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Abstract— In this paper, we study learning-assisted multi-user
scheduling for the wireless downlink. There have been many
scheduling algorithms developed that optimize for a plethora
of performance metrics; however a systematic approach across
diverse performance metrics and deployment scenarios is still
lacking. We address this by developing a meta-scheduler – given
a diverse collection of schedulers, we develop a learning-based
overlay algorithm (meta-scheduler) that selects that “best”
scheduler from amongst these for each deployment scenario.
More formally, we develop a multi-armed bandit (MAB)
framework for meta-scheduling that assigns and adapts a score
for each scheduler to maximize reward (e.g., mean delay, timely
throughput etc.). The meta-scheduler is based on a variant of
the Upper Confidence Bound algorithm (UCB), but adapted
to interrupt the queuing dynamics at the base-station so as
to filter out schedulers that might render the system unstable.
We show that the algorithm has a poly-logarithmic regret in the
expected reward with respect to a genie that chooses the optimal
scheduler for each scenario. Finally through simulation, we show
that the meta-scheduler learns the choice of the scheduler to
best adapt to the deployment scenario (e.g. load conditions,
performance metrics).

Index Terms— Online learning, bandit algorithms, upper con-
fidence bound, wireless networks, scheduling.

I. INTRODUCTION

MULTI-USER scheduling for wireless downlink systems
is a particularly challenging task for two key reasons.

First, mobile users and services may have diverse performance
goals/requirements that should ideally be optimized over a
wide variety of traffic loads/mixes and heterogeneous user
service rates that can vary by over an order of magnitude.
Second, because mobile users’ see time-varying service rates,
it is desirable to incorporate some form of opportunistic
scheduling, favoring scheduling users when their service rates
are high. To address these challenges wireless schedulers use
a combination of the current channel conditions (e.g., obtained
through channel quality feedback from mobile users) and
current queue backlogs to dynamically assign users to channel
resources so as to meet the desired various performance
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objectives including, e.g., throughput optimality (stability),
mean packet/flow delay, delay tails, timely throughput, video
quality of experience, etc.

Although a substantial number of scheduling algorithms
have been proposed, solutions that are able to systematically
address the above mentioned challenges are still lacking.
Indeed, an algorithm best suited for a given scenario may
depend on a variety of factors including traffic load/mix and
users’ channels, or more generally on the usage patterns
associated with the time of day.1 Moreover in some cases the
desired performance metrics for a subset of users may not be
easily pre-specified, e.g., measures of video quality, whence it
is not clear what type of scheduler to deploy. Furthermore,
even if one has access schedulers which are fine tuned to
particular scenarios (e.g., learned through a reinforcement
learning (RL) algorithm), we typically have no performance
guarantees over the wide range of settings typical of wireless
systems. Whence it is unclear that it is safe to deploy such
scheduling policies.

In this paper, we propose a meta-scheduler – an online
learning (bandit) algorithm which for a given operational
scenario dynamically selects the best scheduler from a set
of predefined policies (e.g., MaxWeight, Log rule, Exp rule,
Priority rule, RL schedulers, etc.). The scheduler in turn, deter-
mines user-to-channel assignments. In our approach, schedul-
ing policies are viewed as bandit arms, and the meta-scheduler
dynamically chooses the scheduler (aka plays an arm) based
on the mobile users’ feedback. The goal is to provide a
learning framework that efficiently identifies the best among a
pre-selected set of state-of-the-art policies for a given under-
lying scenario (characterized by traffic, channel states, user
metrics, etc.)

In adapting the bandit framework to our queueing setting,
we need to address two challenges: (i) Arbitrarily switching
among schedulers over time can lead to queue instability, even
if each of the schedulers is stable. Indeed, one can show that
switching between two MaxWeight schedulers with different
weights can lead to unstable queues. (ii) If one or more of
the possible schedulers is unstable for a given scenario (e.g.
a round-robin scheduler in a high-load wireless setting), then
a poor choice may lead to long term instability.

Our approach uses the fact that stable queueing systems
typically exhibit cyclical sample-paths associated with busy
periods for the overall system. Under appropriate assumptions,
the queue dynamics in a busy period are conditionally (given
the scheduling policy) independent. Our meta-scheduler thus
determines which scheduler (arm to play) only at the beginning

1As an example, consider a set of users with different latency requirements.
When the traffic load is low, it may be desirable to give scheduling priority
to users with stricter packet deadlines without degrading other users’ perfor-
mance; when the load increases, however, a fairer scheduler may be preferred.
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of cycles and the chosen scheduler is maintained for the
duration of the cycle ensuring independent reward samples
across cycles). Further to ensure that cycles do not have
infinite durations, the meta-scheduler interrupts2 cycles that
have exceedingly long durations. These decisions have to be
properly designed such that cycles due to unstable schedulers
(which have unbounded cycle lengths) are played infrequently,
and when played, get interrupted (truncated) as soon as pos-
sible. Further “good” cycles associated with stable schedulers
should not get interrupted. As we will see, designing a sound
interruption mechanism in conjunction with online learning
through bandit feedback is crucial designing a meta-scheduler
which achieves a low regret with respect to a genie algorithm
(baseline that always plays the best/highest-reward scheduler
for a particular scenario).

Finally, it is worth noting that there are possibly two
parallel methodologies to systemically address the scheduling
problem for various environments/applications. The first one
is to formulate scheduling as an MDP problem for any given
performance metric, and utilize a data-driven method to train
and learn the optimal strategy for the given model, i.e., the
reinforcement learning approach. Although this is a powerful
method to generate new schedulers, the training process typ-
ically requires considerable exploration of different regimes
and a large computational effort, and is often conducted offline
(i.e., before deployment). Therefore, it is essential to properly
model the performance metric and traffic environment where
the scheduler will be deployed, which further raises difficulty
and safety concerns (due to the mismatch between the training
and deployment environments). By contrast, in this paper
we tackle the problem from the second perspective. We will
answer the following question: Given a set of existing policies
(which could include one or more pre-trained RL sched-
ulers optimized for specific settings), how one can determine
the best scheduler among these candidates without assum-
ing prior knowledge on the current environment/performance
metric. Our bandit framework learns in an online manner
with light-weight computation and relatively low convergence
time needed, and can in principle keep re-optimizing to
changing scenarios (through re-running the meta-scheduling
algorithm when the environment significantly changes). When
the optimal policy is unclear, which is common in many real
applications given all the uncertainties, our approach transfers
the burden of choosing the best suited environment-specific
state-of-the-art scheduler to a learning algorithm.

A. Contribution

Our main contributions are the following:
• Meta-scheduler: We develop a meta-scheduler algorithm

based on (UCB + Interruptions). At the beginning of
each queuing cycle, the meta-scheduler determines a
scheduler to be used for that cycle using a variant of
the Upper Confidence Bound (UCB) Algorithm. This
consists of (i) determining a score for each scheduler
(empirical reward + confidence bonus) that is multiplied
by an indicator that estimates if each scheduler is stable
(meaning the cycle times are finite), and choosing the
scheduler with the highest score; and (ii) determining an
interrupt threshold for the cycle, at which time all packets

2A cycle is interrupted by forcibly making all queues to be zero, e.g.,
by dropping packets in the buffers.

in the queues are dropped if the cycle has not ended
before then.

• Theoretical guarantees: For the meta-scheduler, we show
that the regret (expected cumulative difference in reward)
with respect to a genie algorithm that chooses the
optimal (highest expected reward) scheduler scales as
O(log n), where n is the number of cycles3 and cor-
respondingly O(log2 τ) where τ is the time-slot index.
Further, the expected number of packets dropped due to
interruptions also scales as O(log2 τ). When packet drop
is forbidden, an alternative mechanism to clear up the
queueing system is introduced at a slight expense of the
total regret.

• Simulation Results: We simulate the meta-scheduler in
a variety of wireless settings. These include different
reward for performance metrics such as mean delay,
delivering packets on time, and penalizing bursty service,
and various schedulers including the MaxWeight, Exp,
Log, max-rate and round-robin and opportunistic priority,
and different load conditions. Our simulations show that
as conditions vary (e.g. different loads, or different per-
formance metrics), the meta-scheduler adapts to choose
a different scheduler that maximizes the reward for each
scenario.

