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ABSTRACT
We propose and evaluate a learning-based framework to address

multi-agent resource allocation in coupled wireless systems. In

particular we consider, multiple agents (e.g., base stations, access

points, etc.) that choose amongst a set of resource allocation options

towards achieving their own performance objective /requirements,

and where the performance observed at each agent is further cou-

pled with the actions chosen by the other agents, e.g., through

interference, channel leakage, etc. The challenge is to find the best

collective action. To that end we propose a Multi-Armed Bandit

(MAB) framework wherein the best actions (aka arms) are adap-

tively learned through online reward feedback. Our focus is on

systems which are “weakly-coupled” wherein the best arm of each

agent is invariant to others’ arm selection themajority of the time –

this majority structure enables one to develop light weight efficient

algorithms. This structure is commonly found in many wireless

settings such as channel selection and power control. We develop

a bandit algorithm based on the Track-and-Stop strategy, which

shows a logarithmic regret with respect to a genie. Finally through

simulation, we exhibit the potential use of our model and algorithm

in several wireless application scenarios.
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• Networks→ Mobile networks; Network resources allocation;
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1 INTRODUCTION
Dynamic resource allocation, including the allocation of time slots,

frequency sub-channels, power, etc., is a key part of the design

of wireless systems. In a multi-cell setting, resource allocation is

especially challenging due to the triad of: (i) heterogeneity and

uncertainty of the network environment (e.g., time-varying loads,

channel states, interference, etc.), (ii) distributed decision making

(separate controller/agent in each base-station), and (iii) availability

of only partial state information at each agent (e.g., only local

channel states). In such settings, if each agent selects their own

allocation strategy/action without consideration of other agents’

decisions, the collective can suffer a significant loss in total utility.

We can view themulti-agent resource allocation problem through

the following abstraction. Each agent is allowed an action from

among a collection of actions (e.g., choice of frequency sub-band

in the channel selection problem). Its choice of action has two con-

sequences: (a) the agent accrues a reward for itself (e.g., average

throughput/delay for users in its cell), and (b) the action induces

an environment that affects all other agents (e.g., transmitting on a

frequency sub-band generates strong interference to other agents

in that frequency sub-band, and weaker interference in nearby fre-

quency sub-bands). In a multi-agent setting, the goal then is to find

an action for each of the agents (equivalently, a collective of actions

across agents), which in-turn induces a collective of environments,

such that the utility of the collective is maximized.

The immediate search-based solution to this problem – attempt

every action at each agent for a sufficiently long duration, em-

pirically estimate the collective reward, and choose the collective

that has highest utility – can scale poorly due to the super-linear

growth in search space. Indeed, even with two users, the number

of environments scales as 𝑘2 if each user has 𝑘 possible actions,

making it computationally impractical to learn the best actions

within a reasonable time. In general, with no assumptions on the

actions and the resulting environments, it is not hard to see that

such complexity is unavoidable.

However, in many resource allocation settings that we are inter-

ested in, there are additional properties of the overall system that

can be used to reduce this complexity. Specifically in this paper,

we focus on systems that are weakly coupled. We say a system is

weakly-coupled if it satisfies themajority condition: we suppose that
the optimal action of an agent is also the best action in a majority of

environments, where each environment corresponds to a distinct

action tuple that can be chosen by the other agents. The intuition is

that under moderate interference levels,most of the time, the perfor-
mance of one agent’s action does not fluctuate much when actions

taken by nearby agents are changed. The majority condition holds

in several wireless settings. For example, in the channel selection
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problem, once an agent selects a frequency sub-band, only a small

set of adjacent channels will be significantly interfered with due to

channel leakage. Another example is one where each base-station

can choose a scheduler from among a candidate set [22]. Different

schedulers trade-off for different performance metrics within the

cell (e.g. MaxWeight for stability, vs. round robin for jitter); however,

they have different impact on neighboring cells. In this setting, good

schedulers tend to incur low interference to nearby agents (cells)

since they typically schedule opportunistically and use channels

more efficiently (therefore, the majority condition holds provided

that most of the schedulers are “good”).

The majority condition is especially useful for algorithm design,

because we show that it has the following three properties. (1) Local
greedy property: For each agent, it suffices to learn its best action

in each of the environment and choose the “majority best” as its

overall best action; (2) Avoiding hard environments: Identifying each
agent’s best action can be cast as 𝑘 separate multi-armed bandit

best-arm identification instances, where 𝑘 is the number of possible

environments. Some of these environments might be especially

hard, e.g., strong interference/poor channel quality, thus all actions

of the agent in this “hard” environment have low reward, making

this best arm identification instance difficult. Crucially however, the

majority conditions enables one to avoid solving such hard environ-

ments, once the best actions from the easiest 𝑘/2 environments has

been learned; (3) Sub-sampling property: When the number of envi-

ronments 𝑘 is large, it is possible to sample a subset of environments

and still learn the best action (with high probability).

Building on these properties, we develop a decentralized algo-

rithm for multi-agent resource allocation with bandit feedback. The

algorithm proceeds episodically with each episode consisting of

an exploration and an exploitation phase. During the exploration

phase, one agent runs a collection of best-arm-identification sub-

routines to learn the optimal arm (aka action) in each environment

based on local reward feedback, while the other agents cycle over

actions from a randomly-chosen subset (of all the actions) in a

round-robin fashion, until the first agent learns the “majority best

arm” with a fixed confidence (crucially, not all environments have to

be “solved”). Once each agent learns the best collective arm using

the above procedure, it is applied in the exploitation phase. As the

episode index grows, the confidence level is made increasingly tight

as the increment of regret converges to zero. We build on Track-
and-Stop [8], which is designed for best arm identification with

fixed confidence, as the subroutines used in the main algorithm.

Track-and-Stop focuses on exploring arms with good rewards, and

is known to be asymptotically optimal in terms of the number of

plays needed for determining the best arm. This further accelerates

the exploration and improves the overall performance (in particular,

compared to the vanilla Explore-Then-Commit (ETC) approach).

Our main contributions are summarized as follows:

1. Weakly Coupled Systems under the Majority Condition:
We develop a multi-armed bandit framework to address the multi-

agent resource allocation problem for weakly coupled systems. In

these systems, the best arm of each agent is invariant to other

agents’ arm choices in the majority of scenarios. We believe this

assumption is reasonable in many wireless applications, and allows

the design of an algorithm with manageable computational and

communication costs.

2. Track-and-Stop Based Decentralized Algorithm: We de-

velop a decentralized bandit algorithm specifically designed for

weakly coupled systems based on Track-and-Stop. For systems

satisfying the majority condition, this algorithm has two main ad-

vantages over classical bandit algorithms: (1) Low communication

cost: the decision making is decentralized as no reward/action in-

formation is exchanged and the only coordination needed is when

one agent signaling others the end of a Track-and-Stop subroutine.

Note that for centralized algorithms such as UCB or the vanilla

Track-and-Stop (i.e., best arm identification among all the collective

arms), a central controller who has access to all the reward feedback

has to be introduced to determine the action for each agent. (2)

Efficient with a logarithmic regret: it can be shown that with high

probability the regret scales as 𝑂 ((𝑚 − 1)𝑘 log𝑘 log𝑇 ) where 𝑇 is

the time horizon, 𝑚 is the number of agents and 𝑘 is the (max)

number of arms of each agent — this is much improved compared

to any classical algorithm which equally views all the 𝑘𝑚 collective

arms in implementation, with the regret scaling as 𝑂 (𝑘𝑚 log𝑇 ).
3. Empirical Evaluation: We simulate the algorithm in two

wireless applications to show the potential usage of our model:

(1) channel selection with power leakage and (2) best scheduler

selection for wireless queueing systems. In both cases, we show the

systems are indeed weakly-coupled such that our algorithm can

be applied. Furthermore, our simulations show that the agents can

correctly learn the best collective action in reasonable time with a

sub-linear regret.

