
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Auto-Tuning for Cellular Scheduling Through
Bandit-Learning and Low-Dimensional Clustering
Isfar Tariq , Graduate Student Member, IEEE, Rajat Sen, Member, IEEE, Thomas Novlan, Member, IEEE,

Salam Akoum, Member, IEEE, Milap Majmundar, Senior Member, IEEE,

Gustavo de Veciana , Fellow, IEEE, Sanjay Shakkottai , Fellow, IEEE

Abstract— We propose an online algorithm for clustering

channel-states and learning the associated achievable multiuser
rates. Our motivation stems from the complexity of multiuser
scheduling. For instance, MU-MIMO scheduling involves the
selection of a user subset and associated rate selection each
time-slot for varying channel states (the vector of quantized
channels matrices for each of the users) — a complex integer
optimization problem that is different for each channel state.
Instead, our algorithm clusters the collection of channel states to
a much lower dimension, and for each cluster provides achievable
multiuser capacity trade-offs, which can be used for user and
rate selection. Our algorithm uses a bandit approach, where it
learns both the unknown partitions of the channel-state space
(channel-state clustering) as well as the rate region for each
cluster along a pre-specified set of directions, by observing the
success/failure of the scheduling decisions (e.g. through packet
loss). We propose an epoch-greedy learning algorithm that
achieves a sub-linear regret, given access to a class of classifying
functions over the channel-state space. We empirically validate
our approach on a high-fidelity 5G New Radio (NR) wireless
simulator developed within AT&T Labs. We show that our
epoch-greedy bandit algorithm learns the channel-state clusters
and the associated rate regions. Further, adaptive scheduling
using this learned rate-region model (map from channel-state
to the set of feasible rates) outperforms the corresponding
hand-tuned static maps in multiple settings. Thus, we believe that
auto-tuning cellular systems through learning-assisted schedul-
ing algorithms can significantly improve performance in real
deployments.

Manuscript received March 25, 2020; revised January 2, 2021; accepted
April 1, 2021; approved by IEEE/ACM TRANSACTIONS ON NETWORK-
ING Editor R. La. This work was supported in part by the NSF under
Grant CNS-1731658, Grant CNS-1718089, and Grant CNS-1910112; in part
by the Army Futures Command under Grant W911NF-19-2-0333; in part
by the Wireless Networking and Communications Group Industrial Affiliates
Program; and in part by the U.S. Department of Transportation (DoT) sup-
ported the Data-Supported Transportation Operations and Planning (D-STOP)
Tier 1 University Transportation Center. This article was presented in part
at the 2019 IEEE International Conference on Computer Communications.
(Corresponding author: Isfar Tariq.)

Isfar Tariq, Gustavo de Veciana, and Sanjay Shakkottai are with the
Department of Electrical and Computer Engineering, The University of
Texas at Austin, Austin, TX 78712 USA (e-mail: isfartariq@gmail.com;
gustavo@ece.utexas.edu; shakkott@mail.utexas.edu).

Rajat Sen is with Google Research, Mountain View, CA 94043 USA
(e-mail: rajat.sen@utexas.edu).

Thomas Novlan, Salam Akoum, and Milap Majmundar are with the
AT&T Labs, Austin, TX 78795 USA (e-mail: thomas_novlan@labs.att.com;
salam_akoum@labs.att.com; milap_majmundar@labs.att.com).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNET.2021.3077455, provided by the authors.

Digital Object Identifier 10.1109/TNET.2021.3077455

Index Terms— Online learning, bandit algorithms, wireless
networks, scheduling, capacity region, auto-tuning.

I. INTRODUCTION

W IRELESS cellular networks have become increasingly
more complex to operate – the aggregate number of

parameters available for optimization at various layers can
range in the thousands (e.g. MIMO antenna weights, power
levels, coding and modulation rates, and frequency/sub-frame
allocation to users), and the choice of which depend on the
channel-states of the users.1 Thus, when scheduling users
(e.g. in MU-MIMO scheduling [2]), a channel-state dependent
combinatorial optimization problem needs to be solved each
time-slot, where a subset of users need to be selected, and
transmission rates and power levels jointly determined for
each of these users from among the allowable parameters.
This problem however has a latent low-dimensionality that can
be exploited, namely that for channel-states that are “near”
each other, the optimal solution (user and rate selection) is
likely to be the same. Thus, if we cluster channel-states, and
determine the effective rate region trade-offs for each cluster,
these cluster-dependent rate regions can be used for user and
rate selection, and thus significantly reduce the complexity of
user and rate scheduling.

However, these clusters are unlikely to be universal, mean-
ing that different scenarios (e.g. indoor, outdoor urban, outdoor
rural) would lead to different channel-state clusterings. Indeed,
it is also likely that the clusters and associated rate-regions
will also vary with the time of day depending on different
loading/use-case scenarios. This then, motivates an online
clustering and multi-user rate region learning approach.

Such learned rate regions are useful in practice. In literature,
scheduling algorithms typically assume that they have access
to the set of available rates that are feasible for each channel-
state. For instance, MaxWeight-like rules [3] that schedule
based on the product of the queue-length and channel-rate
implicitly assume that the map from the channel-state to the
set of feasible channel rates is known, and thus solve an
optimization each time-slot (over all feasible rates) resulting
in the scheduling decision. These maps from channel-state to
feasible rates, in reality, are hand-tuned by operators based on
experiments, and these static maps are chosen such that they
are good across several deployment scenarios. Instead, our

1In a MIMO setting, the channel-state for each of the users is the channel H
matrix, and in practice the base-station would have access to an approximation
of this (e.g. quantized version).

1558-2566 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 01,2021 at 20:58:14 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5900-7336
https://orcid.org/0000-0002-1498-494X
https://orcid.org/0000-0002-4325-9050

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 1. An illustrative example of the channel-state space P and the
corresponding capacity classes for n = 2 users, K = 3 capacity classes
and d = 1. {r(i)}i∈[4] are different rate vectors that can be scheduled.
The vectors {ui}i∈[2] correspond to the directions along which we need to
maximize user rates.

approach of learning the feasible rate-region in each scenario,
and thus having a different map for each scenario (effectively,
an auto-tuning approach for the PHY/MAC scheduler) permits
improved performance in deployments. We refer to Simula-
tions Section VI and Section VI-D for more discussion in the
setting of the AT&T Labs cellular network simulator.

Main Contributions: The contributions in this paper are two-
fold. From a modeling and algorithm development perspective,
we develop a clustering model for the wireless downlink,
and develop an epoch-greedy bandit algorithm that learns the
clusters, the associated capacity regions and schedules users
using learned parameters to minimize regret. From a system
simulation perspective, we study the benefits of auto-tuning
cellular scheduling using such bandit learning, and demon-
strate significant benefits on a high-fidelity cellular simulator
developed by AT&T Labs.

We consider a system where the channel-state space P
clusters into K (unknown) classes, with a corresponding multi-
user rate-region for each class. Our goal is to develop online
strategies that can learn clusterings of different channel-states
that have similar multiuser rate regions along with the bound-
aries of these regions. Simultaneously while learning, we need
to schedule users based on the observed channel-states to
maximize the user rates along pre-specified directions (see
Figure 1(a) precise definition is given in Section III). Our
contributions are:

(i) We propose an epoch-greedy bandit algorithm for our
problem setting. The algorithm assumes access to a class
of experts/classifying functions Π̂, where an expert in Π̂ is
a mapping from the channel-state space to {0, 1}. We also
assume that the class of experts is rich enough, such that there
exists a set of functions, which when composed together can
yield a function from the channel-state space to {1, 2, . . . , K}
which correctly identifies the class in which each channel-state
belongs in. Similar assumptions have been made in the realiz-
able setting in stochastic contextual bandits [4]. Our approach
achieves a balance between three objectives: (i) Class Explore-
learning the clustering of the channel-state space using the
class of experts and feedback obtained by scheduling different
rates in an exploratory manner (ii) Capacity Explore- learning
the boundaries of the capacity regions in the specified direc-
tions for the different channel-state region clusters (iii) Exploit
- finally, exploiting the knowledge learned, by scheduling the
rate vector of maximum possible magnitude in the specified
direction, that lies within the capacity region corresponding to
the channel-state observed in a time-slot.

(ii) We consider a notion of cumulative regret, where
the regret in our setting is the difference between the total
effective rate obtained by a learning policy in T time-slots

and the total rate obtained by a genie policy which knows
the capacity clusters and the corresponding capacity regions
and given a channel-state, always schedules the rate vector
of maximum possible magnitude in the specified direction,
which lies within the capacity region corresponding to the
channel-state. We provide a rigorous definition of regret for
our problem in Equation (4). We analyze our algorithm and
prove that it has a regret scaling of O(T 2/3 log T) at time T .

(iii) We perform extensive simulations on a high-fidelity
simulator – Wireless Next-Generation Simulation (WiNGS)
– developed withing AT&T Labs. WiNGS includes a fully
dynamic, event-driven system-level simulator which models
both the 5G New Radio (NR) physical layer as well as the
air interface protocols including the MAC, RLC, and PDCP
sublayers. First, we note that the epoch-greedy bandit algo-
rithm is able to learn channel-state clusters and the associated
capacity regions over a short time-scale (30 seconds or less
in our settings). Further, the associated scheduler using this
learned model is able to match and/or outperform hand-tuned
policies in multi-user MIMO settings (both with and without
out-of-cell interference). This is because a learning-based
algorithm is able to auto-tune to each specific scenario
(user locations, interference environment, etc.), whereas static
hand-tuned policies are chosen for good average performance
across many scenarios. Thus, we believe that such bandit
algorithms can play a significant role in auto-tuning wireless
cellular systems in real deployments. We refer to Section VI-D
for additional details.