B. Related Work

Wireless Scheduling. The design of multi-user wireless
schedulers has received substantial attention, see e.g., [2]
and references therein. For infinitely backlogged user queues
researchers have devised various classes of opportunistic
schedulers that optimize the sum user utility (fairness criteria)
of their long-term throughputs or so called timely throughput,
see e.g., [3]–[7]. For settings where user queues are subject
to stochastic arrivals e.g., packet streams, initial work focused
on characterizing throughput-optimal schedulers which ensure
queue stability if indeed stability can be achieved without
prior knowledge of the traffic load and service capacity.
These include, for example the MaxWeight rule [8], [9], Exp
rule [10] and Log rule [11], which in addition to throughput
optimality achieve different user-level performance objectives.
Meanwhile, non-throughput-optimal policies can in certain
load scenarios provide better performance, e.g., max-rate,
proportionally fair, round-robin and the priority-based rules.
Although there is substantial work in this area, the question
of how to realize the best performance tradeoffs among
heterogeneous users with diverse performance goals remains
open and challenging.

Not surprisingly recently, reinforcement learning (RL)
approaches have been proposed to address complex scheduling
problems, including job scheduling for data centers [12] and
wireless scheduling in various settings [13]–[16]. RL algo-
rithms provide a general approach to determine good sched-
ulers for specific scenarios and possibly, but substantially more
challenging, ones that are good for a range scenarios in terms
of the user traffic, service capacity and or performance objec-
tives. Despite showing great potential in several applications,
providing theoretical performance guarantees for RL based
schedulers remains an open question. Limited success has been

3The regret scaling is slightly weaker under weaker assumptions on the
cycle tail distributions, please see Section IV for details.
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achieved in some simple settings (in terms of traffic model or
user metrics) – see e.g., [17]–[19]. However, advanced RL
methods, especially those involving neural networks which
have attracted the most attention in practice, typically lack
rigorous performance guarantees, and thus it is unclear they
are safe to deploy. The goal of this paper differs from the
common focus of designing practically or theoretically good
RL schedulers in current RL-networking literature. Instead,
our framework aims at better utilizing the knowledge of exist-
ing schedulers (including RL schedulers) to address various
scheduling scenarios (in particular those with complicated per-
formance metrics or traffic models), while ensuring queueing
stability.

In the literature, some authors proposed scheduling poli-
cies that utilize online statistical learning, e.g., [20], [21],
which involve learning system statistics online to improve
performance of certain schedulers. We note that the above
methodology is different from the bandit-based online learning
framework we propose in this paper. Our framework is adap-
tive to statistics, but by learning the best scheduler among a
predefined candidate set of policies for a specific scenario,
instead of refining specific policies.

Multi-armed Bandits. Multi-armed Bandits (MAB) prob-
lems have been studied for many decades, with applications to
clinical trials, recommendation systems and online advertising;
see [22] and [23] for a comprehensive discussion on the
state-of-art. In our model, each time we choose a new arm,
the corresponding (random) cycle time can be interpreted
as a cost. Such problems where each action costs non-unit
amount of resources is referred to as budgeted bandits. Unlike
classical MAB settings, the regret is not parameterized by a
time horizon; instead the regret parameterization (and thus,
the best arm) involves both the reward and cost variables,
which significantly increases the complexity of the problem.
This line of work was started by [24] and has been followed
in many directions by [25]–[27].

A recent study on budgeted bandits in [28] introduces the
idea of MAB with interruptions. At each time, a server works
on a single task that has a heavy-tailed service completion
time. A task can be interrupted if it is taking too long (but
with loss in reward). The authors in [28] develop a variant
of the Upper Confidence Bound (UCB) algorithm [29] that
selects over (a finite set of) tasks as well as a finite set of
task interrupt thresholds to discard ongoing tasks, i.e. arms
are (task, interrupt-threshold) pairs. Their motivation is to
interrupt a task that takes too long so as to start a new one to
collect more rewards, and thereby benefit the total reward. Our
model is inspired by their work, but significantly differs in the
way that we deal with interruptions. In contrast to [28], our
goal is to eventually avoid any interruptions, thus, we do not
treat interruptions as arms of a bandit. Instead, we dynam-
ically increase the threshold for each task (aka scheduling
policy) to ensure we quickly filter out unstable policies for
which the cycle times are infinite, while leaving stable poli-
cies (eventually) uninterrupted. Algorithmically, our approach
modifies UCB with a multiplicative censoring that penalizes
interruptions from occurring too often, which ensures that
unstable arms (with infinite expected cycle completion times)
are aggressively eliminated.

Finally, bandit algorithms have also been applied to wireless
resource allocation problems more broadly. These include

studies in cognitive radio probing [30], spectrum access [31],
decentralized wireless computing [32], [33] and most recently,
cellular scheduling [34]. An earlier version of this paper was
presented in [1].

C. Notation

Throughout this paper, we use characters in bold font to
denote vectors and normal font to denote scalars. Random vari-
ables are indicated by capital letters unless stated otherwise.
We adopt the following technical abbreviations: “w.h.p.” for
“with high probability”, “a.s.” for “almost surely” and “i.i.d.”
for “independently and identically distributed”. Finally, we use
� for the {0, 1} indicator function.

II. MODEL SETTINGS

In this section, we consider a multi-arm bandit model for
the wireless scheduling problem. The goal is to formulate a
meta-scheduler that can explore different scheduling policies
and learn in an online manner which among the candidate
policies is the best, given a certain performance metric. Before
introducing the meta-scheduler in detail, we first describe the
traffic model and then describe the system from a perspective
of regenerative processes. We will see it is natural to allow
the meta-scheduler to switch policies only when the system
“regenerates”. Formal definitions of a meta-policy (policy of
a meta-scheduler) and its regret are given at the end of this
section.

A. Traffic and Service Model

We consider a packet-based queuing system with a set
of u different users, denoted by U , and a single server
(base station). The system operates in discrete time slots. For
simplicity, suppose all packets have the same size. At any time
t, define the random vector Q[t] = (Q1[t], · · · , Qu[t]) ∈ Z

u
+,

where Qi[t] denotes the number of packets of the i-th user at
the beginning of time slot t.

The random packet arrivals at time t are denoted by
A[t] = (A1[t], · · · , Au[t]) where Ai[t] has a integer-valued
distribution bounded by ā for any user i ∈ U . We assume
(A[t])t≥0 are i.i.d. across time and denote its expectation by λ.
The wireless channels’ service rates at time t are modeled by
a random vector S[t] = (S1[t], · · · , Su[t]) where Si[t] denotes
the service rate available to the i-th user at t. (S[t])t≥0 are
i.i.d. over time and also independent of the queue lengths and
arrival process. A scheduling policy will decide which user to
serve at each time slot based on the queue and channel state.

Let C denote the long-term capacity of the system (see [2]).
This means for any arrival rate that lies in Co (the interior of
C), there exists at least one policy that stabilizes the system
(the average queue lengths are finite). We require λ ∈ Co.
We say a policy is stable (with respect to λ) if it stabilizes
the system.

Now suppose there is a finite set of scheduling policies (or
arms in the bandit context), denoted by A. For a fixed λ ∈ Co,
A consists of both stable and unstable policies, denoted by
As(λ) and Au(λ). Assume that As(λ) �= φ.

B. Regenerative Dynamics

Suppose the arrival always occurs right after the beginning
of a slot while the transmission happen right before the end
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of a slot. We say the system returns idle when the sum of
users’ queue lengths is down to 0 from some positive value
at the end of a time slot. A cycle is defined as the interval
of time slots between two consecutive points in time when
the system returns idle.4 Further, without loss of generality,
we assume the system starts empty at the beginning of the
first slot. We can describe the system’s dynamics based on
such cycles as follows. The notation and definitions in this
section follows [28], with appropriate modifications to reflect
our setting.

Each arm k is associated with a stochastic process
((C(k)(n), U (k)(n)))n≥1 where n denotes the index of cycles.
If arm k is implemented after n-th time the system returns idle,
the system observes a random cycle length C(k)(n) (before it
returns idle again), and receives a sequence of non-negative
rewards U (k)(n) = (U (k)(n, i) : i = 1, 2, · · · , C(k)(n)) for
each time slot in the cycle. Note that C(k)(n) for n ≥ 1 are
i.i.d. and C(k)(n) ≥ 1 a.s..

Remark 1: To be precise, in order to make C(k)(n) i.i.d.
over cycles, in addition to i.i.d. arrivals and channels assumed
in our traffic and service model, it is necessary to assume
the scheduling policy k only uses information associated with
its current cycles. For example, a Markovian policy which
chooses a service vector at time t only based on the current
system states (e.g., S[t] and Q[t]), such as MaxWeight, Log
rule, etc., naturally satisfies this requirement. For a policy
that keeps internal states which utilize information from the
past, e.g., a proportionally fair scheduler using an exponential
moving average of past throughput, we need to additionally
reset internal states when a cycle begins.

We consider a reward scheme where the generated rewards
are i.i.d. over cycles and grow no faster than linearly with
corresponding time, which is formally stated in the next
assumption.

