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ABSTRACT

Millimeter-wave (mmWave) communications, using directional
beams, is a key enabler for high-throughputmobile ad hoc networks.
These directional beams are organized into multiple codebooks ac-
cording to beam resolution, with each codebook consisting of a set
of equal-width beams that cover the whole angular space. The code-
book with narrow beams delivers high throughput, at the expense
of scanning time. Therefore overall throughput maximization is
achieved by selecting a mmWave codebook that balances between
beamwidth (beamforming gain) and beam alignment overhead. Fur-
ther, these codebooks have some potential natural structures such as
the non-decreasing instantaneous rate or the unimodal throughput
as one traverses from the codebookwith wide beams to the one with
narrow beams. We study the codebook selection problem through a
multi-armed bandit (MAB) formulation in mmWave networks with
rapidly-varying channels. We develop multiple novel Thompson
Sampling-based algorithms for our setting given different codebook
structures with theoretical guarantees on regret. We further collect
real-world (60 GHz) measurements with 12-antenna phased arrays,
and show the performance benefits of our approaches in an IEEE
802.11ad/ay emulation setting.
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1 INTRODUCTION

Large antenna arrays are key to the success of millimeter-wave
(mmWave) networks because of their high directional gain. How-
ever, to get the benefits of this directionality, transmitters (TX) and
receivers (RX) need to align their respective beams to maximize
throughput. Each radio has a codebook – a collection of beams
with a predefined beam resolution (indicated by beamwidth), and
covering the whole angular space (see Figure 1) – the radios ex-
haustively sweep over the beams in a codebook to establish the
optimal beam-pair link [29]. Such sweep-based techniques have
been incorporated into standards such as IEEE 802.11ad/ay [4] and
5G NR [5], because of robustness and good coverage [28].

While a codebook consisting of beams with a narrow beamwidth
is beneficial as these beams provide higher beamforming gain (and
thus a higher signal-to-noise ratio (SNR)), it comes at a price. Such
a codebook correspondingly contains a large number of beams
to cover angular space, with the time taken to sweep over them
being linear in the number of beams [17]. Indeed with emerging
standards such as IEEE 802.11ay, the number of beams can scale
to as much as 2048 [4, 26]. Furthermore, a beam-pair link needs to
be frequently re-established in mobile and rapidly varying channel
settings (see [9]), thus resulting in significant overheads.

To resolve this tension between high throughput and large sweep
times, a promising and practical solution is to have multiple code-
books of different beam resolutions (each codebook spanning the
whole angular space, see Figure 1 and Remark 1), and choose a
specific codebook in a scenario-specific manner. Depending on the
device location and frequency of link realignment (which is driven
by scenario-specific device location/mobility, and channel variabil-
ity), the radio might choose to use a codebook of wide beams (low
beamforming gain but fast sweep, beneficial to devices that either
require frequent realignment or can tolerate low beamforming gain
due to their central location), or at the other extreme, a codebook of
narrow beams (high beamforming gain but slow sweep, beneficial
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to devices requiring infrequent realignment or located far-away
from the base station). Indeed the experiments in [37] have shown
that the optimal beam resolution is scenario-specific, and unsuit-
able choices could severely degrade the overall throughput. This
intuition has propagated into standards, where a family of code-
books has been first standardized in IEEE 802.15.3c millimeter-wave
WPANs [1] and further proposed in the ongoing standardization of
IEEE 802.11ay by [26].

In this paper, we focus on the codebook selection problem given
a set of mmWave codebooks ranging from low to high beam res-
olution (see Figure 1). Our goal is to learn the optimal codebook
by dynamically exploring the trade-off between the high instan-
taneous throughput provided by the codebook of narrow beams
and the low overhead associated with the codebook of wide beams.
We exploit online learning techniques to design codebook selection
algorithms for rapidly-varying mmWave networks. The major

contributions are summarized below:

(1)AlgorithmDesign:Using amulti-armed bandit (MAB) frame-
work, we propose multiple novel Thompson Sampling (TS)-based
bandit algorithms using Dirichlet priors for the codebook selection
problem. In particular, we first propose a generic TS algorithm with-
out requiring any structure among codebooks. Second, we propose
a constrained TS algorithm that exploits the known general structure
among codebooks to further improve the system performance. Most
importantly, we propose a Unimodal TS (UTS) algorithm to deal
with a well-observed natural structure among a family of codebooks
ranging from low to high resolution – the effective throughputs of
codebooks often have a unimodal property.

(2) Theoretical and Empirical Results: We provide theoret-
ical guarantees for the proposed algorithms by deriving upper
bounds for their regrets (expected loss in cumulative throughput)
with respect to a genie algorithm that always uses the optimal code-
book. In particular, our proofs provide the theoretical guarantee for
the UTS with Dirichlet priors, which is an important missing part of
the state-of-the-art TS algorithms. Next, we collect real-world chan-
nel measurements at 60 GHz with two 12-antenna phased arrays,
and use them to validate the proposed algorithms by emulating an
IEEE 802.11ad system. Our results show that the proposed TS-based
algorithms are superior to state-of-the-art bandit algorithms.

2 SYSTEM MODEL

We consider a slot-based mobile ad hoc mmWave system, in which a
TX establishes the wireless link with an RX by doing the codebook-
based beam scanning. Specifically, a codebook is a set of directional
beams of the same beam resolution (indicated by beamwidth) that
covers the whole angular space. There are multiple codebooks avail-
able at the TX while the RX only has one fixed codebook (antenna
array size and power consumption are generally limited at the RX,
i.e. mobile devices). Different codebooks have directional beams
of different beamwidth, which helps balancing high beamforming
gain (by delivering high SNR using narrow beams) and low training
overhead (by avoiding mass sweeps using wide beams). See Figure 1
for a pictorial representation of the set of codebooks.