Finally, we circle back to one of our motivations –
understanding the channel-state-dependent capacity regions.
Note that since our algorithms focus on optimizing along a
pre-specified set of directions, the resulting capacity region
that can be constructed for each channel-state class will be
an approximation (because we can potentially miss some of
the faces of the capacity region). However, if the capacity
regions are “nice”, then the direction vectors can be designed
in order to get an almost exact estimate of the capacity regions.
For instance in [5], it has been shown that convex polytopes
formed by the intersection R half-spaces (the hyper-planes
should have rational coefficients) and for which the vertex
enumeration problem is efficient [6], can be learned with
O(poly(R, d′)) noiseless membership queries, where d′ is the
dimension of the space.

II. RELATED WORK

Over the last few decades, there has been a lot of work on
opportunistic scheduling for wireless networks. This has led
to a powerful framework of algorithms that utilize channel
feedback and the queue lengths to achieve objectives like
system stability, optimization of a utility function or average
delay [3]. In the setting of multi-user MIMO wireless networks
(MU-MIMO), scheduling algorithms need to optimize over
user selection, beamforming (antenna weight selection), power
allocations, physical layer modulation and coding parameters
[2], [7], [8]. Here, the user selection sub-problem (choosing a
subset of users for transmission from among all the possible
users) renders leads to a combinatorial explosion in complex-
ity, and several approximations have been used as guidelines
for complexity reduction [9]–[11].

We approach dimensionality reduction through online
clustering, and our algorithmic approach is related to the con-
textual multi-armed bandit problem [12]–[14]. The stochastic

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 01,2021 at 20:58:14 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TARIQ et al.: AUTO-TUNING FOR CELLULAR SCHEDULING THROUGH BANDIT-LEARNING 3

contextual bandits with experts problem [4], [13], [15], [16]
is especially relevant to our problem. This problem has been
studied in the literature starting with the epoch-greedy policy
in [13] leading to the more powerful and essentially statis-
tically optimal policies in [4], [15], [16]. Our problem is
somewhat similar to this setting as the channel-states observed
is analogous to the context and the feedback received after
scheduling a rate vector is similar to the stochastic reward
observed after pulling an arm. We also assume access to
a class of experts that map the space of channel-states to
{1, 2, . . . , K}, where K is the number of capacity classes.
However, it should be noted that the feedback received in
our setting is much more challenging, as it does not pro-
vide direct information about the capacity classes unlike the
rewards received from the arms in contextual bandits, which
directly reflects the utility of that arm under the given context.
Moreover, in our problem there is an additional task of learning
the boundary of the capacity regions, even after the clustering
of the channel-state region into K classes has been learned.

In the context of learning the capacity regions, there is a
line of related work on learning convex polytopes which are
formed by the intersection of a finite number of half-spaces,
from noiseless membership queries [5], [17]. In [5] binary
search type strategies have been used to provide efficient algo-
rithms for learning a class of convex polytopes that are formed
by the intersection of half-spaces defined by hyper-planes with
rational coefficients and for which the vertex enumeration
problem can be solved efficiently. Finally, an earlier version
of this paper appeared in [1].

III. SYSTEM MODEL AND DEFINITIONS

We consider a discrete time scheduling system with n users
and a single scheduler. At each time t, the scheduler observes
a channel-state vector q(t) = {q1(t),q2(t), . . . ,qn(t)} where
qi(t) ∈ Qd is the channel-state for user i ∈ [n], where
[n] ! {1, 2, .., n}. The set Q can be a bounded subset of R or
a discrete alphabet set. We denote the set of all channel-state
vectors as P(= (Qd)n). At any time t we observe the
channel-state vector q from a time-invariant distribution fQ
over P (this distribution depends on the wireless channel
between the user and the base-station).

A. Scheduling a Rate Vector
Corresponding to each channel-state, there is a unique

capacity region that the system can support. The capacity
region corresponding to a channel-state is defined as the set
of all user rate vectors r ∈ Rn

+ that can be achieved with
probability close to one, potentially by time-sharing. Strictly
speaking, we are really considering the rate region, i.e., the
set of user rate vectors that are achievable using the available
physical layer strategies at the base-station (convex hull of the
data rates that be generated using the available physical layer
coding/modulation/antenna-beamforming choices), as opposed
to an information-theoretic characterization. We however use
the term capacity region instead of rate region for clarity of
description.

In our subsequent discussion, when using the phrase “sched-
ule a rate vector r”, it means that we notify the PHY/MAC
parameter selection algorithm that r needs to be scheduled.
Then, this algorithm tries to achieve the rate r potentially by
time-sharing among various allowable physical layer rates, and
over a block of several physical layer time-slots, in which

the channel-state remains the same. Finally, at the end of
this time-share block, a notification is received which tells
us whether the requested rate r is achieved or not. There-
fore, in the subsequent discussion we use ‘time-slot’ as an
abstraction for one trial by the PHY/MAC parameter selection
algorithm to achieve a rate over a block of physical layer
time-slots. Note that we use a finite length block of physical
layer time-slots to judge whether a rate r can be achieved and
therefore the notification is bound to be noisy. This noise is
captured in our noise model which is described later in this
section.

B. Channel-State Partitions and Capacity Regions
We assume that the channel-state space P can be partitioned

into K sets denoted by P1,P2, . . . ,PK with their correspond-
ing unique capacity regions C1, C2, . . . , CK respectively 2 such
that for any q ∈ Pi, the capacity region is Ci. In the case where
Q is discrete and finite, it is reasonable to assume that K "
|P| = |Q|nd. The capacity regions C1, C2, . . . , CK ⊆ C ⊂ Rn

are convex polytopes that lie in the positive quadrant. Further,
for non-negative vectors x,y, if x ≤ y (element-wise) and
y ∈ Ci, then x ∈ Ci for any i ∈ [K]. We also assume that
all the capacity regions lie inside the positive quadrant of the
ball with radius C centered at the origin, i.e Ci ⊂ B(0, C)+
for all i ∈ [K]. Here, B(0, x) = {u ∈ Rn : ‖u‖2 ≤ x} and
A+ denotes the subset of A that lies in the positive quadrant.

We provide an illustrative example in Fig. 1, with n = 2
users and K = 3 capacity classes. In our example each user
provides a one-dimensional channel-state vector, therefore the
dimensions of both P and C are two. The partitions of the
channel-state space P is shown in Fig. 1(a), which correspond
to K different capacity regions in Fig. 1(b). We shall define
an index function relating any channel-state vector q ∈ P to
the channel-state partition and the capacity region as follows.

Definition 1 (Index Function I(.)): Given a channel-state
vector q, I(q) is the index of the element of the partition
that contains q, i.e. q ∈ PI(q).

The following assumption states that channel-state’s from
each element of the partition are observed sufficiently often.

Assumption 1 (Class Probabilities): We assume that
P(I(Q) = i) > β = O

(
1
K

)
∀ i ∈ [K], where Q ∈ P is a

random variable with distribution fQ capturing variability in
the system.

C. Separation of Capacity Regions
We assume that the capacity regions are sufficiently different

from each other. For instance, in Fig. 1 if C1 and C2 were
almost identical to each other, then it would be better to
merge P1,P2 and treat it as a system with K = 2. The
following assumption says that for any two capacity regions
Ci, Cj a sufficient fraction of the volume lies outside of their
intersection.

Assumption 2 (Separability): We assume the capacity
regions are well separated, i.e., for all i, j ∈ [K]

d(Ci, Cj) ! |(Ci \ Cj) ∪ (Cj \ Ci)|
|B(0, C)+| ≥ λ > 0,

where |A| denotes the volume of the set A.

2Our theoretical guarantees require the channel-state regions corresponding
to the different capacity regions be disjoint, however our algorithm can also
handle cases where the channel-state classes are not disjoint.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 01,2021 at 20:58:14 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

D. Noise Model
Let Y (q, r) ∈ {0, 1} denote a random variable modeling the

observed notification when a rate r ∈ Rn is scheduled when
the observed channel-state vector is q. Here, Y (q, r) = 1
signifies a successful transmission and Y (q, r) = 0 signifies
a failure to achieve that rate vector.3 The success or failure to
transmit a rate vector r under channel-state q is assumed to
be an i.i.d random variable Y (q, r) with distribution given by

P(Y (q, r) = 1) =

1 − ρ(q, r), if r ∈ CI(q),
ρ(q, r), if r ∈ B(0, C)+ \ CI(q),
0, otherwise.

where ρ(q, r) can be viewed as a noise parameter (essentially
the packet error rate) which depends on the channel-state q
and the rate r.

Assumption 3 (Noise Rate): We assume that ρ(q, r) ≤ ρ <
1/8, ∀ q, r. We further assume that for all p,q and i such
that p,q ∈ Pi, ρ(p, r) = ρ(q, r). For notational convenience,
for all q ∈ Pi, let ρi(r) ! ρ(q, r) = ρI(q)(r).

