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High Performance Centralized Content Delivery
Infrastructure: Models and Asymptotics

Virag Shah and Gustavo de Veciana

Abstract—We consider a centralized content delivery infras-
tructure where a large number of storage-intensive files are
replicated across several collocated servers. To achieve scalable
mean delays in file downloads under stochastic loads, we allow
multiple servers to work together as a pooled resource to meet
individual download requests. In such systems basic questions
include: How and where to replicate files? What is the impact
of dynamic service allocation across request types, and whether
such allocations can provide substantial gains over simpler load
balancing policies? What are tradeoffs amongst performance,
reliability and recovery costs, and energy? This paper provides a
simple performance model for large systems towards addressing
these basic questions.

Index Terms—Performance models, delays, content delivery
infrastructure, resource pooling.

I. INTRODUCTION

IN near future, high volume file transfers such as those
involved in downloading scientific datasets/visualization,

3D videos, software updates, and other immersive technolo-
gies may dominate internet traffic. We consider a centralized
infrastructure which stores and delivers large files such that
delay to serve a download request is scalable with traffic loads.
Such centralized infrastructure could, for example, be part of
a larger distributed content delivery network, where requests
not currently available at distributed sites are forwarded to the
centralized infrastructure which in turn delivers the files to
the remote sites and/or users. Performance in such systems is
the result of a complex interaction among requests that come
and go dynamically and the pools of resources that are able
to serve them. As traffic loads increase, one can make the
following design choices to meet performance requirements:
1) dimensioning of system’s server and network resources; 2)
(possibly random) placement of data across servers; and 3)
policy for routing/servicing requests. One of the goals of this
paper is to develop robust large-scale performance models to
enable system-level optimization with respect to these design
choices.

We also aim to study tradeoffs among conflicting goals
in such systems, e.g., 1) service capacity available to end
users and the resulting perceived performance; 2) reliability
and recovery costs; and, 3) energy costs. For example, by
increasing the total number of active servers, or scaling the
speed of individual servers, one can tradeoff energy cost with
performance. A more subtle example, discussed further in
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the sequel, involves spreading multiple copies of files across
pools of servers so as to trade off the cost in recovery from
large-scale server loss events, e.g., power outages [7], with
performance.

Our contributions. The key challenge we tackle in this
paper is the performance evaluation of large scale storage
systems wherein multiple file copies are placed across pools
of servers and are subject to stochastic loads. We consider
a system model where arriving file requests/jobs/flows can be
collectively served by servers, i.e., different chunks of each file
can be downloaded in parallel from servers currently storing
the file – this is akin to peer-to-peer systems. Since each
server can store multiple files, which are themselves replicated
across sets of servers, the service capacities available to serve
requests for different files are dynamically coupled. Indeed,
as explained in the sequel, ongoing file requests can share
server capacity subject to various possible ‘fairness’ objectives
rendering performance evaluation quite challenging.

The main analytical contributions of this paper can be
summarized as follows. Firstly, we propose a file-server model
and show that the overall service capacity set has polymatroid
structure. We combine this structural result of an achievable
capacity region with dynamic balanced fair rate allocations
(described later) to develop an explicit expression for the
mean file transfer delay experienced by file requests. Secondly,
we prove a new asymptotic result for symmetric large-scale
systems wherein the distribution of the number of waiting file
requests concentrates at its mean. This result provides an
easily computable approximation for the mean delay which is
used to quantify system tradeoffs.

Finally, these analytical results are used to develop and
quantify three key insights regarding large file-server systems:
a) We show how dynamic service capacity allocation across

ongoing demands is impacted by the structure of overlap-
ping resource pools (file placement) and quantify the sub-
stantial performance benefits over simpler load balancing
strategies such as those assigning file requests at random
or to least loaded servers.

b) We show that performance gains resulting from the overlap-
ping of server pools, although significant, quickly saturate
as one increases the overlap. This enables engineering
of such systems to realize close to optimal performance
while simultaneously achieving high reliability and thus
low recovery costs.

c) For a simple speed scaling policy where the processor
runs at low speed (or halts) when idle and a high but
fixed speed when busy, we show that dynamic service
capacity allocation can achieve up to 70% energy saving
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as compared to simpler policies.
Related work. There are several large-scale performance

models applicable to content delivery systems. For example,
the super-market queueing model studied in [6], [22], [23],
[33] captures a policy where each arriving request is assigned
to the least loaded server among those able to serve it. It
is known to have better mean delay performance and tail
decay for the distribution of the waiting jobs as compared to
the policy of routing requests randomly among the possible
servers. Alternatively, one can make centralized scheduling
decisions as servers become available [19], [36]. In [19] a
greedy policy is shown to be optimal over all scheduling
disciplines in a heavy-traffic regime. A centralized policy is
studied in [36] and is shown to have robustness properties
with respect to limited heterogeneity in loads across different
file types. The key difference between these works and ours
is that, rather than assigning a file request to a single server,
we allow it to be served by multiple servers simultaneously.
In the sequel, we evaluate the benefits of doing so.

Pooling of server resources is similar in spirit to multipath
routing in wireline networks, see e.g. [11]–[14], [35]. A
multipath TCP architecture is proposed in [35] to achieve
network wide resource pooling. Studies of the benefits of
multipath routing have been previously carried out, e.g., in [14]
the authors show the benefits of coordinating rate over multiple
paths in terms of the worst case rate achieved by users in a
static setting. For networks with stochastic loads, performance
analysis under multipath transport is in general hard; [12], [13]
study role of resource pooling in such a setting and provide
performance bounds/approximations. Resource pooling in net-
works via multipath, and that in content delivery infrastructure
via pooling of servers may eventually complement each other
to achieve scalable performance gains.

There has also been previous work considering file place-
ment across servers [16], [17], [25], [39]. For example, [16]
studies file placement across servers so as to minimize ‘band-
width inefficiency’ when there is a fixed set of file transfer
requests. Further, [17], [25] consider the problem of adaptive
replication of files for a loss network model where each server
can serve one file request at a time, thus avoiding queuing.
The focus of these works is on caching popular files via
distributed content delivery networks. In turn, they rely on a
centralized infrastructure to handle cache misses and request
denials arising when all associated servers are busy. Another
line of work has focused on online packing/placement of dy-
namically arriving files/objects under constraints on available
resources, e.g., [29]. By contrast with these works, we assume
file placements across servers are fixed and we examine the
performance impact of this when the system is subject to
stochastic loads with no loss.

There are several works in the literature studying energy-
performance tradeoffs, see e.g., [10], [18] and citations
therein. In [10], the authors provide an approximation to the
number of servers that should be active so as to optimize
the energy-delay product. Similarly, [34] investigates speed
scaling so as to optimize a weighted average of energy and
mean delay for a single server system. In [18], the authors
consider energy costs of switching servers on and off and

provide an optimal online algorithm to optimize overall convex
cost functions that can include performance and energy costs.
In these works a server can handle any job request. By contrast
in this paper we are particularly interested in the situations
where servers’ capabilities are constrained (e.g., by the files
they have available) and the coupling across server pools
critically impacts energy-performance tradeoffs.

As will be discussed in more detail below this paper draws
on, and extends, previous work on bandwidth sharing models;
in particular “balanced fair” allocations, see e.g., [3]–[5]. Such
allocations are a useful device in that they are amenable
to analysis, are provably insensitive to job size distribution,
and yet serve to approximate various forms of ‘fair’ resource
sharing policies considered in the literature and in practice [2],
[3], [21].

Organization of the paper. In Section II we develop our
system model for file server systems under stochastic loads. In
Section III we discuss fairness based resource allocation and
provide an exact analysis for mean delay in file transfers under
balanced fair service allocation. In Section IV we consider
large scale systems and provide an asymptotic expression for
the mean delay. In Section V we use our analysis to compare
the performance of our policy with other resource allocation
policies. In Section VI we discuss system tradeoffs involving
mean delay, recovery costs and energy consumption. We
conclude in Section VII. Proofs are provided in the Appendix.

II. SYSTEM MODEL: FILE-SERVER SYSTEM, DYNAMICS,
AND SERVICE CAPACITY

Let F denote a set of files and S a set of servers in a file-
server system where |F | = n and |S| = m. For each file i 2 F
let S

i

⇢ S denote the set of servers that store file i; thus S =

(S
i

: i 2 F ) captures a file placement policy. Suppose each
server s 2 S has fixed service capacity of µ

s

bits per second.
For each A ⇢ F let S(A) , [

i2A

S
i

and µ(A) ,P
s2S(A) µs

denote the set of servers capable of serving one or more of
the files in A and the associated aggregate service capacity. In
summary,

�

F, S, µ;S
�

collectively define a file-server system.
Requests for file i 2 F arrive according to an independent

Poisson process with rate �
i

. We shall use the terms request,
flow and job interchangeably. Similarly, we refer to each file
i 2 F as a file or a job class interchangeably. Each request has
a service requirement corresponding to, for example, the num-
ber of bits it needs to download from the file-server system.
Service requirements for a request for file i 2 F are i.i.d with
mean ⌫

i

bits. This can model, for example, requests for a part
of a file. The requests for a file may even be of fixed size. Our
model is insensitive to the service requirement distribution,
i.e., the performance would depend on the distribution only
through its mean. Let ⇢ = (⇢

i

: i 2 F ), where ⇢
i

= �
i

⌫
i

denotes the load associated with class i.
Flows arrive to the system at total rate

P

i2F

�
i

. Let u
k

denote the flow corresponding to the kth arrival after time
t = 0. Let q

i

(t) denote the set of ongoing flows of class i at
time t, i.e., flows which have arrived but have not completed
service, and q(t) = (q

i

(t) : i 2 F ). For each A ⇢ F , let
q
A

(t) = [
i2A

q
i

(t), i.e., the set of all active flows whose class
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via the Internet
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Fig. 1: Comparison between a P2P system and a centralized
content delivery infrastructure.

is in A. Let x(t) = (x
i

(t) : i 2 F ), where x
i

(t) , |q
i

(t)|,
i.e., x(t) captures the number of ongoing flows in each class.
We refer to x(t) as the state of the system at time t. Let X(t)
correspond to the random vector describing the state of the
system at time t.