1.1 Related Work
Multi-Agent Resource Allocation in Wireless Settings. Many well-

studied wireless applications are by nature multi-agent resource

allocation problems, such as power control and cognitive spec-

trum access. A classical theoretic approach is to study the prob-

lems through a game theory perspective, e.g., [10, 11] on power

control, [25, 26] on dynamic spectral access and cognitive radio,

[5, 9, 21] on wireless sensor networks, [19] on edge computing, etc.

Moreover, due to the complexity of the problem, machine learn-

ing/reinforcement learning techniques have recently be proposed

to address related problems, see e.g., [1, 27, 28].

Decentralized Multi-Agent MABs.Multi-agent decision making

has been formulated as decentralized multi-armed bandit problems,

wheremultiple players simultaneously pull their arms at each round.

In a collaborative setting, the agents learn the same stochastic bandit

instance in a decentralized manner, and the goal is to minimize

individual regret via information sharing, see, e.g., [6, 12, 14, 24].

Recent works [7, 13] further consider the tradeoffs between regret

minimization and communication cost.

More aligned with this paper is the study on multi-agent MABs

with collision. In those problems, agents receive normal reward

feedback only if other agents do not choose the same arm (“colli-

sion”) — otherwise zero rewards are observed by colliding agents.

Several settings have been studied in this line of work, including

[2, 3, 20] on the homogeneous reward setting (agents observe the

same reward distributions on the same arm), and [4, 16, 18] on the

heterogeneous reward setting. A recent work [17] further explores

the scenario when agents observe non-zero rewards on collisions.

Compared to these works, our model is more general regarding
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the impact of interference on rewards — we do not restrict to a

collision-based model and the reward distribution of an arm may be

different when nearby agents change to any arm (not necessarily

the “colliding arm”). Instead, we explore a special arm-reward struc-

ture, i.e., weakly coupled systems under the majority condition, and

develop efficient decentralized bandit algorithms.

1.2 Notation
Throughout the paper, we use [𝑛] to denote the set {1, 2, · · · , 𝑛},
and 1 for the {0, 1} indicator function. The symbols ⌈𝑎⌉ and ⌊𝑎⌋
represent the ceiling and floor function over the value 𝑎.

2 PROBLEM FORMULATION
2.1 Two-Agent Weakly Coupled Systems
For simplicity let us first focus on a 2-agent system and introduce

the notion of weak coupling. Here on, we use the standard bandit ter-

minology of ‘arm’ to denote an agent’s action. In this system, Agent

1 and Agent 2 can choose one over 𝑘1 and 𝑘2 arms respectively for

each play (round). We call any pair of arms (𝑖1, 𝑖2) a collective arm.

The joint rewards for two agents choosing (𝑖1, 𝑖2) ∈ [𝑘1] × [𝑘2]
are independently and identically distributed over multiple plays,

and the average rewards are denoted as (𝜇 (1)
𝑖1,𝑖2

, 𝜇
(2)
𝑖1,𝑖2
). Note that the

rewards are “coupled” and changing either arm of (𝑖1, 𝑖2) might

affect both rewards (𝜇 (1)
𝑖1,𝑖2

, 𝜇
(2)
𝑖1,𝑖2
).

As usual the goal of a bandit framework is to find the best (col-

lective) arm. Let the arm pair (𝑖∗
1
, 𝑖∗
2
) satisfy that 𝜇

(1)
𝑖∗
1
,𝑖∗
2

+ 𝜇 (2)
𝑖∗
1
,𝑖∗
2

>

𝜇
(1)
𝑖1,𝑖2
+ 𝜇 (2)

𝑖1,𝑖2
for all (𝑖1, 𝑖2) ∈ [𝑘1] × [𝑘2]. Simply applying classical

bandit algorithms (such as UCB) in this problem can be challenging

and problematic, since it requires a centralized controller observing

rewards from both agents and exploring all 𝑘1𝑘2 arms, leading to

high communication and computational cost.

Therefore, in this paper, we consider weakly coupled systems,
which have a special arm-reward structure such that only minimal

communication between agents is needed — in particular, no re-

ward/action information is required to be shared — and that fewer

arm pairs are necessarily explored to locate the best collective arm.

Before formally define the condition regarding weak coupling, we

introduce several notations as follows: Denote 𝑖∗
1
( 𝑗) as the best

arm for Agent 1 when Agent 2 plays arm 𝑗 for any 𝑗 ∈ [𝑘2], i.e.,
𝑖∗
1
( 𝑗) = argmax𝑖′ 𝜇

(1)
𝑖′, 𝑗 . Similarly, let 𝑖∗

2
( 𝑗) = argmax𝑖′ 𝜇

(2)
𝑗,𝑖′ for any

𝑗 ∈ [𝑘1]. Let 𝑐1 (𝑖) =
∑

𝑗∈[𝑘2 ] 1{𝑖=𝑖
∗
1
( 𝑗 ) } (i.e., the number of Agent 2

choices, aka “environments”, resulting in arm 𝑖 being the best arm

for Agent 1) and similarly, 𝑐2 (𝑖) =
∑

𝑗∈[𝑘1 ] 1{𝑖=𝑖
∗
2
( 𝑗 ) }.

We call a system weakly coupled if it satisfies the following

majority condition:

Condition 1 (Majority Condition). Suppose there exist an
arm pair (𝑖M

1
, 𝑖M
2
) ∈ [𝑘1] × [𝑘2] such that 𝑐1 (𝑖M

1
) ≥ (1+𝛾)𝑘2/2, and

𝑐2 (𝑖M
2
) ≥ (1 + 𝛾)𝑘1/2 for some 0 < 𝛾 ≤ 1. Furthermore, assume that

𝜇
(1)
𝑖M
1
,𝑖M
2

> 𝜇
(1)
𝑖1,𝑖2

and 𝜇
(2)
𝑖M
1
,𝑖M
2

> 𝜇
(2)
𝑖1,𝑖2

for any (𝑖1, 𝑖2) ∈ [𝑘1] × [𝑘2].

Arm 𝑖M
1

of Agent 1 is the best choice for him for majority of

Agent 2’s selections, and analogously for 𝑖M
2

(an illustration is given

in Figure 1.). We call 𝑖M
1
, 𝑖M
2

themajority arms of both agents (hence

Agent 1 (Fix Each Arm)

Ag
en

t 2
 (O

bs
er

ve
 R

ew
ar

ds
)

Best arm pair for each column 
in terms of Agent 2’s reward

Agent 1 (Observe Rewards)

Ag
en

t 2
 (F

ix 
Ea

ch
 A

rm
)

Best arm pair for each row 
in terms of Agent 1’s reward

By Majority Condition, (1,1) is the optimal arm pair

Figure 1: An illustration of the majority condition.

the notation). Clearly, the majority arm pair is the optimal, i.e.,

(𝑖∗
1
, 𝑖∗
2
), if the condition holds.

To understand the intuition of this condition, first consider the

case when there is no coupling, i.e, 𝜇
(1)
𝑖1,𝑖2

is a constant for any

𝑖2 ∈ [𝑘2] when fixing 𝑖1 (similar for 𝜇
(2)
𝑖1,𝑖2

when fixing 𝑖2). The

majority condition holds with 𝛾 = 1. In this case, each agent can

locate the best arm solely based on the observed rewards itself.

With more coupling, the mean rewards observed by one agent

are no longer constant as the other agent changes arms — however,

in a weakly-coupled system, we assume the change of arm at the

other agent will not affect the best arm majority of time. In other

words, only a small number of actions by the other agent make a

significantly negative impact on the best arm (actually a stronger

condition would be that only a few arm pairs lead to significant

reward degradation, but we focus on the best arm exclusively). As

we will see, with more robustness this arm-reward structure still

preserves the property that local reward feedback is sufficient for

the best arm identification of each agent.