Given a channel-state and the corresponding capacity
region, when r approaches the boundary of the capacity region
(from inside) the probability of successful transmission is close
to 1 but decreases slightly near the boundary. The success
probability drops significantly after r crosses the boundary
(there is a discontinuous jump in success probability at the
boundary). After crossing the boundary, ρ(q, r) decreases till
|r| = C, beyond which ρ(q, r) = 0.

E. Bandit Feedback and Objectives
Let U = {u1, . . . ,uD} be a set of unit vectors such

that ui ∈ Rn
+. This set is fixed a priori. The broad objec-

tive is to discover the maximum possible service rates (i.e.
Pareto-optimal points) in these directions,4 given a particular
channel-state.

Since we use ‘time-slot’ as an abstraction for a block of
several physical layer time-slots where a rate vector r is
attempted to be scheduled potentially by time-sharing. There-
fore, a wide-range of direction vectors within the capacity
region can be supported.

Concurrently with the channel-state, a direction vector u
is chosen uniformly at random from the set U . The task is
to schedule a rate vector within the capacity region CI(q),
of maximum possible magnitude in the direction u. In other
words, we would ideally like to schedule a rate vector cu such
that

c(q) = argmax
d

{d|du ∈ CI(q)}.

The precise order of events at a given time-step is as follows:
• A channel-state q(t) from the distribution fQ is observed.

A direction u(t) drawn uniformly at random from U is
also specified.

• The policy optionally selects a magnitude c(q(t),u(t)) ∈
[0, C] to be scheduled in the direction u(t) and the rate
vector r(t) = c(q(t),u(t))u(t) is scheduled. On the other
hand, the policy may choose any other rate vector r(t)

3A failed transmission can be caused by several factors, such as transmission
errors due to fast fading channel or incorrect channel-state sent by users (i.e.
estimation and quantization error in q(t)).

4The direction vector u controls the ratio of data that is transmitted to the
users. Furthermore, the direction vector u, also controls the set of users that
are scheduled, i.e. user i is scheduled if u(i) > 0.

that does not lie in the specified direction. In this case
the reward obtained is zero in the time-step.5

• A notification Y (q(t), r(t)) ∈ {0, 1} is then observed.
Remark 1: Consider a 5G-NR setting where two users

(aka user-pair) can be scheduled in each time-slot using
MU-MIMO (note in general that more than two users could
be co-scheduled; in this example, we restrict to two users for
discussion clarity). In a typical 5G-NR system, the scheduler
and the resource manager are separate entities (see Section V
for details). The scheduler’s task is to select the user-pair,
based on the set of available/active user-pairs and other
scheduling constraints. The resource manager’s task is to
allocate rates to the selected user-pair. In current systems,
the resource manager is hard-coded, i.e., a fixed mapping
between channel quality to the selected rate (more details in
Section V). Furthermore, this map is usually selected in a
conservative manner so that the map is “universal” across
many deployment scenarios. Our system model focuses on a
learning-based resource manager that enables us to instead
learn the map between channel quality and user rates in a
scenario-dependent manner.

In such a MU-MIMO setting, we use the abstraction of
direction vector to represent the scheduling decisions made
by the scheduler. This vector direction corresponds to: (a) the
choice of user-pair, and (b) their data rate ratio. However,
the magnitude of this vector is determined by the resource
manager. As we will see in later sections, our system model
permits the resource manager to learn the boundary of the
capacity region (meaning, the largest permissible magnitude
for this vector) by probing the system and learning from
success/failure notifications. As a numerical example, for the
system shown in Figure 1, let us suppose that at time step t we
observe the channel-state from P1 and the scheduler provides
us the direction vector (1√

5
, 2√

5
). Let us further suppose that

we schedule the rate vector r = (10,20) using MU-MIMO,
with the corresponding rates for User 1 being 10 and for User
2 being 20. If r = (10,20) lies inside the capacity region C1,
then we will likely receive a success notification and perhaps
rarely a failure notification.

Finally, this paper focuses on the rate allocation problem
(i.e., the resource manager) where we have access to a sched-
uler which selects the direction vector to schedule according
to allocation constraints of the system at any given time step.

F. Expected Reward Function
Recall Y (q, r) is the notification received for transmitting

rate vector r when the observed channel-state was q. Let us
define the reward r(q, r,u) for a rate vector r, channel-state
q and direction vector u to be

r(q, r,u) = |r|1 {r.u = |r|}Y (q, r), (1)

where 1{} is the indicator function.
Note that for any p,q ∈ Pi, we have E[r(q, r,u)] =

E[r(p, r,u)] ! E[ri(r,u)]. Therefore, we define the expected
reward function fu,i(c) for direction vector u, capacity region
Ci and magnitude c, as follows:

fu,i(c) = E[ri(cu,u)]. (2)

5Note that this is a conservative estimate of the reward. In general,
there is some non-zero value in scheduling any rate vector in the capacity
region corresponding to the observed channel-state. However, our theoretical
guarantees will be under this conservative reward model, and in practice the
performance observed will only be better.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 01,2021 at 20:58:14 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TARIQ et al.: AUTO-TUNING FOR CELLULAR SCHEDULING THROUGH BANDIT-LEARNING 5

The function fu,i(c) is the expected rate achieved if we
schedule a rate vector cu when the channel-state observed
belongs to capacity class i. It can be evaluated as follows,

fu,i(c) =

c(1 − ρi(cu)), if cu ∈ Ci,
cρi(cu), if cu ∈ B(0, C)+ \ Ci,
0, otherwise.

(3)

Since we have assumed that ρi(r) < 1
8 ∀ r therefore fu,i(c) is

a discontinuous function of c, and the discontinuity is located
at the point where a ray in the direction u meets the boundary
of Ci. We make the following assumption on the expected rate
function.

Assumption 4 (Maxima of Rate Function): Let us define

ĉu,i = arg max
c

fu,i(c)

and c∗u,i = maxc{c|cu ∈ Ci}. We assume that the noise
function ρi(r) is such that c∗u,i = ĉu,i.

This assumption basically implies that for all i ∈ [K] the
maximum of the rate function fu,i(c) is achieved at the point
where a ray in the direction u meets the boundary of Ci.

G. Class of Experts

We assume access to a class of binary experts/classifiers Π̂,
where each expert π̂ ∈ Π̂ is a function mapping the space of
channel-states to {0, 1} i.e π̂ : P → {0, 1}.

Assumption 5 (Classifying Functions): Let κ be a proper
subset of [K]. Let us define the following binary function
Îκ(q) =

∑
i∈κ 1{q ∈ Pi}. We assume that the set of binary

experts/classifiers Π̂ is such that for all κ ⊂ [K], Îκ(.) ∈ Π̂.
We further assume that the VC dimension [18] of our class of
experts is V .

The above assumption states that the binary functions from
P to {0, 1} that are induced by labeling the channel-state’s
belonging to a set κ ⊂ [K] of capacity classes as 1 and
the rest as 0, are a part of our class of experts, for all such
proper subsets κ. Consider the example exhibited in Figure 1.
Suppose κ = {1, 2}. Then, Îκ(q) divides P into two regions
P1 ∪ P2 and P3. Note that both these regions can be repre-
sented as the intersection of at most two half-spaces, as the
boundaries of the partitions are linear. This is true for all such
proper subsets κ. Therefore, if our class of binary classifiers
contains all the separators that are intersections of at most two
half-spaces (i.e. 1{

⋂2
i=1 βββT

i q + βi,0 > 0}, parameterized by
(βββi, βi,0), then Assumption 5 is valid.

Assumption 5 basically implies that there exists a group
of binary functions in Π̂, which when composed together
can yield the true index function, i.e., Îκ(q) for different
κ’s can be composed together to recover I(q). For example
in Figure 1, Î[2,3](q) differentiates Class 1 from 2, 3 and
Î[3](q) separates Class 3 from the rest. Given a channel-state
q, if for instance Î[3](q) = 0 and Î[2,3](q) = 1 then we can
infer that I(q) = 2.Note that this is similar to the realizable
setting in the contextual bandits with experts problem [4],
where it is assumed that the true behavior of the system
can be represented by one of the expert function. However,
finding the correct expert in an online setting is an algorithmic
challenge. For instance for the example discussed above we
can recover the index function I(q) by using Î[3](q) and
Î[2,3](q). For channel states from channel-state cluster 1, 2
and 3 the value for (Î[3](q), Î[2,3](q)) will be (0, 0), (0, 1)

and (1, 1) respectively. Therefore, we can construct a function
Î(q) = f(Î[3](q), Î[2,3](q)) such that f(0, 0) = 1, f(0, 1) = 2
and f(1, 1) = 3. We also refer to Section IV for an example
on constructing Î(q) in an online setting.

Remark 2: In practical settings, the class of experts/
classifiers can be provided by implementing a module/function
for the classifier directly on the base-station (this is similar to
how the scheduler or resource manager module is implemented
in the 5G-NR setting we discussed in Remark 1). For instance,
if we select logistic regression, then our class of experts
would consist of functions π̂(x) = 1{sig(wT[x;1.0]) >
τ0} over all linear weights w and threshold τ0. Here,
sig(x) = 1/(1 + e−x) is the sigmoid function. Note
that even though the set of all functions in our class
can correspond to all weights s.t. ‖w‖ ≤ R for some
R, we still need to learn the correct weights that corre-
spond to the partition functions, Îκ(.) in Assumption 5.
As another example, if we select Gaussian Naive Bayes,
the corresponding class of experts would consist of functions
π̂(x) = arg maxi∈{0,1}

1√
(2π)nd|Σ|

exp− 1
2 (x−µiµiµi)

TΣ−1(x−µiµiµi)

where Σ = Diag(σσσi), over a range of values for {µiµiµi,σσσi}’s.
Again the correct parameters {µiµiµi,σσσi} that correspond to
the partition functions in Assumption 5 need to be learned.
Several reference implementations (e.g. sklearn in python) are
available, which can be ported as a module into the base-
station. Additional discussion (e.g. on complexity) is available
in Appendix F.