For any v 2 q
i

(t), let b
v

(t) be the rate in bits per second at
which flow v is served at time t by the file-server system. At
any time t, we assume that the rates b

v

(t) for all v 2 q
F

(t)
depend only on x(t) and the classes to which they belong.
Thus for any i 2 F and u, v 2 q

i

(t) we have b
u

(t) = b
v

(t).
Further, let r

i

(x

0
) be the total rate at which class i flows

are served at time t when x(t) = x

0, i.e., at any time t,
r
i

(x(t)) =

P

v2qi(t)
b
v

(t). Let r(x

0
) = (r

i

(x

0
) : i 2 F ).

To visualize this system, think of the system as consisting
of n queues, one corresponding to each file, with coupled
service rates r(x(t)). Each queue in turn allocates its rate
among its active users equally akin to processor sharing, i.e.,
b
v

(t) = r
i

(x(t))/x
i

(t) for each v 2 q
i

(t) if x
i

(t) 6= 0. For
any x(t), let A

x(t) denote the set of active classes, i.e., the
classes with at least one ongoing flow. If flow v arrives at time
ta
v

and has service requirement ⌘
v

, then it departs at time td
v

such that ⌘
v

=

R

t

d
v

t

a
v
b
v

(t)dt.
Service Model: We consider a setting where files are stored

on disk, as they may be too large and diverse to be held in
main memory. However, they may be replicated across disks
to enable high speed delivery by allowing multiple servers
to work together as a pooled resource to serve download
requests faster. Such a service model is reminiscent of ser-
vice in P2P systems [37], [39] which consists of a set of

users/peers connected through the Internet, collectively sharing
their files/resources, see Fig. 1a. In this paper, however, we
focus on modeling a centralized infrastructure aimed at serving
large files very quickly. We abstract the maximum disk read
capacity for each server s 2 S as server capacity µ

s

, where S
is the set of servers in a centralized infrastructure, see Fig. 1b.

Additionally, service may be constrained by a shared net-
work bottleneck due to finite capacity of the link(s) which
connect the servers S to the external network infrastructure,
or by finite download speeds of the end users. We also study
the impact of these bottlenecks in our upcoming works [27],
[28]. For example, we show in [28] that for large systems with
sufficient diversity in traffic and in the overlapping pools of
servers if the shared network link capacity at the infrastructure
is provisioned to be close to the average traffic demand,
its impact on user performance becomes negligible as the
system becomes large. Further, with increasing number of
users being connected to a high speed broadband such as
Google Fiber, the download capacity at the users may not
be a significant bottleneck as compared to that of servers,
especially when the load per server is large. We envisage a
setting where the network is not the bottleneck, e.g., possibly
through the use of multipath diversity and/or due to the
availability of a high speed broadband, thus providing a user
experience which is closer to or better than that of accessing
data locally. Also see [9] for an overview on content delivery
and network infrastructures, their interplay, and possibilities
of joint optimization through collaboration between the two.

To abstract our service model, let b
v,s

(t) be the rate at which
server s serves request v at time t. A request v for file i, i.e.,
v 2 q

i

(t), can only be served by servers which have that file,
thus b

v,s

(t) = 0 if s /2 S
i

, subject to the following assumption.

Assumption 1. Sharing of system service capacity among
ongoing flows is such that:

1) Each server can concurrently serve multiple requests as
long as

P

v

b
v,s

(t)  µ
s

for all t.
2) Multiple servers can concurrently serve a request v at

time t giving a total service rate b
v

(t) =
P

s

b
v,s

(t).
3) The service rate b

v,s

(t) allocated to a flow v at server s
at time t depends only on its flow’s class and the numbers
of ongoing flows x(t). Thus a flow’s overall service rate
b
v

(t) as well as the aggregate service rate allocated to
flows in each class r(x(t)) = (r

i

(x(t)) : i 2 F ) depend
only on the number of ongoing flows.

Note that service rate allocations depend only on the queue
length x(t) and thus cannot depend on the residual file sizes
of ongoing flows. This dependence will be made precise in
the next section.

Under Assumption 1 we now show that the set of feasible
service-rate allocations across classes, i.e., the capacity region,
is a polymatroid. We say a polytope ˆC is a polymatroid if there
exists a set function µ̂ on F such that

ˆC =

(

r � 0 :

X

i2A

r
i

 µ̂(A), 8A ⇢ F

)

,

and if µ̂ satisfies the following properties:
1) Normalized: µ̂(;) = 0.
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2) Monotonic: if A ⇢ B, µ̂(A)  µ̂(B).
3) Submodular: for all A,B ⇢ F ,

µ̂(A) + µ̂(B) � µ̂(A [B) + µ̂(A \B).

A function µ̂ satisfying the above properties is called a rank
function. Polymatroids and submodular functions are well
studied in the literature, see e.g., [26]. Each polymatroid
ˆC has a special property that for any r 2 ˆC, there exists
r

0 � r such that r0 2 ˆD , {r 2 ˆC :

P

i2F

r
i

= µ(F )} [8].
Also, as evident from the definition, for any A ⇢ F the set
{r 2 ˆC : r

i

= 0, 8i /2 A} is a polymatroid, with a rank
function which is the restriction of µ to subsets of A. A proof
of the following theorem is provided in the Appendix.

Theorem 1. Consider a file-server system defined by
�

F, S, µ;S
�

and let

C , {r � 0 :

X

i2A

r
i

 µ(A), 8A ⇢ F}.

Then, the following hold
1) µ is a rank function.
2) Under Assumption 1, C is the polymatroid capacity region
associated with the file server system.

We say that a polymatroid capacity region is symmetric if
µ(A) = h(|A|) for any A ⇢ F where h : Z+ ! R+ is a non-
decreasing function, i.e., µ(A) depends on A only through
|A|. Conversely, it is easy to show that if µ(A) = h(|A|) for
some non-decreasing concave function h : R+ ! R+ with
h(0) = 0, then the capacity region is a symmetric polymatroid.

III. FAIRNESS BASED RATE ALLOCATION

There are several ways in which the capacity of a file-server
system can be shared among a set of ongoing flows leading to
potentially different user performance. For example, one may
assign a fixed service capacity to each file to be exclusively
shared by ongoing requests for that file. While this simplifies
analysis by decoupling the dynamics across files, it results
in wasted resources and poor performance. A better approach
is to dynamically share service capacity across flow classes
based on their load, e.g., queue lengths capturing the number
of active flows.

Given the state x of the system at time t, one can consider
allocating service capacity in various ways. For example, ↵-
fair rate allocation, introduced in [24], allocates capacity
based on maximizing a concave sum utility function subject to
the system’s capacity region. In our setting we can consider ↵-
fair service rate allocation to flows subject to the the capacity
region C given in Theorem 1. Formally, for any x, the rate
vector r(x) under ↵-fair allocation is given by

r(x) =

(

argmax

r̂2C
P

i2F

x

↵
i r̂

1�↵
i

1�↵

for ↵ 2 (0,1)\{1},
argmax

r̂2C
P

i2F

x
i

log(r̂
i

) for ↵ = 1.
(1)

Note this generalizes various notions of fairness, e.g., max-
min fair (MMF) and proportional fair (PF) allocations. Indeed
PF and MMF are equivalent to ↵-fair policy for ↵ = 1

and ↵ ! 1, respectively [24]. However, Theorem 2 below

shows that on polymatroid capacity regions such allocations
are equivalent.

Theorem 2. All ↵-fair rate allocations are equivalent for
polymatroid capacity regions.

A proof is provided in the Appendix. Note that while this
is clear for a single server system where ↵-fair allocations
reduce to equal share, it may, at the first sight, be surprising
in the multidimensional setting. Unfortunately, this does not
characterize the performance users would see in a stochastic
system and such results have been quite limited. What has
been shown is that for such allocations, the performance is
sensitive to the distribution of service requirements [4]. Thus,
it is hard to make useful general claims.

