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Abstract—Federated learning systems facilitate the train-
ing of global models across large numbers of distributed
edge-devices with potentially heterogeneous data. Such
systems operate in resource constrained settings with
intermittent client availability and/or time-varying com-
munication constraints. As a result, the global models
trained by federated learning systems may be biased towards
clients with higher availability. We propose Federated
Averaging Aided by an Adaptive Sampling Technique
(F3AST), an unbiased algorithm that dynamically learns
an availability-dependent client selection strategy which
asymptotically minimizes the impact of client-sampling
variance on the global model’s convergence, enhancing
performance of federated learning. The proposed algorithm
is tested in a variety of settings for intermittently available
clients operating under communication constraints, and its
efficacy demonstrated on synthetic data and realistically
federated benchmarking experiments using CIFAR100 and
Shakespeare datasets. We report up to 186% and 8%
accuracy improvements over FEDAVG, and 8% and 7% over
FEDADAM on CIFAR100 and Shakespeare, respectively.

Index Terms—Edge learning, distributed learning, fed-
erated learning, resource management, communication
efficiency

I. INTRODUCTION

FEDERATED learning (FL) has emerged as an
attractive framework in edge learning to train models

when the data is distributed among edge devices and
must remain local due to resource constraints and/or
privacy concerns. The edge-device networks in FL could
comprise millions of clients [1] whose feedback might
include model updates that are on the order of 100Mb.
For example, neural network for image recognition tasks
VGG-16 [2] has 160M parameters and weights resulting
in updates of size 526Mb when using 32bit encoding.

In the original Federated Averaging algorithm
(FEDAVG) [3], as well as more recent approaches in-
cluding SCAFFOLD [4], Federated Adaptive Optimization
[5], FEDDYN [6] and FedProx [7], a server selects a
random subset of clients and which will participate in
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updating a global model by training on local data. The
server aggregates the clients’ updates to produce a new
global model, broadcasts it to the clients, and a new
round of training begins; this procedure is repeated until
convergence.

The potentially large amount of communication be-
tween the clients and the server makes sub-selection
policies that reduce data traffic imperative. Additionally,
one might want to judiciously account for differences in
clients’ availability patterns. Such patterns reflect inherent
biases that may adversely affect learning goals, e.g.,
some devices may be more willing to participate as they
may be less energy or bandwidth constrained. Indeed,
one of the biggest gaps between theory and practice
of FL is due to biases in sampling of edge-devices
resulting from heterogeneous, possibly stochastic, on-
and-off availability and communication constraints [1],
[8], [9]. For example, in cross-device settings including
mobile device systems [3], a vast number of client devices
[10] with limited communication and power resources [1]
intermittently connects to a central server to help optimize
a global objective. Existing FL algorithms typically ignore
intermittency and assume that the participating client
devices are always available and thus can be tasked
with performing a model update at any time [3], [6],
[11], [12]. If not addressed by the system design, time-
varying communication constraints and intermittent client
availability (due to battery and other device-specific
limitations) may cause significant degradation of the
learned model performance [8], [11], [13].

To illustrate the potential severity of the problem de-
scribed above, and preview the contributions of this paper,
consider the following simple example. Let c1 and c2 be
two clients with distinct data distributions. A server aims
to optimize the function F (w) = p1F1(w) + p2F2(w)
over Rp, where F1 and F2 denote the loss functions
at clients c1 and c2, respectively, and for simplicity
p1 = p2 = 1/2. We shall consider a model for the
clients’ intermittent availability characterized by the joint
distributions given in Table I, where Ai is a binary
random variable indicating whether client ci is available.
In this model, clients’ availabilities in a given round
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TABLE I: Client availability model: The availability is
independent across time and clients.

A2 = 1 A2 = 0 Marginal
A1 = 1 0.3 0.075 0.375
A1 = 0 0.5 0.125 0.625
Marginal 0.8 0.2

are independent, with P (A1 = 1) = 0.375 while
P (A2 = 1) = 0.8. Note the client availabilities are
assumed to be independent across rounds. Suppose there
is a communication constraint which restricts the server
to sampling at most a single client each round. The server
must thus choose a possibly client state dependent policy
for selecting the clients in each round. Each such policy
would achieve certain long-term client participation rates
across the rounds, denoted r = (r1, r2). For example,
under the model in Table 1, the set of achievable long-
term participation rates across all possible policies is
given by the region R1 shown in Figure 1. Given the
communication constraints, it is not possible to achieve
the full client participation rates of r = (1, 1) because
clients are not always available and we can only sample
one client in each round. However, ra = (0.375, 0) is
achievable by using the state-dependent deterministic
policy which selects c1 whenever c1 is available and
never selects c2. Alternatively, rb = (0.375, 0.5) is also
achievable by selecting c1 whenever c1 is available,
and c2 when only c2 is available. A naive selection
policy that samples from available clients with probability
proportional to pi = 1

2 in hope of achieving “ideal”
participation rate ( 12 ,

1
2 ) [12] would actually result in

client c1 participating at a rate of

rc1 = P (A1 = 1, A2 = 0) +
P (A1 = A2 = 1)

2
= 0.225.

Analogously, the long-term participation rate of client c2
under the same naive selection policy is rc2 = 0.65.

As demonstrated in Section III (Theorem III.5), im-
proper choice of the long-term participation rate r injects
bias and variance into the global model. Therefore, select-
ing an “appropriate” rate is of fundamental importance;
yet, as illustrated above, intermittent client availability
and communication constraints present several previously
overlooked challenges: (i) determining the long-term
participation rate r∗ ∈ R which is best in terms of its
impact on the convergence of federated learning, and (ii)
design of a client selection policy that achieves rate r∗.
These are particularly demanding because the (possibly
correlated) clients’ availability patterns are unknown and,
therefore, R is unknown.

The main contribution of this paper is learning to
sample clients in large edge-device FL networks with
heterogeneously distributed data and intermittent client
availability. In particular we introduce F3AST, a federated

R1
Ideal rate
( 1
2
, 1
2
)

ra

rb
rc

r1

r2

Fig. 1: The region of achievable long-term participation
rates under the client availability model in Table 1.

learning algorithm that also learns how to adapt its
client sampling strategy to unknown client availability
statistics and adapts to time-varying communication
constraints. F3AST is shown to be asymptotically optimal
(see Theorem III.3) as its long-term participation rate
converges to the value minimizing a bound on the
global model variance over the space of achievable
rates. Remarkably, F3AST accomplishes this with no
prior knowledge of the communication constraints or
clients’ availability models. To our knowledge, this is
the first work to formally address client intermittency
and system capacity variability in federated learning with
data-heterogeneity, and the first work to propose a method
to learn how to select clients while pursuing a shared
(global) model within the federated learning framework.

Extensive experimentation on realistic tasks and data.
F3AST is tested on three benchmark datasets: (i) Syn-
thetic(1,1) [14], a widely used heterogeneous synthetic
dataset for softmax regression [7]; (ii) a realistically
federated version of CIFAR100 [5]; and (iii) Shakespeare
[3]. We demonstrate that in learning highly non-linear
models F3AST exhibits more stable convergence and
considerably higher accuracy than state-of-art algorithms.
Moreover, F3AST ’s selection and aggregation method
is readily combined with the existing optimization tech-
niques designed to address system’s constraints, allowing
those methods to take advantage of F3AST ’s policies:
experiments confirm that incorporating F3AST reduces
bias of algorithms that do not compensate for client
selection uncertainties, and demonstrate much more stable
descent trajectories to the optimum even in highly time-
varying environments.