Assumption 1: The cycle reward sequence (U (k)(n))n≥1

for all k ∈ A are i.i.d. over n, and such that for l =
1, . . . , C(k)(n),

0 ≤
l∑

i=1

U (k)(n, i) ≤ r̄l, almost surely (1)

for some r̄ > 0.
Remark 2: This assumption holds, for instance, if each

packet is associated a bounded reward (e.g., over [0, 1]) upon
reception, and the cumulative reward over a time period is
thus bounded by the maximal number of packets transmitted
within that period, i.e., r̄ = āu. In practice, for example,
the cycle reward evaluated by a latency-sensitive user can
be the number of packets that arrive on time within a cycle.
It should be noted that the manner in which rewards are
calculated/defined is not necessarily known by the base station
in our model, which allows for more flexible user-customized
reward schemes.

We denote the (total) cycle reward by U (k)(n) =∑C(k)(n)
i=1 U (k)(n, i). Thus, it follows that U (k)(n) for n ≥ 1

are i.i.d. across cycles and bounded as follows:
0 ≤ U (k)(n) ≤ r̄C(k)(n), almost surely. (2)

4In technical terms, a cycle consists of an idle period plus a busy period.
When the system stays empty for a whole time slot, this slot is part of the
idle period rather than a new cycle.

One question regarding the process is how frequently a
policy forces the system to finish a cycle, i.e., the distribution
of C(k)(n), which is vital for the meta-scheduler discussed
in the sequel. When k is a stable arm, we have P(C(k)(n)<
∞)=1 and the system will start a new cycle infinitely often.
In addition, we have the following assumption on the cycle
length of a stable arm.

Assumption 2: For a given λ ∈ Co, we assume if arm k ∈
As(λ), C(k)(n) is a sub-exponential random variable. This
implies that, there exist (possibly λ-dependent) non-negative
parameters (ν2

k , αk), such that for all n ≥ 1,

P(|C(k)(n)−E[C(k)(n)]|≥ε) ≤

⎧⎪⎨
⎪⎩

2e−ε2/(2ν2
k) 0<ε≤ ν2

k

αk
,

2e−ε/(2αk) ε >
ν2

k

αk
.

(3)
Remark 3: This assumption implies that for stable arms

k ∈ As(λ), C(k)(n) has a light tail on the right (the
left side is bounded). When the system has bounded arrival
and channel distributions, and the policies considered are
Markovian, this assumption holds true following an argu-
ment of [35]. One can then show that the empirical aver-
age (1/n)

∑n
i=1 C(k)(i) is sub-exponential with parameters

(ν2
k/n, αk/n). By Assumption 1, i.e., (2), U (k)(n) is also sub-

exponential (with possibly larger parameters). Without loss
of generality, we will assume both C(k)(n) and U (k)(n) are
(ν2

k , αk)-sub-exponential, assuming the rewards are properly
normalized.

If an unstable arm is applied, however, the system is
transient and there is a chance that the system will never start
a new cycle as P(C(k)(n) = ∞) > 0 for all k ∈ Au(λ).
This suggests that an additional stopping mechanism is needed
when an unstable arm is explored by the meta-scheduler.

When k ∈ As(λ), observe that
(
(C(k)(n), U (k)(n))

)
n≥1

form a well-defined renewal-reward process. We next define
the renewal reward rate of a stable policy.

r(k) =
E[U (k)(1)]
E[C(k)(1)]

∀k ∈ As(λ). (4)

By Renewal Theory, this rate captures the rate of rewards
generated by a policy.

C. Meta-Scheduler, Feedback, and Interruptions

A meta-scheduler makes decisions on which arms to use
and when, so as to maximize the rate of rewards of the
system. In this paper, we will only consider meta-schedulers
that comply with the following rules:

(1) A meta-scheduler can switch to another arm when the
system returns idle;

(2) A meta-scheduler can interrupt a cycle, i.e., discarding
all packets currently in the system and forcing the system
to start a new cycle, so as to prevent unstable arms from
occupying the system indefinitely. Furthermore, as in [28],
we only consider conditions triggering such interruptions
solely based on cycle time: a cycle gets interrupted when its
length exceeds a threshold pre-selected before the cycle starts.

Remark 4: To allow for simpler analysis, we require that
all packets to be discarded when a cycle is interrupted.
As is shown later, a good meta-scheduler should be designed
such that this event occurs rarely. If such packet drops are
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unacceptable, instead of interrupting and dropping, we can
switch to a default policy that is guaranteed to be stable (e.g.,
MaxWeight) when an interruption is triggered, and a cycle can
be restarted when the system returns to the idle state. Later
we will show that the loss of rewards induced by this extra
process grows logarithmically in time.

There are several advantages in adopting those two rules.
First, even scheduling policies that might result in unstable
queues can be added to the mix, since the interruptions ensure
that cycle times remain bounded. Moreover, they simplify the
design of a meta-scheduler, since the system can be fully
characterized by cycle lengths and rewards, i.e., the collection
of processes {((C(k)(n), U (k)(n)))n≥1 : k ∈ A}, from the
meta-scheduler’s point of view regardless of how the actual
queues and channels vary with time. This guarantees the
independence of statistics for different arms and allows us
to apply classical MAB methodologies. Furthermore, such a
meta-scheduler preserves properties of regenerative processes
that help analysis.

According to the rules mentioned above, a meta-scheduler
can only make a decision when the system returns idle, which
consists of two selections: the arm and the interruption thresh-
old. Formally, we let π = (πn)n≥1 be a meta-policy (policy of
a meta-scheduler), where πn = (An, Ln) ∈ A×(Z+∪{+∞}).
A decision πn = (k, l) implies that arm k is selected for n-th
cycle, and the cycle will be interrupted immediately if it lasts
over l time slots.

In order to model cycles under our interruption policy, we let

Ĉ(k,l)(n) = min[C(k)(n), l] and Û
(k,l)

(n) = (U (k)(n, i) :
i = 1, 2, · · · , Ĉ(k,l)(n)). The observed (total) cycle reward

Û (k,l)(n) =
∑Ĉ(k,l)(n)

i=1 U (k)(n, i). Note that it still holds that
0 ≤ Û (k,l)(n) ≤ r̄Ĉ(k,l)(n) almost surely.

If πn = (k, l), we assume stochastic feedback Zn is received
for n-th cycle by the meta-scheduler as follows,

Zn = (Ĉ(k,l)(n), Û (k,l)(n),�{Ĉ(k,l)(n) < C(k)(n)}).
An illustration of the meta-policy dynamics is shown in Fig-

ure 1. Note that the reward for each single time slot is not
required in the feedback. This suggests that if performance is
evaluated at the user side, additional communication cost only
occurs at the end of a cycle.

We assume πn is solely based on the history of actions and
feedback up to the decision. Thus, an admissible meta-policy
considered in this paper is formally defined as follows. This
is analogous to a similar notion in [28].

Definition 1 (Admissible Meta-Policy): We call a meta-
policy π = (πn)n≥1 admissible if πn ∈ Fn where Fn :=
σ(π1, Z1, π2, Z2, · · · , πn−1, Zn−1) is the σ-field induced by all
the random decisions and feedback before n-th cycle.

Our goal is to design a good meta-policy that satisfies the
following two objectives: (1) it suffers negligible throughput
loss, i.e., the number of packets discarded due to interruptions
by the meta-scheduler is sub-linear in time, and (2) it has a
sub-linear regret over a given time horizon. We will define
the regret in the next section.

D. Regret

As in the traditional MAB setting, we are interested in the
regret of a meta-policy as compared to an optimal over a
given time horizon τ . The regret for the meta-policy π stems

from two reasons: (i) playing suboptimal arms (schedulers),
and (ii) interrupting ongoing cycles. To formally define the
regret, we follow a similar approach as in [28]. First, note
that the number of cycles within a time horizon τ is a random
variable, which can be viewed as a counting process.

Definition 2 (Counting Process): Consider a meta-policy π
that is admissible. The total time of the first n-th cycle can be
written as

Sπ
n =

n∑
i=1

∑
(k,l)∈A×Z+

�{πs = (k, l)}Ĉ(k,l)(i).

Define a counting process (Nπ[τ ])τ≥1 as follows.

Nπ[τ ] = max{n : Sπ
n ≤ τ}.

Note that Nπ[τ ] indicates the number of completed cycles
within time horizon τ .

Definition 3 (Cumulative Reward): Given a time horizon τ ,
the cumulative reward for an admissible meta-policy π is a
random variable given as follows. (Denote Ñ := Nπ[τ ] for
notation simplicity.)