Remark 1 (Weakly Coupled Wireless Systems). Weak cou-
pling can be found in several wireless settings. Two examples that we
consider in this paper are: (i) channel selection across multiple base
stations, with coupling due to interference leakage across adjacent
channels, and (ii) scheduler selection at multiple base stations, with
coupling due to the out-of-cell interference resulting from the trans-
mission patterns induced by the chosen scheduler. We study both these
settings in Section 4, where we discuss the nature of coupling, as well
as the efficiency benefits of our approach.

2.2 An Alternative Condition, Regret
Condition 1 naturally captures the weak-coupling nature of some

applications. In Condition 1, both agents are “symmetric”. Here, we

introduce a non-symmetric, weaker notion as follows.

Condition 2 (Weaker Majority Condition). Suppose there
exist an arm 𝑖M

1
such that 𝑐1 (𝑖M

1
) ≥ (1+𝛾)𝑘2/2. Furthermore, assume

that 𝜇 (1)
𝑖M
1
,𝑖∗
2
(𝑖M
1
) + 𝜇

(2)
𝑖M
1
,𝑖∗
2
(𝑖M
1
) ≥ 𝜇

(1)
𝑖∗
1
,𝑖∗
2

+ 𝜇 (2)
𝑖∗
1
,𝑖∗
2

.

Note that Condition 1 strictly implies Condition 2 since 𝑖M
2

must

be 𝑖∗
2
(𝑖M
1
) under Condition 1 — therefore, it is better to adopt a more

general notion. Consider the channel selection example: with some

small probability, the majority arms of both agents might happen
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to “collide” with each other (i.e., being adjacent channels). Then it

is preferred to aim at finding the arm pair (𝑖M
1
, 𝑖∗
2
(𝑖M
1
)) rather than

(𝑖M
1
, 𝑖M
2
) when we design an algorithm so as to avoid the collision

(when there is no collision, Condition 2 becomes Condition 1). In

practice, even when Condition 2 is not held, the pair (𝑖M
1
, 𝑖∗
2
(𝑖M
1
))

still gives acceptable “near-optimal” rewards for similar settings

which involve collision avoiding.

The goal is to develop an efficient and communication-light

bandit algorithm to minimize regret. We define the regret as the loss

of rewards with respect to the arm pair (𝑖M
1
, 𝑖∗
2
(𝑖M
1
)) in accordance

with Condition 2.
1
Let (𝐼1 (𝑡), 𝐼2 (𝑡)) denote the arm pair selected by

the two users at time 𝑡 . The regret with horizon 𝑇 is defined as

Regret𝑇 = E

[
𝑇∑︁
𝑡=1

(𝜇 (1)
𝑖M
1
,𝑖∗
2
(𝑖M
1
) − 𝜇

(1)
𝐼1 (𝑡 ),𝐼2 (𝑡 ) )

+
𝑇∑︁
𝑡=1

(𝜇 (2)
𝑖M
1
,𝑖∗
2
(𝑖M
1
) − 𝜇

(2)
𝐼1 (𝑡 ),𝐼2 (𝑡 ) )

]
.

When Condition 2 holds, the regret expression above reduces to the

normal definition (i.e., with respect to the best pair (𝑖∗
1
, 𝑖∗
2
)). We use

𝑖M
1
, 𝑖∗
2
(𝑖M
1
) in the current definition to allow general comparisons.

2.3 Generalization to Multi-Agent Systems
The model described above can be generalized to systems with

more than 2 agents. For notation simplicity we consider a 3-agent

system in this subsection. Let 𝑖∗
1
(·, 𝑖2, 𝑖3) ∈ [𝑘1] be the best arm for

Agent 1 when Agent 2 and Agent 3 play 𝑖2 ∈ [𝑘2] and 𝑖3 ∈ [𝑘3]
respectively. (Arm 𝑖∗

2
(𝑖1, ·, 𝑖3) and arm 𝑖∗

3
(𝑖1, 𝑖2, ·) are analogously

defined.) The majority condition is stated as follows:

Condition 3 (Majority Condition: 3-Agent System). Sup-
pose there exist an arm 𝑖M

1
∈ [𝑘1] such that∑︁

(𝑖2,𝑖3 ) ∈ [𝑘2 ]×[𝑘3 ]
1{𝑖M

1
=𝑖∗

1
( ·,𝑖2,𝑖3 ) } ≥ (1 + 𝛾) (𝑘2𝑘3)/2,

and an arm 𝑖
M,𝑖1=𝑖

M
1

2
∈ [𝑘2] such that∑︁

𝑖3∈[𝑘3 ]
1{𝑖

M,𝑖
1
=𝑖M
1

2
=𝑖∗

2
(𝑖M
1
,·,𝑖3 ) } ≥ (1 + 𝛾)𝑘3/2.

Furthermore, assume that (𝑖M
1
, 𝑖
M,𝑖1=𝑖

M
1

2
, 𝑖∗
3
(𝑖M
1
, 𝑖
M,𝑖1=𝑖

M
1

2
, ·)) is the best

collective arm in terms of sum (mean) rewards.

Note that we follow the non-symmetric pattern of the alternative

condition in Section 2.2. Accordingly, the regret is defined as the

loss with respect to the triplet (𝑖M
1
, 𝑖
M,𝑖1=𝑖

M
1

2
, 𝑖∗
3
(𝑖M
1
, 𝑖
M,𝑖1=𝑖

M
1

2
, ·)).

3 ALGORITHM DESIGN AND ANALYSIS
3.1 Building Block: Track-and-Stop
Our algorithm applies the Track-and-Stop (T-a-S) algorithm [8] as

subroutines to locate the best arm in each environment. Track-

and-Stop is a single-agent bandit algorithm for the purpose of best
arm identification — the goal is to learn the best arm with a fixed

1
Indeed, with slight modification our algorithm can minimize a regret that is defined

with respect to (𝑖M
1
, 𝑖M
2
) .

confidence 𝛿 using the least number of plays. The T-a-S agent

explores arms and collects feedback until a certain criterion is met,

and outputs a “recommended” arm such that it is the best arm w.p.
1−𝛿 . In each round, the agent computes the “optimal proportion” of

arms needed for exploration based on observed mean rewards
2
, and

chooses the arm which better matches (“tracks”) the proportion.

Compared to the “pure exploration” approach (i.e., exploring the

arms in a round-robin fashion), a T-a-S agent spends more effort on

exploring arms with better reward feedback, which is significantly

more efficient. Indeed, for some structured bandit environments, it

has been shown that Track-and-Stop is asymptotically optimal in

terms of the number of explorations needed for the fixed-confidence

best arm identification problem. We present the following result

(taken from [15]) which will be used in our regret analysis.

Let E𝑘 be the set of 𝑘-armed Gaussian bandit environments.

For any 𝜈 ∈ E𝑘 , denote 𝜈𝑖 as the reward distribution of arm 𝑖 ∈
[𝑘] (which is normally distributed) and 𝜇𝑖 as its mean. We denote

E𝑘,alt(𝜈 ) as the set of bandits whose best arms are different from

the one in 𝜈 , i.e., E𝑘,alt(𝜈 ) = {𝜈 ′ ∈ E𝑘 : 𝑖∗ (𝜈) ∩ 𝑖∗ (𝜈 ′) = 𝜙} where
𝑖∗ (𝜈) = argmax𝑖∈[𝑘 ] 𝜇𝑖 (𝜈).