II. BACKGROUND AND RELATED WORK

A. Federated Learning

Given a set U with N clients, each having nk data
samples, a federated learning system is concerned with
solving

min
w∈Rp

Ek∼P [Fk(w)], (1)

where Fk(w) = Eξ∼Dk
[fk(w; ξ)] denotes the loss

function of client k and P is the distribution over
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users. The generalized FEDAVG algorithm, FEDOPT
[5], interactively learns the global model by randomly
selecting at time t a subset of clients St to locally
optimize their objective function1 starting from the initial
model wt, and communicate their updates vt+1

k to the
server. Then, the server aggregates the received updates
(vt+1

k )k∈St
to produce the global update ∆t+1 and

generate a new global model wt+1. For the remainder
of the paper we refer to the process of going from
wt to wt+1 as a (single) round of FL. The process
is repeated with the aim of finding accurate global model.
Heterogeneity due to generally non-i.i.d. and unbalanced
data available to different clients emerges as one of the
main challenges in federated learning, and thus the choice
of a client sampling scheme heavily impacts convergence
of the global model. Several authors have addressed this
problem, proposing different optimizers [5] and client
sampling strategies [11], [12], but all showed convergence
(or near convergence) only under the strong assumption of
being able to sample any client at any time. A technique
that deals with heterogeneity by allowing each client to
learn a personalized model was proposed in [15].

Several approaches to addressing communication con-
straints in FL systems have recently been proposed in
literature, including strategies aiming to reduce client
communication rate via model compression [16]–[21].
These are orthogonal to our work since we focus on
settings where the clients are intermittently available.

a) Client availability.: We assume that, at any
time, the set of available clients is random and non-
empty, and that the constraint on the number of clients
selected to train and provide model updates to the server
generally varies over time. Note that, in such scenarios,
applying recent stateful optimization techniques such as
SCAFFOLD [4] and FEDDYN [6] is challenging due to
hardware constraints and high number of participating
devices [9]. Prior work has investigated client availability
under restrictive conditions such as block-cyclic data
characteristics [8], [11], assumed i.i.d. availability across
clients that act as stragglers [7], or produced biased
models [22]. However, availability is much more difficult
to model in practice. Although certain patterns such as
day/night are cyclic, there also exist various other non-
cyclic client or cluster-specific patterns that affect some
clients more than others, including access to a power
source and the available communication bandwidth.

B. Client sampling and averaging

Since the number of clients in federated learning
systems can be extremely large [23], [24], only a relatively
small subset of them is tasked with training in each round.

1E.g., the original FEDAVG algorithm coordinates E epochs over
training data.

Data heterogeneity and communication constraints have
inspired several strategies for selecting clients from the
available pool. Some of those techniques take into account
the proportion of data at each client, which we denote
by pk [12]. Alternative strategies apply active learning
ideas to client selection and select those that are more
promising according to some metric, e.g., choose clients
with the largest magnitude of the updates [13], [25]–[28]
or those with the highest loss [11].

Another line of related prior work has been focused
on investigating model aggregation strategies. In [13],
the authors assume that stochastic optimization updates
approximately follow a stationary stochastic process, and
cast the model aggregation as an estimation problem. An
alternative aggregation strategy is to form an unweighted
average of the updates [11]; however, this leads to a
biased model and large variance. Other approaches trade
communication and memory for stable convergence [4],
or replace missing updates with the previous model [26],
[27]. In the centralized setting, importance sampling has
been used to optimally aggregate SGD updates [29], [28].

Previous works on client sampling in FL systems do
not provide formal convergence guarantees for settings
where the clients are intermittently available. Work in
[8], [11] study effects of cyclically alternating client
availability and propose a sampling strategy empirically
shown to improve over random sampling; however, the
resulting models may be biased and their performance
under non-cyclic availability patterns is unclear.

Alternatively, asynchronous methods address client se-
lection under system heterogeneity with a fixed selection
policy determined by clients training speed: updates are
incorporated individually as they arrive at the server [30]
or, when there are privacy concerns, they are aggregated
in buffers [31].

III. METHODS

In this section we present and analyze a novel frame-
work for selecting and aggregating intermittently available
clients in federated learning systems that operate under
time-varying communication constraints. In such settings,
the contribution each client makes to the federated
averaging process depends on how often the client is
selected to provide an update – i.e., on the long-term
client participation rate. We start by characterizing
the set R of achievable long-term client participation
rates subject to communication and client availability
constraints. Then, we introduce F3AST, an algorithm
that dynamically learns clients’ long-term participation
rate and improves the convergence of federated learning
by reducing the model bias and minimizing variance
introduced by sampling intermittently available clients.
The omitted proofs can be found in the appendix.
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A. Preliminaries

a) Communication constraints and intermittent
client availability.: Consider a FL system in which a
random subset of clients At is available/responsive at
time t; here (A1,A2, . . . ) = (At)t form a discrete-time
stochastic process with a finite state space A = 2U , i.e.,
the collection of all possible subsets of the set of users U .
Communication constraints restrict the possible subsets of
clients that can be chosen to participate during a training
round; we let Ct denote the (random) collection of the
available clients sets that meet communication constraints
at time t and denote its state space by C; given At = A, a
realization Ct = C corresponds to a collection of subsets
of A, i.e., C ⊆ 2A. For convenience, in the remainder of
the paper we refer to Ct as the system configuration.

To illustrate the use of the introduced notation, consider
the communication-constrained setting where the number
of clients allowed to participate in training round t is no
more than (possibly random) Kt. Given a realization of
the set of clients available at time t, At = A, and the
aforementioned communications constraint Kt = k ∈ N,
the collection of feasible client sample sets S that the
server may choose to include in the training round is

C = {S ⊂ A : |S| ≤ k}.

If the communication constraints are not time-varying,
i.e., if Kt = k almost surely for all t, we are back in the
traditional FEDAVG cross-device setting.

Assumption 1. The sequence of random collections of
feasible client sampling sets (Ct)t forms a discrete-time
irreducible Markov chain with a finite state space C ⊆ 2U

and a stationary distribution π = (π(C), C ∈ C).

Assumption 1 significantly relaxes assumptions typi-
cally made when analyzing convergence of state-of-the-art
FL algorithms, e.g., the much stronger assumptions of
all users having unlimited availability [3], [4], [6], [7],
[32], [33] or a deterministic block-cyclic availability [8].
Assumption 1 captures various realistic settings including
that of home devices available with a given probability -
not necessarily uniform across clients - throughout the
day. Our experimental results showcase that in several
realistic settings which meet Assumption 1, our method
provides significant performance improvements while
other techniques fail to adapt to unknown availability
models.

b) Static configuration-dependent client sampling
policies.: Communication constraints and intermittent
client availability restrict the space of admissible long-
term client participation rates. Indeed, it is unrealistic
to expect being able to sample an arbitrary collection
of k clients at time t with pre-specified probabilities
P = (pi : i = 1 . . . N) since some of those k clients may
be unavailable, and/or time horizon is not long enough

to achieve certain rate (see examples in Section I). To
characterize achievable long-term participation rates we
introduce the following concepts.

Recall that for a given configuration of communica-
tion constraints and client availabilities there exists an
associated collection of feasible client sample sets C
that a sampling policy can choose from. We define a
static configuration-dependent client sampling policy as
follows.

Definition III.1. For each C, let fC,S ≥ 0 denote the
probability of selecting the subset of clients S ∈ C, where∑

S∈C fC,S = 1. If we denote fC = (fC,S , S ∈ C),
then f := (fC , C ∈ C) specifies a static configuration-
dependent sampling policy selecting clients over different
communication/availability configurations.

Let F denote the set of possible static configuration-
dependent client sampling policies. Under the above
model, the long-term client participation rate can be
expressed as

rf =
∑
C∈C

π(C)
∑
S∈C

f
C,S

1S , (2)

where 1S is an N -dimensional binary indicator vector
whose ith entry is 1 if the ith client is in S, and is 0
otherwise. One can interpret the ith component of vector
rf as the fraction of time the ith client is selected by
the server.