Rewπ[τ ] =
Ñ∑

i=1

∑
(k,l)

�{πi = (k, l)}Û (k,l)(i)

+
∑
(k,l)

�{πÑ+1 = (k, l)}
τ−Sπ

Ñ∑
j=1

U (k)(Ñ +1, j). (5)

The cumulative reward is the sum of (observed) cycle
rewards from the first Nπ[τ ] completed cycles and the reward
from the next uncompleted cycle up to time τ .

We call a meta-policy simple-static if the meta-scheduler
consistently selects an arm with no cycle interruption. Let π(k)

be the simple-static meta-policy selecting arm k, i.e., π
(k)
n =

(k, +∞), ∀n ≥ 1. In this paper, we define the regret with
respect to the best simple-static meta-policy πopt that is stable
and generates the most rewards (in expectation) within a
given time. By the renewal theorem, limτ→∞ Rewπ(k) [τ ]/τ =
r(k) a.s. for all k ∈ As(λ). This implies that πopt = π(k∗)

where k∗ = argmaxk∈As(λ) r(k). The regret is formally
defined as follows.

Definition 4 (Cumulative Regret): Let πopt be the optimal
simple-static meta-policy, i.e.

πopt
n = (k∗,∞), ∀n ≥ 1 (6)

where k∗ = argmaxk∈As(λ) r(k). The regret of meta-policy π
with respect to πopt over any time horizon τ is defined as

Regπ[τ ] = E[Rewπopt [τ ] − Rewπ[τ ]]. (7)
In the remaining sections, we will simply refer to k∗ as the

optimal arm (assumed to be unique). For notation simplicity,
we suppress k∗ as a single asterisk in the superscript when
there is no ambiguity (e.g., r(∗) := r(k∗)).

III. UCB META-SCHEDULER WITH INTERRUPTION

To guarantee negligible throughput loss and a sub-linear
regret as discussed in Section II, the meta-scheduler should
wisely select the arms and interruption thresholds such that
the optimal arm is being applied at most of the time, and
the packet discard hardly occurs. This implies the following
guidelines when designing the algorithm: 1) the number of
times a suboptimal arm (either unstable or stable) gets selected
should be sub-linear in time; and 2) the unstable arms’
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Fig. 1. Illustration of a meta-policy selecting arms from A = {k, k′}. At the start of the process, the meta-scheduler makes decision π1 = (k, l1), and
receives feedback Z1 after the system experiences a full cycle. Then the meta-scheduler decides π2 = (k′, l2), but has to interrupt the cycle as the system
does not return idle before the cycle time reaches l2. The meta-scheduler then collects feedback Z2 and starts a new cycle with π3 = (k, l3).

(possibly infinitely) long cycles must be stopped, while the
cycles of the optimal arm should be preserved with little inter-
ruption. Motivated by these guidelines, we propose a UCB-
type meta-scheduler with a properly-designed interruption
rule.

To simplify notation and avoid ambiguity, let C
(k)
s and

Ĉ
(k,l)
s (U (k)

s and Û
(k,l)
s ) be the full and observed cycle

length (reward) of arm k when it is selected the s-th time
(we call it s-th sample of k). Denote by T

(k)
n as the number

of times arm k has been chosen in the first n decisions. Thus,
if An = k,

(C(k)

T
(k)
n

, U
(k)

T
(k)
n

) = (C(k)(n), U (k)(n)).

Similar to a classical UCB algorithm, the meta-scheduler
learns the arm statistics by keeping track of the empirical
averages of cycle lengths and rewards. We formally define
the empirical rate of arm k after s samples as R̂

(k)
s . For all

s ≥ 1,

R̂(k)
s =

s∑
i=1

Û
(k,F

(k)
i )

i

s∑
i=1

Ĉ
(k,F

(k)
i )

i

, (8)

where F
(k)
i denotes the threshold level for arm k’s i-th sample.

As a convention, the empirical rate equals 0 when s = 0. Let
R̂(k)(n) := R̂

(k)

T
(k)
n

be the empirical rates for the k-th arm after
n-th cycle in the system.

As an overview, we present a simplified version of our
meta-scheduler in Algorithm 1. The mathematical design of
key variables will be discussed in a rigorous manner in the
next section. Before that, let us first give some intuition as
follows.

First, we observe that to avoid constantly interrupting a sta-
ble arm, it is necessary (and sufficient) to apply an interruption
rule where the threshold of each arm is set to slowly grow with
the number of samples (note that otherwise a fixed threshold
will always result in linear throughput loss). Hence, we define
a threshold function fs as in line 2. For any arm k, we will
use fs as the interruption threshold for its s-th sample. With
this design, the expected number of interruptions imposed on

Algorithm 1 UCB Based Meta-Scheduler With Interruption
1: Input: Set of scheduling policies A.
2: Threshold Function: fs := β + κ log s.

� β and κ to be defined
3: Initialization: Run every arm k ∈ A once with interruption

threshold β, then initialize empirical rate R̂
(k)
1 .

4: for n = |A| + 1, |A| + 2, · · · do
5: [before cycle n]
6: for all k ∈ A do
7: Compute Exploration Bonus Δ(k)

n .
8: Compute Stability Indicator I

(k)
n .

� I
(k)
n : a Boolean variable

9: Arm decision:

An ∈ argmax
k∈A

I(k)
n × (R̂(k)(n−1) + Δ(k)

n ).

10: Cycle interruption decision:

Ln = f
T

(An)
n

.

11: [after cycle n]
12: Observe cycle feedback Û (An,Ln)(n), Ĉ(An,Ln)(n),

then update R̂(An)(n).

the optimal arm can be bounded by a constant if β and κ are
large enough.

The meta-scheduler starts with running each policy once
with an initial interruption level β and initializing the empirical
rate R̂

(k)
1 for any k ∈ A. After this initialization phase, before

each decision, the meta-scheduler will compare the “score”
(i.e., upper confidence bound) for each of its arms. The score
is the sum of its empirical reward rate and an exploration
bonus (line 7). The exploration bonus is used to compensate
for possibly under-performing empirical rate estimates in order
to ensure adequate exploration before finding committing to
optimal arm. We will show that w.h.p., R̂(∗)(n−1) + Δ(∗)

n >
r(∗) for any n ≥ |A|+1. Meanwhile, the score of a suboptimal
stable arm will be below r(∗) after it is sufficiently explored.
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Moreover, we design a stability indicator (line 8) to elim-
inate unstable arms by utilizing accumulated interruptions as
a signal indicating whether an arm frequently induces long
cycles. We keep track of the number of times each arm is
interrupted, and I

(k)
n is set 0 only if the total number of

interruptions exceeds a limit (which is a function of n).
After computing the exploration bonus and the stability

indicator, the meta-scheduler will pick the arm with the best
score B

(k)
n := R̂(k)(n−1)+ Δ(k)

n and a positive value of I
(k)
n

(line 9), and the threshold of that cycle is determined by the
threshold function (line 10). A new cycle then starts according
to this decision. When the cycle is finished, the meta-scheduler
observes the (possibly clipped) cycle length and reward before
updating the empirical rate for the selected arm. The updated
statistics are then used to determine the next decision.

IV. MAIN RESULTS AND DISCUSSION

Compared with previous works in the literature, our
UCB-type algorithm tackles more challenging assumptions on
cycle variables (sub-exponential instead of sub-Gaussian), and
further the cycle lengths can be unbounded with positive prob-
ability, due to unstable schedulers. Thus, it requires several
novel design choices such as dynamic interruption thresholds,
a stability indicator, and a suitably modified exploration bonus.
In this section, we will discuss these key design choices that
differ from the classical UCB, followed by the result of the
regret analysis.

A. Analysis of Key Design Choices

1) Hyper-Parameters: Before discussing the details of the
meta-scheduler, let us first introduce several parameters used
in our algorithm in the following assumption.

Assumption 3: We assume parameters μmin, μmax, rmax

and (ν2, α) are given a priori such that there exists a subset
of arms A0 satisfying

{k∗} ⊆ A0 ⊆ As(λ)
and for all k ∈ A0,

(1) μmin ≤ E[C(k)(1)] ≤ μmax.
(2) E[U (k)(1)|C(k)(1) = l] ≤ rmax l for all l ≥ 1. Note

that rmax exists by Assumption 1, and rmax ≥ r(∗).
(3) C(k)(1), U (k)(1) are both (ν2, α)-sub-exponential ran-

dom variables as described in Assumption 2. In addition,
we assume that the l-interrupted cycle reward Û (k,l)(1) is
(ν2, α)-sub-exponential for all l ≥ 2E[C(k)(1)].

