
Scheduling "Last Minute" Updates for Timely Decision-Making
Jean Abou Rahal∗

Chandra Family Department of Electrical and Computer
Engineering, The University of Texas at Austin

Austin, TX, USA
jeanabourahal@utexas.edu

Gustavo de Veciana
Chandra Family Department of Electrical and Computer

Engineering, The University of Texas at Austin
Austin, TX, USA

deveciana@utexas.edu

ABSTRACT
We consider a setting where requests for updates regarding time-
varying processes are required prior to making a sequence of deci-
sions. Each request has a �nite length time window during which
the update should be received. The end of the window re�ects
the time at which a decision is to be made, while the start of the
window models the earliest possible time at which a useful update
could be sent. An update scheduled as near to the end of the win-
dow as possible is deemed the best, i.e., re�ects the most timely
information about the process’ state. This is modelled by a reward
depending on the time di�erence between the decision point and
the last scheduled update. Requests arrive arbitrarily and share
a limited communication resource, e.g., a single request can be
scheduled per time slot, hence not all decisions can be based on
the latest possible update. We consider update scheduling policies
which maximize the overall reward rate. In particular we consider
an adversarial request model and evaluate proposed algorithms via
their Competitive Ratio (CR). Speci�cally, we �rst derive a lower
bound on the CR of any causal policy. We then propose two sched-
uling policies, denoted adversarial and greedy, and provide further
analysis and insights on regimes where one might be superior to the
other. We validate these observations via simulation for a setting
with stochastic arrivals.

CCS CONCEPTS
• Networks! Network algorithms.

KEYWORDS
Age-of-Information, Adversarial Scheduling, Competitive-Ratio

ACM Reference Format:
Jean Abou Rahal and Gustavo de Veciana. 2023. Scheduling "Last Minute"
Updates for Timely Decision-Making. In Proceedings of the Int’l ACM Con-
ference on Modeling Analysis and Simulation of Wireless and Mobile Systems
(MSWiM ’23), October 30-November 3, 2023, Montreal, QC, Canada. ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/3616388.3617518

∗Contact person for correspondence

This work is licensed under a Creative Commons Attribution
International 4.0 License.

MSWiM ’23, October 30-November 3, 2023, Montreal, QC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0366-9/23/10.
https://doi.org/10.1145/3616388.3617518

1 INTRODUCTION
The emergence of applications relying on networked systems has
revolutionized the sensing industry and led the way towards mod-
eling systems that rely on the timely sharing of information to
support real-time decision making. Among these, a challenging
set of examples is tied to automated vehicles, robots, UAVs, etc.,
that are constantly traveling through complex environments and
requiring updates to smoothly navigate with a high degree of situa-
tional awareness. Such applications are often best supported when
updates are delivered right on time. In the vehicular setting for
example, cars driving at di�erent speeds and heading towards an
obstructed intersection may express interest in accurate informa-
tion on the state of the intersection right before they reach it and
thus generate requests for timely updates about such intersections.
Sending an update to a vehicle early on may not accurately repre-
sent the state of the intersection by the time it gets there and will
lead to poor decisions. On the other hand, scheduling an update
transmission to the vehicle when it is close to the intersection is
likely to be advantageous and results in better decisions.

A major challenge in such systems is the dynamic aspect of re-
quests for timely updates. Requests may not only arrive arbitrarily
but may also be short-lived, i.e., such that one can receive updates
only for a �nite length time window before making a critical de-
cision at the end of the window preferably based on the freshest
information update.

A key step in this direction is to de�ne appropriate metrics that
capture the freshness and timeliness of the last received update to
ensure that it accurately represents the state of the time-varying
process that the request is interested in. To that end, the Age of
Information (AoI) has been proposed as a metric that measures the
freshness of the updates at the receiver [6, 7, 17]. In contrast to
prior work on AoI, we propose a novel setting where a request can
only receive updates within a �nite time window, which we refer
to as the request’s active window. The importance of scheduling
an update transmission to a request close to the end of its active
window is modelled through a reward function which depends on
the time di�erence between the end of the request’s active window
and the time at which the last update was received. Such a reward
model is therefore tied to the age of the last received update within
the request’s active window which re�ects the freshness of this
update. In this paper, we study scheduling policies that aim to opti-
mize the rewards associated with scheduling such updates.
Related work. There has been substantial work on the schedul-
ing of requests with deadlines. The Earliest Deadline First (EDF)
policy [12] is the most well-known policy for scheduling in real-
time systems. It was proved to maximize the fraction of customers
served prior to their respective deadlines when the service time

65

https://doi.org/10.1145/3616388.3617518
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3616388.3617518
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3616388.3617518&domain=pdf&date_stamp=2023-10-30

MSWiM ’23, October 30-November 3, 2023, Montreal, QC, Canada Jean Abou Rahal and Gustavo de Veciana