Finally, we define the long-term client participation rate
region as the set of all possible long-term participation
rate vectors rf , i.e., R := {rf |f ∈ F}.

Lemma III.2. The long-term client participation rate
region R = {rf |f ∈ F} is a subset of the simplex in
the N -dimensional Euclidean space, and a closed convex
set.

Proof. The lemma follows from the fact that R is a linear
image of all possible f , a closed bounded convex set. R
defines the region of achievable participation rates. We
rely on this lemma to prove convergence of our algorithm
to the optimal rate in Theorem III.3.

B. F3AST : Minimizing the sampling variance

Here we formally introduce an algorithm that learns a
client selection policy which ensures that the resulting
long-term client participation rate converges to a value
minimizing

H(r) :=


∑N

k=1
pk

rk
client availability is
positively correlated,∑N

k=1
p2
k

rk
otherwise,

(3)

where positive correlation between availability of clients
i and j implies that an event of client i being available
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increases the probability of client j being available.
Whether client availability is positively correlated or
not depends on application domain; if the nature of
availability correlation is unknown, minimizing

∑ pk

rk
remains a meaningful option since this objective provides
a bound on the variance in all cases. It is readily shown
that H(r) bounds the variance induced in the global
model by the selection policy with rate r. For the ease of
exposition we postpone that discussion to Section III-B2
in favor of first presenting our proposed algorithm.

F3AST (Federated Averaging Aided by an Adaptive
Sampling Technique), is presented as Algorithm 1.
Formally, F3AST aims to find a configuration-dependent
client sampling strategy fF3AST such that its long-term
client participation rate rF3AST approximates the optimal
achievable strategy r∗ ∈ argminr∈RH(r). To accomplish
this, F3AST first initializes r(0) arbitrarily (line 1). At
each round t, with Ct = Ct, selecting set S ∈ Ct implies
a contribution to the participation rate of 1 for every client
k ∈ S. Whether or not selecting set S brings r(t) closer
to r∗ can be computed by estimating the marginal utility
of S using the gradient of H(r). Thus, we select St (line
5) as

St ∈ arg max
S∈Ct

−∇H(r(t)) · 1S . (4)

In general, (4) is a combinatorial optimization problem;
in the federated learning systems with a time-varying
bound on the number of clients Kt that can be selected
(Kt ≥ 0), (4) reduces to the discrete optimization problem
of greedily selecting Kt available clients with the largest
entries of −∇H(r(t)). Optimality of the greedy approach
follows because the objective is an additive set function.

Next, the rate is updated to reflect the selection made
in the latest iteration of the sampling scheme. This is
done by forming an exponentially smoothed average of
the past sampling rates (line 6),

r(t+ 1) = (1− β)r(t) + β1S , (5)

where β > 0 is a fixed small parameter, set to β =
O(1/T ) for convergence purposes. After having selected
clients St, the server broadcasts the current model and
the selected clients perform local updates using a local
optimization procedure CLIENTOPT(wt). Finally, the
server uses r(t) to produce an unbiased global model
wt+1 with estimator ∆t+1 (lines 9-10).

a) Beyond FEDAVG .: F3AST modifies two crucial
steps in FEDAVG : client sampling and model updates ag-
gregation. This makes it suitable to work in combination
with other FL algorithms like SCAFFOLD [4], AFL [33],
FEDPROX [7], FEDDYN [6], and more generally FEDOPT
[5]. These methods’ theoretical guarantees are provided
under the “all clients are available” assumption, implying
that they assume an unrealistic fixed sampling policy
which introduces bias to the model. Our proof extends

Algorithm 1 F3AST : Federated Averaging Aided by an
Adaptive Sampling Technique
Input: Server parameters: learning rate schedule
{ηt}Tt=1, the number of global rounds T , the number
of clients per round Kt, the number of client local
updates E, β = O(1/T )

Output: Global model wT

1: initialize w0 ∈ Rp arbitrarily, initialize r(0) arbitrar-
ily

2: for t = 1→ T do
3: Ct ← feasible client sets at time t
4: St ∈ argminS∈Ct

∇H(rt)1S

5: r(t) = (1− β)r(t− 1) + β1S

6: for Clients k ∈ St, in parallel do
7: vt+1

k ← CLIENTOPT(wt, E steps, ηt)
8: end for
9: ∆t+1 ←

∑
k∈St

pk

rk(t)
vt+1
k

10: wt+1 ← SERVEROPT(wt,∆t+1)
11: end for

to those settings by modifying accordingly sampling and
aggregation to the asymptotically learned r as long as
the ℓ2-norms of clients’ model updates are uniformly
bounded – an assumption already made by the above
methods.

1) Asymptotic optimality: Below we show that as
β ↓ 0, the selection policy rate converges to the value
that optimizes H(r) and, therefore, reduces the model
variance. To this end, consider the discrete time Markov
process Sβ(t) = (rβ(t),Ct) indexed by the value of
β defined in Eq. (5), with β ↓ 0 along sequence
B = {βj}j∈N. Sβ(0) and the probability law of Ct

describing the availability model are fixed for all β ∈ B.
The speed of convergence is discussed in the appendix.

Theorem III.3. Let rβ(t) be the rate determined by
Algorithm 1. Let V ⊂ RN

+ be a bounded set, ϵ > 0, and
let r∗ denote the minimizer of the variance function H(r)
over R. Then for T > 0, depending on ϵ and V ,

lim
β↓0

sup
rβ(0)∈V,t>T/β

P [∥rβ(t)− r∗∥ > ϵ] = 0.

2) Bounding the global model variance: We start by
analyzing a fixed arbitrary stochastic policy fr achieving
rate r and use the result to demonstrate that H(r)
reflects the model variance induced by fr (for more
details, please see appendix). Let us introduce several
assumptions regarding clients’ loss functions Fk(w) =
Eξ∼Dk

[fk(w; ξ)], 1 ≤ k ≤ N ; these assumptions are
commonly encountered in the federated learning literature
[11], [12].

Assumption 2. [Smoothness and strong convexity]
F1, ..., FN are L−smooth and µ−strongly convex func-
tions, meaning that for all v and w, Fk(v) ≤ Fk(w) +
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Fig. 2: Test per-sample accuracy (averaged over three runs) for different client sampling and aggregation schemes
under HomeDevice availability model. We observe that F3AST consistently outperforms FEDAVG and POC . Further,
F3AST stabilizes while FEDAVG and POC are unable to adapt to the time-varying environment.

∇Fk(w)T (v−w)+ L
2 ∥v−w∥22 and Fk(v) ≥ Fk(w)+

∇Fk(w)T (v −w) + µ
2 ∥v −w∥22, respectively.

Assumption 3. [Bounded variance] Let ξ be a data
point that client k samples from distribution Dk. Then
Eξ∼Dk

[∥∇fk(w, ξ)−∇Fk(w)∥22] ≤ α2
k, k = 1, ..., N

Assumption 4. [Bounded stochastic gradients] The
expected norm of the stochastic gradients of fk is
uniformly bounded, i.e., Eξ∼Dk

[∥∇fk(w, ξ)∥22] ≤ G2,
k = 1, ..., N .

Assumption 2 holds in a number of scenarios of
interest, including ℓ2-regularized linear and logistic
regression, and classification with softmax function.
Assumptions 3 and 4 are common in state-of-the-art
distributed learning literature [34]–[37]. Note that while
we rely on the above assumptions when analyzing the
performance, experimental results demonstrate that our
sampling techniques work very well in more general
settings involving highly non-linear models such as
convolutional and recurrent neural networks trained on
realistic datasets.

The following lemma introduces and analyzes σ2
t (f

r),
the client sampling variance under sampling policy fr.

