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Abstract—The completion times of jobs in a computing cluster
may be influenced by a variety of factors including job size
and machine processing variability. In this paper, we explore
online resource allocation policies which combine size-dependent
scheduling with redundant execution and opportunistic check-
pointing to minimize the overall job flowtime. We introduce a
simplified model for the job service capacity of a computing
cluster while leveraging redundant execution/checkpointing. In
this setting, we propose two resource allocation algorithms,
SRPT+R and LAPS+R(�) subject to checkpointing overhead not
exceeding the number of jobs which are processed. We pro-
vide new theoretical performance bounds for these algorithms:
SRPT+R is shown to be O( 1✏ ) competitive under (1 + ✏)-speed
resource augmentation, while LAPS+R(�) is shown to be O( 1

�✏ )
competitive under (2 + 2� + 2✏)-speed resource augmentation.

Index Terms—Job Scheduling, Redundancy, Optimization,
Competitive Analysis, Dual-Fitting

I. INTRODUCTION

Job traces from large-scale computing clusters indicate
that the job completion time can vary substantially [8], [9].
This variability has many sources including variability in job
size and in machine processing capacity. Furthermore, the
job profiles in production clusters are becoming increasingly
diverse as small latency-sensitive jobs coexist with large
batch processing applications which take hours to months to
complete [50]. Moreover, with the size of today’s computing
clusters continuing to grow, intermittent/partial component
failures, resource contention and congestion across networks
have become a common phenomenon in cloud infrastructure
[25], [32]. As a result, the actual service capacity of a machine
may fluctuate significantly over the lifetime of a job. In fact,
the same job may experience a far higher response time when
executed at a different time on the same server [21]. These
two dimensions of variability make efficient job scheduling
for fast response time (also referred to as job flowtime) on
large-scale computing clusters challenging.

To deal with variability in job size, various schedulers
have been proposed, which can provide efficient resource
sharing among heterogeneous applications. Widely deployed
schedulers to-date include the Fair scheduler [3] and the
Capacity scheduler [2]. It is well known that the SRPT
scheduler (Shortest Remaining Processing Time) is optimal
for minimizing the overall/ average job flowtime [19] on
a single machine in the clairvoyant setting. As such, many

works have aimed to extend SRPT scheduling to yield efficient
scheduling algorithms in the multiprocessor setting with the
objective of reducing job flowtimes for different systems and
programming frameworks [22], [34], [35], [52]. Under SRPT,
job sizes are known to the job scheduler upon arrival and
smaller job are given priority. When only the distribution of
job sizes is known, it has been shown in [4] that, Gittins
index-based policy is optimal for minimizing the expected
job flowtime under the Poisson Arrival Process again on
a single server. The Gittins index depends on knowing the
service given to-date to each job and gives priority to the job
with the highest index. If the job size distribution belongs to
the New-Better-than-Used-in-Expectation (NBUE) class, the
Gittins index policy reduces to the First-Come-First-Served
discipline. If the job size distribution is of the Decreasing-
Hazard-Rate (DHR) class, this policy reduces to the Least-
Attained-Service scheme. Extensions of the the Gittins index
policy to the multiple-processor setting is not available.

To tackle poor job progress caused by possible machine
service variability, computing clusters can exploit redundant
execution wherein multiple copies of the same job execute on
available machines until the first one completes. With redun-
dancy, it is expected that one copy of the same job may com-
plete quickly to avoid long completion times. Measurement
statistics on Google’s MapReduce system have shown that
redundancy can reduce the average job flowtime by 44% [17].
Other large-scale parallel processing frameworks in practice
have applied similar redundancy-based heuristics which have
been proven to be efficient for reducing job flowtimes in real-
world practical deployments [1], [7], [9], [14], [17], [30], [51].

Recently, researchers have started to investigate the ef-
fectiveness of scheduling redundant copies from a queuing
perspective [15], [21], [37], [38], [41], [44]. These works
assume a specific distribution of the job execution time where
the service time of each job follows the same distribution.
However, they do not directly account for whether job re-
sponse time variability is due to the difference in job size or
fluctuation in machine processing rate. Indeed, if there is no
variability in machine service capacity, scheduling multiple
copies of the same job may not help at all and redundancy is
a waste of resource.

With the aforementioned observations in mind, in this paper,
we explore the impact of variability in both job size and
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TABLE I
Summary of the results for different algorithms where fj denotes the job flowtime. Note that only our proposed algorithms, i.e., the SRPT+R

addresses the issue of variability in machine service capacity. The bound for the last algorithm, i.e., Intermediate-SRPT contains a factor, logP ,
where P is the ratio between the largest and the smallest job size.

machine service capacity. We consider algorithms which can
prioritize job scheduling and dynamically vary the number of
redundant copies so as to minimize the overall job flowtime
of the system. We propose a simple model for a cluster’s
service capacity to account for redundant execution under
which a machine can preempt a running job and later resume
its execution. To make use of the already completed work,
we adopt the checkpointing technique [36], which is often
supported by parallel processing frameworks, such as Spark, in
practice to preempt, migrate and perform dynamic partitioning
[42] on its active jobs. By checkpointing, we mean the runtime
system of a cluster takes a snapshot of the state of a job in
progress so that its execution can be resumed from that point
in case of subsequent machine failure or job preemption [10].
An additional advantage of combining checkpointing with job
redundancy is that the system can propagate and clone the
state of the redundant copy of a job which has made the
largest progress so far to other copies. In other words, all the
redundant copies of a job can be brought to that most advance
state and proceed to execute based on this new state after
checkpointing. As such, checkpointing allows the system to
opportunistically exploit variability in machine service speed.