is equal to a single slot. EDF requires that the customer with the
earliest deadline be scheduled �rst and at most once. Meanwhile
[15] considers a real time queuing system where packets have dead-
lines and the processing time of a packet is known upon its arrival.
A predetermined �xed reward is associated with servicing each
packet and the goal is hence to design a scheduling policy that max-
imizes the cumulative reward. Other works, e.g., [11], [5], introduce
scheduling policies in systems with strict bounds on the service
delays. In contrast to prior work, we allow a request to be scheduled
more than once before the end of its active window, and we de�ne
a reward function that is tied to the time di�erence between the
request’s decision time and its last scheduled update.
More recent work addresses scheduling in collaborative sensing
settings in an attempt to achieve real-time situational awareness
and can be found in [1, 2, 13, 19]. We extend on the prior works by
assuming that requests for timely updates arrive arbitrarily and can
only receive updates within a limited period of time before making a
critical decision. Other recent work investigate scheduling sensing
nodes to update a remote node under communication constraints
with requirements on the AoI [3, 4, 8–10]. They consider applica-
tions where the AoI has to meet some freshness threshold, i.e., they
impose either a hard or soft upper bound on the worst case AoI that
can be achieved by any sensing node and devise policies that can
schedule at most one node per slot to satisfy the constraints. On the
other hand, [16] and [14] consider the setting where packets arrive
arbitrarily over time and the algorithms only have access to infor-
mation about packet arrivals. In particular, [16] devises a policy to
minimize the energy consumption under the peak AoI constraint at
all times, while [14] introduces a resource allocation problem that
captures the trade-o� between AoI, quality and energy associated
with packet transmission and proposed a policy to minimize the
three costs. Finally, [18] develops and implements a scheduling
algorithm that enables the customization of WiFi networks to the
needs of time-sensitive applications. They propose a scheduling
approach which makes use of the most up-to-date data as opposed
to all past sampled data points, similarly to the one suggested in our
work. We di�erentiate ourselves from [18] by considering a setting
where requests arrive arbitrarily over time, as opposed to having
a �xed number of nodes requesting information, and additionally
consider that the requests can receive updates only in a short period
of time before making decisions based on the last received update.
Contributions. We explore a new class of scheduling problems
associated with delivering information updates “just in time". We
consider a setting where requests for timely updates arrive arbi-
trarily and we assume that requests can receive updates within a
�nite-time window, which we refer to as the request’s active win-
dow. Our goal is to ensure that requests have updates that are as
fresh as possible by the end of their active windows to enable accu-
rate decisions to be made based on the states of the time-varying
processes they are interested in. We hence de�ne a reward function
that captures the importance of scheduling an update transmission
to a request as close to the end of its active window as possible. We
propose to maximize the reward rate under the assumption that
only a single request can be scheduled at a time. In this setting,
we investigate an adversarial setting where the number of new
requests’ arrivals as well as the length of a request’s active window
are unknown a-priori and only revealed once requests arrive, and

thus use the competitive ratio as our performance metric. We derive
a lower bound on the reward rate achieved by any non-idling causal
policy. We then propose two causal scheduling policies c0 and c6 ,
referred to as the adversarial and greedy policies respectively and
further derive the competitive ratio of c6 with respect to the opti-
mal genie-based policy. Finally, we validate our theoretical analysis
with numerical evaluations.

2 SYSTEM MODEL
2.1 Model for timely information requests
Consider requests for timely updates about time-varying processes
that arrive arbitrarily to a time-slotted system. We let 1 = (d8)82N
denote the sequence of request arrivals, where the tuple d8 =
(08 , B8 , 48) is the 8C⌘ request, characterized by,

• 08 : Arrival time of request 8 ,
• B8 � 08 : Release (or start) time of request 8 , which re�ects
the earliest time after which updates about the time-varying
process become relevant to 8 ,

• 48 : End time after which request 8 is no longer active,
• [B8 , 48]: Active window within which updates in response to
request 8 are permissible.

In particular, we let 1) denote the truncated sequence of requests
that have end times prior to) . Updates scheduled for request 8
outside of [B8 , 48] have no value to 8 . We point out that one or more
updates for a request can be scheduled while it is active. However,
requests end up using only the most recent update they received
within their active windows. It follows that an update scheduled
closer to the start to service time of a request may age by the end of
the active window and become stale and not accurately re�ect the
actual status of the time-varying process. Therefore, scheduling an
update for active request 8 in a slot close to 48 is more bene�cial than
scheduling an update in a slot close to B8 .We further letF8 = 48�B8+1
be the length of request 8’s active window andFmax be an upper
bound on the length of the active window, i.e., for all 8 we have that
1 F8 Fmax.

2.2 Scheduling updates
We consider a time-slotted system where the length of a time slot
corresponds to the duration it takes to transmit an update. Further,
we consider for simplicity a setting where a policy can schedule a
single update per time slot. That said, recall that multiple updates
can be scheduled sequentially for the same request within its active
window. Below, we formally introduce the notation to be used in
this paper.

De�nition 1. (Servicing a request) We say that a policy c has
serviced a request 8 if 8 is no longer active and c scheduled one or
more updates for 8 within its active window [B8 , 48].

We shall use the following notation.
• (#C)C�1, where #C := {8 : 8 2 N , 08 = C}, is the set of new
requests arriving at the beginning of slot C .

• &C is the set of active requests in slot C .
• Gc8,C is an indicator variable that takes value 1 if an update
for an active request 8 is scheduled in slot C under a policy c
and 0 otherwise.

66

Scheduling "Last Minute" Updates for Timely Decision-Making MSWiM ’23, October 30-November 3, 2023, Montreal, QC, Canada

•)c
8,C := {g : B8 g C 48 , Gc8,g = 1} is the set of time slots
in which updates for active request 8 are scheduled prior to
and including C under a policy c .

• �C := {8 : 8 2 N , 48 C � 1} is the set of requests which are
no longer active at C .

• (cC := {8 : 8 2 �C ,)c
8,48

< ;} is the set of requests in �C that
have been serviced by policy c .

2.3 Reward and age of last update
We let Ac8 denote the reward obtained for a request 8 that was
serviced under policy c . It depends on the last slot in which an
update for 8 was scheduled when it was active. Assume the last
update for an active request 8 is scheduled in a slot close to its
start time B8 , then the “age" of the update would increase by the
end of the active window and the update would not provide timely
information to 8 as would an update scheduled in a slot close to
48 . Therefore scheduling an update for request 8 in a slot closer
to its end time 48 is deemed advantageous. We let 3c8 denote the
time di�erence between the end time of active request 8 and the
last slot in which an update is scheduled for 8 under policy c , i.e.,
3c8 = 48 � max

C 2 [B8 ,48]
Gc8,C C + 1.

De�nition 2. (Reward obtained from servicing 8) The reward
Ac8 obtained from servicing request 8 under a policy c depends on the
last slot in which an update for 8 was scheduled and is collected when
8 is no longer active, i.e., at the end of slot 48 . It is modelled as

Ac8 =

(
5 (3c8), if)c

8,48
< ;,

0, otherwise,
(1)

where 5 (·) is a non-decreasing upper-bounded function of 3c8 .