By contrast, the balanced fair (BF) allocations introduced
in [4] are ‘insensitive’, i.e., performance depends on the
service distribution only through its mean. Moreover, BF has
close structural relationship with proportional fairness, see
e.g., [4], [21]. Additionally [3] studies several networks and
shows a remarkable closeness in performance for balanced
and proportional fairness motivating the use of BF as a
mathematical tool for performance evaluation of stochastic
networks under PF allocations.

Let us define BF rate allocation for our file-server system.
Balanced fair rate allocation [4] for a polymatroid capacity
region C can be defined as the service rate allocation r(x),
where for any x,

r
i

(x) =

�(x� e

i

)

�(x)

, 8i 2 F (2)

where function � is called a balance function and is defined
recursively as follows: �(0) = 1, and �(x) = 0 8x s.t. x

i

< 0

for some i, otherwise,

�(x) = max

A⇢F

⇢

P

i2A

�(x� e

i

)

µ(A)

�

, (3)

where e

i

is a vector with 1 at ith position and 0 elsewhere. As
shown in [4], (2) ensures the important property of insensitiv-
ity, while (3) ensures that r(x) for each x lies in the capacity
region, i.e., the constraints

P

i2A

r
i

(x)  µ(A) are satisfied
for each A. It also ensures that there exists a set B ⇢ A

x

for
which

P

i2B

r
i

(x) = µ(B). In fact the BF allocation is the
unique policy satisfying the above properties.

It was shown in [3], [4] that as long as the load vector lies
in the interior of the capacity region, i.e., ⇢ 2 Interior(C), the
random process (X(t) : t � 0) is asymptotically stationary.
Further, under this condition, its stationary distribution is given
by

⇡(x) =
�(x)

G(⇢)

Y

i2F

⇢xi
i

where G(⇢) =
X

x

0

�(x

0
)

Y

i2F

⇢
x

0
i

i

.

An allocation of resources is said to be Pareto efficient if
for any state x, there does not exist an r

0 2 C such that r0
i

�
r
i

(x), 8i 2 A
x

with a strict inequality for at least one i 2 A
x

.
Pareto efficiency is a desirable property since it implies that
the resource allocation is less wasteful. BF may not satisfy this
property in general, e.g., see triangle networks studied in [4].
However, Theorem 3 below shows that BF is Pareto efficient
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when the capacity region is a polymatroid. For a polymatroid
capacity C, showing Pareto efficiency is equivalent to showing
P

i2A

x

r
i

(x) = µ(A
x

). A proof of the following theorem is
provided in the Appendix.

Theorem 3. For balanced fair rate allocations on polymatroid
capacity regions we have

P

i2A

x

r
i

(x) = µ(A
x

) for all x.

A similar result was proved in [5] for the special case of
wireline networks with tree topology. Theorem 3 serves as a
basis to obtain a recursive expression for the mean delay in
our file-server system under BF rate allocation as given in the
following theorem which is proven in the Appendix.

Theorem 4. Consider a file-server system (F, S, µ;S) with
load ⇢ and under balanced fair resource allocation. The mean
delay for requests/flows of class i is given by

E [D
i

] =

⌫
i

@

@⇢i
G(⇢)

G(⇢)
= ⌫

i

@

@⇢
i

logG(⇢), (4)

where G(⇢) is given by,

G(⇢) =
X

A⇢F

G
A

(⇢), (5)

and where G;(⇢) = 1 and G
A

(⇢) can be computed recur-
sively as

G
A

(⇢) =

P

i2A

⇢
i

G
A\{i}(⇢)

µ(A)�
P

j2A

⇢
j

. (6)

Also, @

@⇢i
G(⇢) can be recursively computed, without actually

computing derivatives, as follows:

@

@⇢
i

G(⇢) =
X

A⇢F

@

@⇢
i

G
A

(⇢), (7)

where @

@⇢i
G;(⇢) = 0, and,

@

@⇢
i

G
A

(⇢) =
G

A

(⇢) +G
A\{i}(⇢) +

P

j2A

⇢
j

@

@⇢i
G

A\{j}(⇢)

µ(A)�
P

j2A

⇢
j

,

(8)
if i 2 A and 0 otherwise.

While the mean delay for systems with polymatroid capacity
can be computed using (4) - (8), an exact computation has a
complexity which grows exponentially in the number of files
n. If, however, the capacity region is given by a symmetric
polymatroid and the load vector ⇢ is homogenous, the com-
plexity is linear in n. The following corollary, proved in the
Appendix, details this result.

Corollary 1. Consider a symmetric file-server system
(F, S, µ;S) with homogenous load ⇢ and under balanced
fair resource allocation, i.e., for each A ⇢ F , the rank
function µ(A) = h(|A|) for some non-decreasing function
h : Z+ ! R+ and for all j 2 F ⇢

j

= ⇢ = �⌫. Then,
the mean delay to serve the requests/flows of class i is given
by,

E [D
i

] =

⌫ ˆF (⇢)

F (⇢)
, (9)

where, F (⇢) and ˆF (⇢) can be recursively obtained as follows:

F (⇢) =
n

X

k=0

F
k

(⇢), (10)

where, F0(⇢) = 1, and for k � 1,

F
k

(⇢) =
(n� k + 1)⇢F

k�1(⇢)

h(k)� k⇢
. (11)

Also,

ˆF (⇢) =
n

X

k=0

k

n
ˆF
k

(⇢), (12)

where, ˆF0(⇢) = 0, and for k � 1,

ˆF
k

(⇢) =
F
k

(⇢) + n�k+1
k

F
k�1(⇢) +

(n�k+1)(k�1)
k

⇢ ˆF
k�1(⇢)

h(k)� k⇢
.

(13)

IV. LARGE-SCALE ASYMPTOTICS

In this section we consider asymptotics for large file-server
systems wherein the number of files n and the number of
servers m become large. Our focus is on systems where there
is increased overall demand for increasingly diverse content,
and thus one must scale server resources. The number of files
in a content delivery infrastructure can be huge, e.g., a study
in [38] estimated that Youtube had 5 ⇥ 10

8 videos in 2011,
and the number has been steadily increasing since then. For
now, we assume that the load across files is symmetric. We
relax this assumption later.

Formally, consider a system with a given m and n. Let
c copies of each file be placed independently and uniformly
at random without replacement in c different servers. Let
⇣

F (n), S(m), µ(m,n)
;S(m,n)

c

⌘

represent a realization of such

random file-server system. Further, let the µ(m,n)
s

= ⇠ for
each server s 2 S(m). Let the resulting capacity region be
C(m,n). Also, let the total request rate in the system be m�,
i.e., it grows linearly with m, resulting in a total traffic load
m⇢ = m�⌫ where ⌫ is the mean service requirement per
request. Let the traffic load across files be symmetric, and
thus equal to ⇢(m,n)

i

= m⇢/n for each file i 2 F (n).
Further, we assume the number of files n to be orders of

magnitude larger than m. To model this, we first fix m, and
consider a sequence of systems wherein the number of files n
increases to infinity. Then, to model the fact that m itself can
be large, we consider a sequence of such sequences where
m itself increases to infinity. This is a good model towards
approximating systems with say m ⇠ 10

3, but with n ⇠ 10

7

or greater. For a given m and n, we let the total load on the
system be ⇢m, with a fixed load per server ⇢. Thus, for a
given m, the load per file is equal to ⇢m

n

. As we will see in
the sequel, this asymptotic regime is similar in spirit to that
considered in the study of the super-market model [6], [22],
[33].

For each realization, the service capacity is allocated dy-
namically according to balanced fair allocations over the
associated capacity region, see Sec. III. We shall refer to the
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file-server systems with resource allocation as described above
as one with Random Placement with Balanced Fairness (RP-
BF).

A. Performance asymptotics for symmetric ‘averaged’ capac-
ity region

For a given realization of the random file placement, the
associated rank function µ(m,n) need not be symmetric. Exact
performance computations for such a system would require
computation of the associated capacity region and evaluating
the recursions developed in Sec. III both of which have
exponential complexity in n. However, a key insight we
develop below is that realizations of large RP-BF systems
exhibit the same performance.

To that end consider the averaged RP-BF system having the
“averaged capacity region”. Let M (m,n)

(.) denote the random
rank function associated with an (m,n) RP-BF file placement.
Given a set of files A where |A| = k  n one can show that

µ̄(m,n)
(A) , E[M (m,n)

(A)] = ⇠m(1� (1� c/m)

k

).

Indeed the probability that none of the c copies of a file are
stored on a given server is (1 � c/m). Thus the probability
that none of A’ s k files is stored at the server is (1� c/m)

k.
So m(1� (1�c/m)

k

) is the mean number of servers that can
serve at least one file in A, and the above is their associated
service capacity. The averaged capacity region is thus given
by a symmetric polymatroid with rank function µ̄(m,n)

(A) =

h(m,n)
(|A|) where

h(m,n)
(k) , ⇠m(1� (1� c/m)

k

) for k = 0, 1, . . . , n. (14)

Below we let ⇡(m,n)
(x) denote the stationary distribution of

the queue length process for the averaged RP-BF system,
i.e., using balanced fair allocations over the average capacity
region. Also, let E[D(m,n)

] be the expected delay for a typical
request in this system. The following result gives a simple
expression for the expected delay in the asymptotic regime of
interest. Its proof is provided in the Appendix.