In mmWave systems, each communication time slot includes a
beam alignment phase and a data transmission phase. The evolu-
tion of a time slot is described as follows. At the beam alignment

…

1-th codebook 2-th codebook 𝐾-th codebook

A wider beam has
larger spatial coverage

A narrower beam has
smaller spatial coverage

Figure 1: Example codebooks of directional beams

phase, the TX selects one of the available codebooks to perform
the beam alignment with the RX by testing all the beams in this
codebook. At the end of this phase, the index of the beam with the
highest received signal strength (RSS) will be sent back to the TX.
Subsequently, the TX will use this best beam to transmit data for
the remaining time resources in this slot, which is referred to as
a data transmission phase. In particular, the TX will transmit the
data with the highest supportable modulation and coding scheme
(MCS), which is obtained by referring to a predefined RSS-MCS
table. This is a typical mmWave system and the adopted beam
alignment process is similar to the sector level sweep (SLS) used in
IEEE 802.11ad/ay [3, 4] and 5GNR [5].Our objective is to identify the
optimal codebook that maximizes the expected system throughput.

The codebook generation is out of the scope of this work. A
simple way to generate multiple codebooks of different beamwidths,
shown in Figure 1, is to exploit antenna on/off techniques [40, 42],
which is also used in our experimental evaluation.

Remark 1. Compared to gathering all the beams of different res-
olutions into a giant codebook, organizing the beams into multiple
codebooks by their width has the following practical advantages: (1)
It facilitates the beam management in the context that the size of the
mmWave antenna array is scaling up [43]. (2) It enables the codebook
optimization in a scenario-specific manner (see experimental results in
[37]), leading to greatly improved performance. (3) From the perspec-
tive of practical implementation, using one codebook of equal-width
beams for a single link establishment can avoid numerous antenna
on/off operations (required by changing beamwidth [40]), which could
reduce the operation overhead and simplify the antenna hardware
designs. As mentioned earlier, standard bodies are recognizing the
benefits of a family of codebooks, e.g. IEEE 802.15.3c millimeter-wave
WPANs [1] and proposals in IEEE 802.11ay by [26].

3 PROBLEM STATEMENT

In this section, we mathematically characterize the beam align-
ment and the data transmission phases described in Section 2. We
study the codebook selection problem through amulti-armed bandit
(MAB) framework. At each time slot, one of 𝐾 possible codebooks
(aka actions) is chosen by the learning algorithm (aka player), and
the corresponding effective data rate (aka reward) is observed. By
learning the choice of the best codebook, the goal is to minimize
the cumulative loss with respect to an omniscient genie [8].

3.1 RSS-MCS table

As mentioned in Section 2, there exists a predefined RSS-MCS table
used by the TX to decide which is the highest supportable MCS
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given the best RSS feedback by the RX. We suppose this RSS-MCS
table has (𝑀 + 1) levels of MCS. The data rate associated with
MCS𝑚 is the𝑚-th element of a rate vector r̃ = [𝑟0, 𝑟1, . . . , 𝑟𝑀 ]T,
where 𝑟0 < 𝑟1 < . . . < 𝑟𝑀 , and the minimum required RSS for
supporting MCS𝑚 is denoted as rss𝑚 , which yields a RSS vector
rss = [rss0, rss1, . . . , rss𝑀 ]T. In particular, MCS 0 represents the
data rate of 0 (𝑟0 = 0 and rss0 = − inf), namely that the RSS is
too low to support any data transmission (failed link connection).
Without loss of generality, we define a normalized rate vector by
dividing r̃ by 𝑟𝑀 , which is denoted as r = [𝑟0, 𝑟1, . . . , 𝑟𝑀 ]T, where
𝑟𝑚 =

𝑟𝑚
𝑟𝑀

. Thus, 𝑟𝑚 is bounded by [0, 1] and we will use this normal-
ized rate vector r in the following. We denote [𝐾]+ ≜ {1, 2, . . . , 𝐾},
[𝐾] ≜ {0, 1, . . . , 𝐾} and 1 {·} as the indicator function for later use.

3.2 Channel distribution and evolution of a

time slot

We consider a discrete-time setting, where 𝑡 = 1, 2, ...,𝑇 is a finite
time horizon and each time step represents a communication time
slot. We denote 𝐾 as the number of codebooks at the TX and 𝑆𝑘 as
the number of beams in the 𝑘-th codebook. We denote the random
mmWave channel at time slot 𝑡 as ℎ(𝑡) following a discrete state
channel distributionH over some (possibly) continuous state-space.
As the channels are rapidly varying in mmWave MANETs, we
suppose that the channel state realizations of different time slots
are independent of each other [20].

In each time slot, at the beam alignment phase, the TX chooses
a codebook 𝑘 ∈ [𝐾]+ and sequentially tests each beam in this
codebook (beam alignment for the specified codebook). Denoting
by rss(t,k) the maximum RSS obtained by sweeping over all the
beams in the 𝑘-th codebook, we then have

rss(𝑡, 𝑘) = max𝑗 ∈[𝑆𝑘 ]+ 𝑓 (ℎ(𝑡), 𝑘, 𝑗), (1)

where 𝑓 is an unknown function that reflects the overall physi-
cal layer impact on the received signals, which includes channel
gain, sidelobe effects, RF impairments, beam pattern imperfection,
thermal noise, etc.