Scheduling an update for an active request 8 under a policy c in a
slot close to its end time 48 results in a smaller 48 �maxC 2 [B8 ,48] G

c
8,C C

and thus in a larger reward Ac8 . The cumulative reward at slot C
under policy c is denoted by

Ac ((cC) =
’
82(cC

Ac8 . (2)

In the rest of the paper, we consider both linear and convex
reward functions 5 (·).

De�nition 3. (Linear reward function) A positive linear re-
ward function 5 (G) = U + V (Fmax � G + 2) associated with servicing
request 8 under a policy c is given by

Ac8 = U + V (Fmax � 3c8 + 2), (3)

where U, V, 2 � 0.

The linear reward associated with servicing a request 8 under a
policy c as de�ned above consists of two main components, U and
V (Fmax � 3c8 + 2). The second component is bounded below and
above as follows, 88 2 N,

V (Fmax �F8 + 2) V (Fmax � 3c8 + 2) V (Fmax + 2).
De�nition 4. (Convex reward function) A positive convex

function 5 (G) = U +⌘(�V (G � 2)) models the reward associated with
servicing a request 8 under a policy c if

Ac8 = U + ⌘(�V (3c8 + 2)), (4)

where U, V, 2 � 0 and ⌘(·) is a positive convex function.
Paralleling the way we de�ned the linear reward, the convex

reward has two main components, U and ⌘(�V (3c8 + 2)), where the
second term is bounded above and below as follows, 88 2 N,

⌘(�V (F8 + 2)) ⌘(�V (3c8 + 2)) ⌘(�V2) .

2.4 Characterization of the scheduling problem
Our objective is to maximize the reward rate obtained from ser-
vicing a sequence of requests 1) in a �nite time window [1,)],
where without loss of generality, C = 1 corresponds to the �rst slot
in which there are any arrival of new requests and) is the last slot
after which there are no longer any active requests. For a sequence
of requests 1) , we let 6(c, 1)) =

Ac ((c)+1)
|�)+1 | be the reward rate ob-

tained under policy c , where |�)+1 | is the number of requests that
were active prior to to time) + 1. Formally, the problem is de�ned
as follows.

P������ 1.

max
c2⇧

6(c, 1)) = max
c2⇧

Ac ((c)+1)
|�)+1 |

(5)

s.t.
’
82&C

Gc8,C 1,8C 2 [1,)], (6)

Gc8,C 2 {0, 1},88 2 &C ,8C, (7)

where Equation (6) limits the number of users that can be sched-
uled at a time to atmost 1, andwhere⇧ is the set of causal non-idling
policies de�ned as follows.

De�nition 5. (Non-idling policy) A policy c 2 ⇧ is said to be
non-idling if it only idles when there are no active requests.

Our goal is to design a causal non-idling scheduling policy that
maximizes the reward rate in Problem 1.

A��������� 1. In the remainder of the paper we consider the
regime where U > V (Fmax + 2) and U > ⌘(�V2) for both linear and
convex reward functions respectively.

Discussion. An interesting regime for both the linear and convex
reward functions in De�nitions 3 and 4, is that where U > V (Fmax+
2) and U > ⌘(�V2). Then a large reward of value U is obtained if
an update to an active request 8 is scheduled in any slot within
its active window and in addition to a smaller reward of value
V (Fmax � 3c8 + 2) which depends on how close to 48 is the last
slot in which an update to 8 was scheduled. Therefore, a policy
whose target is to maximize the reward rate de�ned in Problem
1 is driven to �rst maximizing the number of scheduled requests
then, if possible, to schedule these requests as close as possible
to the ends of their associated update windows. In particular, if
V = 0, the linear reward function in De�nition 3 reduces to Ac8 = U
and Problem 1 corresponds to maximizing the fraction of updates
scheduled within their active windows. Hence, an optimal policy
c that solves this problem when V = 0 needs to schedule at most
one update per active request, in any time slot within its active
window. An optimal policy for this setting is the Earliest Deadline
First (EDF) policy [12]. From De�nition 2, the reward obtained from
servicing a request 8 under a policy c depends on both the last slot
in which an update for 8 is scheduled as well as on 8’s release time

67

MSWiM ’23, October 30-November 3, 2023, Montreal, QC, Canada Jean Abou Rahal and Gustavo de Veciana

B8 , and is hence independent of its arrival time 08 . Therefore, and
without loss of generality, we assume in the rest of the paper that a
request’s release time is equal to its arrival time, i.e., for all 8 2 N
we have that B8 = 08 .

3 OPTIMAL OFFLINE POLICY
In this section we characterize the optimal o�ine policy c⇤ that
solves Problem 1.

De�nition 6. (Optimal genie-based o�line policy c⇤)A policy
c⇤ is optimal for Problem 1 if it maximizes the reward rate.

Policy c⇤ has knowledge of the requests’ arrivals in the entire
timeline and can therefore optimally service requests. Optimal
o�ine policies are useful since they provide an upper bound on the
reward rate that can be achieved by causal policies. c⇤ schedules
at most a single update transmission per active request, since an
active request requires at most a single update being scheduled as
close as possible to its end time.

4 CAUSAL SCHEDULING POLICIES
The limitation of causal policies ⇧ is that they have no knowledge
of future request arrivals. Our goal is to devise online causal policies
which have provable performance guarantees in terms of Competi-
tive Ratio (CR) with respect to the optimal o�ine policy, de�ned as
follows.