Lemma III.4. Suppose Assumptions 1-4 hold. Let r ∈ R
be an achievable long-term client participation rate
under the system configuration determined by distribu-
tion π, and fr denote a static configuration-dependent
selection policy achieving r. Define the client sampling
variance σ2

t (f
r) := 1

η2
t
ESt

[
∥∆t − vt∥2

]
where vt =∑N

k=1 pkv
k
t is the update at time t with full client

participation. Then

σ2
t (f

r) ≤ 4E2G2(

N∑
k=1

pk
rk
− 1). (6)

Furthermore, if client availabilities are uncorrelated or
negatively correlated, then there exists a policy fr such
that

σ2
t (f

r) ≤ 4E2G2

(
N∑

k=1

p2k
rk

+

N∑
k=1

p2k

)
. (7)

Theorem III.5. Instate the settings of Lemma III.4. Let
w∗ denote the solution to the optimization problem (1),
and L, µ = O(1). Define γ = max{8L

µ , E}, and assume
learning rate ηt =

2
µ(γ+t) . Then by setting CLIENTOPT

to SGD and SERVEROPT(wt,∆t+1) = wt +∆t+1, the
model wT produced with policy fr after T steps satisfies

E[F (wT )]− F ∗ = O

(
1

TE + γ

(
∥w1 −w∗∥2

+

N∑
k=1

p2kα
2
k + 6Γ + 8(E − 1)2G2 + σ2

T (f
r)
))

,

(8)

where Γ = F ∗−
∑N

k=1 pkF
∗
k denotes the local-global

objective gap2, F ∗ and F ∗
k are the minimum values of F

and Fk, respectively, and σT (r) (Lemma III.4) captures
the variance induced by client sampling.

Remark III.6. Proof of Theorem III.5 follows the line
of argument similar to that in the analysis of FL algo-
rithms convergence [5], [12], [35]. The first term in the
parenthesis in eq. (8) captures the effect of initialization,
while the second term reflects the variance of stochastic
gradients. The remaining terms are tied to the inherent
challenges of data heterogeneity in FL.

In summary, our presented technical contributions
include: (i) developing an arbitrary selection policy with

2Local-global objective gap quantifies data heterogeneity: for i.i.d.
data, Γ → 0 as the number of samples grows, while a large Γ indicates
a high degree of heterogeneity [11], [12].
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feasible long-term client participation rate r (meanwhile,
the result in [12] applies only to two specific - potentially
unfeasible in real settings - sampling schemes); (ii)
showing the global update is unbiased under this selection
policy and aggregation step; and (iii) computing the
incurred variance captured by the last term σ2

T (r) and
bounded in Lemma III.4.

From static to dynamic policies. Aiming to circum-
vent the requirement for having access to (generally
unavailable) system configuration information that applies
to static selection policies, we proceed by combining
expressions (6) and (7) (ignoring constant terms) to define

H(r) :=


∑N

k=1
pk

rk
client availability is
positively correlated,∑N

k=1
p2
k

rk
otherwise.

Minimizing H(r) over r reduces the upper bound on the
model variance stated in Lemma III.4. It follows from
Equation (2) that rk ≤ 1, and thus it can readily be
shown that rk = 1 for all k minimizes H(r) over [0, 1]N .
However, it is possible that for a given configuration
of the system this long-term client participation rate
is not achievable, i.e., 1 /∈ R (the set of feasible
r’s defined in Lemma III.2). Recalling the example in
Section I, minimization of H(r) over R is also difficult
because it requires knowledge of the achievable long-
term client participation rate region R, determined by
the distribution π defined in Assumption 1. Finally, even
if R is known, the resulting policy fr will likely be
client and set dependent, thus rendering the problem
challenging due to an exponential number of variables and
unknown parameters. These are precisely the obstacles
that F3AST overcomes by learning a selection policy
which is asymptotically optimal in terms of minimizing
H(r), and guaranteeing convergence to a long-term
participation rate minimizing H(r) over R.

C. F3AST Extensions and Problem Variations.

a) Rapid mixing time. : Convergence rate of r(t)→
r∗ depends on the properties of the Markov chain
specified by the availability process. Concretely, we have
the following known theorem (see, e.g., [38] for a proof
and details).

Theorem III.7. [Convergence Theorem] Let P be the
transition matrix of a system configuration satisfying
Assumption 1 with stationary distribution π. Then there
exists a constant α ∈ (0, 1) and C > 0 such that

max
C∈C
∥P t(C, ·)− π∥TV ≤ Cαt.

The above result shows that in practice one needs
t0 ≥ log ϵ

logα iterations to achieve a stationary rate r up to

TABLE II: Datasets

Dataset Users Samples

Synthetic 100 60 K
CIFAR100 500 50 K
Shakespeare 715 16 K

an error ϵ to the stationary distribution. Further, even if the
rate is not constant during the early iterations, this result
demonstrates that after a burn-in the rate will stabilize
and the asymptotic convergence rate of O(1/TE) will
not be affected.

b) Working with clusters of clients. : Note that in
some settings the number of clients is rather large and
thus tracking pk could be difficult. In such scenarios, it
may be meaningful to interpret pk, k = 1, ..., N , as a
partition of data over clusters of clients, and the objective
function in (1) as a weighted average over the clusters.
Tracking pk can then be cast as the estimation of time-
varying class sizes, which is feasible through efficient
protocols [39].

c) More general sampling constraints. : Our model
is quite general in that it can capture different client
sampling requirements, e.g., forcing the selection of as
many clients as available up to M or other minimal
sampling requirements on groups of users.

d) Societal impact.: Our work is motivated by
model fairness in the sense that clients are represented
in the global model proportionally to their dataset size.
Notice that our framework adapts to different fairness
metrics by replacing distribution P . This is out of the
scope of our paper, and we leave it for future research.

IV. EXPERIMENTS

A. Datasets and models

We test our model on three well-known federated
datasets. First, a synthetic heterogenous dataset Syn-
thetic(1,1) for softmax regression, introduced in [14]
and widely used in the FL community [7], [11], [12].
Second, a recurrent neural network with 1M parameters
for the next character prediction task on the Shakespeare
dataset [3], a language modelling dataset with 725 clients,
each one a different speaking role in each play from
the collective works of William Shakespeare. Third,
CIFAR100 with the partition introduced in [5], utilizing
Latent Dirichlet Allocation in order to generate a realistic
heterogenous distribution. We train ResNet-18, replacing
batch with group normalization, a modification that has
shown improvements in federated settings [40]. Our code
is available on Github3. Number of clients and total
number of samples is summarized in Table II.

3https://github.com/mriberodiaz/f3ast
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TABLE III: Test sample accuracy of all methods, and relative improvements of F3AST over FEDAVG and F3AST +
Adam over FEDADAM, for different availability models (columns) on CIFAR100 (1000 rounds) and Shakespeare
(500 rounds).

Availability models
Always Scarce HomeDevice Uneven SmartPhones

CIFAR100

FEDAVG 0.141 0.096 0.111 0.072 0.142
F3AST 0.198 (+40%) 0.201 (+109%) 0.208 (+87%) 0.206 (+186%) 0.201 (+42%)
FEDADAM 0.262 0.288 0.302 0.282 0.298
F3AST + Adam 0.271 (+3%) 0.308 (+7%) 0.324 (+7%) 0.281 (0%) 0.320 (+7%)
POC 0.101 0.115 0.139 0.111 0.069

Shakespeare

FEDAVG 0.54 0.549 0.522 0.540 0.538
F3AST 0.569 (+5%) 0.555 (+1%) 0.568 (+9%) 0.556 (+3%) 0.570 (+6%)
FEDADAM 0.536 0.541 0.520 0.557 0.520
F3AST + Adam 0.549 (+2%) 0.551 (+2%) 0.566 (+9%) 0.557 (0%) 0.551 (+6%)
POC 0.554 0.555 0.496 0.555 0.535

TABLE IV: Sample loss of all methods, and relative improvements of F3AST over FEDAVG and F3AST + Adam
over FEDADAM, for different availability models (columns) on CIFAR100 (1000 rounds) and Shakespeare (500
rounds).