Most previous works studying job scheduling assume that
clusters are working in the non-multitasking mode, i.e., each
server (CPU Core) in the cluster can only serve one job at
any time. However, multitasking is a reasonable model of
current scheduling policies in CPUs, web servers, routers,
etc [16], [43], [45]. In a multitasking cluster, each server
may run multiple jobs simultaneously and jobs can share
resources with different proportions. In this paper, we will also
study scheduling algorithms, which determine checkpointing
times, the number of redundant copies between successive
checkpoints as well as the fraction of resource share under
both of the multitasking and non-multitasking modes.

Our Results

In a non-multitasking cluster, we propose the SRPT+R
algorithm where redundancy is used only when the number
of active jobs is less than the number of servers. For clusters
allowing multitasking, we design the LAPS+R(�) algorithm,

which shares resources among a fixed fraction of the active
jobs, with priority given to jobs which arrived most recently.
In summary, this paper has made the following technical
contributions:
• After reviewing the related work in Section II, in Sec-

tion III, we propose a framework to model the impact
of machine processing variability in a system exploiting
redundancy/checkpointing.

• Under the resource augmentation setting [31], we apply
a new dual fitting framework in Section IV to show that
SRPT+R without multitasking is (1 + ✏)-speed, O(

1
✏ )-

competitive in terms of the overall job flowtime. To the best
of our knowledge, this is the first work to analyze the per-
formance bound of scheduling algorithms with redundancy
via a dual fitting approach.

• We show in Section V that the LAPS+R(�) algorithm is
2(1 + � + ✏)-speed, O(

1
�✏ )-competitive by adopting the

potential function argument. Moreover, our setting of the
potential function is quite different from that in the previous
work, e.g., [18].

Table I compares the results of our competitive ratio analysis
with the related state-of-the-art.

II. RELATED WORK

The design of job schedulers for large-scale computing
clusters is currently an active research area [12], [13], [34],
[35], [49], [52]. In particular, several works have derived
performance bounds on algorithms geared at minimizing the
total job completion time by formulating an approximate linear
programming problem [12], [13], [49]. By contrast, other
works, e.g., [34], [35], [52] derive performance bounds for
algorithms with respect to the the total job flowtime. Leonardia
et al. show in [33] that there is a strong lower bound on any
online randomized algorithm for the job scheduling problem
on multiple unit-speed processors with the objective to mini-
mize the overall job flowtime. Based on this lower bound, [34],
[35], [52] extended the SRPT scheduler to design algorithms
that minimize the overall flowtime of jobs, each consisting
of multiple small tasks with precedence constraints. [12],
[13], [34], [35], [49], [52] are conducted in the clairvoyant



setting where the job size is known once the job arrives.
For the non-clairvoyant setting, [26]–[28] designed several
multitasking algorithms (i.e., a server can serve multiple jobs
simultaneously) in which machines are allocated to all active
jobs and priority is given to the most-recently-arrived jobs.
However, all of these studies assume accurate knowledge
of machine service capacity and do not address dynamic
scheduling of redundant copies for a job.

Production clusters and big data computing frameworks
have adopted various approaches which use redundancy to
speedup job processing. The initial Google MapReduce sys-
tem launched redundant copies when a job is close to its
completion [17]. Hadoop adopts another solution, i.e., LATE,
which schedules a redundant copy for an active task only if
its estimated progress rate is below certain threshold [1]. By
comparison, Microsoft Mantri [9] schedules a new copy for
a running task if its progress is slow and the total resource
consumption is expected to decrease once a new redundant
copy is made.

Researchers have proposed different schemes to take advan-
tage of redundancy. Chen et al. propose a smart redundancy
scheme in [14] to accurately estimate the task progress rate
and launch redundant copies accordingly. Ananthanarayanan
et al. propose in [7] to use redundancy for very small jobs
when the extra workload is not high. As an extension to
[7], Ananthanarayanan introduces GRASS [8], which carefully
schedules redundant copies for approximation jobs. Moreover,
Ren et al. propose Hopper [40] to allocate computing slots
based on the virtual job size, which is larger than the actual
size. Hopper can immediately schedule a redundant copy once
the progress rate of a task is detected to be slow. However,
no performance characterization has been derived for these
heuristics.

In our previous work, we have developed several optimiza-
tion frameworks to study the design of scheduling algorithms
utilizing redundancy [47], [48]. The proposed algorithms in
[47] require the knowledge of exact distribution of the task
response time. We also analyze performance bounds of the
proposed algorithm which extends the SRPT Scheduler in
[48] using a resource augmentation argument. A fundamental
limitation is that these resultant bounds are not scalable as
they increase linearly with the number of machines. Recently,
Gardner et al. propose a simple model in [20] to address both
machine service variability and job size variability. However,
[20] only considers the FIFO scheduling policy on each server
to characterize the average job response time from a queuing
perspective.