De�nition 7. (Competitive ratio of a policy c) The competitive
ratio of a policy c is given by

CRc = min
1) 2P)

6(c, 1))
6(c⇤, 1))

, (8)

where P) is the set of all possible request arrivals in a time window
of length) , c⇤ is the optimal o�ine policy that solves Problem 1, and
6(c, 1)) and 6(c⇤, 1)) are the reward rate expressions achieved by
both c and c⇤ respectively. An online algorithm is @-competitive for
some @ � 1 if it achieves at least 1/@ of the optimal o�ine value in the
worst case, i.e., for all 1) 2 P) , we have that 6(c, 1)) � 1

@6(c⇤, 1)).

We shall begin by providing a lower bound on the competitive
ratio for any causal non-idling scheduling policy in ⇧.

4.1 Lower bound on the competitive ratio of any
policy in ⇧

The following theorem states that any causal non-idling policy
c 2 ⇧ achieves a competitive ratio of at least 1

Fmax
.

T������ 1. For any causal non-idling policy c 2 ⇧, and with
a reward function that satis�es the condition in Assumption 1, the
competitive ratio of c satis�es

CRc �
1

Fmax
.

P����. Consider a causal non-idling policy c 2 ⇧. According
to Assumption 1, the worst scheduling strategy that c can follow is
to schedule the same active request every slot until it is no longer
active. Let [1,)] be a time window of length) � Fmax, where)
corresponds to the slot after which there are no longer any active

requests. A lower bound on the cumulative reward Ac ((c)+1) ob-
tained under c is Ac ((c)+1) �

)
Fmax

5 (0). The cumulative reward
Ac
⇤ ((c⇤)+1) obtained under the optimal o�ine policy c⇤ is upper

bounded by) 5 (0). Therefore, 8) � Fmax, the competitive ratio
of c is lower bounded as follows, CRc �

Ac ((c)+1)
Ac⇤ ((c⇤)+1)

= 1
Fmax

, which

concludes the proof.
⇤

4.2 Greedy policy c6

The causal greedy policy c6 presented in the Algorithm 1 panel
schedules in every slot the request that would maximize the mar-
ginal increase in cumulative reward, and if need be, breaks ties
arbitrarily (Line 5).

Algorithm 1: Greedy policy c6 .
1 &0 ;; ⇢0 ;; (c

6

1 ;; �1 ;;
2 for C = 1, 2, ... do
3 #C := set of new request arrivals;
4 &C (&C�1 \ ⇢C�1)

–
#C ;

5 8⇤ 2 argmax
82&C

5 (48 � C) � 5 (48 � max
g 2 [08 ,C�1]

Gc
6

8,g g) ; break ties

arbitrarily;
6 Gc

6

8⇤,C 1;)c6

8⇤,C)c6

8⇤,C�1
–{C };

7 ⇢C := {8 : 8 2 &C , 48 = C } ;
8 ⇡c6

C := {8 : 8 2 ⇢C ,)c6

8,C < ;} ;
9 (c

6

C+1 (c
6

C
–

⇡c6

C ;
10 �C+1 �C

–
⇢C ;

T������ 2. (c6 maximizes the ratio of serviced requests)
Policy c6 maximizes the ratio of serviced requests when the linear
and convex reward functions satisfy the conditions in Assumption 1.

P����. The proof of this theorem follows from the optimality
of the Earliest Deadline First (EDF) policy in maximizing the ratio
of serviced requests for the discrete time ⌧/⇡/1 �⌧ queue where
the service time is exactly one unit of time [12]. Following from
Assumption 1, c6 prioritizes scheduling requests that have not been
scheduled yet. If in a time slot C there are more than one active
requests that have not been scheduled prior to C , c6 , similarly to
EDF, schedules in slot C an update transmission to the request with
the earliest end time. Otherwise in the case where all active requests
at time C have already been scheduled prior to C , c6 schedules the
request that maximizes the marginal increase in the cumulative
reward, which does not a�ect the ratio of serviced requests. This
concludes the proof. ⇤

T������ 3. (Competitive ratio of policy c6) The competitive
ratio of c6 is

CRc6 =
5 (Fmax)
5 (0) .

P����. According to Theorem 2, c6 maximizes the ratio of ser-
viced requests. Let # = |(c6

)+1 | be the total number of requests that
have been serviced under c6 in a �nite time window of length) . It

68

Scheduling "Last Minute" Updates for Timely Decision-Making MSWiM ’23, October 30-November 3, 2023, Montreal, QC, Canada

follows that a lower bound on the cumulative reward Ac
6 ((c6

)+1) ob-
tained under c6 is Ac

6 ((c6

)+1) � # 5 (Fmax). The cumulative reward
Ac
⇤ ((c⇤)+1) obtained under the optimal o�ine policy c⇤ is upper

bounded by # 5 (0). Therefore, for all) � Fmax, the competitive ra-

tio of c6 is lower bounded as follows, CRc6 � Ac
6 ((c6)+1)

Ac⇤ ((c⇤)+1)
= 5 (Fmax)

5 (0) ,

which concludes the proof. ⇤

4.3 Our proposed causal scheduling heuristic
policy c0

We propose a causal scheduling policy c0 . We shall refer to it as
the adversarial policy.

During every slot C , c0 assigns to every slot in the interval
[C,max82&C 48] a single request that is active during this slot. We say
that at time C , c0 tentatively schedules updates for active requests
in slots within the interval [C,max82&C 48]. By the end of slot C , an
update is sent to the request scheduled in C , while the remaining
slots in (C,max82&C 48] are freed from any tentative schedules.

De�nition 8. (Tentatively scheduling updates for an active
request) Policy c0 tentatively schedules updates to an active request
8 2 &C if during slot C it assigns slots within the interval [C, 48] to
potentially transmit updates to request 8 in those slots.

We clearly de�ne additional notation speci�c to c0 .
• Ĝc

0

8,C ,C 0 is an indicator that takes value 1 if at slot C , an update
for active request 8 is tentatively scheduled in slot C 0 2 [C, 48].

•)̂c0

8,C ,C 0 := {g : C C 0 g 48 , Ĝc
0

8,C ,g = 1} is the set of time
slots within the interval [C 0, 48] for any C 0 2 [C, 48], in which
active request 8 is tentatively scheduled.