Lemma 3.1 ([15], Theorem 33.6). For any bandit environment 𝜈 ∈
E, the stopping time of a Track-and-Stop instance with a confidence
parameter 𝛿 , 𝜏 (𝛿 ;𝜈), satisfies that

lim

𝛿→0

E[𝜏 (𝛿 ;𝜈)]
log(1/𝛿) = 𝜌∗ (𝜈) B sup

𝛼∈P𝑘−1

(
inf

𝜈 ′∈E𝑘,alt(𝜈 )

(
𝑘∑︁
𝑖=1

𝛼𝑖𝑑 (𝜈𝑖 , 𝜈′𝑖 )
))

where P𝑘−1 is the (𝑘 − 1)-probability simplex and 𝑑 (·, ·) denotes the
Kullback-Leibler divergence of two distributions.3

Note that the value 𝜌∗ (𝜈) is the asymptotic lower bound.

3.2 Algorithm for Weakly Coupled Systems
In this section, we introduce the main result — a decentralized

bandit algorithm for weakly coupled systems using Track-and-

Stop as a building block. As we will see, our algorithm exploits

three properties: (i) (1) Local greedy property, where there is no

sample sharing across agents and decision-making is based on

local majority; (2) Avoiding hard environments, where the T-a-S

algorithm is initially deployed on a larger set of environments, but

is stopped early on those environments that are hard (meaning

the gap between the means of the best and second-best arms is

small), and (3) Sub-sampling property, where only a limited set

of environments are ever explored by any agent. The complete

algorithm is presented in Algorithm 1, and an illustrative figure is

exhibited in Figure 2.

Let TAS(𝑖,· ) (𝛿) denote a sub-routine as follows: Agent 1 plays
arm 𝑖 repeatedly; Agent 2 implements T-a-S with respect to the

confidence parameter 𝛿 based on her own feedback. The sub-routine

TAS( ·,𝑖 ) (𝛿) is defined analogously. Before implementation, let Agent

2 randomly choose a sample set of arms S (2) ⊂ [𝑘2] such that

|S (2) | = 𝑠 (𝑘2), where 𝑠 (𝑘2) is a global constant which is known

to both users. By choosing each of the arms in S (2) , Agent 2 will
generate 𝑠 (𝑘2) environments for Agent 1 where Agent 1 can learn

2
For example, if an arm shows much worse reward feedback than others after some

initial exploration, the proportion assigned to this arm should be lower.

3
A similar result on exponential family bandits is given in [8] (Theorem 14).
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Agent 2: Rotate Each Arm  
Agent 1: Run Track-and-Stop

Stop -- Enough T-a-S subroutines finish such that  
                 is recommended (ideally                )
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Agent 1: Fix Arm 
Agent 2: Run Track-and-Stop

Stop -- Subroutine                     finish and 
             output      (ideally                    )                     

Agent 1 (Fix Arm     )

For each episode l = 0, 1, 2…

Both agents run             until end of episode ( episode length:                          )  

Figure 2: An illustration of the main algorithm.

its “majority best” arm 𝑖M
1
, i.e., which maximizes its local rewards

in a majority of the environments. Sampling is important when 𝑘2
is large — we will discuss its impact in the analysis section later.

The algorithm proceeds by episodes. Each episode 𝑙 lasts 𝑇𝑙 B
1

2
𝑇0 · 22

𝑙
rounds (arm pulls), and is split into two phases: the ex-

ploration phase which consists of phase (1a) and (1b), and the

exploitation phase (phase (2)).

In phase (1a), Agent 2 selects 𝑖2 ∈ S (2) in a round-robin fash-

ion while Agent 1 runs Track-and-Stop instances (with respect

to corresponding Agent 2’s arms) under a confidence parameter

𝛿 ′
𝑙
= ℎ(𝛿𝑙 ) where 𝛿𝑙 B 2𝛿0 · ( 1

2
)2𝑙 . The definition of ℎ will be dis-

cussed later in Lemma 3.2. Once TAS( ·, 𝑗 ) (𝛿 ′
𝑙
) stops (i.e., Agent 1

outputs an arm recommendation 𝐷 ( ·, 𝑗 ) ), Agent 1 will inform Agent

2 to skip choosing 𝑗 in the following rounds. Phase (1a) stops when

1) Agent 1 learns 𝐷 ( ·, 𝑗 ) for all 𝑗 ∈ S (2) or when 2) more than

(1 − 𝛾) |S (1) |/2 Track-and-Stop instances output the same (non-

𝜙) arm recommendation. Note that this latter step corresponds to

avoiding hard environments that we discussed earlier. Phase (1a)

ends with Agent 1 choosing an arm 𝐼1 which is most frequently

recommended (and ideally 𝑖M
1
). In Phase (1b), Agent 1 chooses 𝐼1

while Agent 2 runs subroutine TAS(𝐼1,· ) (𝛿𝑙 ) until Agent 2 outputs
a recommended arm 𝐼2 (ideally 𝑖

∗
2
(𝑖M
1
)).

Finally, in phase (2), Agent 1 and Agent 2 select 𝐼1 and 𝐼2 respec-

tively for the remaining time slots in episode 𝑙 . Note that there

is possibility that phase (1a) or (1b) is not finished by the end of

episode 𝑙 — in this case, we start a new episode nevertheless. In

practice, this scenario could be avoided by properly choosing pa-

rameters 𝑇0 and 𝛿0.

Note that the constant 𝛾 is pre-selected as a hyper-parameter to

reflect the degree of coupling of the system— the less coupling there

is (as one assumes), the larger 𝛾 can be set, and the less exploration

is needed. In an extreme case, when 𝛾 = 1 (i.e., 𝑖M
1

is the best with

respect to any arm choice of Agent 2), only one sample is needed

in [𝑘2] for the exploration of arm 𝐼1 in phase (1a).

Remark 2 (Communication Cost). In this algorithm, communi-
cation occurs when one agent signals the other the end of a Track-and-
Stop instance or the end of phase (1a) or (1b), and no other information

Algorithm 1 Decentralized Bandit for Weakly Coupled Systems

Initialization: Agent 2 randomly select S (2) ⊂ [𝑘2], such that

|S (2) | = 𝑠 (𝑘2).
for 𝑙 = 0, 1, 2, · · · do

Global clock 𝑡 ← 1

𝑇𝑙 ← 1

2
𝑇0 · 22

𝑙
, 𝛿𝑙 ← 2𝛿0 · ( 1

2
)2𝑙 , 𝛿 ′

𝑙
← ℎ(𝛿𝑙 )

[Phase 1a]
[Agent 1] Set local variables: 𝐷 ( ·, 𝑗 ) ← 𝜙 for all 𝑗 ∈ S (2)
[Agent 2] Set local variable: 𝑖2 ← lowest index in S (2)

while NOT phase_1a_stop AND 𝑡 ≤ 𝑇𝑙 B 1

2
𝑇0 · 22

𝑙
do

Proceed TAS( ·,𝑖2 ) (𝛿 ′
𝑙
) by one time slot

if TAS( ·,𝑖2 ) (𝛿 ′
𝑙
) stops (observed by Agent 1) then

[Agent 1] 𝐷 ( ·,𝑖2 ) ← Output of TAS( ·,𝑖2 ) (𝛿 ′
𝑙
)

Agent 1 informs Agent 2 that 𝐷 ( ·,𝑖2 ) ≠ 𝜙

end if
[Agent 2] 𝑖2 ← the next arm (in a round-robin fashion)

in S (2) where 𝐷 ( ·,𝑖2 ) = 𝜙

𝑡 ← 𝑡 + 1
end while
[Agent 1] 𝐼1 ← Mode((𝐷 ( ·,𝑖2 ) )𝑖2∈S (2) )