Another body of work related to this paper focuses on
the study of scheduling algorithms for jobs with intermediate
parallelizability. In these works, e.g., [5], [11], [18], [24], [29],
jobs are parallelizable and the service rate can be arbitrarily
scaled. In particular, Samuli et al. present several optimal
scheduling policies for different capacity regions in [5] but for
the transient case only. [11], [18] and [24] propose similar al-
gorithms which allow multitasking for jobs wherein priority is
given to the most-recently-arrived-jobs. These works develop

competitive performance bounds with respect to the total job
flowtime. Sungjin et al. also provide a competitive bound for
the SRPT-based parallelizable algorithm under multitasking in
[29]. One limitation of [29] is that the resulting bound is
potentially very large 1. By contrast, our work is motivated
by the setting where there is variability in machine service
capacity.

For the analysis of SRPT+R algorithm in Section IV, we
adopt the dual fitting approach. Dual fitting was first developed
by [6], [23] and is now widely used for the analysis of
online algorithms [27], [28]. In particular, [6] and [27], [28]
address linear objectives, and use the dual-fitting approach
to derive competitive bounds for traditional scheduling algo-
rithms without redundancy. By contrast, [23] focus on a convex
objective in the multitasking mode. By comparison, in our
work, we include integer constraints associated with the non-
multitasking mode. Moreover, our setting of dual variables is
novel in the sense that it deals with the dynamical change of
job flowtime across multiple machines where other settings of
dual variables can only deal with the change of job flowtime
on one single machine.

We apply the potential function analysis to bound the
performance of LAPS+R(�) in Section V. Potential function
is widely used to derive performance bounds with resource
augmentation for online parallel scheduling algorithms e.g.,
[18], [29]. However, since we need to deal with redundancy
and checkpointing, the design of our potential function is
totally different from that in [18] and [29] which only address
sublinear speedup.

III. SYSTEM MODEL

Consider a computing cluster which consists of M servers 2.
where the servers are indexed from 1 to M . Job j arrives at the
cluster at time aj and the job arrival process, (a1, a2, · · · , aN ),
is an arbitrary deterministic time sequence. In addition, job j
has a workload which requires pj units of time to complete
when processed on a machine working at unit speed. Job j
completes at time cj and its flowtime fj , is denoted by fj =
cj � aj . In this paper, we focus on minimizing the overall job
flowtime, i.e.,

PN
j=1 fj .

The service capacity of machines are assumed to be identi-
cally distributed random processes with stationary increments.
To be specific, we let Si = (Si(t)|t � 0) be a random process
where Si(t, ⌧) = Si(⌧)� Si(t) denote the cumulative service
delivered by machine i in the interval (t, ⌧ ]. The service
capacity of a machine has unit mean speed and a peak rate of
�. Thus, for all ⌧ > t � 0, we have Si(t, ⌧ ]  (⌧ � t) · �
almost surely and

⇥
Si(t, ⌧ ]

⇤
= ⌧ � t.

As discussed Section I, the aim of this paper is to mitigate
the impact of service variability by (possibly) varying the
number of redundant copies with appropriate checkpointing.
Checkpointing can make the most out of the allocated re-
sources, i.e., start the processing of the possibly redundant

1In [29], when ↵ ! 0, the competitive bound approaches 1.
2Each server can either represent a CPU core or a machine.
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Fig. 1. The service process of job j.

copies at the most advanced state amongst the previously exe-
cuting copies. In fact, we shall make the following assumption
across the system:

Assumption 1. A job j can be checkpointed only if there is
an arrival to, or departure from, the system.

Remark 1. We refer to Assumption 1 as a scalability assump-
tion as it limits the checkpointing overheads in the system.

Below, we will first introduce a service model where each
server can only serve one job at a time. In Section III-B, we
will discuss a service model which supports multitasking, i.e.,
a server can execute multiple jobs simultaneously.

A. Job Processing in a Non-Multitasking Cluster
As illustrated in Fig. 1, one can view the service process

of job j in a non-multitasking cluster by dividing its service
period (from its arrival to its completion) into several subinter-
vals, i.e.,

�
(tk�1

j , tkj ]
 
k

where tkj denotes the time when the kth
checkpointing of job j occurs. The job arrival and completion
times are also considered as checkpointing times, i.e., t0j = aj

and t
Lj

j = cj if job j experiences (Lj+1) checkpoints. During
in (tk�1

j , tkj ], rkj redundant copies of job j are being run on
different servers. Thus, together tj =

�
tkj
��k = 0, 1, · · · , Lj

�

and rj =

�
rkj
��k = 1, 2, · · · , Lj

�
capture the checkpoint times

and the scheduled redundancy for job j.
Let g(r, t) be the cumulative service delivered to a job

on r redundant machines and checkpointed at the end of
an interval of duration t. Clearly, g(r, t) is equivalent to the
amount of work processed by the redundant copy which has
made the most progress. In this paper, we make the following
assumption for g(r, t):

Assumption 2. We shall model (approximate) the cumulative
service capacity under redundant execution, g(r, t), by its
mean, i.e.,

g(r, t) =
h

max

i=1,2,··· ,r
Si(0, t]

i
. (1)

Remark 2. Assumption 2 essentially replaces the service
capacity of the system with the mean but accounts for the
mean gains one might expect when there are redundant copies
executed.