Note. As long as a request 8 is active, no reward is yet collected
for request 8 . A reward associated with servicing a request 8 is only
obtained when 8 is no longer active. We introduce a speci�c notion
for the reward associated with active request 8 under policy c0

which we refer to as the tentative reward, de�ned as follows.

De�nition 9. (A request’s tentative reward under policy c0)
The tentative reward Âc

0

8,C ,C 0 of an active request 8 2 &C on slot C is a
function of the slots in)c0

8,C�1 in which 8 was actually scheduled prior
to C under c0 and the slots)̂c0

8,C,C 0 in which 8 is tentatively scheduled
after C 0 2 [C, 48] under c0 , and is given by

Âc
0

8,C ,C 0 =

8>>>>><
>>>>>:

5

✓
48 �max(max

g2 [08 ,C�1]
Gc

0

8,g g, max
g2 [C 0,48]

Ĝc
0

8,C ,gg)
◆
,

if)c0

8,C�1 [)̂c0

8,C,C 0 < ;,
0, otherwise.

At any time C , an active request 8 may have been actually sched-
uled one or many times prior to but not including C , and may have
been tentatively scheduled after C . Hence from De�nition 9, the
tentative reward depends on the latest time slot in which 8 is either
tentatively scheduled or has been actually scheduled.
We similarly de�ne the aggregate reward associated with a set of
active requests.

De�nition 10. (Requests’ aggregate tentative reward under
policy c0) The aggregate tentative reward at slot C associated with

the set of active requests&C under policy c0 , is the sum of the requests’
tentative rewards and is given by Âc

0

C ,C 0 (&C) =
Õ
82&C

Âc
0

8,C,C 0 .

We consider the setting where the reward obtained from servic-
ing a request is either linear or convex as introduced in De�nitions
3 and 4 respectively. c0 is presented in Algorithm 2, which proceeds
as follows.

Algorithm 2: Policy c0 .
1 &0 ;; ⇢0 ;; (c

0

1 ;; �1 ;;
2 for C = 1, ... do
3 #C := set of new request arrivals;
4 &C (&C�1 \ ⇢C�1)

–
#C ;

5 Gc
0

8,C 0 0, 8C 0 2 [C, 48], 88 2 #C ;
6)c0

8,C ;, 88 2 #C ;
7 Ĝc

0

8,C ,C 0 0, 8C 0 2 [C , 48], 88 2 &C ;
8)̂c0

8,C ,C ;, 88 2 &C ;
9 g max

82&C
48 ;

10 while g � C do
11 �g {8 : 8 2 &C ,g 2 [08 , 48] };
12 Go to Tentative schedule ù Get 8⇤;
13 Ĝc

0

8⇤,C ,g 1;)̂c0

8⇤,C ,g)̂c0

8⇤,C ,g+1
–{g };

14 if g = C then
15 Gc

0

8⇤,C 1;)c0

8⇤,C)c0

8⇤,C�1
–{C };

16 g g � 1;

17 ⇢C := {8 : 8 2 &C , 48 = C } ;
18 ⇡c0

C := {8 : 8 2 ⇢C ,)c0

8,C < ;} ;
19 (c

0

C+1 (c
0

C
–

⇡c0

C ;
20 �C+1 �C

–
⇢C ;

Algorithm 3: Tentative schedule.

1 Input: (Ĝc0

8,C ,C 0 ,8C
0 2 [g + 1, 48],88 2 &C), ()̂c0

8,C ,g+1,88 2 &C),
(Gc0

8,C 0 ,8C
0 2 [08 , C � 1],88 2 &C).

2 Output: 8⇤.
3 for 8 2 �g do
4 for 9 2 �g \ {8} do
5)̃c0

8,C ,g)̂c0

8,C ,g+1
–{g};

6 G̃c
0

8,C,C 0 Ĝc
0

8,C,C 0 ,8C
0 2 [g + 1, 48]; G̃c

0

8,C,g 1;
7 <c0

C ,g (8, 9) =
5 (48� max

C 0 2 [g ,48]
G̃c0

8,C ,C 0 C
0)+5 (4 9� max

C 0 2 [09 ,C�1]
Gc0

9 ,C 0 C
0)

5 (4 9�g)+Âc08,C ,g+1
;

8 8⇤ 2 argmax
82�g

min

92�g \{8 }
<c0

C,g (8, 9)
�
; break ties by selecting 8⇤

with smallest 48⇤ ; break ties arbitrarily;

For every slot C , c0 operates in a backwards manner starting
from the last slot in which it can tentatively schedule an update,
max82&C 48 , all the way back to C . For every slot g between C and
max82&C 48 , c

0 �rst determines �g , the subset of active requests

69

MSWiM ’23, October 30-November 3, 2023, Montreal, QC, Canada Jean Abou Rahal and Gustavo de Veciana

Figure 1: Scheduling and tentatively scheduling under policy
c0 of requests with maximal update window of Fmax = 3
and receiving a linear reward as de�ned in De�nition 3, with
U = 1, V = 0.1, 2 = 0.

in &C that can be tentatively scheduled in slot g . Let 8 2 �g and
9 2 �g \ {8} be two requests that will be active in slot g . In Algo-
rithm 3, for every g , c0 evaluates<c0

C,g (8, 9) (Line 7). The reasoning
behind<c0

C,g (8, 9) is intuitive and described as follows. c0 evaluates
through<c0

C,g (8, 9) if it is more advantageous in terms of aggregate
tentative reward to tentatively schedule request 8 in slot g instead
of request 9 . Slots between g + 1 and 4 9 in which updates to request
9 are tentatively scheduled under c0 are ignored when evaluating
<c0

C ,g (8, 9), in an attempt to characterize the importance of tenta-
tively scheduling an update to request 9 solely in slot g . A detailed
derivation of<c0

C ,g (8, 9) is provided as follows. The numerator of
<c0

C ,g (8, 9) corresponds to the sum of the following two components:
• Tentative reward of request 8 if 8 is tentatively scheduled in
any slots in)̂c0

8,C,g+1
–{g}.