Given the maximum RSS, the TX uses a predefined RSS-MCS
table to determine the highest supportable MCS for the data trans-
mission phase, which can be mathematically expressed as

𝑟 (𝑡) = max𝑚∈[𝑀 ] 1 {rss(𝑡, 𝐼 (𝑡)) ≥ rss𝑚} 𝑟𝑚, (2)

where 𝐼 (𝑡) denotes the index of codebook selected at the 𝑡-th time
slot and 𝑟 (𝑡) is the determined data rate, which is termed as instan-
taneous data rate. As a result, we can see that given a selected code-
book 𝐼 (𝑡) ∈ [𝐾]+ by a certain policy, the instantaneous data rate
𝑟 (𝑡) follows a one-trial multinomial distribution with the sup-
port {𝑟0, 𝑟1, . . . , 𝑟𝑀 } and the parameter p𝑘 = [𝑝0,𝑘 , 𝑝1,𝑘 , . . . , 𝑝𝑀,𝑘 ]T,
where 𝑝𝑚,𝑘 = P {𝑟 (𝑡) = 𝑟𝑚 |𝐼 (𝑡) = 𝑘},𝑚 ∈ [𝑀] and 𝑘 ∈ [𝐾]+.

3.3 Reward of codebooks and cumulative

regret of the system

We adopt a model-free framework to formulate our codebook selec-
tion problem, which directly characterizes the performance of code-
books by their multinomial distributions, i.e. parameters {p𝑘 }𝐾𝑘=1.
This allows us to bypass the complex assumptions on the channel
distributionH and the unknown function 𝑓 in (1). The performance

metric of the 𝑘-th codebook (the mean reward of 𝑘-th arm) is the
effective data rate of the codebook, 𝑟 eff

𝑘
(𝑡) (defined shortly). We

first denote 𝑟 ins
𝑘

(𝑡) as the instantaneous data rate of codebook 𝑘 ,
whose expectation can be given as E

[
𝑟 ins
𝑘

(𝑡)
]
= rTp𝑘 . As described

before, only part of the total time slot is used for data transmis-
sion, which motivates us to define a variable, termed as effective
coefficient, to present the ratio of time that is allocated for the data
transmission phase, which is given as 𝐶eff

𝑘
=

(
𝑇 slot −𝑇 train

𝑘

)
/𝑇 slot,

where 𝑇 train
𝑘

is a codebook-dependent constant representing the
total beam alignment time including getting feedback and 𝑇 slot is
the fixed time slot duration.

With 𝐶eff
𝑘
, we can now define the effective data rate, denoted

by 𝑟 eff
𝑘

(𝑡), to represent the average data rate over the whole time
slot, which is given as 𝑟 eff

𝑘
(𝑡) = 𝑟 ins

𝑘
(𝑡)𝐶eff

𝑘
. Note that 𝑟 eff

𝑘
(𝑡) de-

termines the real system throughput when the 𝑘-th codebook is
chosen. Therefore, the reward of 𝑘-th arm follows a multinomial
distribution with the support {𝑟0𝐶eff

𝑘
, 𝑟1𝐶eff

𝑘
, . . . , 𝑟𝑀𝐶

eff
𝑘
} and the

parameter
{
𝑝0,𝑘 , 𝑝1,𝑘 , . . . , 𝑝𝑀,𝑘

}
, which gives its expectation 𝜇𝑘 as

𝜇𝑘 = E
[
𝑟 eff
𝑘

(𝑡)
]
= 𝐶eff

𝑘
rTp𝑘 . (3)

The optimal codebook 𝑘∗ = arg𝑘∈[𝐾 ]+ max 𝜇𝑘 is the one that pro-
vides the maximum expected effective data rate.

In this work, we consider minimizing the expected cumulative
regret/loss over the 𝑇 slots. The expected cumulative regret of a
codebook selection algorithm is defined as the difference between
the total expected reward of the optimal codebook and the total
expected reward obtained by the algorithm, which can be given as

𝑅(𝑇 ) =
∑𝑇

𝑡=1
E
[
𝑟 eff
𝑘∗ (𝑡)

]
− E

[
𝑟 eff
𝐼 (𝑡 ) (𝑡)

]
= 𝑇 𝜇𝑘∗ −

∑𝑇

𝑡=1
𝜇𝐼 (𝑡 ) .

(4)

3.4 Natural structure among codebooks and

discussions

In this subsection, we incorporate the physical layer structural
aspects of the codebooks as model assumptions. The following
Assumption 2 leverages the fact that aligned narrower beams
provide higher beamforming gain, hence larger RSS as compared
to their wider counterparts. Without loss of generality, we assume
that the codebooks are numbered in terms of decreasing beamwidth
(widest beamwidth numbered 1).

Assumption 2 (Nondecreasing instantaneous data rate).
For any two codebooks with indexes 𝑘1 and 𝑘2, such that 𝑘1 < 𝑘2, for
all time 𝑡 ≥ 1, rss(𝑡, 𝑘1) ≤ rss(𝑡, 𝑘2) holds.

Assumption 2 implies that a higher (non-lower) MCS can be
supported by the codebook with larger index (finer beamwidth),
which is mathematically given as

rTp1 ≤ rTp2 ≤ . . . ≤ rTp𝐾 . (5)

Training time for codebooks with wider beams is less, assuming
training time per beam is constant, and thus we need to train fewer
beams when using wider codebooks. This implies,

𝐶eff
1 > 𝐶eff

2 > . . . > 𝐶eff
𝐾
. (6)
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When the codebooks are efficiently designed, the following assump-
tion is suitable for our system (see Remark 5).