The following lemmas illustrate two important properties of
g(r, t):
Lemma 1. For a fixed t, {g(r, t)}r is a concave sequence,
i.e., g(r, t)� g(r � 1, t)  g(r � 1, t)� g(r � 2, t).

Lemma 1 states that the marginal increase of the mean
service capacity in the number of redundant executions is
decreasing.
Lemma 2. For all r 2 N and r  M , g(r, t)  min{�t, rt}.

Lemma 2 states that the mean service capacity under redun-
dant execution can grow at most linearly in the redundancy,
rt, and is bounded by the peak service capacity of any single
redundant copy, �t. Refer to [46] for the detailed proofs of
Lemma 1 and Lemma 2.

Given Assumption 2, the last checkpoint time for job j,
t
Lj

j , is also the completion time cj and satisfies the following
equation: LjX

k=1

g(rkj , t
k
j � tk�1

j ) = pj . (2)

In the sequel, we shall also make use of the speedup
function, hj(tj , rj , t), defined as follows:

hj(tj , rj , t) =

(
g(rkj ,t

k
j�tk�1

j )

tkj�tk�1
j

t 2 (tk�1
j , tkj ],

0 otherwise.
(3)

The speedup function captures the speedup that redundant
execution is delivering in a checkpointing interval relative to a
job execution on a unit speed machine. (2) can be reformulated
in terms of the speedup as follows:Z cj

aj

hj(tj , rj , ⌧)d⌧ = pj . (4)

Remark 3. Note that the speedup depends, not only on the
number of redundant copies being executed, but also, on all the
times when checkpointing occurs. In this sense, hj(tj , rj , t)
is not a causal function. However, in the following sections,
hj(tj , rj , t) will be a convenient notation to study competitive
performance bounds for our proposed algorithms.

B. Job Processing in a Multitasking Cluster
With multitasking, a server can run several jobs simultane-

ously and the service a job receives on a server is proportional
to the fraction of processing resource it is assigned.

We will model a cluster allowing multitasking as follows.
Comparing with the service model in Subsection III-A, we
include another variable xk

j , to characterize the fraction of re-
source assigned to job j in the kth subinterval, i.e., (tk�1

j , tkj ].
Here, we assume that job j shares the same fraction of
processing resource on all the machines on which it is being
executed. Let xj =

�
xk
j

��k = 1, 2, · · · , Lj

�
and we define

another speedup function, ehj(tj ,xj , rj , t), as follows:

ehj(tj ,xj , rj , t) =

⇢
xk
j · hj(tj , rj , t) t 2 (tk�1

j , tkj ],

0 otherwise.
(5)

Paralleling (4), the completion time of job j, cj must satisfy
the following equation:Z cj

aj

ehj(tj ,xj , rj , ⌧)d⌧ = pj . (6)

In the sequel, we will design and analyze scheduling algo-
rithms for clusters working under both the multitasking mode
and the non-multitasking mode.
C. Competitive Performance Metrics

In this paper, we will study scheduling algorithms, which
involve determining checkpointing times, the number of redun-
dant copies for jobs between successive checkpoints and in the
multitasking setting the fraction of resource shares. Note that,
when there is no variability in the machine’s service capacity,



our problem is equivalent to the standard job scheduling
problem on multiple unit-speed processors with the objective
of minimizing the overall job flowtime on multiprocessors
[19]. However, it has been shown that the latter problem is
NP-hard even when preemption and migration are allowed
and no online algorithm can achieve a constant competitive
ratio. As such, previous work [29], [31] has adopted a resource
augmentation analysis to bound the competitive performance.
Under such analysis, the performance of the offline optimal
algorithm on M unit-speed machines is compared with that
of the proposed algorithms on M �-speed machines where
� > 1.

The following definition characterizes the competitive per-
formance of an online algorithm using resource augmentation.

Definition 1. [31] An online algorithm is �-speed, c-
competitive if the algorithm’s objective is within a factor of c
of the offline optimal solution’s objective when the algorithm
is given � resource augmentation.

In this paper, we also adopt the resource augmentation
setup to bound the competitive performance of our proposed
algorithms. With resource augmentation, the service capacity
in each checkpointing interval under our algorithms is scaled
by �. Similarly, the value of the speedup functons, i.e.,
hj(tj , rj , t) and ehj(tj ,xj , rj , t), under our algorithms is �
times that under the offline optimal algorithm of the same
variables.