[Phase 1b]
[Agent 2] Set local variable: 𝐷 (𝐼1,· )

while NOT phase_1b_stop AND 𝑡 ≤ 𝑇𝑙 B 1

2
𝑇0 · 22

𝑙
do

Proceed TAS(𝐼1,· ) (𝛿𝑙 ) by one time slot

if TAS(𝐼1,· ) (𝛿𝑙 ) stops (Observed by Agent 2) then
[Agent 2] 𝐷 (𝐼1,· ) ← Output of TAS(𝐼1,· ) (𝛿𝑙 )
Agent 2 informs Agent 1 that 𝐷 (𝐼1,· ) ≠ 𝜙

end if
𝑡 ← 𝑡 + 1

end while
[Agent 2] 𝐼2 ← 𝐷 (𝐼1,· )

[Phase 2]
Agent 1 and Agent 2 choose (𝐼1, 𝐼2) repeatedly until 𝑡 = 𝑇𝑙

Definition (Phase Stopping Criteria):
phase_1a_stop = {∃ 𝑗 ∈ S (1) such that

∑
𝑖2∈S (2) 1{𝐷

( ·,𝑖
2
)=𝑗 } >

(1 − 𝛾) |S
(2) |
2
} or {𝐷 ( ·,𝑖2 ) ≠ 𝜙,∀𝑖2 ∈ S (2) }.

phase_1b_stop = {𝐷 (𝐼1,· ) ≠ 𝜙}.

requires exchange. Furthermore, in phase (1a) and (1b), the agent who
implements the Track-and-Stop instance does not need to know which
arm the other agent selects since the other agent chooses arms in a
round-robin manner — the only knowledge needed is 𝑠 (𝑘2) for Agent
1. (In Algorithm 1, for notation simplicity we use 𝐷 ( ·, 𝑗 ) as Agent 1’s
local variables to denote the outputs of Track-and-Stop subroutines,
although the exact indices 𝑗 are not needed.)

Remark 3 (Non-Weakly Coupled Systems). When the system is
not weakly-coupled, the recommended arms (𝐼1, 𝐼2) can be suboptimal
— in some settings, “greedy choices” may have a negative impact on
each other. When this happens (e.g., the rewards observed in phase (2)
are much smaller than the best rewards observed in phase (1)), one
solution is for both agents to switch to a pre-agreed arm pair or a
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centralized bandit algorithm. For instance, an Explore-Then-Commit
(ETC) approach is a reasonable centralized algorithm — all of the
𝑘1 × 𝑘2 arm pairs are selected in a round-robin fashion for a fixed
length of time, and the best arm pair (after exchanging the information
regarding mean rewards) is used in the exploitation phase.

Remark 4 (Extension to 3-Agent Systems). This algorithm can
be easily extended to systems with more than 2 agents. For example,
when there are are 3 agents, phase (1) is split into 3 sub-phases: in
phase (1a), Agent 2 and Agent 3 first select a subset of arms in [𝑘2] ×
[𝑘3] and rotate arms accordingly, while Agent 1 runs Track-and-Stop
subroutines to identify the majority arm 𝐼1 (ideally 𝑖M

1
); in phase (1b),

Agent 1 fixes his arm choice 𝐼1, while Agent 2 and Agent 3 follow
the procedure as in the original phase (1a) of Algorithm 1 such that

Agent 2 learns 𝐼2 (ideally 𝑖
M,𝑖1=𝑖

M
1

2
as defined in Section 2.3); finally,

in phase (1c), Agent 3 learns the recommended arm 𝐼3 when Agent 1
and Agent 2 play (𝐼1, 𝐼2). The exploitation phase remains the same.

3.3 Regret Analysis
In this section, we present the regret analysis of our main algorithm.

For simplicity, we assume the distribution of rewards (for each

arm) observed by each agent is Gaussian, such that the theoretical

guarantee of Track-and-Stop can be applied.

3.3.1 Soundness of Phase (1). The first result states the soundness
of the exploration phase, i.e., the best collective arm is identified

with high probability. We will focus on the soundness of phase

(1a) since the result for phase (1b) is straightforward (as only one

Track-and-Stop instance is involved).

Lemma 3.2. Assume that
∑

𝑗∈S (2) 1{𝑖
M
1
=𝑖∗

1
( 𝑗 ) } ≥ 𝑠 (𝑘2 )

2
, i.e., the

sample set S (2) preserves the majority condition. Let 𝜏 (1𝑎)
𝑙

denote the
stopping time of phase (1a) in episode 𝑙 (and suppose episode 𝑙 can
run indefinitely). It satisfies that

P({𝜏 (1𝑎)
𝑙

< ∞} ∩ {𝐼1 = 𝑖M
1
}) ≥ 1 − 𝛿𝑙

provided that

ℎ−1 (𝛿) = 1 −
⌈𝑠 (𝑘2 )/2⌉∑︁

𝑛=⌊ (1−𝛾 )𝑠 (𝑘1 )/2⌋+1

(
⌈𝑠 (𝑘2)/2⌉

𝑛

)
(1 − 𝛿)𝑛𝛿 ⌈𝑠 (𝑘2 )/2⌉−𝑛 .

Proof. The intuition is as follows: Let Event A be “more than

(1−𝛾)𝑠 (𝑘2)/2 Track-and-Stop instances will eventually choose Arm
𝑖M
1

if running indefinitely". Let Event B be “the majority-stopping

criterion phase_1a_stop is reached, and Arm 𝑖M
1

is chosen when

phase_1a_stop is reached". Clearly we have that A implies B. Thus,
it suffices to compute the error probability of event A to get the

error bound for Event B.
Let𝐷 𝑗 [𝑡] be the random variable denoting the decision (“output”)

for instance TAS( ·, 𝑗 ) (𝛿 ′
𝑙
) at time 𝑡 . Thus, 𝐷 𝑗 [𝑡] ∈ {𝜙} ∪ [𝑘1]. Let

˜S (1) ⊂ S (1) be the set of “good” arms for Agent 2 such that 𝑖M
1

=

𝑖∗
1
( 𝑗) for all 𝑗 ∈ ˜S (2) (by assumption, | ˜S (2) | ≥ ⌈𝑠 (𝑘2)/2⌉ ≥ ⌊(1 −

𝛾)𝑠 (𝑘2)/2⌋ + 1). Therefore, by the soundness of Track-and-Stop,

for any 𝑗 ∈ ˜S (2) , lim𝑡→∞ 1{𝐷 𝑗 [𝑡 ]=𝑖M
1
} = 𝑌𝑗 , a.s. where 𝑌𝑗 is a

Bern(1 − 𝛿 ′
𝑙
) random variable. Furthermore, since {𝐷𝑖 [𝑡]}𝑡≥0 and

{𝐷 𝑗 [𝑡]}𝑡≥0 are independent from each other for any 𝑖 ≠ 𝑗 , we have

that 𝑌𝑖 are independent for all 𝑖 ∈ ˜S (2) .

Let 𝑁 [𝑡]=∑
𝑖∈S (2) 1{𝐷𝑖 [𝑡 ]=𝑖M

1
} and �̃� [𝑡]=∑

𝑖∈ ˜S (2) 1{𝐷𝑖 [𝑡 ]=𝑖M
1
}.

Note that phase (1a) is good if and only if there exists 𝑡 > 0 such

that 𝑁 [𝑡] > (1 − 𝛾)𝑠 (𝑘2)/2. Now observe that,

{∀𝑡, 𝑁 [𝑡] ≤ (1 − 𝛾)𝑠 (𝑘2)/2} =⇒ { lim
𝑡→∞

𝑁 [𝑡] ≤ (1 − 𝛾)𝑠 (𝑘2)/2}

=⇒ { lim
𝑡→∞

�̃� [𝑡] ≤ (1 − 𝛾)𝑠 (𝑘2)/2}.

Note that lim𝑡→∞ 𝑁 [𝑡] and lim𝑡→∞ �̃� [𝑡] both exist due to mono-

tonicity and 𝑁 [𝑡] ≥ �̃� [𝑡] for all 𝑡 ≥ 0.