Assumption 3 (Unimodal effective data rate). The expected
rewards of codebooks, i.e. {𝜇𝑘 }𝐾𝑘=1 (with, 𝜇𝑘 = 𝐶eff

𝑘
rTp𝑘 ) follows a

unimodal pattern, i.e. there exists a unique 𝑘∗ ∈ {1, . . . , 𝐾} such that
𝜇𝑘 is increasing with 𝑘 for all 𝑘 ≤ 𝑘∗, and 𝜇𝑘 is decreasing with 𝑘 for
all 𝑘 ≥ 𝑘∗:

𝜇1 ≤ . . . ≤ 𝜇𝑘∗ ≥ . . . ≥ 𝜇𝐾 . (7)

Thus, we have mathematically modeled the codebook selection
problem in rapidly-varying mmWave channels as a MAB problem.
In the next section, we will design efficient bandit algorithms to
solve it. A few remarks on the proposed framework are further
listed below for completeness.

Remark 4. We note that Assumption 2 and the equation (6)
does not necessarily provide the unimodality described by (7). For

example,
{
𝐶
eff
𝑘

}
= (0.8, 0.7, 0.4, 0.35) and

{
rTp𝑘

}
= (0.1, 0.2, 0.3, 0.4).

Similarly, Assumption 2 is not implied by Assumption 3.

Remark 5. Assumption 3 is motivated by the fact that the
system Shannon capacity is a unimodal function of beamwidth when
doing a 2D beam scanning, as discussed below. We use 𝑏𝑘 to represent
the width of beams in the 𝑘-th codebook. Suppose the size of the beam
scanning area is 𝜃 (e.g. 𝜃 = 360◦ for 2D-scanning), then we have
𝑇 train
𝑘

= 𝜃
𝑏𝑘
𝑇mer, where 𝑇mer is the time duration for testing a single

beam. Further, the beamforming gain can be roughly approximated as
𝐶0
𝑏𝑘

[2], where 𝐶0 is a constant parameter related to the used antenna

array. Thus, the Shannon capacity 𝑟 cap
𝑘

can be given as

𝑟
cap
𝑘

= 𝐵

(
1 − 𝜃𝑇mer

𝑏𝑘𝑇
slot

)
log2

(
1 + ℎ𝐶0𝑃TX

𝑏𝑘𝑃N

)
, (8)

where 𝐵 is the bandwidth, ℎ is the channel effect, 𝑃TX is the transmit
power and 𝑃N is the noise power. By denoting 𝐶1 ≜ 𝜃𝑇mer

𝑇 slot and 𝐶2 ≜
𝐶0𝑃TX
𝑃N

, 𝑟 cap
𝑘

is sampled from the function 𝑟 cap (𝑏) given as

𝑟 cap (𝑏) = 𝐵
(
1 − 𝐶1

𝑏

)
log2

(
1 + ℎ𝐶2

𝑏

)
. (9)

It can be shown that the function in (9) is unimodal with respect
to 𝑏 [34]. The throughput (mean reward of arm), however, is an ex-
pectation of this expression over the channel effect. Our assumption
essentially states that even after taking an expectation, unimodality
holds. Our numerical evaluation with the 3GPP NR outdoor channel
model and real-world measurements both confirm this observation.
Please refer to Appendix B in the full paper of this work [41] for more
discussions and simulation results on Assumption 2 and 3.

Remark 6. We note that unimodality has been previously ex-
ploited in beam alignment [22]. Essentially, their notion of unimodal-
ity is that for a single codebook of beams, the performance of these
beams has a unimodal pattern. Our notion of unimodality given in
Assumption 3 is different. When we have multiple codebooks, each
consisting of beams of the same resolution, the performance of these
codebooks exhibit the unimodal structure. Our notion of codebook
unimodality hinges on the trade-off between the increased scanning
time for codebooks with a large number of narrow beams versus the
increased instantaneous rate from the high directional gains.

4 ALGORITHMS AND REGRET GUARANTEES

In this section, we design four online learning algorithms for differ-
ent structural constraints on the set of codebooks. Our objective
is to design algorithms that will maximize the use of the optimal
codebook. An ideal algorithmic choice for this task is Thompson
Sampling (TS) which is a popular Bayesian approach to solving
MAB problems because of its efficient implementation and excel-
lent empirical performance [10, 25]. The core of TS is to use the
observations to dynamically update the posterior of a predefined
prior distribution. The classic TS algorithms like [7, 20, 21, 25] are
designed for MAB problems with Bernoulli arms and thus cannot
be directly applied to our problem which has weighted multino-
mial distribution. For our case, we adapt the recently proposed
Multinomial TS (MTS) [33] which can deal with the multinomial
arms. However, in our case, there are multiple differences for which
appropriate adaptations are necessary.

1) First, in Algorithm 1 we design weighted MTS (WMTS) that
handles the multinomial rewards {r𝑇 p𝑘 } weighted by the coeffi-
cients {𝐶eff

𝑘
}. A similar weighted generalization has been done for

Bernoulli rewards in [20].
2) Second, when the weights are time varying and stochastic, i.e.

{𝐶eff
𝑘

(𝑡)} are i.i.d. vectors with mean {𝐸 [𝐶eff
𝑘

]}, we design Algo-

rithm 2, general MTS (GMTS), which modulates the prior update
with observations {𝐶eff

𝑘
(𝑡)} after codebook selection.

3) InAlgorithm1 and 2, we have not incorporated the structural
assumptions, i.e. Assumption 2 and 3, into our designs. We next
design Algorithm 3, constrained WMTS (CWMTS), that is based
on [21] which can incorporate either Assumption 2 or 3 or both.

4) Even though CWMTS can handle general constraints, its im-
plementation has high complexity due to the posterior sampling
from a constrained set. In order to move to a more practical algo-
rithm under Assumption 3 (unimodality of the rewards), we pro-
pose unimodal WMTS (UWMTS) in Algorithm 4. This algorithm
carefully combines the techniques in [33] to handle multinomial
rewards, with the leader-tracking based procedure of [31, 36] to
present the improved regret guarantees.