IV. ALGORITHM DESIGN AND PERFORMANCE
GUARANTEE

In our model, each server can only serve one job at a
time. Before going into the details of algorithm design, we
first state the offline optimal problem formulation. For ease of
illustration, we let yj = (tj , rj , Lj) denote the checkpointing
trajectory of job j and y = (yj |j = 1, 2, · · · , N) for all
jobs. Moreover, let (A) denote the indicator function that
takes value 1 if A is true and 0 otherwise. The offline optimal
problem formulation is as follows:

min

y

NX

j=1

(cj � aj) (OPT)

such that (a), (b), (c), (d) are satisfied

(a) Job completion: The completion time of job j, cj , satisfies:R cj
aj

hj(tj , rj , t)dt = pj , 8j.
(b) Resource constraint: The total number of redundant exe-

cutions at any time t � 0 is no larger than the number of
machines, M , i.e.,

P
j:ajt

PLj

k=1 r
k
j · (t 2 (tk�1

j , tkj ]) 
M, 8t.

(c) Checkpoint trajectory: The number of checkpoints for each
job is between 2 and 2N since there are 2N job arrivals
and departures, i.e., Lj 2 {1, 2, · · · , 2N � 1}. Given a
feasible Lj , the checkpoint times of job j, tj , satisfy: tj 2
T Lj+1
j where T Lj+1

j =

�
(t0, t1, · · · , tLj ) 2 RLj+1|aj =

t0 < t1 < · · · < tLj = cj
 

. Moreover, the number of
redundant copies must be integer valued, i.e., rj 2 NLj .

(d) Checkpointing overhead constraint: Job checkpoints must
satisfy Assumption 1, i.e., for 0  k  Lj , tkj 2 {aj}j [
{cj}j .

Since Problem OPT is NP-Hard, we will propose a heuris-
tic for job scheduling, named, SRPT+R, which is a simple
extension of the SRPT scheduler [19].

A. SRPT+R Algorithm
Let pj(t) denote the amount of the unprocessed work for job

j at time t and n(t) denote the number of active jobs at time
t. In this section, we will assume without loss of generality
that jobs have been ordered such that p1(t)  p2(t)  · · · 
pn(t)(t).

At a high level, the algorithm works as follows. When
n(t) � M , the M jobs with smallest pj(t), i.e., Job 1 to
M are each assigned to a server while the others wait. If
n(t) < M , the job with the smallest pj(t), i.e., Job 1, is
scheduled on M �b M

n(t)c(n(t)�1) machines while the others
are scheduled on b M

n(t)c machines each. Here, bxc represents
the largest integer which does not exceed x.

The corresponding pseudo-code is exhibited as Algorithm
1 in the panel below.

Algorithm 1: SRPT+R Algorithm
1 while A job arrives at or departure from the system do
2 Sort the jobs in the order such that

p1(t)  p2(t)  · · ·  pn(t)(t) and count the number
of redundant copies being executed for job j, rj ;

3 Initialize M(t) to be the set of idle machines ;
4 if n(t) < M then
5 for j = 1, 2, · · · , n(t) do
6 if j = 1 then
7 rj(t) = M � (n(t)� 1)b M

n(t)c;

8 else
9 rj(t) = b M

n(t)c;

10 Checkpoint job j and assigns its redundant
executions to rj(t) machines which are
uniformly chosen at random from
{1, 2, · · · ,M};

11 if n(t) � M then
12 for j = 1, 2, · · · , n(t) do
13 if j  M then
14 Checkpoint job j and assign it to one

machine which is uniformly chosen at
random from {1, 2, · · · ,M};

15 else
16 Checkpoint job j;

B. Performance guarantee for SRPT+R
We will let OPT and SR denote the cost, i.e., the overall

job flowtime, achieved by the offline optimal scheduling policy
OPT, and our proposed SRPT+R algorithm respectively. Our



�(y,↵,�) =

NX

j=1

Z 1

aj

(t� aj + 2pj)

pj
· hj(tj , rj , t)dt�

NX

j=1

↵j

� Z 1

aj

hj(tj , rj , t)dt� pj
�

+

Z 1

0
�(t) ·

� X

j:ajt

LjX

k=1

rkj · (t 2 (tk�1
j , tkj ])�M

�
dt,

(7)

�(y,↵,�) =
X

j

↵jpj �M

Z 1

0
�(t)dt+

Z 1

0

X

j:ajt

h
(

t� aj
pj

+2�↵j)hj(tj , rj , t)+ �(t)

LjX

k=1

rkj · (t 2 (tk�1
j , tkj ])

i
dt. (8)

main result, characterizing the competitive performance of
SRPT+R, is given in the following theorem:

Theorem 1. SRPT+R is (1+✏)-speed, O(

1
✏ )-competitive with

respect to the total job flowtime.

1) Proof of Theorem 1 and our techniques: In this section,
we will prove Theorem 1 by adopting the dual fitting approach.
The key step is to formulate a minimization problem whose
cost serves as an approximation to the offline optimal cost,
OPT with a guarantee that it is within a constant factor of
OPT . To achieve this, we shall both approximate the objective
of OPT and relax Constraint (d) in OPT to obtain the following
problem P1:

min

y

NX

j=1

Z 1

aj

(t� aj + 2pj)

pj
· hj(tj , rj , t)dt (P1)

s.t.
Z cj

aj

hj(tj , rj , t)dt � pj , 8j,

X

j:ajt

LjX

k=1

rkj · (t 2 (tk�1
j , tkj ])  M, 8t,

Lj 2 {1, 2, · · · , 2N � 1}, tj 2 T Lj+1
j , rj 2 NLj , 8j.