H. Definition of Regret
The main objective is to minimize regret when compared

to a genie strategy which knows the index function I and the
capacity regions Ci’s. Let r(t) be the rate vector selected by
a policy, at time t. Then the regret of the policy till time T is
given by:

R(T) =
T∑

t=1

(
fu(t),I(q(t))(ĉu(t),I(q(t)))

−E
[
rI(q(t))(r(t),u(t))

])
(4)

where q(t),u(t) are the channel-state vector and direction vec-
tor at time t, respectively. Note, that fu(t),I(q(t))(ĉu(t),I(q(t)))
is the maximum average rate that can be achieved in the
direction u(t), by a genie policy that knows the capacity
classes and the boundaries of the capacity regions. The regret
measures the sub-optimality of the policy in question with
respect to the genie policy, in an expected sense. The goal is
to design a policy that yields R(T) that is sub-linear in T ,
for all times T large enough. This basically implies that the
policy keeps learning the system as time progresses.

Remark 3: Although we have only used channel-state for
clustering, other 5G parameters such as rank or angle of
arrival of primary beam can also be used for clustering,
by treating them as additional dimensions of the user channel-
state. Moreover, we can explore parameters such as the
power allocation among users by treating them as additional
dimensions of the direction vectors.

IV. ALGORITHM

The algorithm is structured as an epoch-greedy strategy [13].
One key algorithmic idea is that if a rate vector r is scheduled
for several different observed channel-state’s q, then the

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 01,2021 at 20:58:14 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

success notifications Y (q, r) provide useful information that
can be leveraged using the class of binary experts Π̂ to obtain
a binary classifier that separates the channel-state space P into
two regions P∗ and Pc

∗ , where P∗ = {q ∈ P : r ∈ CI(q)}.
A carefully chosen set of rate points can then be used to form
a group of binary classifying functions, which when composed
together yields a mapping π: P → [K], which is identical to
I(q) with high probability.

The algorithm starts with an initialization phase and then
proceeds in epochs. In initialization phase the algorithm con-
structs π by building a tree of binary classifiers which is
then used to classify the channel-state points into K different
classes. This stage is referred to as initializing classifier π.
After building π, the algorithm runs in epochs similar to
epoch-greedy policies for contextual bandits. At the beginning
of each epoch, there is a class explore stage corresponding to
improving the accuracy of classifier π. This is followed by a
capacity explore stage aimed at learning the capacity regions
of the K different channel-state partitions, in the given direc-
tions U . The last stage in an epoch is the exploitation stage
where we deduce the correct capacity class of the observed
channel-state vector using π and then schedule the optimal rate
vector according to the current belief about the boundary of the
corresponding capacity region. An illustrative pseudo-code of
our algorithm is shown in Algorithm 1, while a more detailed
pseudo-code can be found as Algorithm 4. We will explain
each of the stages/phases in more detail in subsequent sections.

Algorithm 1 Epoch-Greedy Algorithm for Online Capacity
Class Learning and Rate Allocation
1: Initialize classifier π, by observing t0 channel-state’s,

scheduling corresponding to carefully designed rate vec-
tors and observing the notifications. (Initializing Classi-
fier)

2: Epoch: l = 1. Time: t = t0.
3: while t ≤ T do
4: Update the classifier π by observing channel-state q,

scheduling a carefully chosen rate point r, and using
the notification Y (q, r). This is repeated K−1 times.
(Class explore)

5: Learn the boundaries of the K capacity regions in the
directions U , by scheduling carefully chosen rate
points and using the current π. A total of α(l) rate
points are scheduled in this part of the epoch. (Capac-
ity explore)

6: Schedule next s(l) rate points optimally using π and the
learned boundaries. (Exploit)

7: Let t = t + K − 1 + α(l) + s(l) and l = l + 1.
8: end while

A. Initializing Classifier π

The first stage of the algorithm is to initialize the mapping
(multi-class classifier) π used to classify the different channel-
state’s into the K different classes. This mapping consists of
K − 1 binary experts from our class of experts, which are
composed together in a tree-like structure, in order to yield
the mapping π.

The detailed pseudo-code for this phase is provided as
Algorithm 2. In the beginning of this phase, for several

time-slots the channel-state’s are observed and stored, while
not making any scheduling decisions (for instance, the sched-
uler is allowed to proceed in its default behavior). This
process is continued until we observe n0 distinct channel-state
vectors, which are essentially n0 distinct i.i.d random variables
sampled from fQ.

Algorithm 2 Initializing the Classifier Tree
1: Schedule arbitrary rate vectors for the first n0 channel-state

vectors observed. Let i = 0 and form a tree T where the
root contains the n0 initial channel-state points. There
are no other nodes in the tree.

2: while i < K − 1 do
3: Randomly select a rate point r.
4: Si = {}
5: for l = 1 : l0 do
6: Let q be the observed channel-state at time-step t.
7: Schedule rate r. (Class Explore)
8: Let y ∈ {0, 1} be the notification received. Add (q, y)

to Si.
9: Set t = t + 1.

10: end for
11: Construct a binary classifier π̂i by empirical risk mini-

mization (ERM) over Si, over the expert set Π̂.
12: for all leaves j of T do
13: Classify the channel-state at leaf j according to the

classifier π̂i. Let nj be the number of channel-state
points at leaf j.

14: if n0β
2 < number of leaf channel-state classified as

0 < nj − n0β
2 then

15: Make leaf j into a parent of two new leaves where
the left leaf has all the channel-state’s classified
as 1 and the right has all the channel-state’s
classified as 0.

16: i = i + 1
17: Break
18: end if
19: end for
20: end while

Then we begin initializing the tree-structure which is
detailed in steps 2-20 of Algorithm 2. Note that in each
iteration of the while loop in step 2 of Algorithm 2, a rate point
is randomly selected and then for the following l0 time-slots
irrespective of the channel-state observed, this rate point is
scheduled. The feedback observed helps us in building a binary
classification data-set that can be used to train a classifier
π̂ ∈ Π̂ which can differentiate all q ∈ P such that r ∈ CIq

from the rest. We assume that the classifiers are trained in step
11 using empirical risk minimization (ERM) with the 0 − 1
loss function. Therefore, we have that:

π̂i = argmin
π̂∈Π̂

1
|Si|

∑

(q,y)∈Si

1{π̂(q) -= y}.

At any point in time, an internal node Ni in the tree stores the
triplet (π̂i, ri, Si) where π̂i is the expert obtained by ERM over
the examples {(q, y)} stored in Si which were in turn obtained
by scheduling the rate ri for l0 time-slots. A leaf of the tree Li

stores a subset of the initial n0 channel-state points. In each

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 01,2021 at 20:58:14 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TARIQ et al.: AUTO-TUNING FOR CELLULAR SCHEDULING THROUGH BANDIT-LEARNING 7

Fig. 2. Construction of a classification tree which represents the final initial
classifier π that maps P → [K] corresponding to channel-state class structure
in Fig. 1.

iteration of the while loop, the classifier trained using the
data collected by scheduling the current randomly chosen rate
point, is only retained if it can split at least one of the current
leaf nodes in the tree reliably into two distinct partitions. This
is achieved by the check in step 14 of Algorithm 2. The while
loop continues to iterate until the tree has K−1 internal nodes.

In order to illustrate this phase, let us consider a system
as shown in Figure 1 with r = 2 users, such that the
channel-states can be partitioned into K = 3 classes P1, P2

and P3 with capacity regions C1, C2 and C3 respectively.
For, simplicity let r(1), .., r(4) be the first four rate points

that are randomly chosen in step 3 of Algorithm 2, in that
order (see Fig. 1). Since, r(1) is a rate point that lies in all
the capacity regions, the corresponding classifier π̂1 formed
using that data collected in step 8, will classify most of the
n0 channel-state points as 1. Therefore, this will not split the
current leaf node (the root node with n0 initial channel-state
vectors) into any partitions. Hence, the classifier and the rate
point is discarded and the value of the iterator i remains
unchanged. The tree remains the same with one leaf node
as shown in Fig. 2(a)-(b).

In the next iteration of the while loop, the randomly chosen
rate point is r(2). The data collected using r(2) is used to train
a classifier π̂1, which classifies most points in class P2 as 1,
while classifying most points outside of P2 as zero.6 This point
splits the n0 channel-state points in the current leaf node into
two partitions. Therefore, the classifier is retained. An internal
node N1 = {r1, π̂1, S1} is formed where r1 = r(2). Moreover,
two leaf nodes are formed where L1 is a leaf corresponding
to all the n0 channel-state vectors that are labeled as 1 by π̂1

and L2 contains the rest. This is illustrated in Fig. 2(c).
In the next iteration, the rate point r(3) is chosen, which will

effectively yield the same classifier as the one corresponding
to r(2). Therefore, this classifier will be insufficient to split any
of the leaves in Fig. 2(c). Thus the value of i is unchanged
and the tree remains the same as shown in Fig. 2(d).