Availability model
Always Scarce HomeDevice Uneven SmartPhones

CIFAR100

FEDAVG 4.42 4.77 4.74 5.29 4.28
F3AST 4.20 (-5%) 4.18 (-12%) 4.14 (-13%) 4.17 (-21%) 4.15 (-3%)
FEDADAM 3.74 3.65 3.50 3.67 3.55
F3AST + Adam 3.69 (-1%) 3.61 (-1%) 3.45 (-1%) 3.66 (-0.5%) 3.46 (-2%)
POC 4.90 4.84 4.63 4.86 5.42

Shakespeare

FEDAVG 1.24 1.15 1.36 1.17 1.22
F3AST 1.10 (-11%) 1.13 (-1%) 1.10 (-19%) 1.13 (-3%) 1.10 (-10%)
FEDADAM 1.27 1.23 1.40 1.12 1.36
F3AST + Adam 1.18 (-8%) 1.19 (-3%) 1.11 (-21%) 1.11 (-1%) 1.18 (-13%)
POC 1.13 1.13 1.74 1.13 1.24

a) Availability models.: We perform tests on five
realistic availability models described below. To our
knowledge, there exist no public databases with real
availability patterns; Smartphone’s model [1] is inspired
by realistic data. All models are motivated by practical
federated learning systems:

1) Always: Baseline model, clients are always avail-
able.

2) Scarce: Independent and homogeneous availability
across clients and time with probability q = 0.2.

3) Home-devices: Independent availability across
clients and time with probability qk = Tk/B, where
Tk ∼ lognormal and B = maxk Tk.

4) Smartphones: Sine-modulated Home-devices model,
qk,t = ftqk, where qk is defined in the Home-
devices model and ft denotes a sinusoidal time-
dependent availability (see [1]).

5) Uneven: Each client’s availability is inversely
proportional to its dataset size, qk ∝ 1/pk.

We split each client’s dataset into training and vali-
dation sets. We assume the distribution P over users is
determined by the fraction of data they possess. In the
following, we first fix the communication constraint to

select K = 10 clients in each round and compare different
methods across availability models. We then proceed by
exploring the effect of varying K. We include further
details on the experimental setup in Appendix C-B. We
implement our models using the Tensorflow-Federated
API [41].

b) Baselines.: First, we compare our algorithm
with two availability-agnostic methods: (i) FEDAVG ,
a standard baseline, and (ii) FEDADAM, which achieves
state-of the-art performance in the considered benchmark
tasks [5]. Both methods sample available clients with
normalized probabilities pk, but FEDAVG uses SGD
as the server optimizer while FEDADAM uses Adam.
For a fair comparison, we implement both methods and
compare with their availability-aware versions wherein
we incorporate our proposed sampling and aggregation
step.

Second, we test against a state-of-the-art algorithm,
Power-of-Choice (POC ) [11], a method that, although
agnostic to the availability model, can work in conjuction
with client unavailability. In POC , the server at time
t samples d clients from the available set Ct without
replacement, choosing client k with probability pk. The
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Fig. 3: Test per-sample loss of different algorithms over all data sets. In all cases F3AST converges to a model
with smaller objective value. Furthermore, F3AST stabilizes while FEDAVG and POC are not able to adapt to the
time-varying environment.
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Fig. 4: Impact of varying communication constraint K in the Synthetic(1,1) dataset experiments. As the number of
sampled clients increases, the gap between F3AST and competing methods widens.

d clients receive the current model wt and inform the
server about their current loss Fk(w

t). The server then
selects for training the top M clients with the highest
loss.

We do not compare our method with stateful techniques
(SCAFFOLD, FEDDYN) since they are not applicable in
the cross-device federated settings [10].

To evaluate performance of the algorithms, we compute
the loss and accuracy using per-test-sample averages (the
average is taken over individual data points). Per-user
average results can be found in the appendix.

B. Numerical results.

1) Accuracy: We first show the convergence of F3AST
on the three datasets with Home-devices availability
model, a setting that fits Assumption 1 and is realistic in
FL (note that the synthetic dataset satisfies all assumptions
from Section 3). Corroborating expectations of the impact
of the de-biasing step introduced by F3AST , Figure 2
shows that F3AST achieves higher accuracy than FEDAVG
and POC on all datasets (the corresponding loss plot
can be found in Section C). Moreover, after the first

100 iterations, F3AST stabilizes on Shakespeare and
Synthetic datasets, and follows a more stable learning
trajectory, illustrating its variance reduction advantage,
unlike the two baselines that have high variability due
to time-varying client availability. The sharp drop in
Shakespeare is caused by sampling a client misaligned
due to the heterogenous nature of the data; this has
been reported in [42]. We show an average over three
runs in Section C. We observe a similar behaviour on
CIFAR100: F3AST achieves almost a 200% improvement
in the average accuracy over the last 100 rounds, and
has a much more stable behaviour. The stagnation of
FEDAVG and POC at higher loss models confirms that
naive averaging introduces bias to the model, hindering
convergence.

Table III shows the final accuracy of algorithms under
diverse availability models defined in Section IV-A (1000
rounds on CIFAR100 and 500 rounds on Shakespeare
4). F3AST effectively improves the accuracy of FEDAVG
over both datasets and for all availability models. It also

4Higher accuracy values on CIFAR100 could be obtained by running
experiments for 10,000+ rounds
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improves FEDADAM for all but the Uneven model where
the accuracy remains the same although the loss value
is lower (Table IV). F3AST is particularly successful in
difficult settings, e.g. Scarce and Uneven, where a small
number of clients is available for training and where the
client availability is inversely proportional to the amount
of data clients hold – there, F3AST is able to maintain
performance similar to the setting where all clients are
available. Meanwhile, the performance of both FEDAVG
and POC deteriorates. FEDADAM is able to maintain
performance in the Uneven model where momentum may
help with biased updates, but deteriorates in all other
settings.

Finally, we note that F3AST achieves greater perfor-
mance improvements in experiments on CIFAR100 than
on Shakespeare. This is expected since, by design, F3AST
provides more advantage in data heterogeneous settings
where biased sampling may have a major detrimental
effect on the performance/convergence of FL. Conversely,
in the homogeneous settings, selecting one client more
often than others does not affect the objective function
because users are basically interchangeable. Both CI-
FAR100 and Shakespeare datasets are heterogeneous but
there is considerably more heterogeneity in the federation
of CIFAR100 where different users possess different,
disjoint, categories in their local datasets. In contrast,
Shakespeare is a next-word-prediction task where most
clients have access to all the “categories” (words, in this
case); while each client/character has a unique distribution
over words, the common (English) language binds them
together.

2) Loss and accuracy values under independent avail-
ability model.: Figure 3 shows that F3AST exhibits a
much more stable convergence for all data sets and
achieves a smaller loss value.

C. Varying the communication constraint.

Figure 4 shows the test accuracy during training for
the three algorithms (F3AST , FEDAVG and POC ). We
observe that F3AST achieves equal or higher performance
than competing methods across all communication levels.
Note that POC stagnates at a similar accuracy in all
cases; we believe this is due to the inherent bias in the
algorithm due to top-k loss based sampling, as reported
by the authors. It is possible that certain groups of clients
are never selected by this policy. It is interesting to note
that the gap between F3AST and two baselines widens
as the number of selected clients increases. Indeed, as
the number of users grow, a configuration-dependent
policy becomes much harder to facilitate since the
number of possible selections grows exponentially with
K. Nevertheless, the greedy nature of F3AST allows it to
keep selecting the set of users that maximizes marginal
utility and achieves a balanced sampling rate under the

availability model. The other two policies, however, do
not track previous selections of users and thus may end
up over-selecting available users rather than exploring
the full pool of devices.