In all the above settings, we provide theoretical guarantees on
the upper bounds of the cumulative regrets.

4.1 Notations

We present the following notations for later use in this section: 𝝁 =

[𝜇1, . . . , 𝜇𝐾 ]T, 𝜶𝑘 = [𝛼0,𝑘 , . . . , 𝛼𝑀,𝑘 ]T and 1𝑀 denotes a vector of
𝑀 ones. 𝐷𝑖𝑟 (𝜶𝑘 ) denotes the Dirichlet distribution with parameter
vector 𝜶𝑘 . We use 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝) to represent a Bernoulli pmf with
success probability of 𝑝 . We use KL (p, g) to represent the Kullback-
Leibler divergence between two one-trial multinomial distributions
parameterized by probability vector p and g, i.e. two categorical dis-
tribution, and we define thatKinf (p, 𝜇 |s) = inf

{
KL(p, g)

��sTg > 𝜇
}
.

We use scalar 𝑎𝑘 to represent the 𝑘-th element of a vector which
is denoted by a bold font a, where 𝑘 could start with 0 or 1, de-
pending on the context. We denote P as a problem parameter set
that contains all information of our codebook selection problem,
i.e. P =

{
r, p𝑘 ,𝐶eff

𝑘
,∀𝑘 ∈ [𝐾]+

}
.
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4.2 Algorithm without prior knowledge of

structural properties

In this subsection, we propose the Weighted Multinomial Thomp-
son Sampling (WMTS) algorithm, which does not require any prior
knowledge of the structure among the performance of arms. We
maintain 𝐾 Dirichlet priors, which are conjugate priors for the
multinomial reward distributions {p𝑘 }𝐾𝑘=1, for the 𝐾 arms individ-
ually. The details of WMTS is given in Algorithm 1. The term
Weighted emphasizes that different effective coefficient 𝐶eff

𝑘
scales

the support of each arm differently. The performance guarantee of
WMTS is given by the following Theorem 7.

Algorithm 1 Weighted Multinomial Thompson Sampling
1: Input: Horizon 𝑇 ≥ 1, number of codebooks 𝐾 ≥ 1, num-

ber of non-zero MCSs 𝑀 ≥ 1, effective coefficients
{
𝐶eff
𝑘

}𝐾
𝑘=1

,

normalized rate vector r = [𝑟0, 𝑟1, . . . , 𝑟𝑀 ]T.
2: Initialize: 𝛼𝑚,𝑘 = 1 for ∀𝑚 ∈ [𝑀] and 𝑘 ∈ [𝐾]+.
3: for 𝑡 = 1, . . . ,𝑇 do

4: for 𝑘 = 1, . . . , 𝐾 do

5: Sample d𝑘 (𝑡) ∼ 𝐷𝑖𝑟 (𝜶𝑘 ).
6: end for

7: 𝐼 (𝑡) = argmax𝑘∈[𝐾 ]+ 𝐶
eff
𝑘
rTd𝑘 (𝑡).

8: Select 𝐼 (𝑡)-th codebook to perform the beam alignment and
collect RSS feedback.

9: Lookup the RSS-MCS table and obtain the maximum ad-
missible rate for data transmission phase, yielding that
𝑟 (𝑡) = 𝑟𝑚 (𝑡 ) and𝑚(𝑡) ∈ [𝑀].

10: Prior update: 𝛼𝑚 (𝑡 ),𝐼 (𝑡 ) := 𝛼𝑚 (𝑡 ),𝐼 (𝑡 ) + 1.
11: end for

Theorem 7. For the codebook selection problemwith the access to
{𝐶eff
𝑘

}𝐾
𝑘=1, WMTS has the following problem-dependent regret bound

for any 𝜖0 > 0:

𝑅(𝑇 ) ≤
∑𝐾

𝑘=1,𝑘≠𝑘∗
(1 + 𝜖0) (𝜇𝑘∗ − 𝜇𝑘 )

Kinf
(
p𝑘 , 𝜇𝑘∗

��𝐶eff
𝑘

r
) log𝑇 +𝑊 (P, 𝜖0), (10)

where𝑊 (P, 𝜖0) is a problem-dependent constant that does not depend
on 𝑇 .

Proof. The proof directly follows [33] by generalizing it to that
different arms can have different supports for their respective multi-
nomial distributions. □

4.2.1 Discussion of further generalization. In this part, we briefly
discuss a further generalization of Algorithm 1 when {𝐶eff

𝑘
}𝐾
𝑘=1

are inaccessible. For the codebook-based beam training adopted in
our studied system, 𝑇 train

𝑘
can be easily calculated, as detailed in

the evaluation section. However, if other specially designed beam
alignment algorithms were used, e.g. an algorithm that terminates
with a good enough beam (see the Section of related work for more
examples), 𝑇 train

𝑘
could be random variables whose realizations are

only accessible after completing the beam alignment. This is indeed
an example of generalizations of our proposed MAB framework.
Motivated by this, we also derive General Multinomial Thompson
Sampling (GMTS) algorithm, which is denoted asAlgorithm 2 (the

detailed algorithm description is omitted due to space limitation).
The key step in GMTS is to randomize the reward of arm after
observing the sample-path-dependent 𝐶eff

𝑘
(𝑡), where 𝑘 = 𝐼 (𝑡). To

be specific, we generate a Bernoulli random variable 𝑋 with param-
eter 𝐶eff

𝑘
(𝑡), namely 𝑋 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝐶eff

𝑘
(𝑡)). If 𝑋 is zero, then we

randomize the reward to be zero, i.e.𝑚(𝑡) = 0.
The performance comparison between WMTS and GMTS is

shown in the evaluation results. The performance guarantee of
GMTS is given by the following Theorem 8.