Now observe that lim𝑡→∞ �̃� [𝑡] =
∑
𝑖∈ ˜S (2) 𝑌𝑖 . Therefore, we

have that

P({𝜏 (1𝑎)
𝑙

= ∞} ∪ {𝐼1 ≠ 𝑖M
1
}) ≤ P( lim

𝑡→∞
�̃� [𝑡] ≤ (1 − 𝛾)𝑠 (𝑘2)/2)

≤ 1 −
| ˜S (2) |∑︁

𝑛=⌊ (1−𝛾 )𝑠 (𝑘2 )/2⌋+1

(
| ˜S (2) |
𝑛

)
(1 − 𝛿 ′

𝑙
)𝑛𝛿 ′

𝑙
| ˜S (2) |−𝑛

≤ ℎ−1 (𝛿 ′
𝑙
) = 𝛿𝑙

The last inequality holds true for any possible
˜S (2) , considering

| ˜S (2) | ≥ 𝑠 (𝑘2)/2 by assumption. □

3.3.2 Regret. To compute the cumulative regret, let us first give a

bound on the expected length of the exploration phase. Note that

for any fixed arm 𝑗 ∈ S (2) , Agent 1 operates a 𝑘1-armed bandit

in instance TAS( ·, 𝑗 ) (𝛿 ′
𝑙
). Let 𝜈 ( ·, 𝑗 ) ∈ E𝑘1 denote the corresponding

environment in which Agent 1 plays. We have the following result.

Lemma 3.3. Rank the elements inS (2) as ( 𝑗1, 𝑗2, · · · , 𝑗 |S (2) | ), such
that 𝜌∗ (𝜈 ( ·, 𝑗1 ) ) ≤ 𝜌∗ (𝜈 ( ·, 𝑗2 ) ) ≤ · · · ≤ 𝜌∗ (𝜈 ( ·, 𝑗 |S (2) | ) ). For any 𝜖 > 0,
there exists 𝛿0 such that for all 𝑙 ≥ 0,

E[𝜏 (1𝑎)
𝑙
] ≤ (1 + 𝜖) (log 1

𝛿0
+ 2𝑙 log 2)C(1𝑎)

where

C(1𝑎) =

(
𝑠∑︁

𝑚=1

𝜌∗ (𝜈 ( ·, 𝑗𝑚 ) ) + (𝑠 (𝑘2) − 𝑠) · 𝜌∗ (𝜈 ( ·, 𝑗𝑠 ) )
)

and 𝑠 = ⌊(1 − 𝛾) 𝑠 (𝑘2 )
2
⌋ + 1.

Remind that 𝛿𝑙 = 2𝛿0 · ( 1
2
)2𝑙 . The above is a direct result from

Lemma 3.1 and the phase stopping criterion. Analogously, we can

derive a similar (and simpler) result for phase (1b) using another con-

stant C(1𝑏 ) , which can be defined as C(1𝑏 ) = max𝑗∈[𝑘1 ] 𝜌
∗ (𝜈 ( 𝑗,· ) ).

We have the following regret bound for the main algorithm.

Theorem 3.4. Provided that
∑

𝑗∈S (2) 1{𝑖
M
1
=𝑖∗

1
( 𝑗 ) } ≥ 𝑠 (𝑘2)/2, we

have that for any 𝜖 > 0, there exists 𝛿0 such that

Regret𝑇 ≤ 4(1 + 𝜖)Δmax (C(1𝑎) + C(1𝑏 ) ) ·max(log((𝑇 /𝑇0) · 2), 1)
+ 𝑜 (log𝑇 )

where Δmax = max(𝑖1,𝑖2 )
(
(𝜇 (1)

𝑖∗
1
,𝑖∗
2

+ 𝜇 (2)
𝑖∗
1
,𝑖∗
2

) − (𝜇 (1)
𝑖1,𝑖2
+ 𝜇 (2)

𝑖1,𝑖2
)
)
, and the

constants C(1𝑎) and C(1𝑏 ) are defined as in Lemma 3.3.

Proof. Let 𝑙 (𝑇 ) be the index of the episode at the horizon𝑇 . By
observation we have that

𝑙 (𝑇 ) = 0 or (𝑇0/2) · 22
𝑙 (𝑇 )−1

≤ 𝑇
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=⇒ 𝑙 (𝑇 ) ≤ max(0, log
2
log

2
((𝑇 /𝑇0) · 2)) + 1.

The regret can be split into two parts: the loss of rewards due to

the exploration in phase (1a) and (1b), and the loss of rewards due

to the “wrong” recommendation in phase (2). Therefore, using the

bound on 𝑙 (𝑇 ), we have that

Regret𝑇 ≤
𝑙 (𝑇 )∑︁
𝑙=0

(E[𝜏 (1𝑎)
𝑙
+ 𝜏 (1𝑏 )

𝑙
]Δmax + (2𝛿𝑙 ) ·𝑇𝑙 )

≤
𝑙 (𝑇 )∑︁
𝑙=0

(
(1 + 𝜖) (C(1𝑎) + C(1𝑏 ) )Δmax (log

1

𝛿0
+ 2𝑙 log 2) + 2𝛿0𝑇0

)
≤ 4(1 + 𝜖)Δmax (C(1𝑎) + C(1𝑏 ) ) ·max(log( 2𝑇

𝑇0
), 1) + 𝑜 (log𝑇 ) .

Note that the first inequality applies the soundness guarantee given

in Lemma 3.2. □

3.3.3 Sampling. Note that the constantC(1𝑎) in the above theorem
scales as 𝑂 (𝑠 (𝑘2)). Thus, when S (2) = [𝑘2] (no sampling), we

have that Regret𝑇 = 𝑂 (𝑘1𝑘2 log𝑇 ). When the number of arms is

large, sampling is typically needed to reduce the computational cost.

Using standard concentration techniques (Bernstein inequality)

which bound the probability of the event {∑𝑗∈S (2) 1{𝑖
M
1
=𝑖∗

1
( 𝑗 ) } ≥

𝑠 (𝑘2)/2}, we have the following corollary.

Corollary 3.5. When Condition 2 holds, there exist 𝛽2 > 0 such
that when the sample size 𝑠 (𝑘2) = 𝛽2 log𝑘2, the regret satisfies that
Regret𝑇 = 𝑂 (𝑘1 log𝑘2 log𝑇 ) with probability 1/𝑘2 for sufficiently
large 𝑘2.

Corollary 3.5 can be extended to systems with more than two

agents. Suppose there are𝑚 agents, each with 𝑘 arms. Using the

procedure discussed in Remark 4, and letting the size of sample

sets in phase (1) scaling as 𝑂 (log𝑘), we have that the regret scales
as 𝑂 ((𝑚 − 1)𝑘 log𝑘 log𝑇 ) w.p. 𝑂 (1/𝑘). Note that the term (𝑚 − 1)
stems from the number of sub-phases needed in phase (1).

4 PERFORMANCE EVALUATION
4.1 Multi-Channel Selection
4.1.1 A Two-AP Example. We first consider an application exam-

ple in the wireless channel selection problem. Suppose two access

points (APs) are located within a close range, each serving a nearby

mobile user. The APs decide amongst a set of channels (frequency

bands) which one to use to serve the respective users. Due to some

environment effects (such as shadowing or exogenous interference),

the best channels are unknown to the APs. Furthermore, the deci-

sions of each AP will interfere with the rewards received by the

other due to channel leakage. However, since the leakage mainly

affects a small number of adjacent channels, it is reasonable to

believe that the majority condition holds, and one can apply our

algorithm to locate the best channel at each AP.