V. CONCLUSION

We presented F3AST , an algorithm for learning in
federated systems that operate under communication
constraints and service intermittently available clients.
We demonstrated that the algorithm achieves accuracy
superior to state-of-the-art federated learning techniques,
and exhibits resilience in challenging system settings.
Future work includes studies of the setting where the
clients are grouped in clusters/classes, and exploring a
wider range of communication constraints.
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APPENDICES

APPENDIX A
NOTATION AND DEFINITIONS

For clarity, frequently used symbols are summarized
in Table 1 below.

The generalized FEDAVG assumes the server sends
to clients in St at time t an initial model wt. For t =
0, ..., T ; the clients locally initialize w

(t,0)
k ← wt−1 and

take E steps of SGD producing the sequence (w
(t,i)
k )Ei=0.

Formally, let ξ(t,i)k be the mini-batch for client k at time
i in round t; for each client k, we can then define the
local model w(t,i)

k and local update vt
k as

w
(t+1,i)
k =

{
wt i = 0

w
(t+1,i−1)
k − ηt+1,i∇Fk(w

(t+1,i−1)
k , ξ

(t+1,i)
k ), i ∈ [E]

vt+1
k = w

(t+1,E)
k −wt.

Here w
(t,i)
k tracks local models of client k at round t

and iteration i, and vt
k is the local update of client k at

the end of round t. Following distributed optimization
standard techniques [12], [35], we define the sequences

vt+1 =

N∑
k=1

pkv
t+1
k , (9)

∆t+1 =
∑
i∈St

pi
ri
vt+1
k ,

wt+1 = wt +∆t+1,

zt+1 = wt + vt+1.

APPENDIX B
PROOFS

This section provides proofs of the lemmas and
theorems omitted from the main document.

A. Proof of Theorem III.5

Proof of Theorem III.5 follows standard optimization
proofs [5], [12], [35]. Our technical contribution comes
from using a sampling policy with arbitrary sampling rate
r, showing global update ∆t+1 is unbiased (Lemma B.1),
and computing the incurred variance of such sampling
policy and aggregation step (Lemma III.4). This last
step is of particular interest and challenging due to
the unknown system configuration, and the importance
sampling multiplicative terms.

Lemma B.1 (Unbiased update). Suppose Assumption 1
holds. Let r ∈ R be an achievable sampling rate, and
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Symbol Definition
U Set of all users
N = |U| Total number of clients
Kt Number of clients sampled at round t
T Total number of rounds
mt Number of available clients at time t
(At)t availability stochastic process
(Ct)t feasible client sets stochastic process
St Set of clients participating at round t
π(·) Stationary distribution of availability and communication constraint process.
r Client sampling rate
fr Configuration-dependent client sampling policy
∆t+1 Pseudo-gradient for server optimizer: aggregates updates of participating clients at round t
wt Global model at beginning of round t

wt+1
k Local model at the end of round t at client k

vt+1
k Local update at the end of round t at client k

vt+1 = Ek∼P
[
vk
t+1

]
=

∑N
k=1 pkv

k
t+1 Expected global update at the end of round t under desired distripution P

zt+1 = wt + vt+1 Desired global model at the end of round t

TABLE V: Frequently used symbols.

fr be a state-dependent static policy achieving rate r.
Fix wt ∈ Rp. Let (vt+1

k )Nk=1 denote updates of clients
starting from model wt. Let vt+1 =

∑N
k=1 pkv

t+1
k , let

S be the client set selected by policy fr at time t and
∆t+1 =

∑
k∈S

pk

rk
vt+1
k . Then ES [∆

t+1] = vt+1.

Proof. Recall that at any given time t we pick S ∈ Ct

for some Ct ∈ C according to fr
CtS

. Using the definition
of π and fr,

ES

[
∆t+1

]
= E

[
E

[∑
k∈S

pk
rk

vt+1
k

∣∣C]] (10)

=
∑
C∈C

π(C)
∑
S∈C

fr
CS

∑
k∈S

pk
rk

vt+1
k (11)

=
∑
C∈C

π(C)
∑
S∈C

fr
CS

N∑
k=1

pk
rk

vt+1
k · 1{k∈S},

(12)

where the last step replaces the sum over S by the sum
over all clients but adding the indicator function over S.
Reorganizing,

ES

[
∆t+1

]
=

N∑
k=1

pk
rk

vt+1
k

(∑
C∈C

π(C)
∑
S∈C

fr
CS1{k∈S}

)
.

(13)

Here the term in parenthesis is, by definition (Eq. (2)),
rk, then

=

N∑
k=1

pk
rk

vt+1
k rk =

N∑
k=1

pjv
j
t+1 = vt+1.

We proceed by introducing a key lemma derived in [12],
characterizing convergence for the full client participation
case, and then utilize it to prove Theorem III.5.

Notice that the learning rate depends on round t, t =
0, ..., T and epoch i, i = 1, ..., E.

Lemma B.2.

E[∥wt+1 −w∗∥2] ≤ (1− η2(t,E)µ)E[∥w
t −w∗∥2]

+ η2(t,E)Var1, (14)

where

Var1 =

N∑
k=1

p2kσ
2
k + 6LΓ + 8(E − 1)2G2.

Proof. This result follows from the first part of Theorem
1 in [12], showing the convergence of FEDAVG with full
client participation (i.e., no client sampling).

Theorem (Theorem III.5). Instate the settings of
Lemma III.4. Let w∗ denote the solution to the op-
timization problem (1), and L, µ = O(1). Define
γ = max{8L

µ , E}, and assume learning rate η(t,i) =
2

µ(γ+(tE+i)) . Then by setting CLIENTOPT to SGD and
SERVEROPT(wt,∆t+1) = wt + ∆t+1, the model wT

produced by Algorithm 1 with policy fr satisfies

E[F (wT )]− F ∗ = O

(
1

TE + γ

(
∥w1 −w∗∥2

+

N∑
k=1

p2kσ
2
k + 6Γ + 8(E − 1)2G2

+σ2
T (f

r)
))

,

where Γ = F ∗−
∑N

k=1 pkF
∗
k denotes the local-global

objective gap5, F ∗ and F ∗
k are the minimum values of F

and Fk, respectively, and σ2
T (f

r) (Lemma III.4) captures
the variance induced by client sampling.

5Local-global objective gap quantifies data heterogeneity: for i.i.d.
data, Γ → 0 as the number of samples grows, while a large Γ indicates
a high degree of heterogeneity [11], [12].
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a) A brief outline of the upcoming proof.: We start
by expanding ∥wt+1 − w∗∥2, a term that measures
the distance to the optimum, and bound it by the
term characterizing convergence of the full participation
scheme [7] plus an additional variance term emerging
due to client sampling (computed in Lemma B.5). We
then invoke a standard inductive argument to express
∥wt+1 − w∗∥2 in terms of ∥w1 − w∗∥2 and, noting
smoothness, finally bound E[F (wT )]− F ∗.

Proof.

∥wt+1 −w∗∥2 = ∥wt+1 − zt+1 + zt+1 −w∗∥2

= ∥wt+1 − zt+1∥2︸ ︷︷ ︸
A1

+ ∥zt+1 −w∗∥2︸ ︷︷ ︸
A2

+ 2⟨wt+1 − zt+1, zt+1 −w∗⟩︸ ︷︷ ︸
A3

. (15)

Based on Lemma B.1, we know ∆t+1 is unbiased,
thus E

[
∆t+1

]
= vt+1.