In the algorithm, these parameters serve as hyper-parameters
that need to be further tuned. To remove ambiguity, for a given
set of hyper-parameters used in implementation, we will refer
to A0 as the largest set of arms which satisfy these conditions
with respect to those hyper-parameters. We assume k∗ ∈ A0

(as the weakest notion) to achieve sub-linear regret.
Remark 5: For technical reasons, we also require Û (k,l)(1)

to be sub-exponential under the same parameters5 (ν2, α)
as those of U (k)(1) when l is sufficiently large. This does
not make the assumption significantly stronger, since one can
always pick the parameters large enough to satisfy this con-
dition. The condition l ≥ 2E[C(k)(1)] is chosen for simplicity.

5Note that Û (k,l)(1) is sub-exponential (indeed bounded). However, the fact
that U (k)(1) is (ν2, α)-sub-exponential does not imply the same parameters
suffice Û (k,l)(1).

Indeed, the condition can be replaced by l ≥ (1+γ)E[C(k)(1)]
for any γ > 0 (the algorithm parameters will be changed
accordingly), which will be explained in Section IV-A.4.

2) Threshold Function: Recall that the interruption thresh-
old for arm k’s s-th sample is given by

fs := β + κ log s. (9)

We require β and κ satisfy that

β > μmax + ν2/α, κ/α ≥ 4.

Under these conditions, and by Assumption 2, it is easy
to verify that the interruption probability for the best arm
P(C(∗)

s > f
(∗)
s ) ≤ 1/s2. This implies that, under our threshold

function, the expected number of interruptions of the best arm
is bounded by a constant (since

∑∞
s=1 1/s2 = π2/6), and thus

packet drops induced by the “wrong” interruptions do not grow
faster than O(log n) over n cycles.

3) Stability Indicator: The stability indicator is defined as
follows:

I(k)
n =

⎧⎪⎪⎨
⎪⎪⎩

1 if

T
(k)
n−1∑

i=1

�{C(k)
i >fi}<

π2

6
+
√

2T
(k)
n−1log n,

0 otherwise.

(10)

The Bernoulli random variable �{C(k)
s > fs} denotes

whether the s-th sample for arm k is clipped by its threshold.
The value E[

∑s
i=1�{C(k)

i > fi}] is bounded by π2/6 for the
optimal arm as previously discussed, but grows linearly for
the unstable arms (since they are frequently clipped).

This motivates us to distinguish unstable arms by comparing
the total number of interruptions of each arm to π2/6 plus a
concentration bound. By McDiarmid’s inequality, the optimal
arm’s indicator I

(∗)
n is equal to 1 w.h.p. for any n ≥ 1.

In contrast, for any unstable k, the value of
∑s

i=1 �{C(k)
i >fi}

will eventually exceed the limit.

4) Upper Confidence Bound: As discussed in the last
section, an exploration bonus term is designed to compensate
the empirical reward rates of arms for arm selection. Specif-
ically, at least for the best arm, the empirical rate plus its
exploration bonus should be above the true rate w.h.p., which
ensures the best arm gets sufficiently explored.

The exploration bonus is formally defined as follows:
Δ(k)

n = Δ(ε(k)
n , ε′(k)

n ) (11)

where

Δ(ε, ε′) :=
ε(1 + rmax) + ε′

μmin + ε
, (12)

and

ε(k)
n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
6ν2 log n

T
(k)
n−1

√
6ν2 log n

T
(k)
n−1

≤ ν2

α
,

6α log n

T
(k)
n−1

otherwise,

(13)

ε′(k)
n =

1

T
(k)
n−1

T
(k)
n−1∑

i=1

rmax

iκ/2α
e−β/4α(β+2α+κ log i+1). (14)

To see why this term works, first let us suppose every arm
is stable and there is no interruption, i.e., fs = ∞. As in [28],
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we can introduce the following term,

Δ̄(ε) :=
ε(1 + rmax)
μmin + ε

≥ r(∗) − E[U (∗)
1 ] − ε

E[C(∗)
1 ] + ε

. (15)

By simple observation, we have that

{R̂(∗)
s + Δ̄(ε) ≤ r(∗)}

⊂{1
s

s∑
i=1

Ĉ
(∗,fi)
i >E[C(∗)

1 ]+ε}
⋃

{1
s

s∑
i=1

Û
(∗,fi)
i ≤E[U (∗)

1 ]−ε}.

(16)

These two events at the bottom allow us to use the con-
centration properties stated in Assumption 2 to bound the
probability of the original event. Following a trick in [36],
let ε = εn,s where

εn,s =

⎧⎪⎪⎨
⎪⎪⎩

√
6ν2 log n

s

√
6ν2 log n

s
≤ ν2

α
,

6α log n

s
otherwise.

(17)

We can then show that both of those two events happen
with probability 1/n3 for all s ≤ n. Hence, by taking a
union bound on all possible T

(∗)
n−1 ≤ n, we have that w.h.p. the

exploration bonus Δ̄(ε
n,T

(∗)
n−1

) suffice to compensate the best

arm’s empirical rate R̂(∗)(n) such that R̂(∗)(n)+Δ̄(ε
n,T

(∗)
n−1

) >

r(∗), which is as desired.
When we consider the threshold fs as defined in (9),

however, Δ̄ is not sufficient to compensate for R̂
(∗)
s to exceed

r(∗). This is due to the bias of estimating E[U (∗)
1 ] by the

average truncated reward (1/s)
∑s

i=1Û
(∗,fi)
i , and the second

bottom event in (16) is no longer with a negligible probability.
This motivates us to adjust ε to account for the additional bias.

When β >(1+γ)(μmax+ν2/α), by simple algebra, we have
that the bias is bounded as follows (see the detailed derivation
in Appendix A in the supplementary material).

E[U (∗)
1 ] − 1

s

s∑
i=1

E[Û (∗,fi)
i ]

≤ ε′n,s :=
1
s

s∑
i=1

rmax

iκ/2α
(β+2α+κ log i+1)e−βγ/2(1+γ)α.

(18)

For simplicity, we let γ = 1 in our algorithm. Note that
ε′n,s ∼ O(log s/s) when κ/α ≥ 4.

Now we can define an updated exploration bonus Δ(ε, ε′)
as in (12). Note that

Δ(ε, ε′) :=
ε(1 + rmax) + ε′

μmin + ε
≥ r(∗) − (E[U (∗)

1 ] − ε′) − ε

E[C(∗)
1 ] + ε

.

(19)

Following the same logic as in (16), we can conclude6 that
w.h.p., R̂(∗)(n) + Δ(ε

n,T
(k)
n−1

, ε′
n,T

(k)
n−1

) > r(∗).

As a sanity check, if T
(k)
n grows faster than O(log n) for

any stable arm k, then its exploration bonus will converge
to 0. Thus, the UCB-compensated empirical rate of a stable
suboptimal arm will eventually fall short of r(∗) after sufficient
explorations.

6The proof requires the technical assumption in item (3) of Assumption 3.

B. Main Results
In this part we present the main theorem, which justifies

that the meta-scheduler given in Algorithm 1 satisfies our
requirements regarding negligible packet loss and a sub-linear
regret. Before that, let us first introduce a key lemma, stating
that the number of sub-optimal decisions under our algorithm
grows quasi-logarithmically.

For simplicity, let d(k) := r(∗) − r(k) denote the gap of
reward rates between arm k and the optimal arm. We will use
symbols ∧ and ∨ as the shorthand notations for min and max
functions respectively.

Lemma 1: A meta-scheduler implementing Algorithm 1 sat-
isfies the following regarding E[T (k)

n ].
(1) For all unstable arms k ∈ Au(λ),

E[T (k)
n ] ≤ �K(k)

1 log n� +
π2

6
+ 1

where

K
(k)
1 =

18

P(C(k)
1 =∞)2

.

(2) For stable suboptimal arms that lie in set A0 \ {k∗},
we have that

E[T (k)
n ] ≤ �K(k)

2 log n ∨M
(k)
1 ∨M

(k)
2 �+π2+1

where

K
(k)
2 =

24(1+rmax)2ν2(μmin+1)2

(d(k))2μ2
min

∨ 12(1+rmax)α(μmin+1)
d(k)μmin

and M
(k)
1 , M

(k)
2 are (smallest possible) constants such that

M
(k)
1 ≥ 4

d(k)
r̄(E[C(k)

1 ]+6αk log M
(k)
1 )(

π2

6
+
√

M
(k)
1 log M

(k)
1 ),

M
(k)
2 ≥ 4

d(k)
rmax · π2

6
e−β/4α(β + 2α + κ log M

(k)
2 + 1).