Experiment Settings: Suppose each AP chooses among (the same)

𝑛 frequency bands which are indexed 1, 2, · · · , 𝑛 for each time slot

(which lasts 0.5 ms). We set 𝑛 = 13. The Signal-to-Interference ratio

(SIR) at time slot 𝑡 is modeled as SIR[𝑡] = 𝑃𝑎𝑔[𝑡]/I[𝑡] where 𝑃𝑎 is

the transmit power of the AP, 𝑔[𝑡] denotes the channel gain at the

user and I[𝑡] denotes the interference level. We set 𝑃𝑎 = 23 dBm

for both APs. The channel gain is determined through the path loss,
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Figure 3: Simulation results on experiments in Section 4.1.1.

fading properties (Rayleigh fast fading) and a channel-dependent

shadowing gain. We assume the channel-dependent gains (in dB)

are drawn from Gaussian distributionN(0, 6) and constant through
the simulation.

Assume that the interference I[𝑡] is exclusively caused by chan-

nel leakage from the nearby AP. We adopt the following simplified

power leakage model for AP 𝑠 (𝑠 = 1, 2): when channel 𝑖 ∈ [𝑛]
is chosen, the relative power leakage (in dB) in channel 𝑗 ∈ [𝑛]
equals min(0,max(−𝛽𝑠 |𝑖 − 𝑗 |,−𝜑𝑠 ) + 𝛾𝑖, 𝑗 ). This reflects the nature
of common channel leakage, i.e., adjacent channels experience sig-

nificantly higher interference (subject to channel-dependent “noise”

𝛾𝑖, 𝑗 ). In our simulation, we set 𝛽𝑠 = 33 dB, 𝜑𝑠 = 90 dB and 𝛾𝑖, 𝑗 is

randomly chosen from Gaussian distributionN(0, 4). Note that we
do not assume the agents (APs) have any prior knowledge of the

leakage model, and our algorithm can easily address more com-

plicated models (e.g., with APs using different sets of channels or

abnormal non-adjacent channel leakage). Furthermore, we assume

each mobile user is closer to its corresponding AP, and the relative

gain due to path loss is 20 dB for both users.

Suppose the users have infinitely backlogged queues and the

rewards received by each user equal the number of packets trans-

mitted, i.e., the instantaneous service rate. For any time slot 𝑡 , the

rate at any user 𝑖 is given by

𝑆𝑖 [𝑡] = BW × log
2
(1 + 100.1(SIR𝑖 [𝑡 ]−L) ) bps (1)

where BW is set to be 20 MHz and the parameter L = 3dB describes

a loss to Shannon capacity.

Results: We first run Monte-Carlo simulations to compute mean

rewards received by both APs under different (𝑖1, 𝑖2) pairs. Figure 3a
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and 3b show a typical realization of channel rewards (note that the

results vary by simulations due to randomness), where the adjacent

channel leakage negatively affects the rewards in the diagonal

squares. In Figure 3a, we use red boxes to denote the best AP-1 arm

under each AP-2 arm choice 𝑖2, and AP-1 arm 10 is the majority

arm 𝑖M
1

(under this simulation). Similarly, AP-2 arm 5 is shown as

the majority arm 𝑖M
2

by Figure 3b (which is also 𝑖∗
2
(𝑖M
1
)).

We then run the main algorithm to find the best collective arm.

For simplicity, we apply a computationally-efficient version of

Track-and-Stop, assuming the rewards are normally distributed

(see [8], Section 2). In particular, we are interested in the TAS sub-

routines in phase (1a) of the algorithm. Figure 3c shows the number

of explorations for each arm pair in phase (1a) in the first episode.

As expected, for each sub-routine TAS( ·,𝑖2 ) (𝛿 ′
𝑙
) (corresponding to

each column), typically only the top two arms are heavily explored

to determine the best one — this shows a major advantage of Track-

and-Stop compared to a naive round-robin exploration. In addition,

we use blue boxes to denote decisions made by each sub-routine.

The larger is the reward gap between the top two arms, the less

exploration is required (e.g., when 𝑖2 = 13). Note that phase (1a)

stops once the stopping criterion has been met, and not all of the

sub-routines are needed to output a recommendation.

Finally, in Figure 3d, we exhibit the cumulative regret over time,

which grows logarithmically with an episodic behavior. We com-

pare our algorithm to the classical explore-and-commit (ETC) al-
gorithm, which utilizes round-robin exploration. Our algorithm

exhibits a much-improved regret in the exploration phase, sug-

gesting that the majority-based algorithm with Track-and-Stop

subroutines better exploits the structure of the system.

4.1.2 A Three-AP Example. In this experiment, we extend our

multi-channel selection example to a 3-AP setting. We follow the

channel leakage model introduced in the previous section, and set

𝛽𝑠 = 33, 39, 45 dB for 𝑠 = 1, 2, 3 respectively. The relative path loss

gain ranges from 20 to 40 dB among different pairs of users. Other

parameters remain the same.

Figure 4a shows the best arm for AP-1 when each (𝑖2, 𝑖3) pair is
selected (for one realization of the channel model). For the simula-

tion we present here, the majority arm 𝑖M
1

= 5. Figure 4b further

exhibits the reward gap between the majority arm and the second-

best in each environment (we set the gap as 0 when the majority

arm 5 is not the best arm in that environment).

When implementing phase (1a) of the algorithm, we sample 20

(𝑖2, 𝑖3) pairs (otherwise, the number of sub-routines needed signif-

icantly grows with more APs). The total number of explorations

of each sampled sub-routine in the first episode is shown in Fig-

ure 4c, with orange boxes denoting the sub-routines that output

arm recommendations before phase (1a) finishes — as expected,

“easy” sub-routines with larger reward gap complete faster. A re-

gret plot is presented in Figure 4d for completeness. The regret is

computed with respect to the best collective action (5, 11, 2).

4.2 Best Scheduler Selection
In this section, we explore a potential application of our algorithm

for best scheduler selection in wireless queueing systems, which is

first proposed as the “meta-scheduling” problem in [22, 23]. Wire-

less schedulingwith queues is a challenging task—many schedulers
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Figure 4: Simulation results on experiments in Section 4.1.2.

are developed (e.g., MaxWeight, Log Rule, Exp Rule, etc.) for specific

settings/goals, however, there lacks a systematic approach to find a

good scheduler across diverse performance metrics and deployment

scenarios. The authors in [22] thereby proposed a multi-armed ban-

dit framework (“meta-scheduler”), which selects the best scheduler

from a set of predefined policies through users’ feedback evaluating

the performance. This is a flexible model which allows complicated

and user-customized reward schemes to be considered.

The algorithm proposed in [22] is designed for single-agent

scenarios. When there are multiple nearby base stations, reward

feedback at each agent is coupled with decisions from other agents

due to signal interference. Furthermore, different scheduler combi-

nations might lead to heterogeneous interfering behaviors. There-

fore, it can be problematic to run a single-agent bandit algorithm

individually at each station without effective coordination.

Under reasonable interference levels and typical reward schemes,

we believe the systems are weakly coupled. The intuition is that ef-

fective scheduling policies tend to schedule users opportunistically

(i.e., making use of good channels to improve transmission effi-

ciency), and as a byproduct incur less interference to other agents

(since less power/time is needed to transmit the same users’ packet

flows). Therefore, the majority condition should hold if the candi-

date set consists of mostly “good” schedulers. In the following, we

will set up a simple downlink scheduling system and showcase the

usage of our algorithm.

Experiment Settings: Suppose there exists 2 base stations (BS-1
and BS-2), each serving 4 downlink users. For each base station, we

follow a packet transmission model used in [22]: The instantaneous
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Table 1: Mean rewards observed by BS-1 and BS-2 in Scenario
(S1) of Section 4.2. The best policy in each environment is
highlighted in bold font. The best collective arm is (C, C).