Finally, the rate point r(4) is chosen. The classifier π̂2

corresponding to this point ideally distinguishes between
points lying in P1 from those outside of P1. Thus, this new
classifier can split the points in leaf L2 of the tree in Fig. 2(c),
into two nodes, as shown in Fig. 2(d). This leads us to our
final classifying tree π. Ideally (ignoring classification errors),
a channel-state point belonging to P1,P2 and P3 will land in
L3, L1 and L2 respectively.

The parameters n0, l0 have been chosen in order to ensure
that w.h.p a correct classifying tree is obtained. The following
lemma formalizes this claim.

6Note that this is just an initialization of the classifier and moreover the
feedback received from scheduling is noisy. Therefore, the binary classifiers
trained will not be fully accurate. However, n0 and l0 are designed to be
large enough such that with high probability the tree structure is correct.

Lemma 1: Let n0 ≥ 24K
β2 log

(
4 log(1

δ)+K
δλ

)
and l0 is large

enough such that 1
1−2ρ

√
V
l0

+

√
2 log

l20
δ

l0
< β

4K and l0 >
√(

4 log(1
δ)+K−1
Kλ

)
. Then with probability at least 1 − 3Kδ,

the loop in step 2 of Algorithm 2 is terminated after at most
4 log(1

δ)+K−1
λ iterations and further a correct classifying tree

structure is obtained.

B. Class Explore

After the classification tree is initialized, the algorithm
proceeds in epochs and the structure of the tree remains
unchanged. The first few time-slots in each epoch are ded-
icated to improving the accuracy of the classifiers π̂i’s stored
in the internal nodes of the tree Ni’s. We name this part of
an epoch class explore. The class explore phase in an epoch
consists of K − 1 time-steps t1, . . . , tK−1. At time-step ti,
let the channel-state observed be qi. After the channel-state is
observed, the rate vector ri stored in the internal node Ni is
scheduled and a notification yi is received The data-sample
(qi, yi) is added to the set Si and π̂i is updated through
ERM over the updated set Si. This is performed for all
i = 1, 2, . . . , K − 1. This phase is detailed in steps 7 -
14 of Algorithm 4. The basic idea is to obtain one more
training sample for each of the classifiers stored in the internal
nodes, at the beginning of each epoch, thereby improving the
classification accuracy of the global classier π : P → [K]. The
following lemma provides an upper bound for the classification
error of the global classifier π̂ at the beginning of epoch l.

Lemma 2: At the end of the class explore phase in epoch l
with probability at least 1 − (K − 1) δ

(l+l0)2
we have

P(π(Q) -= I(Q))

≤ (K − 1)

(
1

1 − 2ρ

) √
V

l0 + l
+

√√√√2 log
(

(l0+l)2

δ

)

l0 + l

! (K − 1)ε(l0 + l, δ),

where the probability is over the randomness in Q ∼ fQ and
the randomness in π due to the random samples in the training
set.

We have provided a proof of Lemma 2 in Appendix C.
Remark 4: Instance-dependent bounds of misclassification

rates depend upon multiple variables including the precise
channel-state distribution and noise model. The above bound
holds for general system models and is useful to show a
sublinear scaling of regret. To understand the impact of
our algorithms in a practical setting, we have explored the
performance benefits in Section V.

C. Capacity Explore

In each epoch, the class explore phase is followed by a
few time-slots dedicated to capacity explore. This phase is
described as steps 16-22 in Algorithm 4. It is aimed towards
learning the boundaries of the K capacity classes in the
directions U . Note that there are K possible capacity classes
and D = |U| direction vectors to explore. In the capacity
explore phase of epoch l, for α(l, δ) time-slots we observe the
channel-state vectors, direction vectors and schedule carefully

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 01,2021 at 20:58:14 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Algorithm 3 Capacity Explore Update
1: for ∀ k ∈ [K] and u ∈ U do
2: if mk,u > 1

2 then
3: Ck,u[0] = Ck,u[0]+Ck,u[1]

2
4: else if mk,u < 1

2 then
5: Ck,u[1] = Ck,u[0]+Ck,u[1]

2
6: end if
7: end for

designed rate vectors to learn the capacity region. We set

α(l, δ) = 2D
β

(
16

1−2ρ

)2
log

(
l2

δ

)
.

We initialize Ck,u[0] = 0 and Ck,u[1] = C for all k ∈ [K]
and u ∈ U at the start of the algorithm. Ck,u[0] is a lower
bound for c∗u,i and Ck,u[1] is an upper bound for c∗u,i, and
these values are updated after the capacity explore phase in
every epoch.

Let τl,k,u be the set of time-slots in which the channel-state
q observed is such that π(q) = k and the direction vector
specified is u, in the capacity explore phase of epoch l. In all
these time-slots, the rate Ck,u[0]+Ck,u[1]

2 u is scheduled. mk,u

denotes the empirical mean of the success rates in scheduling
the above rate vectors. The lower and upper bounds Ck,u[0]
and Ck,u[1] are then updated depending on the value of mk,u

for all k,u. The update procedure is detailed in Algorithm 3,
which is similar to a traditional binary search procedure (or
bisection method) for searching the boundary of the capacity
regions in the given directions U (see also [5]).

D. Exploitation
In every epoch, after the exploration phases, the overwhelm-

ing majority of time-slots are dedicated to exploitation. The
exploitation phase in epoch l consists of s(l) = O(

√
l) time-

slots. In each of these time-slots, a channel-state q is observed
and a direction vector u is specified. The class k = π(q) is
identified according to our current global classifier and the rate
vector Ck,u[0]u is scheduled. This phase is detailed as steps
24 - 29 in Algorithm 4.

Remark 5: While Algorithm 4 satisfies the regret bound in
Theorem 1, there are a few low-probability failure events for
our algorithm. For instance, there is a small probability that
the initial classifier tree-structure is incorrect (i.e., a failure
event in Lemma 1). Similarly, at any epoch with a small
probability, the capacity explore update (by Algorithm 3)
can be incorrect (due to differences in empirical and true
success probability). We have developed a robust version
of our algorithm, which detects such low-probability failure
events and corrects them online (please see Supplementary
material). For the simulations in Section VI, we use the robust
version of our algorithm.

V. REGRET BOUND

In this section, we provide our main theoretical result which
provides a cumulative regret bound for Algorithm 4, when
Assumptions 1-5 are satisfied.

Theorem 1: Under Assumptions 1-5, with probability at
least 1 − ξKDδ, Algorithm 4 achieves a regret bound of,

R(T) = O
(

T 2/3 log
(

1
δ

) (
D log T + K +

√
V

))
,

at time T where ξ < 13.

Algorithm 4 Online Rate Allocation From Channel-State and
Service Data
1: Initialize empty sets Si = {} for i ∈ [K].
2: Initialize a single node tree T where the node contains n0

different channel-state points.
3: Initialize capacity rate Ck,u[0] = 0 and Ck,u[1] = C for

all k ∈ [K] and u ∈ U .
4: Initialize classifier π using Algorithm 2.
5: Set t = t0 (time index) and l = 1 (epoch index).
6: while t ≤ T do
7: for i = 0 : K − 1 do
8: ri is the rate vector stored in node Ni.
9: Let q be the channel-state observed at time step t.

10: Schedule rate ri. (Class Explore)
11: Let y ∈ {0, 1} be the notification received. Add

(q, y) to Si.
12: Set t = t + 1.
13: Update the classifier π̂i in Ni.
14: end for
15: Let the empirical means of success rate be mk,u = 0

for all k ∈ [K] and u ∈ U .
16: for s = 1 : α(δ, l) do
17: Observe (q,u).
18: Let k = π(q).
19: Schedule rate vector

(
Ck,u[0]+Ck,u[1]

2

)
u. (Capacity

Explore)
20: Update mk,u according to received notification y.
21: Set t = t + 1.
22: end for
23: Update C and Ŝ according to Algorithm 3.
24: for s = 1 : s(l) do
25: Observe (q,u).
26: Let k = π(q).
27: Schedule rate vector Ck,u[0]u. (Exploit)
28: Let t = t + 1.
29: end for
30: l = l + 1.
31: end while

Theorem 1 and its proof is available in greater detail in
the Supplementary Material of this paper, where the explicit
dependence on the various problem parameters has been
specified.

Discussion: Theorem 1 states that the regret of Algorithm 4
scales as O(T 2/3 log T) as a function of time. The scaling
is linear with respect to the number of classes K and the
number of direction vectors D. It scales as

√
V in terms of

the VC dimension of the class of experts. For a finite class of
experts Π̂, the VC dimensions is O(log N), where N = |Π̂|
is the number of experts.

It should be noted that epoch-greedy algorithms in bandit
settings generally have a regret scaling of O(T 2/3) in the
problem independent setting, because of explicit exploration.
For instance, the epoch-greedy strategy in [13] has a sim-
ilar regret scaling for the problem of stochastic contextual
bandits with experts. However, we would like to highlight
that our problem setting is significantly more complicated
than the usual contextual bandits with experts problem, as in

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 01,2021 at 20:58:14 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TARIQ et al.: AUTO-TUNING FOR CELLULAR SCHEDULING THROUGH BANDIT-LEARNING 9

Fig. 3. Block diagram of scheduler module in WiNGS.

a contextual bandit setting when an arm is pulled under a
context, we get a direct feedback about the reward of that
arm under that context. However, in our problem setting when
a channel-state is observed and a rate vector is scheduled,
the received feedback only gives us a partial noisy feedback
about the possible capacity class in which the channel-state
belongs. The quality of the feedback also depends on the
choice of the rate points. Further in our problem setting, even
after the capacity classes are learned there is an additional
task to recover the boundaries of the corresponding capacity
regions. Therefore, the epoch-greedy algorithm proposed in
this paper is a first step towards analyzing this setting, and we
leave the study of algorithms with implicit exploration that
can potentially yield O(

√
T) regret bound as future work.

