δ = 0.2 and δi = 0.1.

Figure 3 shows the fraction of time low average SNR users
are served as an increasing number of training samples m is
used. We also plot the corresponding results for maximum
quantile scheduling, which always serves low average SNR
users close to 0.5 fraction of time. By contrast, maximum
sum throughput takes around 400 samples to converge to
approximately 0.47 and then shows negligible improvement.
This is because the granularity of training is not sufficiently
small, however as suggested in the previous paragraph, if
one reduces these updates, then the convergence time may
be much larger. Figure 4 plots the throughput penalty for the
low average SNR users with training samples m. While the
throughput penalty is virtually 0 under maximum quantile
scheduling, there is penalty of 15% even for m = 1000
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Fig. 4. Average relative throughput penalty incurred by the class of low
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5 4 3  2 1
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

Number of low SNR users

A
ve

ra
ge

 T
hr

ou
gh

pu
t b

ps
/H

z

maximum quantile scheduling
maximum sum throughput scheduling

Fig. 5. Throughput achieved by maximum sum throughput under temporal
fairness and maximum quantile scheduling with decreasing number of low
SNR users.

training samples. Note that a 3% loss in temporal fairness
can lead to a 15% loss in throughput.

Second experiment is a sensitivity assessment of maximum
sum throughput’s performance. Suppose there are 5 users in
each class, and estimates for νi’s have converged. If a user
leaves, the ideal values of weights would change. However
if the scheme does not immediately tune νi a throughput
penalty is incurred. To asses these penalties we simulated a
scenario where weights νi had converged for the case where
there were 5 users in each class, and then we dropped the
number of users having low average SNR to 4, 3, 2, 1. Figure 5
shows the throughput achieved by maximum sum throughput
and maximum quantile scheduling for the scenarios. Note that
maximum quantile scheduling starts doing better as soon as
the number of low average SNR users goes from 5 to 4,
i.e., maximum sum throughput no longer remains optimal.
We observed a similar trend when the high average SNR
users were reduced. In summary, the sensitivity of throughput
to the optimal weights is relatively high, and changes in
the numbers of active users can lead to reduced throughput.
By contrast maximum quantile scheduling does not require
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Fig. 6. File transfer delay performance of maximum quantile, maximum rate
and maximum sum throughput scheduling.

estimating weights, and estimation of the users’ distribution
has low impact on the overall performance.

B. Performance Comparison with Varying Number of Users

Let us compare the performance of maximum quantile to
maximum rate, proportional fair and maximum sum through-
put under temporal constraints in a system where the number
of users vary with time. One can think of this as users with
files coming to an access point and leaving once their files have
been transferred. Here instead of throughput, a good metric for
performance is the average file transfer delay.

Again our setup is the same as before, except that the
number of users will change with time. Users arrive to the
system according to a Poison process, and are equally likely to
belong to one of the two classes. Each user has a file associated
with it. The file sizes are exponentially distributed with a mean
size of 60KB. We keep track of the time taken from a user’s
arrival to departure. For maximum quantile, estimate for users
rate distributions are generated by keeping track of previous
samples. For an arrival rate of 0.1, 50 samples are used. This is
increased linearly by 50 samples for every arrival rate increase
of 0.1. While the weights for maximum sum throughput are
trained using the stochastic approximation algorithm referred
to in Subsection V-A, and the values of the parameters same
as before.

The average file transfer delay experienced by users is plot-
ted with increasing average arrival rate in Figure 6. Maximum
quantile outperforms all other schemes, in fact the reduction
in delay is almost 30% (as compared to proportional fair) at
an arrival rate of 1.1. Also note that due to non convergence
of weights, maximum rate and maximum sum throughput up
to a load of 0.8 have quite similar performance. Therefore
maximum sum throughput can easily degrade to maximum
rate in a dynamic scenario. We also plot the delay experienced
by users under maximum quantile with perfect rate distribution
knowledge. Observe that measurement based performance is
close to ideal performance.

VI. CONCLUSION

In this paper we evaluated measurement based maximum
quantile scheduling. The key take away is that, perhaps sur-
prisingly, maximum quantile scheduling which would require
estimation of each users channel rate distribution, is not
only robust to estimation errors, and can give an excellent
performance relative to other weight based schemes. However
it remains to be seen whether the gains over simple schemes
such as proportionally fair are justified by additional complex-
ity needed to estimate distributions.

APPENDIX A
PROOF OF THEOREM 4.2

We present a few useful lemmas before proving Theo-
rem 4.2.