Theorem 5. Consider a sequence of (m,n) averaged RP-BF
file-server systems with symmetric polymatroid capacity with
the rank function µ̄(m,n)

(·) given above and symmetric traffic
load ⇢(m,n)

i

= m⇢/n for each file i where ⇢ = �⌫ < ⇠.
For given (m,n), let ⇡(m,n)

k

=

P

x:|A
x

|=k

⇡(m,n)
(x) for k =

0, 1, 2, . . . , n, and let

↵⇤ , 1

c
log

✓

1

1� ⇢/⇠

◆

. (15)

Then, for each ✏ > 0, we have:

lim

m!1
lim

n!1

b↵⇤
m(1+✏)c
X

k=b↵⇤
m(1�✏)c

⇡(m,n)
k

= 1 (16)

Also, under the same limits, the expected delay is given by

lim

m!1
lim

n!1
E[D(m,n)

] =

↵⇤

�
=

1

�c
log

✓

1

1� ⇢/⇠

◆

. (17)

The intuition underlying this result is as follows. For large
systems, the probability measure ⇡(m,n)

(x) concentrates on
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Fig. 2: Comparision of different resource allocation policies.

states x such that h(m,n)
(|A

x

|) ⇡ ⇢m. From (14), for any ↵ >
0, we have lim

m!1 lim

n!1
1
m

h(m,n)
(↵m) = ⇠(1 � e�c↵

),
which is equal to ⇢ for ↵ = ↵⇤.

Fig. 2 exhibits plots for mean delay as a function of load for
averaged RP-BF systems. The plot for the approximation for
a finite (m,n) system was computed using Corollary 1. The
closeness of asymptotic expression to that for finite (m,n)
depends on the value of ⇢. Suppose n is orders of magnitude
larger than m. For ⇢ less than or equal to 0.8 the asymptotic
expression is remarkably close even for m as small as 30.
Although not shown in the figure, for ⇢ = 0.9 the expression
is close for m equal to 60 or larger. In next section we discuss
why these expressions are good approximations for the actual
performance in RP-BF realizations.

B. Approximating the performance of RP-BF file-server sys-
tem via ‘averaged’ RP-BF.

In this subsection, we argue that the expression for mean
delay given in Theorem 5 based on the averaged RP-BF system
can be used to approximate the performance of realization of a
large RP-BF file server system. In fact, we conjecture that the
mean delay expression given in Theorem 5 holds for almost
all sequences of RP-BF file placement realizations.
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Recall that M (m,n)
(.) denotes random rank function for our

(m,n) RP-BF system, and µ̄(m,n)
(.) its mean over all random

file placements, and µ(m,n)
(.) denotes a (likely asymmetric)

realization of M (m,n)
(.). Our informal argument involves two

steps.
Step 1: For large set of files A such that |A| ⇡ ↵m (integer)

we have that
1

m
µ(m,n)

(A) ⇡ 1

m
h(m,n)

avg (|A|),

where

h(m,n)
avg (|A|) ,

P

B:|B|=↵m

µ(m,n)
(B)

�

n

↵m

�

This results from a general concentration property for c-
Lipschitz monotonic submodular functions [32].

Step 2: With high probability, for most sets A such that
|A| = ↵m, we have

1

m
µ(m,n)

(A) ⇡ 1

m
µ̄(m,n)

(A) =

1

m
h(m,n)

(↵m),

where h(m,n)
(.) is given by (14). This can be shown as

follows.
Recall that M (m,n)

(A) = ⇠
P

s2S

(m) 1{s2S

(m,n)(A)},
where S(m) and S(m,n)

(A) are respectively the set of m
servers, and the (random) set of servers where a copy of
at least one of the files in A is stored. Suppose, for each
(m,n), a subset of files A(m,n)

↵

is selected uniformly at
random from all A ⇢ F (m,n) such that |A| = ↵m. Suppose
S(m)

= {s1, s2, . . . , sm}. Consider a random process

X(m,n)
=

⇣

X(m,n)
1 , X(m,n)

2 , . . . , X(m,n)
m

⌘

where

X(m,n)
i

= 1

n

si2S

(m,n)
⇣

A

(m,n)
↵

⌘o, 8i  m.

Then,

M (m,n)
⇣

A(m,n)
↵

⌘

= ⇠
m

X

i=1

X(m,n)
i

.

We now study lim

m!1 lim

n!1
1
m

M (m,n)
⇣

A(m,n)
↵

⌘

.
It can be checked that for each n, X(m,n) is a process of m

exchangeable Bernoulli(1� (1� c/m)

↵m

) random variables,
and so is X(m,1) , lim

n!1 X(m,n). Also, for any fixed set
of l servers, say {s1, s2, . . . , sl}, X(m,1)

i

for i 2 {1, 2, . . . , l}
can be shown to become independent in the limit as m ! 1.
As was shown in [1], [30], such asymptotic independence
implies that a law of large numbers would hold for a sequence
of exchangeable random processes which for our case implies
that lim

m!1
1
m

P

m

i=1 X
(m,1)
i

= 1 � e�↵c in probability.
This shows that for most realizations, 1

m

µ(m,n)
⇣

A(m,n)
↵

⌘

⇡
1
m

h(m,n)
(↵m) for almost all sets A of size ↵m, thus showing

the claim in Step 2.
Step 1 and Step 2 jointly imply that for each A such that

|A| ⇡ ↵m,

1

m
µ(m,n)

(A) ⇡ 1

m
h(m,n)

avg (↵m) ⇡ 1

m
h(m,n)

(↵m),
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Fig. 3: Approximating performance of a file server system by
using the ‘averaged’ polymatroid capacity: m = 4, n = 6,
service rate µ

s

= 1 for each server s, ⇢
i

= m⇢/n and ⌫
i

= 1

for each class i.

which further suggests that Theorem 5 holds for almost all file
placement realizations of RP-BF systems.

Note that, for a given realization, there might still be few
sets A of large enough size such that µ(m,n)

(A) is not close to
h(m,n)

(|A|). For example, consider set A of size m/c where
each file in A is stored in disjoint set of servers. Here, µ(A) =

m and is not close to h(m,n)
(m/c). The above argument only

shows that such outliers are small in number. A more rigorous
argument is needed to show that the small number of outliers
do not impact the overall performance a lot. We defer such
analysis to a possible future work.

Let us numerically check the goodness of the approximation
using an ‘averaged’ polymatroid capacity for a file-server
system with m = 4 servers and n = 6 files, with each
file stored on a distinct set of c = 2 servers. The mean
delay in such a system can be shown to be equivalent to a
system with m = 4 severs and number of files n ! 1, as
follows. A system with m = 4 servers has

�

m

c

�

= 6 distinct
server-pools. For a given set of servers, one may view the
group of files stored on each of them a distinct file-class.
Since the files are distributed randomly, the load across these
file-classes (equivalently server-pools) becomes homogeneous
asymptotically.

Note, however, the rank function µ(4,6)
(.) is asymmetric.

For example, µ(4,6)
(A) takes values 3 or 4 for different sets A

of size 2, which is a difference of about 30%. We numerically
compute µ(4,6)

(A) for each of the 2

6 subsets A of F , as well
as an ‘averaged’ capacity region with the associated ‘averaged’
rank function µ(4,6)

avg (A) = h(4,6)
avg (|A|) for each A ⇢ F , where

h(4,6)
avg (k) =

P

A:|A|=k µ

(4,6)(A)

(

n
k)

for k = 0, 1, . . . , 6. Fig. 3
exhibits the exact performance for both capacity regions using
Theorem 4 and Corollary 1. It can be seen that the exact and
the averaged systems are remarkably close.

C. Heterogeneity in Demand
The heterogeneity in load across files may not be seen at all

the elements of a content delivery infrastructure. For example,
if a centralized infrastructure is being used on the back end
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to deliver files that are not available at distributed sites, i.e.,
requests correspond to ‘cache misses’, then the heterogeneity
in demand might be less pronounced. The Poisson assumption
on such demands might be justified when there are large
numbers of files and the misses are relatively rare.

We now show that our model above involving a large
number of files which are stored at a random set of c servers
may also handle a limited variability/heterogeneity in demand.
Consider a groups of files which are stored at the same c
servers – if such groups are sufficiently large the overall load
per group would be roughly the same. In fact as the number of
files n increases the load for groups of files sharing the same
c servers would become homogenous.

Thus, in the limit, we get
�

m

c

�

file-groups with symmetric
traffic load. Such groupings can now take the place of files in
our original model, with homogeneous loads, and mean service
required averaged across the files in the group. Note that our
mean delay results are insensitive, i.e, they depend only on the
mean service requirement. As m becomes large, one can thus
show that our asymptotic analysis for an averaged capacity
region would still hold.