The following lemma shows that the optimal cost of P1,
denoted by P1, is not far from that achieved by the offline
optimal policy, OPT .

Lemma 3. P1 is upper bounded by
�
1+2�

�
OPT , i.e., P1 �

1 + 2�

�
OPT .

Refer to [46] for the detailed proof of Lemma 3.
Let ↵ = (↵j

��j = 1, 2, · · · , N) and � = (�(t)|t 2 R+
)

denote the Lagrangian dual variables corresponding to the
first and second constraint in P1 respectively. The Lagrangian
function associated with P1 can be written as shown in (7)
with the dual problem for P1 given by:

max

↵�0,��0
min

y
�(y,↵,�) (D1)

s.t. Lj 2 {1, 2, · · · , 2N � 1}, rj 2 NLj , tj 2 T Lj+1
j .

Applying weak duality theory for continuous programs [39],
we can conclude that the optimal value for D1 is a lower bound
for P1. Moreover, the objective of D1 can be reformulated as
in (8).

It is still difficult to solve D1 as it involves a minimiza-
tion of a complex nonlinear objective function of integer
variables. However, it follows from Lemma 2 that rkj �

(t 2 (tk�1
j , tkj ]) · hj(tj , rj , t) for all j and t � aj thus, we

have:
LjX

k=1

rkj · (t 2 (tk�1
j , tkj ]) �

LjX

k=1

(t 2 (tk�1
j , tkj ]) · hj(tj , rj , t)

= hj(tj , rj , t),
(9)

where the last equality is due to the fact that hj(tj , rj , t) = 0

for t > cj = t
Lj

j . Based on (9), it can be readily shown
that the second term on the R.H.S of �(y,↵,�) in (8) is
lower bounded by

R1
0

P
j:ajt

h⇣
t�aj

pj
+ 2 � ↵j + �(t)

⌘
·

hj(tj , rj , t)
i
dt. As a result, for a fixed ↵j and �(t) such that

for all t � aj ,
t� aj
pj

+ 2� ↵j + �(t) � 0, (10)

the minimum of �(y,↵,�) can be attained by setting all rj
to 0 and tj = (aj , cj). In this solution, there are no other
checkpoints for job j other than the job arrival and departure.

Therefore, restricting ↵ and � to satisfy (10) would give a
lower bound on D1 and result in the following optimization
problem:

max

↵,�

X

j

↵jpj �M

Z 1

0
�(t)dt (P2)

s.t. ↵j � �(t)  t� aj
pj

+ 2, 8j, t � aj ,

↵j � 0, 8j, �(t) � 0, 8t.

Based on Lemma 3, we conclude that P2  P1 
�
1 +

2�

�
OPT where P2 is the optimal cost for P2.

2) Setting of dual variables: Next, we shall find a setting
of dual variables, i.e., (↵,�) that is feasible for P2. Moreover,
the cost of this setting should relate to SR. To achieve this,
we set the dual variables in the sequel based on another
scheduling policy, SRPT, which uses a (1+ ✏)-speed resource
augmentation.

Observe that SRPT+R and SRPT only differ when the
number of active jobs is less than M and that when this is the
case, SRPT only assigns a single machine to each active job.
Since SRPT+R maintains the same scheduling order and each
job is scheduled with at least the same number of copies as
SRPT, we conclude that the cost of SRPT, denoted by SRPT ,
is a upper bound for SR.

In this section, we let n(t) and pj(t) denote the number
of active jobs and the size of the remaining workload of
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r1 rq rM rM+1 rM+q rzM rzM+1

r1 rM+1 rzM+1 rq rM+q rzM+q rM rzM

rzM+q

Fig. 2. The scheduling process of SRPT at time aj where n(aj) = zM + q
and there are no further job arrivals after aj . Jobs are sorted based on the
remaining size, which is denoted by rj for job j, i.e., rj = pj(aj). Jobs
indexed by kM + i for some integer valued k and i are assigned to machine
i.

job j under SRPT with (1 + ✏)-speed resource augmentation
respectively.

Let ⇥j = {k : ak  aj  ck}, i.e., the set of jobs that
are active when job j arrives and Aj = {k 6= j : k 2
⇥j and pk(aj)  pj}, i.e., jobs whose residual workload upon
job j’s arrival is less than job j’s processing requirement, and
let ⇢j = |Aj |. Our setting of dual variables is illustrated in the
following lemma.

Lemma 4. For all j 2 {1, 2, · · · , N} and t � 0, let

↵j =
1

(1 + ✏)pj

⇢jX

k=1

⇣⌅n(aj)� k

M

⇧
�
⌅n(aj)� k � 1

M

⇧⌘
pk(aj)

+

1

1 + ✏

⇣⌅n(aj)� ⇢j � 1

M

⇧
+ 1

⌘
,

(11)

and
�(t) =

1

(1 + ✏)M
n(t). (12)

This setting is feasible for Problem P2, i.e., ↵j ,�(t) � 0 and
↵j � �(t)  t�aj

pj
+ 2.