Theorem 8. For a general codebook selection problem without
the access to the sample-path-dependent {𝐶eff

𝑘
(𝑡)}𝐾

𝑘=1, GMTS has the
following problem-dependent regret bound for any 𝜖0 > 0:

𝑅(𝑇 ) ≤
∑𝐾

𝑘=1,𝑘≠𝑘∗
(1 + 𝜖0) (�̃�𝑘∗ − �̃�𝑘 )
Kinf

(
p̃𝑘 , 𝜇∗

��r) log𝑇 +𝑊 (P̃, 𝜖0), (11)

where𝑊 (P̃, 𝜖0) is a problem-dependent constant that does not depend

on 𝑇 , P̃ =

{
r, p𝑘 , E[𝐶eff

𝑘
(𝑡)],∀𝑘 ∈ [𝐾]+

}
, �̃� = [�̃�1, . . . , �̃�𝐾 ]T, �̃�𝑘 =

rTp̃𝑘 , p̃𝑚,𝑘 = p𝑚,𝑘E[𝐶eff
𝑘

(𝑡)] for𝑚 ∈ [𝑀]+, p̃0,𝑘 = 1 −∑𝑀
𝑚=1 p̃𝑚,𝑘

and 𝑘∗ = arg𝑘∈[𝐾 ]+ max �̃�𝑘 .

Proof. With the above described randomization, all the arms
follow their own multinomial distribution with a transformed pa-
rameter p̃𝑘 but a common support r. We can then directly apply
Theorem 7 to get the regret bound given in (11). □

4.3 Algorithm using general structural

properties

In this subsection, we propose the Constrained Weighted Multino-
mial Thompson Sampling (CWMTS) algorithm, which leverages
the prior knowledge of structural properties among codebooks sum-
marized in Section 3.4. CWMTS is indeed an extension of WMTS,
which is inspired by the constrained Bernoulli Thompson Sampling
(CoTS) proposed in [21]. Its procedure is summarized as follows.

Instead of sampling D(𝑡) ≜ {d1 (𝑡), . . . , d𝐾 (𝑡)} from the product
of those 𝐾 independent Dirichlet priors, we sample D(𝑡) in the
following way:

D(𝑡) ∝ 1 {D(𝑡) ∈ Φ}
∏𝐾

𝑘=1
𝐷𝑖𝑟 (𝜶𝑘 ) (d𝑘 (𝑡)) , (12)

whereΦ denotes the parameter space that is the set of all possible es-
timates of {p𝑘 }𝐾𝑘=1, and 𝐷𝑖𝑟 (𝜶𝑘 ) (d𝑘 (𝑡)) is the probability density
function (PDF) of 𝐷𝑖𝑟 (𝜶𝑘 ) for d𝑘 (𝑡). In particular, by omitting the
time index 𝑡 and denoting D ≜ {d1, . . . , d𝑘 }, under Assumption 2,
we have

Φ ≜
{
D
��rTd1 ≤ rTd2 ≤ . . . ≤ rTd𝐾

}
, (13)

and under Assumption 3, we have

Φ ≜
{
D
��𝐶eff

1 rTd1 ≤ . . . ≤ 𝐶eff
𝑘∗ r

Td𝑘∗ ≥ . . . ≥ 𝐶eff
𝐾
rTd𝐾

}
. (14)

Given that 𝐼 (𝑡)-th codebook is used and the observed reward is
𝑟 (𝑡) = 𝑟𝑚 (𝑡 ) , the prior of D(𝑡 + 1) after Bayesian update is

D(𝑡 + 1) ∝ 1 {D(𝑡) ∈ Φ} ×∏𝐾

𝑘=1,𝑘≠𝐼 (𝑡 ) 𝐷𝑖𝑟 (𝜶𝑘 ) (d𝑘 ) × 𝐷𝑖𝑟
(
𝜶𝐼 (𝑡 ) + e𝑚 (𝑡 )

) (
d𝐼 (𝑡 )

)
, (15)

where e𝑚 (𝑡 ) is a unit vector where the𝑚(𝑡)-th element is one. (15)
shows that the update rules of priors is the same as that in the
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WMTS algorithm but we control the estimation of the distributions
of arms in a more specific parameter space. We summarize CWMTS
in Algorithm 3.

Algorithm 3 Constrained Weighted Multinomial TS
1: Input: Horizon 𝑇 ≥ 1, number of codebooks 𝐾 ≥ 1, num-

ber of non-zero MCSs 𝑀 ≥ 1, effective coefficients
{
𝐶eff
𝑘

}𝐾
𝑘=1

,

normalized rate vector r = [𝑟0, 𝑟1, . . . , 𝑟𝑀 ]T.
2: Initialize: 𝛼𝑚,𝑘 = 1 for ∀𝑚 ∈ [𝑀] and 𝑘 ∈ [𝐾]+.
3: for 𝑡 = 1, . . . ,𝑇 do

4: Sample D(t) ∼ 1 {D ∈ Φ}∏𝐾
𝑘=1 𝐷𝑖𝑟 (𝜶𝑘 ) (d𝑘 (𝑡)).

5: 𝐼 (𝑡) = argmax𝑘∈[𝐾 ]+ 𝐶
eff
𝑘
rTd𝑘 (𝑡).

6: Select 𝐼 (𝑡)-th codebook to perform the beam alignment and
collect RSS feedback.

7: Lookup the RSS-MCS table and obtain the maximum ad-
missible rate for data transmission phase, yielding that
𝑟 (𝑡) = 𝑟𝑚 (𝑡 ) and𝑚(𝑡) ∈ [𝑀].