V. PERFORMANCE COMPARISON

We now compare RP-BF with several other resource allo-
cation policies. For a given set of files and servers, the key
components of a resource allocation policy that impact user-
performance are the following:
1) File placement: Options include: (a) partitioning the set
of servers and constraining each partition to store a distinct
set of files, thus creating independent ‘non-overlapping’ pools
of servers; (here, by pools of servers we mean the subsets of
servers which can jointly serve file requests due to common
files they store); and (b) randomly storing files across the
servers, resulting into overlapping pools of servers. Option
(a) was proposed in [7] as having a desirable property of
higher reliability against correlated failures. We will explore
this further in Section VI-A as well. Option (b), as we will
see below, opens opportunities to better balance the load across
servers and improve performance.
2) Service policy: A naive service policy is to route a file
request randomly upon arrival to one of the servers that stores
the corresponding file. The requests thus get queued at the
servers and are served in, e.g., round-robin or processor
sharing fashion. A simple modification to this policy which
makes routing a function of the current load at servers, e.g.,
the number of queued requests at the servers, can provide
significant performance improvement [6], [33]. An even better
approach is that considered in [19], [31] where the requests are
queued centrally and their service is scheduled dynamically
based upon the availability of the servers. In each of these
policies, a request is constrained to be served by a single
server. Our work departs from these approaches, in that
we allow each request to be served jointly by a pool of
servers. As explained in Section II, we constrain service only
through Assumption 1, or equivalently through capacity region
C(m,n). Under these constraints, we balance the load across
servers through a fairness based rate allocation as explained
in Section III.

We now compare four different resource allocation policies
with RP-BF, each of which is characterized by a choice of file
placement and of service policy.
Randomized Placement with Random Routing (RP-RR):

Files are stored uniformly at random in c servers as with
RP-BF. Upon arrival of a file request, it is randomly routed
to one of the c servers that stores the corresponding file.
Each server serves its request in processor sharing fashion. As
n ! 1, the total load of ⇢m is eventually balanced across
the m servers and the system is equivalent to m independent
M/GI/1 systems with load ⇢ and service rate ⇠.
Random Placement with Least-loaded Routing (RP-LLR):

Files are stored uniformly at random. Upon arrival, requests
are routed to a server with least number of ongoing jobs
among c servers which store the corresponding file. Each
server serves its request in a processor sharing fashion. In the
limit as n ! 1, this system is equivalent to the super-market
model studied in [6], [33]. Let p

k

be the fraction of servers
having k waiting requests in equilibrium. When the service-
requirement distribution for each request is exponential, it was
shown in [33] that as the number of servers m ! 1, the
fraction p

k

is given by

p
k

= (⇢/⇠)
ck�1
c�1 � (⇢/⇠)

ck+1�1
c�1 ,

where ⇢ is the load per server. Thus, by Little’s law, the mean
delay for a typical request in the asymptotic regime of interest
is given by,

E[DRP-LLR] =
1

�

1
X

k=1

kp
k

=

1

�

1
X

k=1

(⇢/⇠)
ck�1
c�1 . (18)

Random Placement with Centralized Scheduling (RP-CS):

Files are stored uniformly at random. Unlike the previous
policies each server serves a maximum of one request at a
time, and there is no service preemption. Upon arrival of
a request, if there exist idle servers which store a copy of
the corresponding file, it is assigned and served by one of
them at random, else, it is queued at a central queue. Upon
completion of service of a request at a server, if there exists
a waiting request which the server can serve, it gets assigned
to that server. If there exist multiple such requests, the choice
is made as follows. Among all the files which the available
server stores, one of the files with maximum number of waiting
requests is chosen at random. Among the waiting requests of
the chosen file, a request is chosen at random for service.
Non-overlapping Pools with Balanced Fairness (NP-BF):

The m servers are divided into m/c groups, each of size
c. Each server group stores a mutually exclusive subset with
nc/m files. Within a group, each server stores the same set
of files. Each file is thus stored at c servers. Under balanced
fairness, each group behaves as an independent pool of servers
which serves its requests in processor sharing fashion. The
system is equivalent to m/c independent M/GI/1 queues
with load ⇢c and service rate ⇠c, with mean delay given by

E[DNP-BF] =
⌫

c⇠(1� ⇢/⇠)
. (19)

Contrast this with Theorem 5 where the mean delay increase
is logarithmic in 1/(1� ⇢/⇠).
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In Fig. 2, we compare the performance of these resource
allocation policies. RP-BF’s performance is plotted using the
approximations described in Section IV. The performance of
RP-RR, RP-LLR and NP-BF is plotted using corresponding
asymptotic expressions for mean delay described above. For
RP-CS, the service requirement distribution was assumed ex-
ponential and we built a simulator for the underlying Markov
Chain. For each point in the plot, the average number of
requests waiting in the queue or in service was measured over
a period of time of up to 10

6 events and the mean delay was
computed using Little’s law.

All the above policies are stable for any value of ⇢ less
than 1. As expected, RP-RR performs poorly as it does not
exploit pooling or load dependent routing. RP-CS outperforms
RP-LLR at higher loads since requests are queued centrally in
the former and its service policy uses global state information.
NP-BF outperforms both RP-CS and RP-LLR at lower loads
since pooling of servers works to its advantage. However, due
to creation of independent non-overlapping pools, its ability
to balance the load across servers is limited and it performs
significantly worse at higher loads.

RP-BF outperforms all of the policies since it enjoys the
best of both worlds. At higher loads, one might expect that
the gains of RP-BF over RP-LLR and RP-CS due to pooling
may be limited since load balancing of the later policies would
ensure that most of the servers are busy serving requests most
of the time and are utilized well. However, even for ⇢ = 0.9,
the mean delay for RP-LLR and RP-CS is over 2 and 1.6
times that of RP-BF for c = 3, respectively.

For larger values of c, the improvements are even greater.
For any value of c, mean delay for RP-LLR and RP-CS is
lower bounded by 1. However, from Theorem 5, mean delay
for RP-BF is inversely proportional to c. The significant per-
formance improvement by RP-BF shows that server pooling
and fairness based resource allocation is worthwhile towards
optimizing the performance of file-server systems.

VI. SYSTEM TRADEOFFS

A. Recovery costs on correlated failure v/s performance

We consider the cost of recovering files when there are
large-scale correlated failures such as those occurring after
power outages, see [7] for an extensive discussion. It is not
uncommon in datacenters that about 1% of servers fail to
reboot after a power outage. The system then needs to recover
data in these servers by retrieving copies from the servers that
successfully rebooted. However, there might be some files for
which no copy exists in the datacenter due to the failure of
all servers in which it was stored. The probability of such an
event occurring can be significant especially when the total
number of files in the system is large.

When this occurs the system needs to locate and recover
the lost files from ‘cold’ storage. Recovery of the files from
cold storage may incur a high fixed cost but may not be
greatly affected by the number of files lost. Thus in practice
(as argued in [7]) it is desirable that the probability that one
or more files are lost during power outage events be low.
This can be achieved by constraining randomness in how
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Fig. 4: Delay v/s reliability n = 2 ⇥ 10

6, m = 400, c = 3,
� = 0.01, ⇢ = 0.7, and ⌫ = 1.

files are copied across servers. The intuition from Section V
suggests that randomly ‘spreading’ the files across the servers
so that the server pools overlap improves the user perceived
performance. However, this may increase the probability of a
file loss. To study how these quantities are related, we consider
a storage policy that divides m servers into independent groups
of smaller size and restricts the copies of each file to be placed
within a single group, as follows.

Fix an integer  such that c    m. Suppose, for now,
that number of servers m is divisible by  and that number
of files n is divisible by m/. Divide the set S of m servers
into m/ number of groups each of size . Similarly, divide
the set F of n files into disjoint m/ groups of size n/m.
Associate each group of files with a distinct group of servers.
Then, for each file, independently store c copies by selecting
c servers uniformly at random from the corresponding group.

Suppose that upon a power outage, each server fails to
reboot with probability � independently. Then, for a group
of size , the probability that l servers fail is

�



l

�

�l

(1��)�l,
so the probability that one or more files are lost can be given
by

Ploss = 1�
 

c�1
X

l=0

✓



l

◆

�l

(1� �)�l

+



X

l=c

✓



l

◆

�l

(1� �)�l

 

1�
�

l

c

�

�



c

�

!

n/m

!

m/

For the general case where m is not divisible by  or n
is not divisible by m/, we can create non-uniform groups
and compute the corresponding loss probability. We use the
above expression as a simpler approximation by using bm/c
and bn/mc appropriately. Also, the performance within each
group can be computed using the expression of Corollary 1
for symmetric capacity systems, which gives a reasonable
approximation as explained in Sec. IV-A.

Fig. 4 exhibits the mean delay and Ploss for � = 0.01 for
a system with n = 2 ⇥ 10

6, m = 400, and c = 3 copies.
The load per server is ⇢ = 0.7, i.e., the total load on the
system is m⇢ = 280 and is distributed uniformly across files.
Also, ⌫

i

= 1 for all i 2 F and µ
s

= 1 for all s 2 S. As
can be seen, varying  trades off performance with file loss
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Fig. 5: Energy-delay tradeoff for system with n = 2⇥10

6 and
varying m: ⌫ = 1, c = 3, ⇠ = 1, and total load ⇢m = 280.

probability. As  increases mean delay decreases but quickly
saturates at 0.57, which matches with the asymptotic limit as
given by Theorem 5. At  = 14, mean delay is 0.64 which
is about 12% greater than the asymptotic value, while Ploss is
less than 1%. Decreasing  can further lower Ploss but at the
cost of a significant increase in mean delay.