(3) For stable suboptimal arms that lie in As(λ) \ A0,
we have that for any δ > 0 and χ > 1,

E[T (k)
n ] ≤ �K(k)

3 log n ∨ J
(k)
1 log1+δ n ∨ χ ∨ M

(k)
2 � + π2 + 1

where

K
(k)
3 =

24(1+rmax)2ν2
k(μmin+1)2

(d(k))2μ2
min

∨ 12(1+rmax)αk(μmin+1)
d(k)μmin

and J
(k)
1 is a constant (up to δ and χ) such that we have the

equation at the bottom of the next page.
Note that M

(k)
1 , J

(k)
1 are roughly O((1/d(k))2) and M

(k)
2 is

roughly O(1/d(k)). To summarize,

E[T (k)
n ]=

⎧⎪⎪⎨
⎪⎪⎩

O(log n) ∀k ∈ Au(λ),

O(log n) ∀k ∈ A0 \ {k∗},
O(log1+δ n) ∀δ > 0 ∀k ∈ As(λ) \ A0.

Proof of Lemma 1: Here we will present a proof
sketch. The complete proof can be found Appendix B in the
supplementary material.

The proof consists of two parts. First, we prove the case
when arm k is unstable. Observe that for any k ∈ Au(λ), pk :=

P(C(k)
1 =∞)>0. Thus, w.h.p., the value

∑T
(k)
n−1

i=1 �{C(k)
i >fi}

grows no slower than pkT
(k)
n−1 minus a concentration bound√

2T
(k)
n−1 log n (by Bernstein’s inequality). Therefore, if the n-

th arm decision An = k ∈ Au(λ), by the stability indicator,

we have that pkT
(k)
n−1 −

√
2T

(k)
n−1 log n<π2/6 +

√
2T

(k)
n−1 log n.

This implies E[T (k)
n ]=O(log n).
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Next, we study the case for any stable suboptimal arm.
If An = k ∈ As(λ) \ {k∗}, either of the following two events
will happen: (a) the stability indicator of the best arm is 0; or
(b) the UCB score (empirical rate plus UCB) of arm k is larger
than the best arm’s score. As discussed in IV-A.3, the first
event has a negligible chance to happen. For the second event,
we already guarantee that w.h.p., R̂(∗)(n) + Δ(ε(∗)n , ε

′(∗)
n ) >

r(∗) by the design of the exploration bonus in IV-A.4. Then to
show the second event cannot occur either, it suffices to show
that R̂(k)(n) + Δ(ε(k)

n , ε
′(k)
n ) < r(∗). Observe that R̂(k)(n) ≈

r(k) < r(∗) and that Δ(ε(k)
n , ε

′(k)
n ) can be arbitrarily small

when T
(k)
n > C log n for a sufficiently large C. This suggests

T
(k)
n cannot grow faster than O(log n). When k ∈ As(λ)\A0,

an additional 1+δ is needed in the exponent of log n. This
is caused by a technical issue7 due to the bias of (possibly)
overestimating r(k) by R̂(k)(n). �

Now we present the main theorem as follows.
Theorem 1: Let fτ = (κ + α log τ) and

g
(k)
1 (τ) = �K(k)

1 log τ� + 1,

g
(k)
2 (τ) = �K(k)

2 log τ ∨ M
(k)
1 ∨ M

(k)
2 � + 1,

g
(k)
3 (τ) = �K(k)

3 log τ ∨ J
(k)
1 log1+δ τ ∨ χ ∨ M

(k)
2 � + 1,

where K
(k)
1 , K

(k)
2 , K

(k)
3 , J

(k)
1 , M

(k)
1 and M

(k)
2 are defined as in

Lemma 1. The meta-policy π induced by Algorithm 1 has the
following properties.

(1) For the expected number of packets discarded over the
time horizon τ , denoted by E[Dπ[τ ]], we have for any δ > 0
and χ > 1,

E[Dπ[τ ]]

≤ āufτ

(∑
k∈A0

π2

6

+
∑

k∈Au(λ)

(
((

π2

6
+
√

2g
(k)
1 (τ) log τ +2)∧g

(k)
1 (τ))+

π2

6

)

+
∑

k∈As(λ)\A0

(
((

π2

6
+
√

2g
(k)
3 (τ) log τ+2)∧g

(k)
3 (τ))+π2

))
.

(2) For the regret Regπ [τ ], we have for any δ > 0 and
χ > 1,

Regπ[τ ] ≤
∑

k∈Au(λ)

(r(∗) − r̃(k))(g(k)
1 (τ) +

π2

6
)fτ

+
∑

k∈As(λ)\A0

(r(∗) − r̃(k))(g(k)
3 (τ) + π2)fτ

+
∑

k∈A0

(r(∗)−r(k))(g(k)
2 (τ) + π2)μmax

7If the hyper-parameters, in particular β and α, do not suffice the conditions
in Assumption 3 for a stable suboptimal arm k, the number of interruptions
of k is no longer well bounded under our threshold function. This leads to
an additional bias between r(k) and R̂(k)(n).

+ r(∗)fτ + r(∗) E[(C(∗)(1))2]
E[C(∗)(1)]

+
∑

k∈A0

h(τ),

where

r̃(k) = inf
l≥β

E[Û (k,l)(1)]
E[Ĉ(k,l)(1)]

,

h(τ) = rmax
π2

6
e−β/4α(fτ + 2α + 1).

This theorem implies that if A0 = As(λ), i.e., all the stable
arms satisfy the conditions in Assumption 3 with respect to
the hyper-parameters used in the algorithm, then

E[Dπ[τ ]] = O(log2(τ)), Regπ[τ ] = O(log2 τ).
Otherwise,

E[Dπ[τ ]] = O(log2+δ(τ)), Regπ[τ ] = O(log2+δ(τ)),
∀δ > 0.

Proof of Theorem 1: The complete proof can be found
Appendix C in the supplementary material.

Claim (1) of the theorem: The expected number of inter-
ruptions on arms in A0 is bounded by π2/6 due to the
threshold design. For any arm not in A0, the expected number
of interruptions is bounded by the number of arm selections
E[T (k)

τ ] (note that Nπ[τ ] ≤ τ ), but a nicer bound can be
given since some of the cycles might not be interrupted.
For each interrupted cycle, the number of packets dropped is
bounded by āufτ = O(log τ), where fτ is a (coarse) bound
on the longest possible cycle before time τ . This concludes
the claim.

Claim (2) of the theorem: For this part we follow a similar
approach as in the budgeted bandit literature [26], [28].
We first bound the number of sub-optimal actions that have
been taken in order to bound regret. Intuitively, the expected
cumulative reward for the optimal meta-policy is roughly
r(∗)τ , and the regret of π is due to the reward loss during
the period of suboptimal decisions, where the loss in reward
rate is either r(∗) − r(k) (for k ∈ A0 \ {k∗}) or bounded by
r(∗) − r̃(k) (for k /∈ A0).8 We can show that

Reg[τ ] ≤
∑

k∈A0

E[T (k)
τ ]μmax(r(∗) − r(k))

+
∑

k/∈A0

E[T (k)
τ ]fτ (r(∗) − r̃(k)) + O(log τ).

The value of E[T (k)
τ ] is then bounded using Lemma 1. �

As described in Remark 4, if packet dropping is unac-
ceptable in the system, one can instead switch to a queue-
stabilizing (throughput-optimal) policy like MaxWeight to
clear out the queues. This process introduces a small extra
cost to the total regret.

Corollary 1: Once a cycle is interrupted, if the meta-
scheduler switches to a MaxWeight (instead of dropping

8When k ∈ A0, the expected reward rate of arm k’s period (which
may include interrupted cycles) is roughly r(k), since only few cycles are
interrupted; otherwise, we use a weaker bound r̃(k) instead.

J
(k)
1 ≥ 4

d(k)
r̄
(E[C(k)

1 ] + 6αklog(J(k)
1 log1+δ χ))(π2

6 +
√

2J
(k)
1 log2+δ χ + 1)

log1+δ χ
.
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Algorithm 2 UCB Meta-Scheduler With Interruption for
System With Constraints

1: Input: Set of scheduling policies A.
2: Threshold Function: fs := β + κ log s.
3: Initialization: Run every arm k once with interrup-

tion threshold β, then initialize empirical rates R̂
(k)
1 and

Ŵ
(k)
i,1 , ∀i = 1, 2, · · · , h.

4: for n = |A| + 1, |A| + 2, · · · do
5: [before cycle n]
6: for all k ∈ A do
7: Compute Exploration Bonus Δ(k)

n .
8: Compute Stability Indicator I

(k)
n .

� Δ(k)
n and I

(k)
n as defined in Section IV.

9: Compute Constraint Indicator J
(k)
n .

10: Arm decision:

An ∈ argmax
k∈A

I(k)
n × J (k)

n × (R̂(k)(n−1) + Δ(k)
n ).