• Tentative reward of request 9 if 9 was only scheduled prior
to slot C .

The denominator of<c0

C ,g (8, 9) corresponds to the sum of the follow-
ing two components:

• Tentative reward of request 9 if 9 is tentatively scheduled in
slot g .

• Tentative reward of request 8 if 8 is tentatively scheduled in
any slots in)̂c0

8,C,g+1 and/or scheduled in any slots in)c0

8,C�1.

Therefore,<c0

C ,g (8, 9) evaluates the ratio between the aggregate
tentative rewards resulting from (1) tentatively scheduling request
8 at least once after and including slot g while only considering
slots in which request 9 was actually scheduled prior to C and (2)
tentatively scheduling request 9 only in slot g while considering all
slots strictly greater than g in which 8 was tentatively scheduled
to receive updates and/or all slots prior to C in which updates to
request 8 were scheduled.

c0 then evaluates<c0

C,g (8, 9) for every request 8 2 �g , and for all
9 2 �g \ {8} (Lines 3-7 of Algorithm 3), and determines the request
9 2 �g \ {8} for which the ratio<c0

C,g (8, 9) is minimized, i.e., c0 ’s
potential decision to tentatively schedule request 8 in slot g instead
of request 9 deemed the least advantageous.

c0 �nally tentatively schedules in slot g the request 8⇤ such that
min@2�g \{8⇤ }<

c0

C,g (8⇤,@) � max92�g \{8⇤ } min@2�g \{ 9 }<
c0

C ,g (9,@) (Line
8 of Algorithm 3).

Figure 1 provides an example of requests scheduled and tenta-
tively scheduled to receive updates under policy c0 . Requests 83
and 84 became active at the beginning of slot C = 3. We observe in
the left sub�gure of Figure 1 that requests 81 and 82 were scheduled
to receive updates under c0 in slots C = 1 and C = 2 respectively.
Additionally at C = 3, requests 84, 83 and 81 are tentatively scheduled
to receive updates under c0 in slots C = 5, C = 4 and C = 3 respec-
tively. Once all slots in the interval [3, 5] have been reserved to
tentatively schedule updates for active requests, c0 then schedules
an update to request 81 in slot C = 3 (right sub�gure of Figure 1).
The same scheduling process is repeated as long as there are active
requests.

4.4 Discussion of c6 and c0

We provide insights on both proposed causal policies, c6 and c0 .
We �rst de�ne<c6

C ,C (8, 9) for two active requests 8 and 9 in &C as
follows

<c6

C,C (8, 9) =
5 (48 � C) + 5 (4 9 � max

C 0 2 [0 9 ,C�1]
Gc

6

9,C 0C
0)

5 (4 9 � C) + 5 (48 � max
C 0 2 [08 ,C�1]

Gc
6

8,C 0C
0)
. (9)

If c6 schedules request 8 2 &C in slot C then the following corollary
applies.

C�������� 1. Policy c6 schedules an update transmission in slot
C to active request 8 2 &C if and only if min92&C \{8 }<

c6

C ,C (8, 9) � 1.

P����. Since c6 schedules an update transmission in slot C to
active request 8 2 &C , it follows that 89 2 &C \ {8}, 5 (48 � C)� 5 (48 �
maxC 0 2 [08 ,C�1]G

c6

8,C 0C
0) � 5 (4 9 � C) � 5 (4 9 � maxC 0 2 [0 9 ,C�1]G

c6

9,C 0C
0),

which implies that

8 9 2 &C \ {8 },
5 (48 � C) + 5 (4 9 � max

C 0 2 [09 ,C�1]
Gc

6

9 ,C 0C
0)

5 (4 9 � C) + 5 (48 � max
C 0 2 [08 ,C�1]

Gc
6

8,C 0C
0)
� 1.

This is equivalent to saying that

min
9 2&C \{8}

5 (48 � C) + 5 (4 9 � max
C 0 2 [09 ,C�1]

Gc
6

9 ,C 0C
0)

5 (4 9 � C) + 5 (48 � max
C 0 2 [08 ,C�1]

Gc
6

8,C 0C
0)
� 1.

We can similarly prove the other direction of the condition, which
concludes the proof. ⇤

It follows from Corollary 1 that c6 schedules in every slot the

request 8⇤ 2 argmax
82&C

min

92&C \{8 }
<c6

C,C (8, 9)
�
. In comparison with c0 ,

if we set 8C,88 2 &C ,)̂c0

8,C ,C+1 = ;, then 88, 9 2 &C , <c0

C,C (8, 9) is equal
to<c6

C,C (8, 9) and c0 becomes equivalent to c6 . In other words, if c0
does not tentatively schedule requests, then it is equivalent to the
greedy request scheduling policy c6 .

According to the above derivation, c6 does not tentatively sched-
ule active requests at time C and takes a restrictive approach by
prioritizing the scheduling of any active requests that have not
been scheduled prior to C . On the other hand, c0 allows for more
�exibility in rescheduling active requests, where an active request
that has already been scheduled prior to some slot C , can be resched-
uled in C , even if this might be at the expense of not scheduling
other active requests that have not been scheduled yet prior to C .

70

Scheduling "Last Minute" Updates for Timely Decision-Making MSWiM ’23, October 30-November 3, 2023, Montreal, QC, Canada

It follows that c0 does not make any assumptions about the fu-
ture load of requests’ arrivals and its implications on the tentative
schedules. We therefore expect c0 to achieve a higher reward rate
than c6 in systems with small loads and requests with large active
window’s lengths. On the other hand, we expect that both c0 and
c6 would achieve a similar reward rate in systems with high-loads
and with requests that have small active windows, balanced on
the one hand by c6’s urgency to schedule new requests as soon
as they become active, and on the other hand by c0 attempting to
schedule/reschedule requests as close as possible to the end of their
active windows.