B. Energy-delay tradeoffs
We now consider RP-BF systems where for each server

s 2 S, we have µ
s

= ⇠. Energy consumption per unit time
by a server is fixed when it is busy and is denoted by e

b

.
Similarly, even when a server is idle, its energy consumption
per unit time is fixed and denoted by e

i

. If the system is stable,
the sum of the fraction of time each server is busy is equal to
P

i2F ⇢i

⇠

. Thus, the mean energy spent by the system per unit
time is given by

E = e
b

P

i2F

⇢
i

⇠
+ e

i

✓

m�
P

i2F

⇢
i

⇠

◆

.

Thus, one can trade of energy consumption for performance
by varying m.

Fig. 5 exhibits the energy-delay curve for a system with
2⇥ 10

6 files with a fixed total load of 280, e
b

= 1 units and
e
i

= 0.5 units. Points in the plot are obtained by varying m
and computing the performance using Corollary 1. The figure
also exhibits tradeoff for the case when the total number of
servers are divided into smaller independent groups of size 10,
as in Section VI-A. The tradeoff curve worsens in this case.
For example, to obtain a mean delay of 0.8, it requires m =

370 servers while the former system that groups all the servers
together requires 320 servers; the corresponding mean energy
consumption being 325 units and 300 units, respectively. Thus,
creating smaller independent groups of size 10 increases the
energy consumption by about 8%.

Next, we consider RP-BF systems where servers’ processing
speed is a bottleneck. The processing speed can be improved
by increasing clock frequency and voltage supply, which
in turn increases energy consumption. This dependence is
typically modeled through a polynomial relationship of power
with ⇠, i.e., when the service rate of a server is ⇠ the power
consumption is given by f(⇠) = ⇠↵/� per unit time where
↵ > 1 and � is a positive constant [18]. In practice, even
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2.5

Mean energy consumption per unit time

M
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a
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e
la
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Fig. 6: Energy-delay tradeoff with varying server speed ⇠: load
per server fixed at ⇢ = 0.8, ⌫ = 1, and c = 3.

when ⇠ is set to 0, there is non-negligible leakage power
consumption. Since our focus is on dynamic power, we ignore
leakage power here. The choice of ⇠ trades off performance for
energy consumption. Here, we consider a simple semi-static
policy where each server operates at a fixed rate ⇠ when busy
and rate 0 when idle, thus consuming negligible power when
idle. For M/GI/1 queues, it was shown in [18] that such a
simple policy, with ⇠ chosen judiciously, is close to an optimal
policy for minimizing a weighted average of the mean delay
and energy consumption across all dynamic policies where ⇠
is allowed to vary with the queue state.

Fig. 6 compares the energy-performance tradeoff for NP-
BF, RP-LLR, and RP-BF where the plots are obtained by
varying values of ⇠. For RP-BF, Theorem 5 is used to compute
dependence of performance on ⇠, whereas for NP-BF and RP-
LLR, (19) and (18), respectively, are used. Also, we assume
that the power consumption as a function of ⇠ is given by
f(⇠) = ⇠2. Since the fraction of time a server is busy in
each system is ⇢/⇠, the mean energy consumption is given
by E = ⇢⇠. To obtain a mean delay of 0.5 for ⇢ = 0.8, the
energy consumption for NP-BF and RP-LLR systems is 20%

and 70% more than that for RP-BF, respectively.

VII. CONCLUSIONS

Service models which allow pooling of servers to serve
dynamically arriving file download requests provide favorable
performance properties such as insensitivity to the distribution
of service requirement and inverse relation of mean delay to
the number of stored copies for each file, or equivalently,
the size of pools of servers. Further, if file-placement across
servers is designed such that there is enough overlap across
these pools then fairness based load balancing policy mitigates
the impact of server utilization on mean delay. Overall, the
gains of such resource allocation over those which do not
jointly exploit pooling and dynamic load balancing across
servers are significant.

This work represents a first step towards developing the
performance models needed for a disciplined engineering and
optimization of such systems.
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APPENDIX

A. Proof of Theorem 1
We first show that µ is a rank function. By definition it is

clear that µ(;) = 0 and that µ is monotonic. To show that
µ(.) is submodular we use the inclusion-exclusion principle
to obtain

µ(A) =

X

s2S(A)

µ
s

=

X

s2S(A\B)[S(A\B)

µ
s

=

X

s2S(A\B)

µ
s

+

X

s2S(A\B)

µ
s

�
X

s2S(A\B)\S(A\B)

µ
s

.

Similarly,

µ(B) =

X

s2S(B\A)

µ
s

+

X

s2S(B\A)

µ
s

�
X

s2S(B\A)\S(B\A)

µ
s

Again using inclusion-exclusion principle, we further have,

µ(A [B) =

X

s2S(A[B)

µ
s

=

X

s2S(A\B)[S(A\B)[S(B\A)

µ
s

=

X

s2S(A\B)

µ
s

+

X

s2S(A\B)

µ
s

+

X

s2S(B\A)

µ
s

�
X

s2S(A\B)\S(A\B)

µ
s

�
X

s2S(B\A)\S(B\A)

µ
s

�
X

s2S(A\B)\S(B\A)

µ
s

+

X

s2S(B\A)\S(A\B)\S(B\A)

µ
s

Also, µ(A \B) =

P

s2S(A\B) µs

. Thus,

µ(A) + µ(B)� µ(A [B)� µ(A \B)

=

X

s2S(A\B)\S(B\A)

µ
s

�
X

s2S(B\A)\S(A\B)\S(B\A)

µ
s

� 0
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which shows that µ is submodular.
We now show that C is the capacity region. We first show

that if r is feasible then r 2 C, and later show the converse.
Suppose r /2 C. Then, we show that r violates the capacity

constraints in Assumption 1 for any set of active flows q

such that for all i, |q
i

| > 0 iff r
i

> 0. By definition
of C, there exists A ⇢ F such that

P

i2A

r
i

> µ(A).
Now suppose

P

v2qi,s2Si
b
v,s

= r
i

for all i 2 F . Then,
we get,

P

i2A

P

v2qi,s2Si
b
v,s

> µ(A) which further gives
P

s2S(A)

P

v2[i2Aqi
b
v,s

> µ(A). Thus, there exists s such
that

P

v2[i2Aqi
b
v,s

> µ
s

. Thus, r is not feasible.
We now show the converse, i.e., r 2 C implies that r is

feasible. Recall that, for a polymatroid capacity C, for all r 2
C there exists r

0 � r such that r

0 2 D, where D = {r 2
C :

P

i2F

r
i

= µ(F )}. Thus, it is sufficient to show that if
r 2 D, then r is feasible. Let P be set of all permutations
on F . For each p 2 P , let r

(p)
= (r(p)

i

: i 2 F ) such that
r(p)
p(k) = µ({p(1), . . . , p(k)})�µ({p(1), . . . , p(k�1)}), for all
k 2 {1, 2, . . . , n}. It can be shown that {r(p) : p 2 P} is the
set of all extreme points of D, see [8]. Thus, it is sufficient to
show that r(p) for each p 2 P is feasible. Remaining points
can be obtained using time sharing over arbitrarily smaller
time scale. For each s, find the smallest k such that s 2 S

p(k)

and set b(v,s) = µ
s

/|q
p(k)| if v 2 q

p(k) and 0 otherwise, thus
satisfying Assumption 1. Then, for each k,

P

s2Sp(k)
b(v,s) =

µ({p(1), . . . , p(k)})�µ({p(1), . . . , p(k�1)}) = r(p)
p(k). Thus,

r

(p) is feasible.

B. Proof of Theorem 2
Clearly, for any ↵, ↵-fair rate allocations r(x) are Pareto

efficient, i.e., for any state x, there does not exist an r

0 2 C
such that r0

i

� r
i

(x), 8i 2 A
x

with a strict inequality for
at least one i 2 A

x

. Due to the existence of dominant face
D = {r 2 C :

P

i2F

r
i

= µ(F )}, ↵-fair rate allocation over
capacity region C is equivalent to that over region D.

We will show that ↵-fair rate allocations for any ↵ 2
(0,1)\{1} are equivalent to Max-Min Fair (MMF) rate
allocations. The result then follows immediately for ↵ = 1

as well since it is equivalent to the limiting ↵-fair allocation
as ↵ ! 1.

Fix an ↵ 2 (0,1)\{1}. Without loss of generality, consider
a state x such that A

x

= F . Consider the corresponding set
of flows q

F

. It is easy to show that an ↵-fair rate allocation
over D is equivalent to assigning rates (b

u

: u 2 q
F

) as given
by the unique solution to the following optimization problem:

maximize sign(1� ↵)
X

u2qF

ˆb1�↵

u

subject to
X

u2qA

ˆb
u

 µ(A), 8A ⇢ F

X

u2qF

ˆb
u

= µ(F )

ˆb
u

� 0, 8u 2 q
F

The objective function for the above problem is strictly
concave, and thus Schur-concave, in (

ˆb
u

: u 2 q
F

) [15], [20].