8: Prior update: 𝛼𝑚 (𝑡 ),𝐼 (𝑡 ) := 𝛼𝑚 (𝑡 ),𝐼 (𝑡 ) + 1.
9: end for

Before stating the theoretical regret bound of the CWMTS al-
gorithm, we present the following notations. We denote A as the
action space, namely that A = [𝐾]+ as we have 𝐾 codebooks. We
denoteY as the observation space, i.e. the possible values of reward.
Then we have Y =

{
𝑟𝑚𝐶

eff
𝑘
, 𝑘 ∈ [𝐾]+,𝑚 ∈ [𝑀]

}
. We denote 𝜋𝑡 as

the Dirichlet prior used in the 𝑡-th time slot, and denote 𝜋0 is the
initial prior, i.e. 𝐷𝑖𝑟 (1𝑀+1), as initialized in line 2 of Algorithm 3.
In addition, we make one following assumption:

Assumption 9. (Unique optimal codebook) The optimal code-
book is assumed to be unique, i.e., 𝜇𝑘∗ > 𝜇𝑘 ,∀𝑘 ≠ 𝑘∗.

With the above notation and Assumption 9, the following The-
orem now holds.

Theorem 10. Suppose that Assumption 9 holds, then a regret
bound for the CWMTS algorithm is given as follows: For any 𝜖, 𝛿 ∈
(0, 1), there exists 𝑇 ∗ ≥ 0 such that for all time horizon 𝑇 ≥ 𝑇 ∗,
with probability at least 1 − 𝛿 , CWMTS has the following problem-
dependent regret bound:

𝑅(𝑇 ) ≤
(
𝜇𝑘∗ − min

𝑘∈[𝐾 ]+
𝜇𝑘

) (
1 + 𝜖
1 − 𝜖

) 𝐾∑
𝑘=1,𝑘≠𝑘∗

log𝑇

Kinf
(
p𝑘 , 𝜇𝑘∗

��𝐶eff
𝑘
r
)

+ 𝐸 (𝜖, 𝛿,A,Y,Φ, 𝜋0) , (16)

where 𝐸 (𝜖, 𝛿,A,Y,Φ, 𝜋0) is a problem-dependent constant that does
not depend on 𝑇 .

Proof. The proof immediately follows (with minor changes to
account for multinomial instead of Bernoulli random variables)
from [19, 21]. □

The above theorem shows that the regret associatedwith CWMTS
also scales logarithmically with time as WMTS and GMTS do. As-
sumption 9 is made only for notational ease in the proof and it
does not significantly affect the result given in Theorem 10, as
pointed out in [19].

4.3.1 Discussion on the limitation of CWMTS. The straightforward
way to implement CWMTS is to use rejection sampling, namely that
we sample D from

∏𝐾
𝑘=1 𝐷𝑖𝑟 (𝜶𝑘 ) until D ∈ Φ. As the authors note

in [21], a disadvantage of this approach is that it can be slow when
the probability of getting a valid D is small. In [21], the authors
proposed a heuristic Sequential Inverse Transform Sampling (SITS)
approach by sampling d𝑘 sequentially with individual constraint
rTd𝑘 ≤ rTd𝑘+1. Note however that d𝑘 are correlated with each
other; thus while the heuristic SITS returns a valid sample in Φ, it
may not be from the correct distribution. Thereby, designing an
efficient implementation of CWMTS (that results in samples from
the correct distribution) is also an interesting future direction.

4.4 Unimodal Thompson Sampling

In this part, we present a novel algorithm exploiting the property
that the effective data rates have a unimodal pattern, as stated in
Assumption 3. We term it as Unimodal Weighted Multinomial
Thompson Sampling (UWMTS). This is a novel combination of the
Multinomial TS [33] and the Unimodal Bernoulli TS [31, 36]. The
key element of this combination will be highlighted later.

To explain UWMTS, we set the following notations. We denote
𝑁𝑘 (𝑡) ≜

∑𝑡
𝑖=1 1 {𝐼 (𝑖) = 𝑘} as the number of times that 𝑘-th code-

book is used up to 𝑡-th time slot, and the estimated expected reward

of the 𝑘-th codebook as 𝜇𝑘 (𝑡) ≜
∑𝑡

𝑖=1 1{𝐼 (𝑖)=𝑘 }𝑟 (𝑖)𝐶eff
𝑘

𝑁𝑘 (𝑡 ) . In particular,
we define an empirical leader to be 𝐿(𝑡) = arg𝑘∈[𝐾 ]+ 𝜇𝑘 (𝑡), and for
each arm 𝑘 , we denote the number of times that it was a leader
until time 𝑡 by 𝑙𝑘 (𝑡) =

∑𝑡
𝑖=1 1 {𝑙 (𝑖) = 𝑘}.

Inspired by [13, 31, 36], UWMTS focuses the search through
WMTS to within a small subset around the leader, and additionally
explores with the goal of detecting the optimal arm with high
probability. Specifically, UWMTS chooses the arm at time 𝑡 by
following policy:

𝐼 (𝑡) =

𝐿(𝑡) 𝑀𝑜𝑑

(
𝑙𝐿 (𝑡 ) (𝑡), 𝛾

)
= 0,

Run WMTS in N+
𝐿 (𝑡 ) , otherwise,

(17)

where𝑀𝑜𝑑 is the modulo function,𝛾 is the frequency that the leader
is exploited,N+

𝑘
= N𝑘 ∪ {𝑘} with thatN𝑘 is the set of neighboring

arms of arm 𝑘 , i.e. N𝑘 = {𝑘 − 1, 𝑘 + 1} ∩ [𝐾]+ in our case. It is
worth pointing out that there is no leader exploration when 𝛾 = ∞
and there is no theoretical guide on how to choose its value. It
is empirically found by our simulation and [36] that choosing a
smaller value (2 ≤ 𝛾 ≤ 𝐾 ) results in a relatively good performance.
The description of UWMTS is given in Algorithm 4.