11: Cycle interruption decision: Ln = f
T

(An)
n

.
12: [after cycle n]
13: Observe Ĉ(An,Ln)(n), Û (An,Ln)(n) and V̂

(An,Ln)
i (n).

14: Update R̂(An)(n) and Ŵ
(An)
i (n), ∀i.

packets) until the system returns idle, the total regret Regπ[τ ]
satisfies the following:

Regπ [τ ]=

{
O(log3 τ) if A0 = As(λ),
O(log3+δ τ), ∀δ > 0 otherwise.

Proof: By Lyapunov stability, it can be shown that the
average time required for MaxWeight to clear out queues of
a total length q is in the order of O(q2). Recall that when
a cycle is interrupted before the horizon τ , the total queue
length is bounded by C · log τ for some constant C. Therefore,
it takes O(log2 τ) time slots for each queue-clearing process
to end, and the extra regret induced is thereby in the order
of O(r(∗) · log2 τ) since r(∗) is the rate of the optimal policy.
Then the claim is shown by utilizing Lemma 1 and combining
with Theorem 1. A complete proof is presented Appendix D
in the supplementary material. �

V. EXTENSION: SYSTEM WITH CONSTRAINTS

In the previous sections, we introduced a UCB-type meta-
scheduler that determines the best stable policy optimizing
the renewal reward rate of the system. In some applications,
the system might be also interested in satisfying a certain
performance guarantee besides maximizing the main reward.
For instance, the system may attempt to minimize mean packet
delay of all traffic but also promise that certain users get suf-
ficient service (e.g., 80% of packets must arrive within 5 ms).
If the guarantee can be described as a constraint on the reward
rate of another renewal-reward process (other than the main
reward), we can extend Algorithm 1 to locate the optimal
constraint-satisfying policy with a simple modification.

First let us generalize the basic model as follows. For arm
k, the n-th cycle C(k)(n) is associated with 1 cycle reward
U (k)(n) and h auxiliary rewards V

(k)
1 (n), · · · , V

(k)
h (n). Both

the main and auxiliary rewards satisfy Assumption 1. If πn =
(k, l), a stochastic feedback Zn is observed for n-th cycle as

follows,

Zn = (Ĉ(k,l)(n), Û (k,l)(n),

V̂
(k,l)
1 (n), · · · , V̂

(k,l)
h (n),�{C(k)(n) > l}).

As in (4), let w
(k)
i := E[V (k)

i (1)]/E[C(k)(1)] be the renewal
reward rate for i-th auxiliary reward of arm k. We call a
scheduling policy acceptable if it guarantees that the reward
rates for the h auxiliary rewards exceed a given threshold
ξ = (ξ1, · · · , ξh), which is known a priori by the meta-
scheduler. The optimal arm k∗ is thus defined as

k∗ = argmax
k

r(k)

s.t. k ∈ As ∩ {k′|w(k′)
i ≥ ξi, ∀i = 1, 2, · · · , h}.

Inspired by the stability indicator, the constraints can also
be handled by an indicator that eliminates unacceptable arms
with high probability. Since auxiliary rewards still satisfy
Assumption 1, we can use the same UCB bound as defined
in (19), and an arm’s constraint indicator is set to be false
when its empirical rate of auxiliary rewards compensated
by the exploration bonus is below ξ. Denote Ŵ

(k)
i (n) as

the (observed) empirical rate (see (8)) of i-th auxiliary reward
after n cycles. Formally, the constraint indicator J

(k)
n is as

follows,

J (k)
n =

h∏
i=1

�{Ŵ
(k)
i (n−1)+Δ

(k)
n ≥ξi}.

The algorithm is formally presented in Algorithm 2.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our meta-
scheduler algorithms. The simulation setting is based on the
IMT Advanced evaluation guidelines for urban macro-cell
deployments [37]. We consider a wireless network consisting
of a single base station (BS) and u = 12 down-link users. The
BS is located at the center of the cell with a radius of 250 m,
and the user terminals are located in the cell. We assume the
total channel bandwidth is 10 MHz. Further, the bandwidth
can be divided into 200 resource units of 0.05 MHz each,
which can be assigned to different users within a time slot.
Scheduling decisions, which consist of the allocation of each
resource unit, are made once in each time slot of duration
0.5 ms.

We assume that the size of packets in the system is fixed at
5 kb. At each slot, each users’ packets arrive as i.i.d. binomial
random variables. For simplicity we do not allow one packet to
be transmitted across several time slots. The user scheduling
within one slot is done in a sequential manner: one of the
users is first scheduled for 1 packet based on current queue
and rate values, then the updated queues and rates (of the
remaining resource units) are used to determine the next user.
The process is iterated until remaining resource units cannot
support another packet transmission.

The Signal-to-Interference-Noise ratio (SINR) at time t
is modeled as SNRi[t] = Pbgi[t]/(σ2 + Ii[t]) where Pb is
the transmit power of BS, gi[t] denotes the channel gain of
user i, σ2 and Ii[t] denote the noise and the interference
level respectively. The channel gain is a combination of
path loss, fast fading and antenna gain, Following [37], we
set Pb = 47 dBm, σ2 = −104 dBm, path loss (in dB)
computed as 39.1 log10(dist) + 13.5 + 20 log10(fc) where
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TABLE I

A SUMMARY OF POLICIES USED IN OUR SIMULATIONS. HERE WE OMIT ALL TIME INDICES, AND Qi, Hi, Si DENOTE THE CURRENT QUEUE LENGTH,
HEAD-OF-LINE DELAY AND AVAILABLE SERVICE RATE OF USER i AT THE TIME OF DECISION FOR EACH PACKET (REMIND THAT USER

SCHEDULING IS DONE PACKET BY PACKET SEQUENTIALLY IN A TIME SLOT). UNLESS SPECIFICALLY MENTIONED WE WILL SET POLICY

PARAMETERS AS BELOW. NOTE THAT THE POLICIES ARE ALL WEIGHTED (I.E., bi) BY THE INVERSE OF MEAN RATE OF EACH

USER, WHICH IS A COMMON PRACTICE SUGGESTED IN [11]

TABLE II

USER PROFILE IN OUR SIMULATION SYSTEM

fc = 2.0 GHz and dist denotes the user distance, and antenna
gain of 17 dBi. Fast fading follows a Rayleigh distribution
and is independent over users. For simplicity, we assume the
interference is identical to all users and Ii[t] = −56 dBm.
In any time slot t, the channel state (rate supported by the
channel) of the user i is given by

Si[t] = BW× log2(1 + 100.1(SNRi[t]−L)) bps
where the parameter L = 3dB describes a loss to Shannon
capacity.

In the following simulations, we will fix the locations
of 12 users. The location profile and the mean data rates are
given in Table II. Several classical scheduling policies we use
are summarized in Table I.

A. Meta-Scheduler Behavior and Reward Design

In this experiment we select various types of rewards and
show that the meta-scheduler can indeed pick the optimal
policy. We set i.i.d. random arrival Ai[t] ∼ Binomial(3, 0.12)
for each i ∈ U described in Table II. Under this arrival rate
(λi = 0.36 packets/slot), cycle lengths induced by the policies
in Table I are no more than 60 ms.

Suppose each packet of the system is associated with a
reward and the cycle reward is simply defined as the sum
of all packet rewards with proper normalization such that
rmax = 1 (see Assumption 3). Three types of packet rewards
are considered as follows:

Type-1: Mean delay: The reward of each packet equals (1−
delay ∗ 0.1)+. To optimize this type of reward is equivalent
to minimize the mean delay of packets provided the delays
are smaller than 10 time slots.

Type-2: Deadline requirement: Each packet receives a
reward of ’1’ only if its delay is less than ddl slots. Otherwise
the packet receives ’0’ reward. We use ddl = 8 in this
experiment.

Type-3: Burstiness: This reward favors spreading the ser-
vice allocations to a user across slots rather than serving a user
multiple packets in a single slot. If a user receives a single
packet within one slot, this packet is associated with a reward

TABLE III

A SUMMARY OF MEAN CYCLE LENGTHS AND REWARD RATES FOR
3 TYPES OF REWARDS CONSIDERED INDUCED BY EACH POLICY USED

IN SECTION VI-A. THE REWARD RATE OF THE OPTIMAL ARM FOR

EACH REWARD TYPE IS IN BOLD FONT

of ’1’. If two or more packets are received in the same slot,
it will be considered as “bursty” and no rewards are given to
any of the packets.