Now, suppose (b
u

: u 2 q
F

) is not max-min fair. Then, there
exist flows u and v and a constant ✏ > 0 such that b

v

� b
u

and by increasing the rate of the flow u by ✏ and decreasing
that of flow v by ✏ the feasibility for the above problem is
not lost. However, due to Schur-concavity, this operation only
increases the value of the objective function which contradicts
with optimality and uniqueness of (b

u

: u 2 q
F

). Thus, (b
u

:

u 2 q
F

) is max-min fair, and ↵-fair policy is equivalent to
MMF.

C. Proof of Theorem 3
We prove this by induction on |x| , P

i

x
i

. Clearly, the
result is true when |x| = 1. Lets assume that the claim is true
for all x0 such that |x0| < |x| for a given x. We show that it
holds for x as well.

By definition of balanced fairness, i.e., by (2) and (3),
there exists a B such that

P

i2B

r
i

(x) = µ(B). Also, by
monotonicity of µ(.), B ⇢ A

x

. If B = A
x

, then we are done.
Suppose this is not the case. Then, from (2) and definition of
B, we have

�(x) =

P

i2B

�(x� e

i

)

µ(B)

. (20)

Since the capacity condition
P

i2B

r
i

(x

0
)  µ(B) is

satisfied for all states, we have
P

i2B

r
i

(x � e

j

)  µ(B)

for all j 2 A
x

\B. Using this in (20), we get

�(x) 
P

i2B

�(x� e

i

)

P

i2B

r
i

(x� e

j

)

, 8j 2 A
x

\B. (21)

We now use this bound to compute one on the sum of all rates
as follows:

X

i2A

x

r
i

(x) =

X

i2B

r
i

(x) +

X

j2A

x

\B

r
j

(x),

= µ(B) +

X

j2A

x

\B

�(x� e

j

)

�(x)

,

� µ(B) +

X

j2A

x

\B

P

i2B

r
i

(x� e

j

)�(x� e

j

)

P

i2B

�(x� e

i

)

,

= µ(B) +

X

j2A

x

\B

P

i2B

�(x� e

j

� e

i

)

P

i2B

�(x� e

i

)

,

= µ(B) +

P

i2B

P

j2A

x

\B �(x� e

j

� e

i

)

P

i2B

�(x� e

i

)

,

� µ(B) +

P

j2A

x

\B �(x� e

j

� e

i

⇤
)

�(x� e

i

⇤
)

, (22)

where i⇤ = argmin

i2B

n

P

j2A
x

\B �(x�ej�ei)

�(x�ei)

o

. In the last
inequality (22), we have used the identity a+b

c+d

� a

c

if a

c

 b

d

.
Thus, we get the following inequality.

X

i2A

x

r
i

(x) � µ(B) +

X

j2A

x

\B

r
j

(x� e

i

⇤
). (23)

We now only need to show µ(B) +

P

j2A

x

\B r
j

(x� e

i

⇤
) �

µ(A
x

). The following two cases are possible for the given x.
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Case 1 x
i

⇤
= 1 : Then, in state x � e

i

⇤ , only classes in
A

x

\{i⇤} are active. Thus, we have,
X

j2A

x

\B

r
j

(x� e

i

⇤
) + µ(B)

= µ(A
x

\{i⇤})�
X

k2B\{i⇤}

r
k

(x� e

i

⇤
) + µ(B),

� µ(A
x

\{i⇤})� µ(B\{i⇤}) + µ(B),

� µ(A
x

),

where the equality follows from induction hypothesis, the first
inequality follows from the capacity constraint on set B\{i⇤},
and the last inequality follows from the submodularity of µ(.).

Case 2 x
i

⇤ > 1 : Here, all the classes in A
x

are active in
state x� e

i

⇤ as well, i.e., A
x

= A
x�ei⇤ . Thus, we have,

X

j2A

x

\B

r
j

(x� e

i

⇤
) + µ(B) �

X

i2A

x

r
i

(x� e

i

⇤
)

= µ(A
x

),

where the inequality follows from the capacity constraint on
set B, and the equality follows from induction hypothesis.
Thus, the result holds for both the cases.

D. Proof of Theorem 4

By Little’s law,

E [D
i

] =

P

x

x
i

⇡(x)

�
i

=

⌫
i

@

@⇢i
G(⇢)

G(⇢)
. (24)

Thus, to prove the result we only need to show (5).
Equation (7) follows by taking derivative of (5) w.r.t. ⇢

i

. From
Theorem 3 and (3) we have,

�(x) =

P

i2A

x

�(x� e

i

)

µ(A
x

)

. (25)

Since G
A

(⇢) =

P

x:A
x

=A

�(x)

Q

i2F

⇢xi
i

, we get , G(⇢) =

P

A⇢F

G
A

(⇢) and

G
A

(⇢) =
X

x:A
x

=A

P

i2A

�(x� e

i

)

µ(A)

Y

j2F

⇢
xj

j

,

=

P

i2A

P

x:A
x

=A

�(x� e

i

)

Q

j2F

⇢
xj

j

µ(A)

,

Rearranging terms, we get,

µ(A)G
A

(⇢) =
X

i2A

⇢
i

X

x:A
x

=A\{i}

�(x)

Y

j2F

⇢
xj

j

+

X

i2A

⇢
i

X

x:A
x

=A

�(x)

Y

j2F

⇢
xj

j

,

=

X

i2A

⇢
i

G
A\{i}(⇢) +G

A

(⇢)
X

i2A

⇢
i

,

further simplification of which gives the desired result.

E. Proof of Corollary 1

From symmetry it follows that G
A

(⇢) depends on A only
through |A|. For each k � 0, let H

k

(⇢) = G
A

(⇢) for A such
that |A| = k. Similarly, let ˆH

k

(⇢) =

@

@⇢i
G

A

(⇢) for A such
that |A| = k and i 2 A.

Thus, from (5), we get

H
k

(⇢) =
k⇢H

k�1(⇢)

h(k)� k⇢
.

Similarly, from (8), we get

ˆH
k

(⇢) =
H

k

(⇢) +H
k�1(⇢) + (k � 1)⇢ ˆH

k�1(⇢)

h(k)� k⇢
.

Then, the result follows from Theorem 4 by letting F
k

(⇢) =
✓

n
k

◆

H
k

(⇢) and ˆF
k

(⇢) =

✓

n
k

◆

ˆH
k

(⇢), and noting that for a

given file i 2 F , @

@⇢i
G

A

(⇢) is non zero only for
�

n�1
k�1

�

sets
of size k for each of which i is an element.

F. Proof of Theorem 5

We prove (16) first and then (17).
Proof of (16): We first prove the following lemma by finding

an explicit expression for ⇡(m,n)
k

for each k for given m and
n and then taking the limit as n ! 1 for a fixed m. Let
lim

n!1 ⇡(m,n)
k

= ⇡(m,1)
k

. Also let h(m,1)
(k) = ⇠m(1 �

(1� c/m)

k

) for k = 0, 1, 2, . . . ,1.

Lemma 1. For any fixed integers k1 and k2 such that k1 > k2,
we have

⇡(m,1)
k1

⇡(m,1)
k2

=

(m⇢)k1�k2

Q

k1

l=k2+1 h
(m,1)

(l)
(26)

Proof. Fix m and n. From definition of F
k

(.) in the proof of
Corollary 1 one can show that

⇡(m,n)
k

=

F
k

(m⇢/n)

F (m⇢/n)
for k = 1, . . . , n (27)

where F
k

(m⇢/n) and F (m⇢/n) are given by recursive ex-
pressions in the statement of Corollary 1. Thus, from (11), we
get ⇡(m,n)

0 = 1/F (m⇢/n) and

⇡(m,n)
k

=

(n� k + 1)

m⇢

n

⇡(m,n)
k�1

h(m,n)
(k)� km⇢

n

, for k = 1, . . . , n.

Thus, for any k1 > k2 we get

⇡(m,n)
k1

⇡(m,n)
k2

=

(n� k2)!(
m⇢

n

)

k1�k2

(n� k1)!
Q

k1

l=k2+1(h
(m,n)

(l)� lm⇢

n

)

�!
n!1

(m⇢)k1�k2

Q

k1

l=k2+1 h
(m,1)

(l)

Now let us study h(m,1) and ⇡(m,1)
k

in the limit as m !
1. For any ↵ > 0, we have

lim

m!1

1

m
h(b↵mc) = ⇠(1� e�↵c

).
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Let k(m) be the largest k such that h(m,1)
(k)  m⇢. Thus,

it is easy to show that k(m)/m ! ↵⇤ as m ! 1 where ↵⇤

is given by (15).
Now for some large enough �, consider the following four

cases: (1) 0  k < (1 � 2✏)k(m), (2) (1 � 2✏)k(m)  k 
(1 + 2✏)k(m), (3) (1� 2✏)k(m) < k  �m, and (4) k > �m.
Our approach now onwards can be summarized as follows.
We first consider the case (4) and show that by choosing �
large enough the tail probability

P

l:l>�m

⇡(m,1)
l

can be made
arbitrarily small, independent of m. For the remaining three
cases, we then show that ⇡(m,1)

k

concentrates on the second
case as m increases to 1.