Refer to [46] for the detailed proof of Lemma 4.
3) Performance bound of SRPT+R: To bound the cost

associated with the choices for the dual variables in Lemma 4,
we first show a lemma, which quantifies the total job flowtime
under SRPT in the transient case when there are no job arrivals
after time t.
Lemma 5. Suppose there are n(t) jobs in the system at
time t such that their remaining workload are p1(t) 
p2(t)  · · · , pn(t)(t) and there are no further arrivals after
time t, then, the overall remaining job flowtime under SRPT
scheduling, F (t), is given by:

F (t) =
1

1 + ✏

n(t)X

j=1

(

⌅n(t)� j

M

⇧
+ 1)pj(t). (13)

Refer to [46] for the detailed proof of Lemma 5, where the
main idea is to construct the exact scheduling process under
SRPT when job j arrives the cluster at time aj and no further
job arrives as illustrated in Fig. 2.

Based on Lemma 5, if job j never arrives at the cluster
and the subsequent jobs do not enter the cluster, the overall
remaining job flowtime at time aj under SRPT is given by:

F
0

j (aj) =
1

1 + ✏

n(aj)�1X

k=1

(

⌅n(aj)� 1� k

M

⇧
+ 1)pk(aj). (14)

By contrast, when job j arrives at time aj but the subsequent
jobs do not enter the cluster, the overall remaining job flowtime
at time aj under SRPT is given by:

Fj(aj) =
1

1 + ✏

⇢jX

k=1

(

⌅n(aj)� k

M

⇧
+ 1)pk(aj)

+

1

1 + ✏

⇣⌅n(aj)� ⇢j � 1

M

⇧
+ 1

⌘
pj

+

1

1 + ✏

n(aj)X

k=⇢j+2

(

⌅n(aj)� k

M

⇧
+ 1)pk(aj).

(15)

Therefore, one can view ↵j as the difference of (15) and
(14), i.e., the incremental increase of the overall job flowtime
caused by the arrival of job j and divided by (1 + ✏)pj . As a
result,

P
j pj↵j corresponds to the overall job flowtime under

SRPT, i.e.,
P

j ↵jpj = SRPT . Moreover, (1 + ✏)M�(t)
is the number of active jobs in the cluster at time t, so,
M

R1
0 �(t)dt = 1

1+✏SRPT . Therefore, we have
P

j ↵jpj �
M

R1
0 �(t)dt = ✏

1+✏SRPT .
Based on Lemma 3, we conclude that ✏

1+✏SR 
✏

1+✏SRPT  P2  P1 
�
1 + 2�

�
· OPT . This implies

SR  O(

1
✏ )OPT and completes the proof of Theorem 1.

Remark 4. It is worth to note that, when there is no machine
service variability, SRPT+R performs exactly the same as the
traditional SRPT algorithm on multiple machines. As a result,
our proposed dual fitting framework can also show that SRPT
is (1+✏)-speed, (3+ 3

✏ ) competitive with respect to the overall
job flowtime. When given small resource augmentation where
✏  1

3 , our result improves the recent result in [19], which
states, SRPT on multiple identical machines is (1 + ✏)-speed,
4
✏ -competitive in terms of the overall job flowtime.

V. ALGORITHM DESIGN FOR MULTITASKING PROCESSORS

In this section, we design a scheduling algorithm for clusters
supporting the multitasking mode. Besides, checkpoint times
and level of redundancy, there is another decision set of
variables, x = (xj : j = 1, 2, · · · , N) where xj =

(xk
j |k = 1, 2, · · · , Lj), i.e, the fractions of resource shares

to be allocated to each job during checkpointing intervals. To
be specific, we propose the LAPS+R(�) algorithm which is
an extension of LAPS (the Latest Arrival Processor Sharing
algorithm). In LAPS, resource is shared among active jobs
in the cluster and priority is given to those which arrived
most recently. However, the LAPS algorithm proposed in [18]
only considers resource sharing without redundant executions.
Our LAPS+R(�) algorithm generalizes this to allow redundant
copies of jobs to be varied dynamically. In this section, we
assume, without loss of generality, that jobs have been ordered
such that a1 � a2 � · · · � an(t), i.e., from the oldest job to
the most recently arrived one.

A. LAPS+R(�) Algorithm
The algorithm depends on the parameter � 2 (0, 1). Say,

when � = 1/2, the algorithm essentially schedules the 1
2n(t)

most-recently-arrived jobs. If there are fewer than M such



Algorithm 2: LAPS+R(�) Algorithm
1 while A job arrives at or departure from the system do
2 Sort the jobs in the order such that

a1 � a2 � · · · � an(t);
3 Compute �n(t) = zM + ↵+ � where � < 1 and

↵ < M ;
4 if z � 1 then
5 rn(t)(t) = (M � ↵) and xn(t)(t) =

1
z+1 ;

6 for j = n(t)� zM � ↵, · · · , n(t)� 1 do
7 rj(t) = 1 and xj(t) =

1
z+1 ;

8 if z < 1 then
9 rn(t)(t) = M � ↵b M

↵+1c and xn(t)(t) = 1;
10 for j = n(t)� ↵, · · · , n(t)� 1 do
11 rj(t) = b M

↵+1c and xj(t) = 1;

12 for j = 1, 2, · · · , n(t)� zM � ↵� 1 do
13 xj(t) = rj(t) = 0;

14 Checkpoint all jobs and assign job j’s redundant
executions to rj(t) machines which are uniformly
chosen at random from {1, 2, · · · ,M} with a
resource share of xj(t);

jobs, they are each assigned an roughly equal number of
servers for execution without multitasking. If 1

2n(t) > M ,
each job will roughly get a share of M

1
2n(t)

on some machine.
For a given number of active jobs n(t), let parameter �,

z 2 , ↵ 2 {0, 1, · · · ,M � 1} and � 2 [0, 1) such that
�n(t) = zM + ↵+ �.