Lemma A.1: Let H be a binomial random variable with
parameters (m, u). Consider the moment generating function
of H , M(s) := (1− u + ues)m. Its lth derivative is given by

dlM(s)
dsl

=
l∑

j=1

bj,l
m!

(m − j)!
(1 − u + ues)m−j(ues)j . (7)

Here bj,l’s are constants with the following properties:

• b1,1 = 1
• bj,l = jbj,l−1 + bj−1,l−1, ∀j = 1, . . . , l, ∀l
• b0,l = bl+1,l = 0, ∀l.

Note that since b1,1 = 1 and bl+1,l = 0, ∀l, from the second
property we get that bl,l = bl−1,l−1 = 1, ∀l.

Proof: We give a proof by induction on l. The lemma
holds for l = 1. Assume the lemma holds for l. Then, to
prove the lemma for l +1, we differentiate (7) and after some
rearrangement get

dl+1M(s)
dsl+1

=

l+1∑
j=1

[(jbj,l + bj−1,l)
m!

(m − j)!
(1 − u + ues)m−j(ues)j ].

This completes the proof.
From Lemma A.1 it follows that the lth order moment of

H is given by

E[H l] =
l∑

j=1

bj,l
m!

(m − j)!
uj. (8)

The following lemma exhibits an inequality between the
moments of H .

Lemma A.2: Let H be a binomial r.v. with parameters
(m, u). Then for all l such that l ≤ m,

E[H l+1] ≤ (mu + l(1 − u))E[H l]. (9)

Proof: The right side of (9) can be expressed as ((m −
l)u + l)E[H l]. Using (8), we get

m!
(m − l − 1)!

ul+1 (10)

+
l∑

j=1

[lbj,l
m!

(m − j)!
+ (m − l)bj−1,l

m!
(m − j + 1)!

]uj.
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If one splits lbj,l
m!

(m−j)! = jbj,l
m!

(m−j)! + (l − j)bj,l
m!

(m−j)! ,
then (10) in turn can be expressed as

m!
(m − l − 1)!

ul+1 +
l∑

j=1

[(jbj,l
m!

(m − j)!
+ (m − l)bj−1,l

m!
(m − j + 1)!

)uj + (l − j + 1)bj−1,l
m!

(m − j + 1)!
uj−1].

Now since 0 ≤ u ≤ 1, then ∀j, uj−1 ≥ uj . So, from the
above equation we get

(mu + l(1 − u))E[H l] ≥ m!
(m − l − 1)!

ul+1 +

l∑
j=1

[(jbj,l
m!

(m − j)!
+ (m − l)bj−1,l

m!
(m − j + 1)!

)

+(l − j + 1)bj−1,l
m!

(m − j + 1)!
]uj.

Combining the last two terms in the summation of the above
inequality, we get

(mu + l(1 − u))E[H l] ≥
m!

(m − l − 1)!
ul+1 +

l∑
j=1

(jbj,l + bj−1,l)
m!

(m − j)!
uj

This proves (9).

Next we show that U (n) dominates Ũn,m in a like-
lihood ratio ordering sense, i.e., U (n) ≥lr Ũn,m

[11][12]. This is a strong form of dominance which
means that fU(n)(u)/fŨn,m

(u) is non decreasing in u, or
fŨn,m

(u)/fU(n)(u) is non increasing in u (here fU(n)(u) is

the probability density function of U (n)). If U (n) ≥lr Ũn,m,
it follows that U (n) ≥st Ũn,m.

Lemma A.3: For the random variables U (n) and Ũn,m given
by (4) and (6) respectively, then ∀n, m U (n) ≥lr Ũn,m.

Proof: To prove the lemma, we need to show

d

du

[
fŨn,m

(u)

fU(n)(u)

]
≤ 0,

∀u ∈ (0, 1]. To prove this, it is sufficient to show

fU(n)(u)

[
dfŨn,m

(u)

du

]
− fŨn,m

(u)
[
dfU(n)(u)

du

]
≤ 0.

Note that fU(n)(u) = nun−1. Then expanding, we get

1
(m + 1)n−1

[nun−1(−m(1 − u)m−1 +

m−1∑
j=1

(
m
j

)
uj−1(1 − u)m−j−1(j − mu)((j + 1)n − jn) +

mum−1((m + 1)n − mn)) − n(n − 1)un−2

(
m∑

j=0

(
m
j

)
uj(1 − u)m−j((j + 1)n − jn))] ≤ 0.