5 NUMERICAL EVALUATIONS
We conducted numerical evaluations to explore the performance
of our proposed policies c0 and c6 in maximizing the reward rate
introduced in Problem 1 and evaluate their results with respect to
other baseline policies which we introduce below.

5.1 Model
We shall present results for a convex reward function that satis�es
the conditions in Assumption 1. We let ⌘(G) = 4G in De�nition 4
and set U = 1, V = 2 and 2 = � 1

2 ln(0.9). It follows that the convex
exponential reward obtained after servicing request 8 under policy
c is Ac8 = 1 + 0.94�2(48�maxC 2 [B8 ,48] G

c
8,C C) . The maximal achievable

reward in this setting is equal to 1.9 whereas the smallest reward
obtained after servicing a request is 1+ 0.94�2Fmax . We consider the
setting where the number of new request arrivals at the beginning
of every slot is drawn from a Poisson distribution with intensity
_, whereas a request’s active window length is generated from a
discrete uniform distribution ⇠ * [1,Fmax]. We run simulations
over a �nite-time of length) = 1000, where) is the last slot after
which there are no longer any active requests in the system. Our
simulation results represent averages over randomly generated
requests’ arrivals as well as requests’ active windows lengths. We
ran 100 Monte-Carlo (MC) simulations and plotted both the mean
ratio of serviced requests for any policy c , i.e., (c)+1

|�)+1 | , and the
reward rate as well as the con�dence intervals corresponding to
the standard deviation of the estimator resulting from the MC
simulations.

5.2 Scheduling policies
In addition to presenting the results for all of c0 and c6 , we consider
two baseline policies. cA is a causal policy that randomly schedules
an active request in a slot. c'' schedules active requests in a round-
robin-like fashion which we describe as follows. At the beginning
of every slot, the set of new requests is considered for scheduling
right after the set of requests that arrived prior to this slot and have
not been scheduled yet.

Due to the brute-force nature of the optimal o�ine policy c⇤ we
provide instead an upper bound (UB) on the maximal achievable
reward-rate, which is equal to the product between the maximal
ratio of serviced requests (achieved by c6) and the maximal achiev-
able reward which is equivalent to 1.9 in this setting, normalized
by the total number of requests �) .

0.1 0.5 1 1.5 2 2.5

0.4

0.6

0.8

1

R
a
tio

 o
f
se

rv
ic

e
d
 r

e
q
u
e
st

s

a

g

r

RR

(a) Ratio of serviced requests vs. _.

0.1 0.5 1 1.5 2 2.5
0

0.3

0.6

0.9

1.2

1.5

1.8
2

R
e
w

a
rd

-r
a
te

a

g

r

RR

UB

(b) Reward-rate vs. _.

Figure 2: Ratio of serviced requests and reward-rate when
the reward is convex,Fmax = 30 and _ is increasing.

5.3 On the impact of the load of requests with
�xed maximal window length

We �x Fmax = 30 and increase _ from 0.1 to 2.5. A �rst interest-
ing observation is that all of c0 , c6 and c'' maximize the ratio
of serviced requests in both regimes where _ 0.4 and _ � 1.6.
Whereas for 0.4 _ 1.6, c6 maximizes the ratio of serviced
requests. Another interesting observation is that for _ 0.7, the
ratio of serviced requests achieved by c6 is constant and equal to 1,
whereas the reward-rate achieved by c6 is signi�cantly decreasing
in that range. The following behavior is due to the fact that c6
maximizes the number of serviced requests at the expense of sched-
uling requests closer to the end of their active windows. Therefore,
this justi�es that c6 does not maximize the reward rate in low-load
systems.

On the other hand, c0 achieves the largest reward-rate among all
proposed causal policies for _ 2.1 even if it is linearly decreasing
as _ increases. The linear decrease in the reward-rate is justi�ed
since c0 may reschedule active requests in slots closer to their end
times in an attempt to maximize the cumulative reward, which
may come at the expense of servicing requests that have not been
scheduled yet.

Finally, for _ � 2.1, both c0 and c6 achieve the largest reward-
rate, close to the maximal achievable reward-rate, which is aligned
with our previous analysis suggesting that while c0 is superior
in systems with low-loads, both c0 and c6 achieve similar perfor-
mance in systems with high requests’ arrival rate.

71

MSWiM ’23, October 30-November 3, 2023, Montreal, QC, Canada Jean Abou Rahal and Gustavo de Veciana

2 5 10 15 20 25 30 35 40
0.5

0.6

0.7

0.8

0.9

1

R
a
tio

 o
f
se

rv
ic

e
d
 r

e
q
u
e
st

s

a

g

r

RR

(a) Ratio of serviced requests vs. Fmax.

2 5 10 15 20 25 30 35 40
0.5

1

1.5

2

R
e
w

a
rd

-r
a
te

a

g

r

RR

UB

(b) Reward-rate vs. Fmax.

Figure 3: Ratio of serviced requests and reward-rate when
the reward is convex, _ = 1 andFmax is increasing.

5.4 On the impact of increased update window
�exibility

We �x _ = 1 and increaseFmax from 2 to 40. The results are shown
in Figure 3. A �rst observation is that asFmax increases, the ratio
of serviced requests under c0, c6 and c'' increases because of
the additional �exibility in scheduling requests in more slots. For
Fmax 3, we observe that both c0 and c6 achieve the same reward-
rate. ForFmax � 4, c0 achieves in a higher reward-rate than any
of the other proposed causal policies. An interesting observation is
that the reward-rate achieved by c6 is clearly decreasing asFmax
increases. There are two factors that concurrently lead to the fol-
lowing phenomenon, the �rst one being that forFmax � 4, the ratio
of serviced requests under c6 slowly increases asFmax increases,
and the second one being that the minimal reward obtained from
servicing a request is decreasing asFmax increases.