The LAPS+R(�) algorithm operates as follows: At time t,
if z = 0, jobs indexed from (n(t)� ↵) to (n(t)� 1) are
scheduled on b M

↵+1c machines each, and Job n(t) is scheduled
on the remaining (M �↵b M

↵+1c) machines. In this case, there
is no multitasking. By contrast, if z � 1, jobs indexed from
(n(t)� zM � ↵) to (n(t)� 1) are each assigned a single
machine and get a resource share of 1

z+1 . Furthermore, Job
n(t) is scheduled on (M � ↵) machines with a 1

z+1 share of
its resources.

The corresponding pseudo-code is exhibited as Algorithm
2 in the panel above.

B. Performance guarantee for LAPS+R(�) and our techniques

Let OPT and LR denote the cost of the offline optimal
scheduling policy and LAPS+R(�) respectively. The main re-
sult in this section, characterizing the competitive performance
of LAPS+R(�), is given by the following theorem:

Theorem 2. LAPS+R(�) is 2(1 + � + ✏)-speed O(

1
�✏ )-

competitive with respect to the total job flowtime.

Proof Sketch. The dual fitting approach fails in this setting
to prove Theorem 2, so we adopt the potential function
analysis approach. The main idea of this method is to design
a potential function which tracks the difference between the
offline optimal schedule and LAPS+R(�).

Consider a checkpointing trajectory for job j under
LAPS+R(�) and the offline optimal schedule, denoted by
(tj ,xj , rj) and (t

⇤
j ,x⇤

j , r
⇤
j ) respectively. Let  ⇤

(t) be the
jobs that are still active at time t under the offline optimal
scheduling and denote by  (t) the set of jobs that are active
under LAPS+R(�). Thus, we have: | (t)| = n(t). Further, let
nj(t) denote the number of jobs which are active at time t
and arrive no later than job j under LAPS+R(�). Define the
cumulative service difference between the two schedules for
job j at time t, i.e., ⇡j(t), as follows:

⇡j(t) = max

h Z t

aj

(

ehj(t
⇤
j ,x

⇤
j , r

⇤
j , ⌧�ehj(tj ,xj , rj , ⌧))d⌧ , 0

i
,

(16)
Let � = 2(1 + � + ✏) and define

f(nj(t)) =

⇢
1 �nj(t)  M,
M

�nj(t)
otherwise. (17)

Note that f(nj(t)) takes the minimum of 1 and M
�nj(t)

where
the latter is roughly the total resource LAPS+R(�) would
allocate to job j if nj(t) jobs were active at time t. We define
a potential function, ⇤(t), whose evolution may have jumps
as well as continuous change. Our potential function is given
by:

⇤(t) =
X

j2 (t)

⇤j(t), (18)

where ⇤j(t) is the ratio between (16) and (17), i.e., ⇤j(t) =
⇡j(t)

�·f(nj(t))
.

Let LR(t) and OPT (t) denote the accumulated job flow-
time under LAPS+R(�) with a 2(1 + � + ✏)-speed resource
augmentation and the offline optimal schedule, respectively.
We show that ⇤(t) satisfies the following three properties:
• Boundary Condition: ⇤(0) = ⇤(1) = 0.
• Jump Condition: the potential function may have jumps

only when a job arrives or completes under the LAPS+R(�)
schedule, and if present, it must correspond to a decrease
in the value of the potential function..

• Drift Condition: with a 2(1 + � + ✏)-speed resource aug-
mentation, for any time t not corresponding to a jump, and
some constant c1 and c2, we have:

d⇤(t)

dt
 ��✏

c1
· dLR(t)

dt
+

1

c2
· dOPT (t)

dt
. (19)

By integrating (19) and accounting for the negative jump and
the boundary condition, one can see that the existence of such
a potential function guarantees that LR  c1

c2
· 1
�✏OPT under

a 2(1 + � + ✏)-speed resource augmentation.
Refer to [46] for the detail proof of Theorem 2.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This paper is the first attempt to address the impact of two
key sources of variability in parallel computing clusters: job
size and machine processing variability. Our primary aim and
contribution was to provide the fundamental understanding on
how job scheduling and redundant execution/ checkpointing
algorithms can help to mitigate the impact of variability on job
response time. As the need of delivering predictable service



on shared cluster and computing platforms grows, approaches,
such as ours, will likely be an essential element of any possible
solution. Extensions of this work to non-clairvoyant scenarios,
the case of jobs with associated task graphs etc, are likely
next steps towards developing the foundational theory and
associated algorithms to address this problem.
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