Simplifying and multiplying both sides by (1 − u), we get

(−mu(1 − u)m +
m−1∑
j=1

(
m
j

)
(j − mu)uj(1 − u)m−j((j + 1)n − jn) +

(m − mu)um((m + 1)n − mn)) − (n − 1)(1 − u)

(
m∑

j=0

(
m
j

)
uj(1 − u)m−j((j + 1)n − jn)) ≤ 0.

The above inequality can be rewritten as

m∑
j=0

(
m
j

)
(j − mu − (n − 1)(1 − u))uj(1 − u)m−j

((j + 1)n − jn) ≤ 0.

Then the inequality clearly holds for m < n. However the
more interesting case is when m ≥ n, and this requires a few

more steps. Note that

(
m
j

)
uj(1−u)m−j is the probability

that a binomial r.v. with parameter (m, u) has a value j, i.e.,
the same as that of H . Then the inequality can be rewritten
in terms of expectations as

E[(H − mu)((H + 1)n − Hn)] −
(n − 1)(1 − u)E[(H + 1)n − Hn] ≤ 0.

This can be further rewritten as

E[H((H + 1)n − Hn)] ≤
(mu + (n − 1)(1 − u))E[(H + 1)n − Hn]. (11)

Expanding (H + 1)n and simplifying, one can show that
(11) will hold if

E[H l+1] ≤ (mu + l(1 − u))E[H l],

∀l < n ≤ m. This follows from Lemma A.2. This completes
the proof.

We now prove Theorem 4.2.

Proof: To prove the first claim, define u := FXi(r) and
consider

FU(n)(u) − FŨn,m
(u), ∀u ∈ (0, 1].

This is equivalent to∫ u

0

(fU(n)(u) − fŨn,m
(u))du.

Which in turn is equivalent to∫ u

0

fU(n)(u)(1 −
fŨn,m

(u)

fU(n)(u)
)du.

Then

FU(n)(u) − FŨn,m
(u) ≤

∫ u

0

fU(n)(u)max
u

(1 −
fŨn,m

(u)

fU(n)(u)
)du.

Note from Lemma A.3,

min
u

fŨn,m
(u)

fU(n)(u)
=

fŨn,m
(1)

fU(n)(1)
=

m + 1
n

(1 − (
m

m + 1
)n).
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Then

FU(n)(u)−FŨn,m
(u) ≤ FU(n)(u)(1−m + 1

n
(1−(

m

m + 1
)n)).

Simplifying, one gets

FU(n)(u)(
m + 1

n
(1 − (

m

m + 1
)n)) ≤ FŨn,m

(u).

Now from Lemma A.3, it follows that U (n) ≥st Ũn,m,
combining this with the above equation we get

m + 1
n

(1 − (
m

m + 1
)n) ≤

FŨn,m
(u)

FU(n)(u)
≤ 1.

Using the definition of u, and the fact that FXi(·) is an
increasing function, the above equation can be rewritten as

m + 1
n

(1 − (
m

m + 1
)n) ≤ Pr(F−1

Xi (Ũn,m) ≤ r)
Pr(F−1

Xi (U (n)) ≤ r)
≤ 1.

Note that Ri
mq = F−1

Xi (U (n)) and R̃i,m
mq = F−1

Xi ((Ũn,m),
then the above equation can be written as

m + 1
n

(1 − (
m

m + 1
)n) ≤ Pr(R̃i,m

mq ≤ r)
Pr(Ri

mq ≤ r)
≤ 1.

To prove the second claim, recall that Gk
mq(n) =

E[F−1
Xk (U(n))]

n . Note that F−1
Xk (·) is an increasing function.

Therefore it is sufficient to prove that U (n) ≥st Ũn,m to prove
the theorem, which is shown to be true from Lemma A.3.

We now prove the third part of the theorem. Note from the
second part of the theorem, it is suffices to study

Gk
mq(n) − G̃k

mq(n, m)
Gk

mq(n)
.

Consider the difference between the two throughput, i.e.,
E[F−1

Xk (U (n))] − E[F−1
Xk (Ũn,m)]. The difference can be ex-

pressed as∫ 1

0

F−1
Xk (u)fU(n)(u)du −

∫ 1

0

F−1
Xk (u)fŨn,m

(u)du.

Then following the methodology used in the first part of the
proof one can show

E[F−1
Xk (U (n))] − E[F−1

Xk (Ũn,m)] ≤∫ 1

0

F−1
Xk (u)fU(n)(u)(1 − m + 1

n
(1 − (

m

m + 1
)n))du,

or

E[F−1
Xk (U (n))] − E[F−1

Xk (Ũn,m)] ≤
E[F−1

Xk (U (n))](1 − m + 1
n

(1 − (
m

m + 1
)n)).

This completes the proof.
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