B
S-
1
M
e
a
n
R
e
w
a
r
d
s

BS-1 Arms (Policies)

A) B) C) D) E) F)

B
S
-
2

A) 0.773 0.549 0.785 0.311 0.768 0.760

B) 0.769 0.508 0.781 0.264 0.764 0.755

C) 0.776 0.571 0.787 0.337 0.771 0.763

D) 0.745 0.046 0.757 0.019 0.739 0.724

E) 0.773 0.541 0.784 0.303 0.768 0.759

F) 0.749 0.117 0.761 0.027 0.744 0.730

B
S-
2
M
e
a
n
R
e
w
a
r
d
s

BS-1 Arms (Policies)

A) B) C) D) E) F)

B
S
-
2

A) 0.945 0.945 0.944 0.945 0.941 0.943

B) 0.937 0.936 0.933 0.932 0.932 0.930

C) 0.948 0.952 0.953 0.952 0.952 0.951
D) 0.632 0.682 0.633 0.636 0.640 0.634

E) 0.940 0.936 0.941 0.940 0.938 0.941

F) 0.878 0.861 0.871 0.872 0.862 0.875

SINR of user 𝑖 at time 𝑡 equals 𝑃𝑏𝑔𝑖 [𝑡]/(𝜎2 + 𝐼𝑖 [𝑡]), where the

transmit power of BS 𝑃𝑏 is set to be 47 dBm and the noise level

𝜎2 = −104. The channel gain 𝑔𝑖 [𝑡] is a combination of path loss

and Rayleigh fast fading, and the path loss (in dB) is computed as

39.1 log
10
(dist) + 13.5+ 20 log

10
(𝑓𝑐 ) where 𝑓𝑐 = 2.0 GHz and dist

denotes the user distance. The interference level 𝐼𝑖 [𝑡] is a result of
packet transmission of the nearby base station, and 𝐼𝑖 [𝑡] = 0 when

the other base station is idle. The instantaneous service rate of each

user is computed according to (1) with BW = 10MHz. Each time slot

lasts 0.5 ms and each packet has a fixed size 5 kb.

Let the 4 users served by BS-2 close to their base station (subject

to small interference) with a light load — the arrival rate for each

user is set as 0.3 packets/slot. For the 4 users served by BS-1, we set

the arrival rate as 0.6 packets/slot and focus on two scenarios: (S1)
For each user, the distance to BS-1 (dist1) equals 150 m and the

distance to BS-1 (dist2) ranges from 300± 10m. (S2) For each user,

dist1 = 150 m and dist2 ∈ 250 ± 10 m. The second scenario sees

a higher interference level. Each agent chooses over 6 scheduling

policies: A) MaxWeight, B) Max-Queue, C) Max-Rate, D) Round-

Robin, E) Log-Rule, F) Exp-Rule, and collect reward feedback every

200 time slots (aka one “round”). Packets not transmitted at the

end of each round are dropped to ensure the reward feedback are

conditionally independent.
4
We define the reward of each packet

as 1 − tanh(0.04 ∗ delay) and the reward feedback of one round is

the sum of all packet rewards.

Results: We first compute the mean rewards observed by both

base stations under different policy pairs using Monte-Carlo simu-

lations, which is presented in Table 1 and 2 (the rewards are nor-

malized by the episode length and packet loads). In both Scenario

(S1) and Scenario (S2), the best arm for BS-2 is Max-Rate and the

4
Note that if there is no packet drop, then a “bad” non-stable policy resulting in long

queues will skew the reward feedback for the next round, even if a “good” queue-

stabilizing policy is chosen. Ideally, only good policies are selected after some initial

exploration, and thus the impact of packet drop is minimal. A detailed discussion on

this issue is given in [22] , which introduces a queueing cycle-based algorithm to avoid

packet drop; adapting it to our multi-agent setting is of future interest.

Table 2: Mean rewards observed by BS-1 and BS-2 in Scenario
(S2) of Section 3.2. The best policy in each environment is
highlighted in bold font. The best collective arm is (C, C).

B
S-
1
M
e
a
n
R
e
w
a
r
d
s

BS-1 Arms (Policies)

A) B) C) D) E) F)

B
S
-
2

A) 0.569 0.183 0.612 0.051 0.596 0.505

B) 0.544 0.125 0.587 0.030 0.575 0.474

C) 0.588 0.221 0.630 0.074 0.611 0.530

D) 0.265 0.010 0.267 0.009 0.372 0.050

E) 0.560 0.168 0.604 0.046 0.588 0.493

F) 0.339 0.010 0.376 0.009 0.417 0.158

B
S-
2
M
e
a
n
R
e
w
a
r
d
s

BS-1 Arms (Policies)

A) B) C) D) E) F)

B
S
-
2

A) 0.936 0.941 0.945 0.942 0.942 0.939

B) 0.934 0.933 0.936 0.932 0.932 0.931

C) 0.955 0.953 0.951 0.951 0.952 0.952
D) 0.709 0.737 0.700 0.696 0.737 0.671

E) 0.932 0.930 0.938 0.932 0.939 0.932

F) 0.873 0.878 0.876 0.866 0.874 0.871

mean rewards do not vary much when BS-1 changes policies due

to the low load and negligible interference.

Now let us focus on the rewards observed by BS-1. In Scenario

(S1), it turns out Max-Rate is the best arm of BS-1 no matter what

policy BS-2 selects (due to the relatively low interference level

compared to Scenario (S2)). This can be expected since in our simu-

lation settings, all the users are almost symmetric (in terms of load

and service rates) — the Max-Rate policy, which greedily serves

the user with the best service rate, is proved to be efficient in mini-

mizing packet delays for symmetric moderate-load scenarios. By

contrast, in Scenario (S2), as the interference level increases (with
service rates degrading), for some choices of BS-2 (Round-Robin

and Exp-Rule), Max-Rate performs badly — instead, the Log-Rule

policy which has a better queue-stabilizing property prevails in

these cases.
5
However, the majority condition still holds for Sce-

nario (S2), showing the robustness of our model, and our algorithm

can indeed be applied to find the best collective policy.

Finally, we run the main algorithm for both scenarios. The simu-

lation results are exhibited in Figure 5. For each scenario, we show

the exploration heatmap for the algorithm phase (1a) in the first

episode — the best policy is identified with most of the explorations

focusing on good performing policies. Moreover, not all Track-and-

Stop sub-routines are needed to complete, and we use blue boxes

to denote finished sub-routines. As a result, our algorithm has a

lower regret than ETC as shown in Figure 5b and Figure 5d.

5 CONCLUSION
We study an online learning framework for themulti-agent resource

allocation problem. In particular, we focus on so-called weakly cou-

pled systems with a special arm-reward structure — the majority

condition, which states that most of the time the best arm of each

5
To be precise, the Max-Rate policy, unlike Log-Rule or MaxWeight, is not throughput-
optimal and has a smaller capacity region. In this setting, when BS-2 chooses Round-

Robin or Exp-Rule which turns out incurring more interference, Max-Rate no longer

stabilizes the load and tends to result in long queues, thus worsening the delay metric.
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Figure 5: Simulation results on experiments in Section 4.2.

agent is invariant to other agents’ arm selection. When this con-

dition holds, the optimal arms can be learned with local signals

(reward feedback) with proper coordination from other agents,

therefore allowing design of less demanding algorithms compared

to classical methods which simply examine all the collective ac-

tions. Furthermore, we develop an efficient decentralized bandit

algorithm with minimal communication overheads. Through sim-

ulation, we validate the usefulness of our model and algorithm in

two wireless settings: channel selection among nearby APs, and

best scheduling policy selection by interfering base stations. We

believe weak coupling is a reasonable abstraction for several wire-

less applications, and it is of great interest to explore its benefits in

other related settings.
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