Lemma 2. For any � > 0, there exists a constant � such that
X

l:l>�m

⇡(m,1)
l

 ⇡(m,1)
k

(m) �

for all m.

Proof. Find the smallest ↵ such that ↵m is an integer and
h(m,1)

(↵m) � m⇢(1 + ✏0) for some fixed ✏0 > 0. Since
↵m � k(m), we have ⇡(m,1)

↵m

 ⇡(m,1)
k

(m) . Also, it is easy
to check that ↵ is O(1), i.e., it does not scale with m. By
monotonicity of h, h(m,1)

(k) � m⇢(1+✏0) for each k � ↵m.
From (26), for each k � ↵m, we get

⇡(m,1)
k

 ⇡(m,1)
↵m

(

1

1 + ✏0
)

k�↵m.

Also, for each k > ↵m,

X

l:l�k

⇡(m,1)
l

 ⇡(m,1)
k

1
X

l=1

✓

1

1 + ✏0

◆

l

= ⇡(m,1)
k

1

1� 1/(1 + ✏0)

 ⇡
↵m

(

1

1 + ✏0
)

k�↵m
1

1� 1/(1 + ✏0)

 ⇡(m,1)
k

(m) c0
✓

1

1 + ✏0

◆

k�↵m

,

for some constant c0. Putting k = �m, we get,

X

l:l��m

⇡(m,1)
l

 c0⇡(m,1)
k

(m)

✓

1

1 + ✏0

◆(��↵)m

Thus, for any � > 0, by choosing � large enough one can
ensure that

P

l��m

⇡(m,1)
l

 ⇡(m,1)
k

(m) � for all m.

We now prove the following lemma from which (16) follows
since ✏ can be chosen arbitrarily and k(m)/m ! ↵⇤ as m !
1.

Lemma 3. For any ✏ > 0, we have

lim

m!1

P1
k=0 ⇡

(m,1)
k

P(1+2✏)k(m)

k=(1�2✏)k(m) ⇡
(m,1)
k

= 1

Proof. By monotonicity of h(m,1), h(m,1)
(k)  h(m,1)

((1�
2✏)k(m)

) for all k  (1 � 2✏)k(m). Using (26) with k1 =

(1� ✏)k(m) and with any k2  (1� 2✏)k(m), we get,

⇡(m,1)
(1�✏)k(m)

⇡(m,1)
k2

=

(m⇢)(1�✏)k(m)�k2

Q(1�✏)k(m)

l=k2+1 h(m,1)
(l)

�
✓

m⇢

h(m,1)
((1� 2✏)k(m)

)

◆(1�✏)k(m)�k2

�
✓

m⇢

h(m,1)
((1� 2✏)k(m)

)

◆(1�✏)k(m)�(1�2✏)k(m)

�
✓

m⇢

h(m,1)
((1� 2✏)k(m)

)

◆

✏k

(m)

Similarly, h(m,1)
(k) � h(m,1)

((1 + 2✏)k(m)
) for all k �

(1+2✏)k(m). Using (26) with any k1 � (1+2✏)k(m) and with
k2 = (1 + ✏)k(m), we get,

⇡(m,1)
k1

⇡(m,1)
(1+✏)k(m)

=

(m⇢)k1�(1+✏)k(m)

Q

k1

(1+✏)k(m) h(m,1)
(l)


✓

m⇢

h(m,1)
((1 + 2✏)k(m)

)

◆

k1�(1+✏)k(m)


✓

m⇢

h(m,1)
((1 + 2✏)k(m)

)

◆

✏k

(m)

Thus, we get,
P1

k=0 ⇡
(m,1)
k

P(1+2✏)k(m)

k=(1�2✏)k(m) ⇡
(m,1)
k

=

0

@

(1+2✏)k(m)

X

k=(1�2✏)k(m)

⇡(m,1)
k

1

A

�1
0

B

@

X

k<(1�2✏)k(m)

+

(1+2✏)k(m)

X

k=(1�2✏)k(m)

+

�m

X

k=(1+2✏)k(m)+1

+

X

k>�m

1

C

A

⇡(m,1)
k


P

k<(1�2✏)k(m) ⇡
(m,1)
k

⇡(m,1)
(1�✏)k(m)

+ 1 +

P

�m

k=(1+2✏)k(m)+1 ⇡
(m,1)
k

⇡(m,1)
(1+✏)k(m)

+ �

(1� 2✏)k(m)

✓

h(m,1)
((1� 2✏)k(m)

)

m⇢

◆

✏k

(m)

+ 1

+ (�m� (1 + 2✏)k(m)
)

✓

m⇢

h(m,1)
((1 + 2✏)k(m)

)

◆

✏k

(m)

+ �

�!
m!1

0 + 1 + 0 + �

Where the last limit can be shown to hold as follows.
Using k(m)/m ! ↵⇤ as m ! 1, one can show that
lim

m!1 h(m,1)
((1�2✏)k(m)

)/(⇢m) = ⇠(1�e�(1�2✏)↵⇤
c

) <
⇠(1 � e�↵

⇤
c

) = 1. Thus, there exists c1 < 1 and m0 > 0

such that the inequality h

(m,1)((1�2✏)k(m))
m⇢

< c1 holds for
all m > m0. Similarly, there exists c2 < 1 and m00 > 0

such that the inequality m⇢

h

(m,1)((1+2✏)k(m))
< c2 holds for

all m > m0. Thus, terms
⇣

h

(m,1)((1�2✏)k(m))
m⇢

⌘

✏k

(m)

and
⇣

m⇢

h

(m,1)((1+2✏)k(m))

⌘

✏k

(m)

tend to 0 geometrically fast. Since
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✏ > 0 and � > 0 where chosen arbitrarily, the lemma
holds.

Proof of (17): To find mean delay, we cannot use Little’s
law just yet, since we have shown concentration in ⇡(m,n)

k

which is the probability measure for number of active classes
and not number of waiting requests. However, intuitively, by
increasing n while keeping ⇢ fixed, we are thinning the arrival
process of each class so that the probability of having more
than one waiting job for any given class at any given point
in time goes to 0. By taking the limit as n ! 1, ⇡(m,n)

k

then becomes a proxy for the number of waiting jobs. To
prove the result formally, we use expression for mean delay
in Corollary 1. Define

⌧ (m,n)
k

=

ˆF
k

(m⇢/n)

nF (m⇢/n)
.

Then, using (9) and (12) from Corollary 1 and using ⌫
i

= ⌫
for all i, the mean delay for a given n and m is given by

E
h

D(m,n)
i

= ⌫
n

X

k=0

k⌧ (m,n)
k

. (28)

Let lim
n!1 ⌧ (m,n)

k

= ⌧ (m,1)
k

. We now prove the following
lemma by induction on k.

Lemma 4.

⌧ (m,1)
k

=

⇡(m,1)
k

m⇢
for k = 1, 2, . . .

Proof. For a given n, from (11), (12) and (27) we get

⌧ (m,n)
k

=

1
n

⇡(m,n)
k

+

n�k+1
nk

⇡(m,n)
k�1 +

(n�k+1)(k�1)m⇢

nk

⌧ (m,n)
k�1

h(m,n)
(k)� km⇢/n

for k = 1, 2, . . . , n and ⌧ (m,n)
0 = 0. By taking limits as n !

1, we get

⌧ (m,1)
k

=

1
k

⇡(m,1)
k�1 +

(k�1)m⇢

k

⌧ (m,1)
k�1

h(m,1)
(k)

,

for any k � 1, and ⌧ (m,1)
0 = 0 Now we prove the lemma by

induction using the above recursion. First, we prove the result
for the base case of k = 1. By direct substitution we get,

⌧ (m,1)
1 =

⇡(m,1)
0 + 0

h(1)

=

⇡(m,1)
1

h(1)
m⇢

h(1)
,

where the last equality follows from (26). Thus, we get
⌧ (m,1)
1 = ⇡(m,1)

1 /(m⇢). Now, assume the result is true for
⌧ (m,1)
k�1 . Thus we get,

⌧ (m,1)
k

=

1
k

⇡(m,1)
k�1 +

(k�1)
k

⇡(m,1)
k�1

h(m,1)
(k)

=

⇡(m,1)
k�1

h(m,1)
(k)

=

⇡(m,1)
k

m⇢
,

where the last equality again follows from (26).

Thus from (28), we get,

lim

n!1
E
h

D(m,n)
i

=

P1
k=1 k⇡

(m,1)
k

�m
.

Proofs of Lemma 2 and 3 show that the probability ⇡(m,1)
k

for k < (1 � 2✏)k(m) or k > (1 + 2✏)k(m) decreases to
0 geometrically fast with m. Thus, proceeding along similar
lines, one can show that

lim

m!1
lim

n!1
E
h

D(m,n)
i

2 ��1
[↵⇤ � 2✏,↵⇤

+ 2✏].

for any ✏ > 0. Hence, the result.
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