VI. SIMULATION RESULTS

In this section we perform empirical simulation of our
algorithm on the state-of-the-art Wireless Next-Generation
Simulation (WiNGS) platform developed by AT&T Labs.

WiNGS includes a fully dynamic, event-driven system-level
simulator which models large-scale cellular network deploy-
ments and the L3/L2/L1 protocols layers comprising the 5G
New Radio (NR) air interface. Both planned and random
deployments of base stations is supported, with users located
indoors or outdoors generating traffic according to various
finite and full-buffer traffic models. Packets generated by the
traffic model pass through the Packet Data Convergence Pro-
tocol (PDCP), Radio Link Control (RLC), and Media Access
Control (MAC) sublayers where functions including segmenta-
tion, re-transmissions, and HARQ (Hybrid Automatic Repeat-
reQuest) processes are implemented. The wireless channel is
modeled with both long-term effects (e.g. log-normal shad-
owing, Line-of-Sight vs. Non Line-of-Sight pathloss) and
short-term effects (e.g. fast fading due to the environmental
scattering and user mobility). The physical layer functionality
includes transport block formation based on link adaptation
based on channel-state and ACK/NACK feedback. Codebook
and channel reciprocity-based digital beamforming is used
to generate linear precoders for both single user (SU) and
multi-user MU-MIMO transmission on orthogonal or overlap-
ping time/frequency resources. The probability of success for a
transport block which is sent over the wireless channel is based
on the post-MMSE receiver SINR to BLER (BLock Error
Rate) mapping curves calculated from bit-precise link-level
simulation.

Figure 3 provides a block diagram of the modules relevant to
our simulations. The AT&T WiNGS scheduler runs in discrete
time steps of size 1 ms. At the start of each time step, the traffic

manager sends the set of schedulable7 users and their user
metrics to the macro-scheduler. The user metrics consist of
information such as CQI (Channel Quality Index, generated
every 10 ms), MIMO rank, NDI (New Data Indicator), set
of pairable users (users that can be co-scheduled) and their
corresponding MU-SINR, etc. A primary user is selected from
the set of schedulable users by the macro-scheduler based on
a round-robin policy. The macro-scheduler then picks a sec-
ondary user for MU-MIMO transmission from set of candidate
pairable users. The macro-scheduler then passes the user-pair
(primary user and secondary user) and their user-metrics to the
resource manager. In the event the macro-scheduler is unable
to find a secondary user to pair with primary user then only
the primary user and its user metrics are sent to the resource
manager. Furthermore it should be noted that for any failed
MU transmission, the re-transmissions are sent in SU mode.8

For the selected user-pair (or user), the resource manager
selects the MCS (Modulation and Coding Scheme) to be used
according to the MU-SINR (or SU-SINR). As discussed in
Remark 1, this map from channel quality (MU-SINR) to
user rates (MCS) is adaptive, and is determined online by
our algorithm. Specifically, for a given user the mapping of
MU-SINR to MCS adapts according to the success/failure
of the past transmissions. After selecting the MCS, resource
manager fills the resource grid and sends it to the MAC/PHY
layer to be scheduled.

To implement our algorithm, we have modified the default
resource manager by selecting the MCS to be scheduled for
the users according to our algorithm. We use a threshold
value of 9

10 instead of 1
2 for mk,u in Algorithm 3 since

wireless carriers like AT&T requires probability of success to
be greater than 90% for all users (desired service requirement).
For all of our simulations, we use a robust version of our
algorithm with few modifications. Specifically, the class of
experts/classifying functions used in our simulations is the
naive Bayes implemented in MATLAB. For building the
classifier, we test 15 different MCS pairs (rate-vectors) for
l0 = 50. The value of n0 is set to be 3000 (3 sec) and during
this time we schedule according to AT&T resource manager.
For sake of clarity in results we have excluded the first n0

time steps from the results. Furthermore, the traffic model used
in all simulations is full buffer i.e. all users have data to be
transmitted at all time steps. We finally refer to Appendix F
(in Supplementary Material) for more discussion on practical
issues.

A. Clusters and Associated Capacity Regions

We first plot the result for a single run of our algorithm for
a system with one base-station and n = 4 users and d = 5
direction vectors for each user-pair, i.e., 30 unique direction
vectors. At any time-step the direction vector is selected uni-
formly at random from this set of 30 possible direction vectors.
The probability of success and the throughput per resource
block is plotted in Figure 4a and 4b respectively. We observe
that our algorithm is able to converge to optimum within
10 sec and achieve probability of success higher then 90%.
In Figure 4c and 4d we plot the probability of success and

7Users that have data to be transmitted.
8A failed MU transmission means either one or both users were unable

to decode the packet. Every failed MU transmission can cause 1 or 2 SU
re-transmissions based on if MU-transmission to one or both users was
unsuccessful.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 01,2021 at 20:58:14 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 4. Single run of our algorithm for a system with 4 users.

Fig. 5. Single cell results for our algorithm for user-pair 1.

throughput per resource block for user-pair 1 in the system.
We observe that similar to before, our algorithm is able to
learn the optimal throughput for user-pair 1 within 10 sec and
achieve probability of success higher than 90%.

Figure 4a to 4d show that our algorithm operates in two
distinct phases. The first phase, which we will refer to as the
“explore” phase, consists of (Initializing Classifier) along with
the first few epochs of our algorithm, where the algorithm
explores for the majority of time steps. During the “explore”
phase, the performance of the algorithm gradually improves,
as it learns the system over time (first 10 sec for this sce-
nario). The second phase, which we will refer to as “exploit”
phase, consists of the epochs where our algorithm exploits
for a majority of the time steps. The performance during
the “exploit” phase remains relatively stable apart from small
fluctuations due to channel variations (slow fading). It should
be noted that due to averaging (over users), the variations
observed in Figure 4a and 4b are smaller than the variations
in Figure 4c and 4d during “exploit” phase.

In Figure 5a, we plot the channel-state clusters determined
by our algorithm for user-pair 1. We observe that channel-state
clusters determined by our algorithm are disjoint and cluster
1 contains better channel-states values than cluster 2. We plot

Fig. 6. Achievable MCS region and Capacity region for the different cluster
of user-pair 1.

the achievable MCS values of cluster 1 in Figure 5b where
the dotted lines show the 5 different direction vectors. The
fraction of time different MCS values are scheduled and their
corresponding success rate are plotted in Figure 5c and 5d
respectively. We observe that while our algorithm explores
several different MCS values for any given direction vector,
the MCS value that lies on the boundary of achievable MCS
region9 is selected most often.

In Figure 6a, we plot the achievable MCS region for the
two channel-state clusters. We observe that the achievable
MCS region belonging to cluster 2 is subset of achievable
MCS region of cluster 1 because cluster 1 contains better
channel-state values as compared to cluster 2. In Figure 6b we
plot the capacity regions of both clusters. It should be noted
that the capacity region are slightly different from achievable
MCS regions since the two users can have different probability
of success for any given MCS value.

B. Single Cell

We consider a single base-station setting and analyze the
performance of our algorithm against the state of the art AT&T
scheduler. The parameter settings for the AT&T scheduler
needs to be manually optimized for every scenario which is
impractical in real deployments. Therefore, following practice
in real deployments, for the simulations we consider 3 different
parameter settings denoted as Policy 1, Policy 2 and Policy 3
respectively, where theses policies are hand-tuned to provide
good results for a majority of scenarios. For our algorithm we
have a set of d = 11 direction vectors for each user-pair and at
every time step, the direction vector selected by the scheduler
is the direction vector which is closest to the MCS selected
by the default AT&T scheduler.10

For this setting we first consider 3 different scenarios with
a single active base-station and n = 4 users each. These
scenarios differ in that the user locations are different (and
thus, the channel and interference environments differ). For
each scenario, we provide plot results for number of MU trans-
missions, probability of success, throughput per resource block
and throughput per second. The “explore” phase typically lasts
between 5 to 30 sec (depending on the number of user-pairs in
the system); further, the performance of our algorithm during
the “exploit” phase and that of the AT&T policies is relatively
stable over time. Therefore we only display the first 1 minute
of the scenario, even though a typical scenario in a practical
setting can last for several minutes or longer.

The results for scenario 1 are shown in Figure 7. We observe
that our algorithm is able to learn the channel-state clusters
and suitable MCS values for different direction vectors within

9Those having a probability of success exceeding 90%.
10The MCS value selected by the AT&T scheduler is only used to select

the direction vector. Our algorithm determines the MCS value to be scheduled
along the selected direction vector.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 01,2021 at 20:58:14 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TARIQ et al.: AUTO-TUNING FOR CELLULAR SCHEDULING THROUGH BANDIT-LEARNING 11

Fig. 7. Performance of different algorithms for Scenario 1 with 4 users.
Our algorithm outperforms the current state-of-art and improves the average
throughput per sec by more then 9.5%.