We use this fact to prove that A3 = 0 as follows:

E[⟨wt+1 − zt+1, zt+1 −w∗⟩] =
E
[
⟨wt +∆t+1 −wt − vt+1, zt+1 −w∗⟩

]
= E

[
⟨∆t+1 − vt+1, zt+1 −w∗⟩

]
= 0

Now, A1 can be bounded using Lemma III.4, since
∥wt+1 − zt+1∥2 = ∥(wt + ∆t+1) − (wt + vt+1)∥2 =
∥∆t+1 − vt+1∥2.

Define

Var1 =

N∑
k=1

p2kσ
2
k + 6Γ + 8(E − 1)2G2,

Var2 := σ2
t (f

r) =
1

η2(t,E)

E
[
||∆t+1 − vt+1∥2

]
.

Then by replacing Lemmas B.2 and B.5 in Equa-
tion (15) we have that

E∥wt+1 −w∗∥2 ≤ (1− η(t,E)µ)E∥wt −w∗∥2

+ η2(t,E)(Var1 + Var2).

Thanks to Lemma B.1, we find a similar expression
to the one in [12], but with different constants coming
from different client sampling variance in Lemma III.4.
The rest of the proof then follows standard techniques,
e.g., see [12]. We repeat those steps for the sake of
completeness.

Let β > 1
µ , γ > 0, and define η(t,i) = β

(t−1)E+i+γ

such that η(1,1) < min{ 1µ ,
1
4L}, and η(t,1) ≤ 2η(t,E).

As a standard technique, we show by induction in t
that E∥wt −w∗∥2 ≤ v

γ+tE , where

v = max{β
2(Var1 + Var2)

βµ− 1
, (γ + 1)∥w1 −w∗∥2}.

This holds for t = 1 trivially, from the definition of
v. Now assume the claim holds for t; starting from the
above equation, we have that

E∥wt+1 −w∗∥2 ≤ (1− η(t,E)µ)E∥wt −w∗∥2

+ η2(t,E)(Var1 + Var2)

≤
(
1− βµ

tE + γ

)
v

tE + γ
(16)

+
β2(Var1 + Var2)

(tE + γ)2

=
tE + γ − E

(tE + γ)2
v (17)

+

[
β2(Var1 + Var2)

(tE + γ)2
− βµ− E

(tE + γ)2
v

]
≤ v

tE + γ + E
(18)

=
v

(t+ 1)E + γ
.

where Equation (16) follows by induction step and
definition of η(t,E), Equation (17) from adding and
substracting Ev

(tE+γ)2 , and the last step by noticing that

tE + γ − E

(tE + γ)2
=

(tE + γ − E)(tE + γ + E)

(tE + γ)2(tE + γ + E)

≤ 1

tE + γ + E
.

Finally, by smoothness of F ,

E[F (wt)]− F ∗ ≤ L

2
E∥wt −w∗∥2 ≤ v

γ + tE
. (19)

Setting β = 2
µ , κ = L

µ and γ = max{8κ,E} − 1, and
using Lemma B.5 to compute Var2, we obtain the desired
result.

B. Proof of Lemma III.4: Bounded client sampling
variance

For clarity of the proof of Lemma III.4, we first
introduce the following lemma on the inner product of
local models.

Lemma B.3. At round t for any pair of clients i and j,

E
[
⟨vt

i ,v
t
j⟩
]
≤ 4E2G2η2(t,E), (20)

where the expectation is taken over the samples in local
SGD steps.
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Proof. Recall that vt
i represents the user i’s update after

training locally for E epochs starting with model wt−1.
Then,

∥vt
i∥2 = ∥wt,E

i −wt,0
i ∥

2

= ∥
E−1∑
ℓ=0

η(t,ℓ)∇fk(wt,ℓ
i , ξℓ)∥2

≤ E

E−1∑
ℓ=0

η2t,0∥∇fk(w
t,ℓ
i )∥2 ≤ 4η2(t,E)E

2G2,

where we used the Jensen inequality and the fact that
η(t,ℓ) is decreasing (i.e., η(t,0) ≤ 2η(t,ℓ) for ℓ ≤ E). Now,
since ⟨vt

i ,v
t
j⟩ ≤ maxk ∥vt

k∥2, the result follows.

Next, we define the random vector Xr ∈ {0, 1}N
that indicates which clients are selected, and specify its
moments.

Lemma B.4. Let Xr ∈ {0, 1}N be such that its ith

component takes on value Xr
i = 1 if client i is selected

at time t, and 0 otherwise. Let Σ denote the covariance
matrix of Xr. Then E [X] = r and Var(Xi) = ri(1−ri).

Proof. This follows trivially from the observation that
Xi is a Bernoulli random variable with parameter ri.

Lemma B.5. Let r ∈ R+ be an achievable sampling
rate, fr denote a static configuration-dependent sampling
policy achieving r, and Xr the corresponding selection
random vector with covariance Σ. Then for t = 1, ..., T ,

σ2
t (f

r) :=
1

η2(t,E)

E
[
∥∆t − vt∥2

]
=

1

η2(t,E)

Tr(YtY
T
t Σ),

(21)
where vector pk

rk
vt
k is the kth row of matrix Yt ∈ RN×p.

Proof. Below ∥ · ∥ denotes the ℓ2−norm. Using the
variance formula and that E [∆t] = vt by Lemma B.1,

ES

[
∥∆t − vt∥2

]
= E

[
∥∆t∥2

]
− ∥v∥2. (22)

Let us focus on the first term:

E
[
∥∆t∥2

]
=
∑
C∈C

π(C)
∑
S∈C

fCS∥
∑
k∈S

pk
rk

vt
k∥2

=
∑
C∈C

π(C)
∑
S∈C

fCS

∑
i,j∈S

pipj
rirj
⟨vi,vj⟩

=

N∑
i,j=1

∑
C∈C

π(C)
∑
S∈C

fCS
pipj
rirj
⟨vi,vj⟩1i∈S1j∈S

=

N∑
i,j=1

∑
C∈C

π(C)
∑
S∈C

fCS
pipj
rirj
⟨vi,vj⟩XiXj .

From the defition of Yt and by reorganizing,

E
[
∥∆t∥2

]
= E

[
XTYtY

T
t X
]
.

Introducing B = YtY
T
t ,

E
[
∥∆t∥2

]
= E

∑
i,j

bijXiXj

 =
∑
i,j

bijE [XiXj ]

=
∑
i,j

bij(Σij + rirj) (23)

=
∑
i

[BΣ]ii + rTBr

= Tr(YtY
T
t Σ) + ∥vt∥2, (24)

where Eq. 23 follows by the covariance formula and
Eq. 24 follows due to cancellation in denominator of
B = YtY

T
t . After combining this with Equation (22), the

term ∥vt∥2 cancels and we obtain the desired result.

Lemma (Lemma III.4). Suppose Assumptions 1-4 hold.
Let r ∈ R be an achievable sampling rate under the
system configuration determined by distribution π, and fr

denote a static configuration-dependent sampling policy
achieving r.

Define the client sampling variance σ2
t (f

r) :=
1
η2
t
ESt

[
∥∆t − vt∥2

]
where vt =

∑N
k=1 pkv

k
t is the

update at time t with full client participation. Then

σ2
t (f

r) ≤ 4E2G2(

N∑
k=1

pk
rk
− 1). (25)

Furthermore, if client availabilities are uncorrelated or
negatively correlated, then there exists a policy fr such
that

σ2
t (f

r) ≤ 4E2G2

(
N∑

k=1

p2k
rk

+

N∑
k=1

p2k

)
. (26)

Proof. For the first part, taking expectation over the
independent local SGD sampling and over the random
set of clients S,
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E
[
∥∆t∥2

]
= E

[
∥
∑
k∈S

pk
rk

vt
k]∥2

]

= E

∑
i,j∈S

pipj
rirj
⟨vt

i ,v
t
j⟩


=

N∑
i,j=1

pipj

rirj
E
[
⟨vt

i ,v
t
j⟩
]
P (i, j ∈ S)

≤ 4E2G2η2(t,E)

(
N∑
i=1

p2i
r2i

P (i ∈ S)

+

N∑
i=1

N∑
j=1,j ̸=i

pipj
rirj

P (i, j ∈ S)

 .