Besides the policies given in Table I, we also consider
a Round-Robin scheduler as a baseline which may not be
stable even if the traffic loads are within the capacity region.
In Table III, we list the average cycle length and reward rates
induced by each policy. We set the parameters of Algorithm 1
as α = 4, ν2 = 1, κ = 50, β = 200, μmin = 20, rmax = 1 and
run 40 simulations for each type of rewards. Define the selec-
tion ratio of arm k after n cycles as (1/n)

∑n
i=1�{Ai = k}.

Figure 2 exhibits the mean selection ratios of all arms for the
three types of rewards (with 10% and 90% quantile shown for
the best arms). In each case, Algorithm 1 correctly determines
the optimal policy. We observe the rate of convergence largely
depends on the performance gap between the best and second
best arms: Type-2 reward takes the longest time to separate
between Log-Rule and Max-Rate since they have the least gap.
As we would expect, Round-Robin scheduler gets discarded
quickly in all cases.

B. Meta-Scheduler Behavior Dependence on the Load

In this experiment, we show the robustness of Algorithm 1
over variations in the traffic load. We design a case where the
best policy shifts from one to another when we adjust the load
of the system. The goal is to verify the optimal arm is picked
by our algorithm in all scenarios.

Suppose Users 6, 12 are two reward Type-2 users with
ddl = 2 (as defined in the last experiment) that are quite strict
with packet deadlines, while other users are Type-1 users. The
cycle reward is still defined as the sum of packet rewards of all
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Fig. 2. Mean policy selection ratio of Algorithm 1 for 3 types of rewards defined in Section VI-A, after simulating 40 times in each case. The area between
10% and 90% quantile of the best arm is shaded.

TABLE IV

A SUMMARY OF MEAN RENEWAL REWARD RATES FOR THE MAIN
AND AUXILIARY REWARDS INDUCED BY EACH POLICY USED IN

SECTION VI-C. ONLY THE LAST POLICY IS ACCEPTABLE WHEN

ξ = [0.75, 0.75]

users. We consider two policies: 1) Log-Rule and 2) Priority
Rule. The second policy is defined as follows: at each slot,
Type-2 users are always scheduled first using a Max-Rate
policy; Type-1 users are scheduled using Log-Rule only when
there are no more Type-2 packets that can be transmitted.
Clearly, the second policy provides better performance for
Type-2 users.

We consider a system where each user has random arrivals
Ai[t] ∼ Binomial(3, λi/3). We increase the traffic load from
λi = 0.32 to 0.36 for each i ∈ U . Figure 3a shows
the reward per packet under the two policies as a func-
tion of the traffic load. When the load is relatively light,
the priority-based scheduler outperforms Log-Rule; however,
when the load is larger than 0.34, the reward boost of Pri-
ority Rule for Type-2 users does not compensate the loss in
mean delay for Type-1 users and Log-Rule prevails instead.
Indeed, Priority Rule is not even stable for even higher loads
(see Figure 3b).

Figure 3d to 3f exhibit the simulation results for λi =
0.32, 0.34 and 0.36. Algorithm 1 correctly locates the optimal
policy in the low and high load scenario. When λi = 0.34,
the selection ratio of two policies barely separate as the
performance gap is almost 0. This is not an issue for any
MAB algorithm as both arms can be viewed as the best arm
in this scenario.

Remark 6: Figure 3d-3f illustrate each arm’s selection ratio
over the number of cycles. Indeed, the meta-scheduler’s rate
of convergence in real time scale also depends on cycle
lengths. In general, two factors affect the rate of convergence.
First, the larger is the performance gap between the best
and second best arm, the easier it is to learn. Thus, as load
increases, it is indeed possible that the instance becomes
easier due to the increased gap between the best and second
best schedulers. Second, the longer is the system’s cycle
time, the slower the learning process is. With this effect,
in general, the system with higher loads will exhibit longer

cycle times. To get some insight on the load-cycle relation,
consider for simplicity a standard M/M/1 queue with λ̄ and
μ̄ as the mean arrival and service rate respectively. For a
stable queue, we have the load parameter ρ := λ̄/μ̄ < 1.
From standard analysis of such queues, the mean cycle length
is μ̄/(1 − ρ) + 1/λ̄ and the sub-exponential parameter α
roughly scales as O(1/ log ρ−1) ≈ O(ρ/(1 − ρ)). Recall
that the regret scales linearly in these parameters, and thus,
the regret has an inverse dependence in (1 − ρ), assuming
the performance gap is fixed. The system we consider is more
complex, and includes opportunism, multi-user scheduling and
a non-stationary schedule, thus making it hard to analytically
quantify the effect.

In Figure 3g, we numerically explore how the regret varies
with load and indeed see a mixed impact – as the load
increases, the regret does not change monotonically due to the
different effects of enlarging performance gaps and growing
cycle lengths.

C. Meta-Scheduler Behavior With Performance Constraints

In this experiment, we consider the case where additional
constraints are imposed on the system. Let λi = 0.36 packet
per slot for any i ∈ U . Let User 6 and User 12 be Type-2 users.
Suppose we impose the following performance guarantee: 75%
of packets for user 6 and 12 must arrive with a delay less
than 5 slots (ddl = 5). And the target is to pick the policy
that minimizes the mean delay of the other 10 users while
satisfying this constraint.

We are given 3 Log-Rule schedulers with different weight
parameters bi (See Table I): bi = 1

E[Si]γ
where γ = 0.8, 1

and 1.2. Here γ roughly tunes the fairness of each user,
and a larger γ is good for users with low average rates.
Table IV summarizes the reward rates for the constraints and
main objective. Only the policy with γ = 1.2 satisfies the
constraints.

We run Algorithm 2 40 times using the same parameters as
in the first experiment. Figure 4a shows the policy selection
ratio over number of cycles with the constraints described
above. As a comparison, we drop the constraint (by setting
ξ = 0) and the result is shown in Figure 4b. In both cases,
Algorithm 2 locates the best constraint-satisfying policy.

To clearly show the behavior of Algorithm 2, we manu-
ally slow the convergence of learning by increasing hyper-
parameter α from 4 to 20, which corresponds to a more
conservative upper confidence bound. As shown in Figure 4c,
the third policy prevails the selection ratio after the other two
policies sequentially get dropped by the constraint indicators.
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Fig. 3. Results for the experiment in Section VI-B. (a-c) Reward rate, mean cycle length and mean queue length induced by Log-Rule and Priority under
changing traffic loads. (d-f) Mean policy selection ratio (40 simulations) of the meta-scheduler when arrival rate λi = 0.32, 0.34, 0.36 respectively, where
the area between 10% and 90% quantile of the best arm is shaded. (g) Mean reward loss (aka regret) of meta-scheduler π for time horizon τ = 10k over
varying traffic loads. Let μ̄ be the mean (non-opportunistic) service rate and μ̄ = 0.4 packet/user/slot. We focus on the high load region of λ = 0.36 to 0.39
(i.e., relative arrival rate > 0.9) where the best policy is Log-Rule. As the load increases, the expanding performance gap of two policies and the growing
cycle lengths have opposing effects on the regret, and thus it does not grow monotonically.

Fig. 4. Results for the experiment in Section VI-C using Algorithm 2. (a) The meta-scheduler finds the best policy (γ = 1.2) subject to the performance
constraint defined in Section VI-C. (b) The meta-scheduler finds the best policy (γ = 0.8) when the constraint does not exist. (c) Repeating (a) with α = 20
to see clear convergence behavior of the meta-scheduler.

VII. CONCLUSION

In this paper we move from the traditional approach of
designing a good downlink wireless scheduler given a scenario
and/or rewards to that of determining which amongst a set of
possible (good) schedulers is the best for the given context,
e.g., user loads, service capacity, and performance require-
ments. Our, so called, meta-scheduler, provides a systematic
approach to achieve robustness to uncertainty in the demand,
environment or users’ needs. This is accomplished by lever-
aging a budgeted multi-armed bandit framework, which uses
the queuing system’s regeneration cycles as natural times to
make choices amongst arms (scheduling policies), but also by
introducing a cycle interruption policy that is shown to ensure
that eventually only stable policies are chosen. We provide
a theoretical analysis which shows two objectives are met:
(1) the approach has sub-linear regret, and (2) the losses
due to interruptions are negligible. Our simulations show the
meta-scheduler approach is effective, and exhibits the ability
to achieve robust decisions in selecting a context-dependent
best scheduling policy.

Finally, there has been a renewed interest in using Rein-
forcement Learning (RL) algorithms for wireless resource
allocation. However, designing the ideal wireless scheduler
that will achieve optimal performance in all possibly settings
is likely an impossible goal, even with current RL techniques.
Our meta-scheduler framework provides an approach to lever-
age a collection of state-of-art schedulers (possibly even RL
based) which are known to be good for specific settings,
and achieve “universality” by learning which amongst these
provides the best results for the given operational scenario.
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