TABLE I

PERFORMANCE OF DIFFERENT POLICIES IN SCENARIO 1 FOR LAST 30 SEC

Fig. 8. Performance of different algorithms for Scenario 2 with 4 users.
Our algorithm outperforms the current state-of-art and improves the average
throughput per sec by more then 30%.

10 seconds. Furthermore when compared to the best perform-
ing AT&T policy (Policy 2), our algorithm is able to achieve
9.5% more throughput per second and improve the probability
of success from 90.8% to 93.6%. Table I summarizes the
performance from 30 to 60 sec for the different algorithms
in scenario 1.

The results for the scenario 2 are shown in Figure 8. Similar
to scenario 1 our algorithm is able to learn the channel-state

TABLE II

PERFORMANCE OF DIFFERENT POLICIES IN SCENARIO 2 FOR LAST 30 SEC

Fig. 9. Performance of different algorithms for Scenario 3 with 4 users.
Our algorithm outperforms the current state-of-art and improves the average
throughput per sec by more then 41%.

TABLE III

PERFORMANCE OF DIFFERENT POLICIES IN SCENARIO 3 FOR LAST 30 SEC

clusters and optimum MCS values for different direction
vectors within 10 sec. However unlike scenario 1 the AT&T
policy which provides the best average throughput per second
is Policy 3. Once again our algorithm outperforms the best
AT&T Policy and achieves 30% more throughput per second
and improve probability of success from 83.9% to 92.8%.
Table II summarizes the performance from 30 to 60 sec for
different algorithms in scenario 2.

Figure 9 provides the results for the scenario 3. Similar
to previous two scenarios, our algorithm is quickly able to
learn the channel-state clusters and optimum MCS values for
different direction vectors within 10 sec. For this scenario
the AT&T policy which provides the best average throughput
per second is Policy 1. Similar to the previous two sce-
narios, our algorithm significantly outperforms Policy 1 and
achieves 41% more throughput per second while still providing

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 01,2021 at 20:58:14 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 10. Performance of different algorithms for Scenario 4 with 7 users.
Our algorithm outperforms the current state-of-art and improves the average
throughput per sec by more then 14.5%.

TABLE IV

PERFORMANCE OF DIFFERENT POLICIES IN SCENARIO 4 FOR LAST 30 SEC

probability of success of 99.4%. Table III summarizes the
performance of different algorithms in scenario 3 for last 30
sec.

For scenario 4 we consider a single base-station with n = 7
users. The results for the scenario 4 are shown in Figure 10.
For this scenario, our algorithm takes longer time to learn the
channel-state clusters and optimum MCS values for different
direction vectors since there are 21 user-pairs in scenario 4 (as
compared to 6 for scenarios 1 − 3). However our algorithm
is able to learn optimum value of MCS for different direction
vectors within 30 sec. Among the static policies, AT&T Policy
1 provides the best average throughput per second for scenario
4, however our algorithm is able to achieves 14.5% more
throughput per second and improve the probability of success
from 89.6% to 94.9%. Table IV summarizes the performance
of different algorithms in scenario 4 during last 30 sec.

C. Multiple Cell

We now consider the multiple base-station setting and
analyze the performance of our algorithm against the state
of the art AT&T scheduler. For this setting we activate 4
base-stations in the neighborhood of primary base-station.
For the AT&T scheduler, we have 3 new parameter setting11

denoted as Policy 1, Policy 2 and Policy 3. For the simulations
with AT&T scheduler we use the same policy on all 5 base-
stations. For simulations with our algorithm we only run our

11These policies are different from the previous policies since there is
interference from the neighboring base-stations.

Fig. 11. Performance of different algorithms for Scenario 5 with 4 users
connected to primary base-station. Our algorithm outperforms the current
state-of-art and improves the average throughput per sec by more then 5%.

TABLE V

PERFORMANCE OF DIFFERENT POLICIES IN SCENARIO 5 FOR LAST 30 SEC

algorithm on primary base-station and run AT&T Policy 2 on
the 4 neighboring base-stations. In the following, we compare
the performance of primary base-station for the different
algorithms. Furthermore for our algorithm we have set of
d = 11 direction vectors for each user-pair, where the direction
vectors are selected using the same method as described for
single cell simulations.

We present results for 3 different scenarios denoted by
scenario 5, scenario 6 and scenario 7 with 4, 4 and 3 users
connected to the primary base-station respectively. For all
these scenarios we observe that the average throughput is
significantly reduced due to inter-cell interference as compared
to average throughput for single cell scenarios.

The results for scenario 5 are shown in Figure 11.
We observe that our algorithm is able to learn the channel-state
clusters and learn optimum MCS values for different direction
vectors within 15 sec. Furthermore, the AT&T policy which
provides the best average throughput per second is Policy 2,
however our algorithm is able to achieve 5% more throughput
per second and have high probability of success of 93.74%.
Table V summarizes the performance from 30 to 60 sec for
the different algorithms in scenario 5.

The results for scenario 6 are presented in Figure 12.
We observe that similar to scenario 5, our algorithm is able
to learn the channel-state clusters and optimum MCS values
for different direction vectors within 15 sec. Furthermore our
algorithm is able to achieve 90% more throughput per second
than the best performing AT&T policy while having a high
probability of success of 92.35%. Table VI summarizes the

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 01,2021 at 20:58:14 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TARIQ et al.: AUTO-TUNING FOR CELLULAR SCHEDULING THROUGH BANDIT-LEARNING 13

Fig. 12. Performance of different algorithms for Scenario 6 with 4 users
connected to primary base-station. Our algorithm outperforms the current
state-of-art and improves the average throughput per sec by more then 90%.

TABLE VI

PERFORMANCE OF DIFFERENT POLICIES IN SCENARIO 6 FOR LAST 30 SEC

TABLE VII

PERFORMANCE OF DIFFERENT POLICIES IN SCENARIO 7 FOR LAST 30 SEC

performance from 30 to 60 sec for the different algorithms in
scenario 6.

Finally we present the results for scenario 7 in Figure 13.
Unlike scenario 5 and scenario 6 our algorithm is able to
learn the channel-state clusters and optimum MCS values
for different direction vectors within 10 sec because there
are fewer users connected to primary base-station. For this
scenario the AT&T policy which provides the best average
throughput per second is Policy 2, however our algorithm
achieves 10% more throughput per second and have a high
probability of success of 93.35%. The performance from 30 to
60 sec for the different algorithms in scenario 7 is summarized
in Table VII.

D. Summary of Results and Discussion
We observe that in all scenarios our algorithm is able

to learn the channel-state clusters and their corresponding

Fig. 13. Performance of different algorithms for Scenario 7 with 3 users
connected to primary base-station. Our algorithm outperforms the current
state-of-art and improves the average throughput per sec by more then 10%.

capacity regions in a short amount of time (10 to 15 sec for
a 4 user system, 30 sec for a 7 user system). Furthermore,
for both single cell and multi cell scenarios, our algorithm
is able to match if not outperform the current state of art
MU scheduling algorithm. It should be noted that the best
performing static policy for the AT&T scheduler to maximize
the throughput per sec differs across scenarios. Since we
expect the scenario to dynamically change over time, AT&T
policies would need to periodically be hand-tuned if one
wishes to achieve scenario-specific optimal results. However,
our algorithm is able to learn the correct channel-state to
MCS mapping for different user-pairs, which allows it to
match if not outperform the current state-of-art policy for all
scenarios (even in cases like scenario 3 and scenario 6 shown
in Figures 9 and 12, where all AT&T policies failed to achieve
good throughput). We however emphasize that the real benefit
of our approach is not in beating the best AT&T policy (after
all, one could create a new hand-tuned policy), but to have an
adaptive policy that does not require expensive hand-tuning
for each scenario.

For a practical setting, an important metric used by wireless
carriers like AT&T is the probability of success of a transmis-
sion, where an ideal policy should achieve more then 90%
probability of success for all users. Our algorithm is able to
ensure a high probability of success within 92% to 95% for
all scenarios. Scenario 3 is an outlier with a high probability
of success at 99.4% because the channel-state of users is very
good and we are able to transmit the maximum value of MCS
successfully with a high probability. Further, we can choose
the desired probability of success of the system, by controlling
the threshold value for mk,u in Algorithm 3. For any fixed
AT&T policy the probability of success not only varies signif-
icantly for different scenarios but is also below 90% for several
scenarios. One could mitigate this by using a static policy (like
Policy 3) which has better probability of success compared
to other AT&T policies, however, the trade-off is that the
throughput will be significantly lowered for some scenarios.
Moreover, there are cases like scenario 2 or scenario 6 where
even this is not possible, as the probability of success for all
three AT&T policies is significantly below 90%. In conclusion,
our algorithm not only achieves high throughput but also meets

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 01,2021 at 20:58:14 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

the desired service requirement (probability of success) goal
for all scenarios.

Finally, we comment on the applicability of our algorithm
in real settings. Recall that our algorithm starts cold, and
requires up to 30 seconds to ramp up, to match or outperform
static policies. If users remain in the system for a very short
amount of time (say, order of few seconds), then it would
likely be more efficient to simply use a static policy. However,
a typical scenario in a cellular network can potentially last
from several minutes to much longer. For instance, if the same
user has different sessions (e.g. multiple video streams viewed
in sequence, or a user browsing multiple web-pages for an
extended period of time), the learning “transfers” across these
sessions, and the costs due to the early phase is amortized over
time (see also Appendix F). Further, by also clustering users
based upon their similar characteristics, we would be able
to further reduce the complexity of online learning (and the
“explore” phase duration). Studying such user-level clustering
opens up interesting directions for future work.