Given that P (i, j ∈ S) ≤ P (i ∈ S) and that P (i ∈
S) = ri,

E
[
∥∆t∥2

]
≤ 4E2G2η2(t,E)

 N∑
i=1

p2i
ri

+
N∑
i=1

N∑
j=1,j ̸=i

pipj
rirj

P (j ∈ S)


≤ 4E2G2η2(t,E)

 N∑
i=1

p2i
ri

+

N∑
i=1

pi
ri

N∑
j=1,j ̸=i

pj


≤ 4E2G2η2(t,E)

(
N∑
i=1

p2i
ri

+

N∑
i=1

pi
ri
(1− pi)

)

≤ 4E2G2η2(t,E)

N∑
i=1

pi
ri
.

Therefore,

E
[
∥∆t − vt∥2

]
= E

[
∥∆t∥2

]
− ∥vt∥2

≤ 4E2G2η2(t,E)(

N∑
i=1

pi
ri
− 1),

and the result follows.
For the second part of the lemma, consider a policy f

with rate r that at time t selects S as

St ∈ arg max
S∈Ct

−∇H(r) · 1S .

Let uk denote the k-th largest utility value, where
the individual utilities are defined by vector −∇H(r).
W.l.o.g. assume ui < uj if i < j, and let Ak be the
(random) number of users i with the utility less than uk.
Let K be a bound on the set size S. Let i, j be two
users, i < j; then ui < uj . Now, since i, j are uncor-
related or negatively correlated, P (i, j are available) ≤
P (j is available)P (i is available). Therefore,

P (j ∈ S|i ∈ S) = P (j is available)P (Ak − 1 < K)

≤ P (j is available)P (Ak < K) = P (j ∈ S).

Note that from the definition of conditional probability,
it follows that the sampling is also uncorrelated since

P (i, j ∈ S) = P (i ∈ S)P (j ∈ S|i ∈ S) = P (i ∈ S)P (j ∈ S)

= E [Xi]E [Xj ]

= rirj .

Therefore, we have that Σij = E [XiXj ] −
E [Xi]E [Xj ] = P (i, j ∈ S) − rirj ≤ 0. From Eq. 23,
we have that

Tr(YYTΣ) =
∑
i,j

pipj
rirj
⟨vt

i ,v
t
j⟩Σij ;

since Σij ≤ 0 for i ̸= j,

Tr(YYTΣ) =
∑
i,j

pipj
rirj
⟨vt

i ,v
t
j⟩Σij

≤ 4E2G2η2(t,E)

∑
i

p2i
r2i

Σii +
∑
i ̸=j

pipj
rirj

Σij

≤ 4E2G2η2(t,E)

∑
i

p2i
r2i

(ri(1− ri))

≤ 4E2G2η2(t,E)

(∑
i

p2i
ri

+
∑
i

p2i

)
,

where the first inequality follows from Lemma B.3 and
breaking the sum on diagonal and non diagonal terms.
The second inequality follows by dropping negative terms
and replacing the variance value Σii = ri(1 − ri) for
Xi (Lemma B.4), while the last one follows simply by
expanding the previous term.

C. Proof of Theorem III.3

Theorem (Theorem III.3). Let rβ(t) be defined by Algo-
rithm 1, following equations (4) and (5). Let V ⊂ RN

+

be a bounded set, ϵ > 0, and let r∗ denote the minimizer
of the variance function H(r) =

∑n
k=1

p2
k

rk
over R. Then

for T > 0, depending on ϵ and V ,

lim
β↓0

sup
rβ(0)∈V,t>T/β

P [∥rβ(t)− r∗∥ > ϵ] = 0.

Proof. Our proof follows the stochastic approximation
analysis in [43] that establishes an attraction property for
Fluid Sample Paths (FSPs), which are limiting trajectories
of the generalized versions of the processes considered
in our manuscript. The idea behind the proof is that as t
grows, we can study the limiting trajectories (i.e., FSPs)
x = (x(t), t ≥ 0) of the process r(t/β). Since −H(r) is
a convex function, it follows from Theorem 4 in [43] that
for an arbitrary initial state x(0), x(t)→ r∗ as t→∞.
More concretely, from Theorem 3 in [43] it follows that as
β ↓ 0, a limit of sequence {rβ} considered in Section III
of our paper is a process with sample paths being FSPs
x with probability 1.
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Assume V ⊂ [0, a]N such that a > µ̄, where µ̄ =
maxC∈C,S∈S

1
|S| . Let ϵ > 0 and δ > 0. By the above

result on FSPs (i.e., by Theorem 4 in [43]), we can find
T large enough such that ∥x(t)− r∗∥ ≤ ϵ uniformly for
t in the interval [T, T + δ]. Combining this result with
the continuous mapping theorem [44], we obtain

lim
β→0

sup
rβ∈V

P ( sup
t∈[T,T+δ]

∥x(t)− r∗∥ > ϵ) = 0.

Also, notice that for all t, rβi (t) ≤ max{µ̄, rβi (0)}
element-wise, where µ̄ = maxC∈C,S∈S

1
|S| by construc-

tion. Then for any τ ≥ 0 we can re-start the process,
implying

lim
β→0

sup
rβ∈V

sup
τ≥0

P ( sup
t∈[τ+T,τ+T+δ]

∥x(t)− r∗∥ > ϵ) = 0

and thus establishing the desired result.

APPENDIX C
EXPERIMENTS DETAILS

a) Hyperparameter tuning.: We set the learning rate
on Shakespeare and CIFAR100 according to the optimal
values found in [5]. For the synthetic dataset we use the
learning rate tuned in [7], η = 0.01. For Shakespeare we
use mini-batches of size 4, and mini-batches of size 20
for the remaining datasets. Following literature, in all the
experiments we use β = O(1/T ) = 0.001.

b) Machines.: We ran our experiments on AMD
Vega 20 (ROCm) cards. One rounds of training in
Fig. 1 require 8 GPU seconds for CIFAR100, 67 GPU
seconds for Shakespeare, and 0.57 GPU seconds for
Synthetic(1,1).

A. Datasets

a) Synthetic dataset.: We generate this data by
taking 104 samples Xi ∈ R100 ∼ N (0, I100). Moreover,
we generate β ∼ N (0, I100) and, finally, set labels
yi = round(XT

i β). The samples are split evenly among
100 clients.

b) Skakespeare. : Each client’s dataset is restricted
to have at most 128 sentences, and is split into training
and validation sets. Following the previous work with this
dataset [5], we use a build vocabulary with 86 characters
contained in the text, and 4 characters representing
padding, out-of-vocabulary, beginning, and end of line
tokens. We use padding and truncation to enforce 20
word sentences, and represent them with index sequences
corresponding to the vocabulary words, out of vocabulary
words, beginning and end of sentences.

B. Models

We train a recursive neural network for the next
character prediction that first embeds characters into an
8-dimensional space, followed by 2 LSTMs and finally
a dense layer. ResNet-18 architecture can be found in
[45], where we replace batch normalization by group
normalization [46] as in [5].

C. Availability models

For the Home-devices model tk ∼ lognormal(0, 0.5),
while for the Smartphones tk ∼ lognormal(0, 0.25). The
sine wave is defined by f(t) = 0.4 sin(t) + 0.5 and we
sample at times t = 2πj

24 for j = 1, ..., 24.
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