That said, and as aligned with our previous discussions, c0 is
superior to c6 in such settings with �xed arrival rate but requests
with large active windows, since it allows for more �exibility in
scheduling updates as close as possible to the requests’ end times,
whereas c6 is driven towards maximizing the ratio of scheduled
requests with less priority to scheduling those requests closer to
their end times.

6 CONCLUSION
In this paper we have developed amodel where updates are required
by requests prior tomaking timely decisions regarding time-varying
processes they’re interested in. Requests can receive updates only
within time windows of �nite length. A key aspect is the design
of a reward function that captures the importance of scheduling

the freshest update transmission to a request as close as possible to
the decision time as well as scheduling policies that achieve high
rewards in adversarial settings. A key part of our future work is to
extend our model to a real-time information market that includes
multiple servers and allows for multiple updates’ transmissions per
slot by matching requests to servers through e�cient algorithms.

7 ACKNOWLEDGMENTS
We would like to thank the support of the National Science Foun-
dation Award CNS-2212202.

REFERENCES
[1] JeanAbou Rahal, Gustavo de Veciana, Takayuki Shimizu, andHongsheng Lu. 2020.

Optimizing timely coverage in communication constrained collaborative sensing
systems. In 2020 18th International Symposium on Modeling and Optimization in
Mobile, Ad Hoc, and Wireless Networks (WiOPT). IEEE, 1–8.

[2] Jean Abou Rahal, Gustavo de Veciana, Takayuki Shimizu, and Hongsheng Lu.
2022. Optimizing timely coverage in communication constrained collaborative
sensing systems. IEEE Transactions on Control of Network Systems (2022).

[3] Antonio Franco, Björn Landfeldt, and Ulf Körner. 2019. Analysis of Age of
Information threshold violations. In Proceedings of the 22nd International ACM
Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems.
163–172.

[4] Julian Heinovski, Jorge Torres Gómez, and Falko Dressler. 2022. A Spatial Model
for Using the Age of Information in Cooperative Driving Applications. In Proceed-
ings of the 25th International ACMConference on Modeling Analysis and Simulation
of Wireless and Mobile Systems. 85–94.

[5] Hoai Hoang, Magnus Jonsson, Ulrik Hagstrom, and Anders Kallerdahl. 2002.
Switched real-time ethernet with earliest deadline �rst scheduling protocols
and tra�c handling. In Proceedings 16th International Parallel and Distributed
Processing Symposium. IEEE, 6–pp.

[6] Sanjit Kaul, Roy Yates, and Marco Gruteser. 2012. Real-time status: How often
should one update?. In 2012 Proceedings IEEE INFOCOM. IEEE, 2731–2735.

[7] Antzela Kosta, Nikolaos Pappas, and Vangelis Angelakis. 2017. Age of information:
A new concept, metric, and tool. Foundations and Trends in Networking 12, 3
(2017), 162–259.

[8] Chengzhang Li, Shaoran Li, Yongce Chen, Y Thomas Hou, and Wenjing Lou.
2020. AoI scheduling with maximum thresholds. In IEEE INFOCOM 2020-IEEE
Conference on Computer Communications. IEEE, 436–445.

[9] Chengzhang Li, Qingyu Liu, Shaoran Li, Yongce Chen, Y Thomas Hou, and
Wenjing Lou. 2021. On scheduling with AoI violation tolerance. In IEEE INFOCOM
2021-IEEE Conference on Computer Communications. IEEE, 1–9.

[10] Chengzhang Li, Qingyu Liu, Shaoran Li, Yongce Chen, Y Thomas Hou, Wenjing
Lou, and Sastry Kompella. 2022. Scheduling With Age of Information Guarantee.
IEEE/ACM Transactions on Networking (2022).

[11] Jörg Liebeherr, Dallas E Wrege, and Domenico Ferrari. 1996. Exact admission
control for networks with a bounded delay service. IEEE/ACM transactions on
networking 4, 6 (1996), 885–901.

[12] Shivendra S Panwar, Don Towsley, and Jack K Wolf. 1988. Optimal scheduling
policies for a class of queues with customer deadlines to the beginning of service.
Journal of the ACM (JACM) 35, 4 (1988), 832–844.

[13] Xiaoqi Qin, Yangyang Xia, Hang Li, Zhiyong Feng, and Ping Zhang. 2021. Dis-
tributed data collection in age-aware vehicular participatory sensing networks.
IEEE Internet of Things Journal 8, 19 (2021), 14501–14513.

[14] Nived Rajaraman, Rahul Vaze, and Goonwanth Reddy. 2021. Not just age but age
and quality of information. IEEE Journal on Selected Areas in Communications 39,
5 (2021), 1325–1338.

[15] Li-On Raviv and Amir Leshem. 2018. Maximizing service reward for queues with
deadlines. IEEE/ACM Transactions on Networking 26, 5 (2018), 2296–2308.

[16] Kumar Saurav and Rahul Vaze. 2021. Online energy minimization under a peak
age of information constraint. In 2021 19th International Symposium on Modeling
and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt). IEEE, 1–8.

[17] Yin Sun, Elif Uysal-Biyikoglu, RoyD Yates, C Emre Koksal, andNess B Shro�. 2017.
Update or wait: How to keep your data fresh. IEEE Transactions on Information
Theory 63, 11 (2017), 7492–7508.

[18] Vishrant Tripathi, Igor Kadota, Ezra Tal, Muhammad Shahir Rahman, Alexan-
der Warren, Sertac Karaman, and Eytan Modiano. 2022. WiSwarm: Age-of-
Information-based Wireless Networking for Collaborative Teams of UAVs. arXiv
preprint arXiv:2212.03298 (2022).

[19] Bingkun Yao, Hong Gao, Yang Zhang, Jinbao Wang, and Jianzhong Li. 2022.
Maximum AoI Minimization for Target Monitoring in Battery-free Wireless
Sensor Networks. IEEE Transactions on Mobile Computing (2022).

72