ACKNOWLEDGMENT

The authors would like to sincerely thank Dr. Arunabha
Ghosh for discussions on the model as well as providing
extensive access to the AT&T WiNGS platform. The views and
conclusions contained in this document are those of the authors
and should not be interpreted as representing the official
policies, either expressed or implied, of the Army Research
Office or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein.

REFERENCES

[1] I. Tariq, R. Sen, G. D. Veciana, and S. Shakkottai, “Online channel-state
clustering and multiuser capacity learning for wireless scheduling,” in
Proc. IEEE INFOCOM, Paris, France, Apr. 2019, pp. 136–144.

[2] Y. Du and G. de Veciana, “‘Wireless networks without edges’: Dynamic
radio resource clustering and user scheduling,” in Proc. IEEE INFO-
COM, Apr. 2014, pp. 1–9.

[3] R. Srikant and L. Ying, Communication Networks: An Optimiza-
tion, Control, and Stochastic Networks Perspective. Cambridge, U.K.:
Cambridge Univ. Press, 2014.

[4] A. Agarwal, M. Dudík, S. Kale, J. Langford, and R. Schapire, “Contex-
tual bandit learning with predictable rewards,” in Proc. Int. Conf. Artif.
Intell. Statist., 2012, pp. 19–26.

[5] P. W. Goldberg and S. Kwek, “The precision of query points as a
resource for learning convex polytopes with membership queries,” in
Proc. Conf. Learn. Theory (COLT), 2000, pp. 225–235.

[6] D. Avis and K. Fukuda, “A pivoting algorithm for convex hulls and
vertex enumeration of arrangements and polyhedra,” Discrete Comput.
Geometry, vol. 8, no. 3, pp. 295–313, Sep. 1992.

[7] G. Wunder, M. Kasparick, A. Stolyar, and H. Viswanathan, “Self-
organizing distributed inter-cell beam coordination in cellular networks
with best effort traffic,” in Proc. 8th Int. Symp. Modeling Optim. Mobile,
Ad Hoc Wireless Netw. (WiOpt), May/Jun. 2010, pp. 295–302.

[8] W. Yu, T. Kwon, and C. Shin, “Multicell coordination via joint
scheduling, beamforming, and power spectrum adaptation,” IEEE Trans.
Wireless Commun., vol. 12, no. 7, pp. 1–14, Jul. 2013.

[9] T. Yoo and A. Goldsmith, “On the optimality of multiantenna broad-
cast scheduling using zero-forcing beamforming,” IEEE J. Sel. Areas
Commun., vol. 24, no. 3, pp. 528–541, Mar. 2006.

[10] X. Xie and X. Zhang, “Scalable user selection for MU-MIMO net-
works,” in Proc. IEEE INFOCOM, Apr. 2014, pp. 808–816.

[11] D. Gesbert, M. Kountouris, R. W. Heath, C.-B. Chae, and T. Salzer,
“From single user to multiuser communications: Shifting the MIMO
paradigm,” IEEE Signal Process. Mag., vol. 24, no. 5, pp. 36–46,
Sep. 2007.

[12] A. Slivkins, “Contextual bandits with similarity information,” in Proc.
24th Annu. Conf. Learn. Theory, 2011, pp. 679–702.

[13] J. Langford and T. Zhang, “Epoch–Greedy algorithm for multi-armed
bandits with side information,” in Proc. Adv. Neural Inf. Process. Syst.,
2008, pp. 817–824.

[14] S. Bubeck and N. Cesa-Bianchi, “Regret analysis of stochastic and non-
stochastic multi-armed bandit problems,” Found. Trends Mach. Learn.,
vol. 5, no. 1, pp. 1–122, 2012.

[15] A. Agarwal, D. Hsu, S. Kale, J. Langford, L. Li, and R. Schapire,
“Taming the monster: A fast and simple algorithm for contextual
bandits,” in Proc. Int. Conf. Mach. Learn., 2014, pp. 1638–1646.

[16] M. Dudik et al., “Efficient optimal learning for contextual ban-
dits,” 2011, arXiv:1106.2369. [Online]. Available: http://arxiv.org/abs/
1106.2369

[17] S. Kwek and L. Pitt, “PAC learning intersections of halfspaces with
membership queries,” Algorithmica, vol. 22, nos. 1–2, pp. 53–75,
Sep. 1998.

[18] V. N. Vapnik and A. Y. Chervonenkis, “On the uniform convergence
of relative frequencies of events to their probabilities,” in Measures of
Complexity. Cham, Switzerland: Springer, 2015, pp. 11–30.

[19] A. K. Menon, B. van Rooyen, and N. Natarajan, “Learning from binary
labels with instance-dependent corruption,” 2016, arXiv:1605.00751.
[Online]. Available: http://arxiv.org/abs/1605.00751

Isfar Tariq (Graduate Student Member, IEEE)
received the B.S. degree in electrical engineering
from the Lahore University of Management Sci-
ences. He is currently pursuing the Ph.D. degree
with the ECE Department, The University of Texas
at Austin. His research interests include algorithm
design for resource allocation, online learning, and
wireless communication networks.

Rajat Sen (Member, IEEE) received the Ph.D.
degree in electrical and computer engineering from
The University of Texas at Austin in 2019. He is
currently a Research Scientist at Google Research,
Mountain View, CA, USA. His current research
interests include online learning, bandit algorithms,
time-series forecasting, and black-box optimization.

Thomas Novlan (Member, IEEE) received the B.S.
degree (Hons.), M.S., and Ph.D. degrees in electrical
engineering from The University of Texas at Austin
in 2007, 2009, and 2012, respectively. In 2016,
he joined AT&T, working on 5G technologies,
such as dynamic spectrum sharing (DSS) and inte-
grated access and backhaul (IAB). He is currently
a Principal Member of Technical Staff with the
Advanced Wireless Technology Group, AT&T Labs,
Austin, TX, USA. He is working on 5G and beyond
air-interface research and system design, including

applications of machine learning embedded in the radio access network.

Salam Akoum (Member, IEEE) received the Bach-
elor of Engineering degree in computer and commu-
nications engineering with a minor in mathematics
(Hons.) from the American University of Beirut,
Lebanon, in 2006, the Master of Science degree
in electrical engineering from The University of
Utah in 2008, and the Ph.D. degree in electrical
engineering from The University of Texas at Austin
in 2012. She is currently a Principal Member of
Technical Staff with the Advanced Radio Technol-
ogy Group, AT&T Labs. She is also an Active

Contributor to 3GPP 5G standardization, responsible for specifications of the
physical-layer of the radio interface. She works on algorithm development and
system architecture and optimization for current and next-generation wireless
networks.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 01,2021 at 20:58:14 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TARIQ et al.: AUTO-TUNING FOR CELLULAR SCHEDULING THROUGH BANDIT-LEARNING 15

Milap Majmundar (Senior Member, IEEE)
received the M.S.E.E. degree from Virginia
Polytechnic Institute and State University and the
M.B.A. degree from The University of Texas at
Austin. He leads the Advanced Wireless Technology
Group, AT&T Labs, responsible for research and
development of techniques for next generation
wireless networks. He holds about 70 granted
patents in the area of wireless communications.
He is currently interested in a range of research
topics, including resource allocation, flexible
network architectures, and spectrum usage.

Gustavo de Veciana (Fellow, IEEE) received the
B.S., M.S., and Ph.D. degrees in electrical engineer-
ing from the University of California at Berkeley
in 1987, 1990, and 1993, respectively. He is cur-
rently a Professor and the Associate Chair of the
Department of Electrical and Computer Engineering.
From 2003 to 2007, he served as the Director and the
Associate Director of the Wireless Networking and
Communications Group (WNCG), The University of
Texas at Austin. His research focuses on the design,
analysis and control networks, information theory,

and applied probability. His current interests include measurement, modeling
and performance evaluation, wireless and sensor networks, architectures and
algorithms to design reliable computing, and network systems. In 2009, he was
a Designated IEEE Fellow for his contributions to the analysis and design of
communication networks. He was a recipient of the Cockrell Family Regents
Chair in engineering and the National Science Foundation CAREER Award
1996. He was a co-recipient of the six best paper awards, including the
IEEE William McCalla Best ICCAD Paper Award for 2000 and the Best
Paper in ACM Transactions on Design Automation of Electronic Systems from
January 2002 to 2004. He has been an Associate Editor and an Editor at large
for the IEEE/ACM TRANSACTIONS ON NETWORKING. He currently serves
on the board of trustees of IMDEA Networks, Madrid.

Sanjay Shakkottai (Fellow, IEEE) received the
Ph.D. degree from the ECE Department, University
of Illinois at Urbana-Champaign in 2002. He is with
The University of Texas at Austin, where he is
currently the Temple Foundation Endowed Professor
No. 4 and a Professor with the Department of
Electrical and Computer Engineering. His research
interests lie at the intersection of algorithms for
resource allocation, statistical learning and networks,
with applications to wireless communication net-
works, and online platforms. He received the NSF
CAREER Award in 2004.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 01,2021 at 20:58:14 UTC from IEEE Xplore. Restrictions apply.