UTS was proposed with Bernoulli arms and unimodal reward
structure in [31], and it is proved to have asymptotically optimal
regret in [36]. We adapt the framework in [36] and generalize the
proofs therein from Bernoulli arms to multinomial arms. Such gen-
eralization, even in standard MAB (see, [33]), is known to be non-
trivial as connecting the posterior of the reward (which follows
Dirichlet distribution), to the observed rewards (which follows
multinomial distribution) is difficult due to the absence of a closed
form expression, unlike the Bernoulli case where the Beta-Binomial
transform is used [6]. We leverage the tail bounds of Dirichlet dis-
tribution in [33], and derive the posterior concentration for the
arms in the neighborhood of the optimal arm, which in our case
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includes two suboptimal arms and the optimal arm due to uni-
modality. This allows us to show each of these two suboptimal
arms is played 𝑂 (log(𝑇 )) times in expectation, where the constant
associated with the log(𝑇 ) term is asymptotically optimal. Similar
to [36], the other (𝐾 − 3) suboptimal arms are shown to be rarely
played, i.e.𝑂 (1) times in expectation, as the leader election method
concentrates fast. Thus, we provide the first regret upper bound for
UTS with multinomial arms, summarized in Theorem 11 below:

Theorem 11. For codebook selection problem with the access to
{𝐶eff
𝑘

}𝐾
𝑘=1, underAssumption 3, UWMTS has the following problem-

dependent regret bound for any 𝛾 ≥ 2 and any 𝜖0 > 0:

𝑅(𝑇 ) ≤
∑

𝑘∈N𝑘∗

(1 + 𝜖0) (𝜇𝑘∗ − 𝜇𝑘 )

Kinf
(
p𝑘 , 𝜇∗

��𝐶eff
𝑘

r
) log𝑇 +𝑈 (P, 𝜖0, 𝛾), (18)

where𝑈 (P, 𝜖0, 𝛾) is a constant that does not depend on 𝑇 .

Proof. See Appendix A in the full version of this work [41]. □

Remark 12. We note that UWMTS can significantly reduce the
regret as the coefficient of logarithmic term is restricted to the neigh-
borhood of the optimal arm, i.e.N𝑘∗ with |N𝑘∗ | ≤ 2. This reduces the
regret from 𝑂 (𝐾 log𝑇 ) to 𝑂 (2 log𝑇 ).

5 EVALUATION RESULTS

In this section, we evaluate the proposed algorithms in comparison
with the following state-of-the-art bandit algorithms: (1) Bernoulli
Thompson Sampling (BTS) [25]: we randomize the codebook re-
wards to be Bernoulli random variables such that this primitive TS
algorithm is applicable. (2) Weighted Bernoulli Thompson Sampling
(WBTS) [20]: a modified version of BTS. (3) KL-UCB [16]: as the
reward of arms are bounded by [0, 1], the classic KL-UCB can be di-
rectly applied. (4) Optimal Sampling Unimodal Bandit (OSUB) [13]:
OSUB is developed based on KL-UCB by further adding the leader
mechanism to exploit the structural property that the rewards are
unimodal. (5) Unimodal Weighted Bernoulli Thompson Sampling
(UWBTS) [36]: UWBTS is a straightforward extension of WBTS by
using the structural property that the rewards are unimodal.

In the following, we perform a trace-driven simulation. The simu-
lated system adopts IEEE 802.11ad Standard, with carrier frequency
of 𝑓𝑐 = 60 GHz and with a bandwidth of 𝐵 = 1.76 GHz [3, 39]. We
incorporate the real-world channel measurements, captured at
60 GHz and in terms of SNR, into the simulated system.

5.1 System parameters

In this part, we summarize the system parameters for the simulation.
The duration of testing each beam𝑇mer is 17 𝜇s [3] and the duration
per time slot 𝑇slot is set as 50 ms. We adopt the RSS-MCS table
provided by IEEE 802.11ad Standards for single-carrier transmission
mode [3]. Accordingly, the unnormalized rate vector r̃ is [0, 27.5,
385, 770, 962.5, 1155, 1251.25, 1540, 1925, 2310, 2502.5, 2695, 3080,
3850, 4620, 5005, 5390, 5775, 6390, 7507.5, 8085]T Mbps and the
RSS vector rss is [-inf, -78, -68, -66, -65, -64, -63, -62, -61, -60, -59,
-57, -55, -54, -53, -51, -50, -48, -46, -44, -42]T dBm. By considering
a noise power level of -78 dBm, we could further compute the
corresponding SNR values to get a SNR-MCS table for reference as
our collected channel measurements are in terms of SNR.

Algorithm 4 Unimodal Weighted Multinomial TS
1: Input: Horizon 𝑇 ≥ 1, number of codebooks 𝐾 ≥ 1, number of

non-zero MCSs𝑀 ≥ 1, effective coefficients {𝐶eff
𝑘
}𝐾
𝑘=1, normal-

ized rate vector r = [𝑟0, 𝑟1, . . . , 𝑟𝑀 ]T, and leader exploration
parameter 𝛾 .

2: Initialize: 𝛼𝑚,𝑘 = 1, 𝜇𝑘 (𝑡) = 0, 𝑁𝑘 (𝑡)=0, 𝑙𝑘 (𝑡) = 0 for ∀𝑚 ∈ [𝑀]
and 𝑘 ∈ [𝐾]+. We omit time index 𝑡 of 𝜇𝑘 (𝑡), 𝑁𝑘 (𝑡), 𝑙𝑘 (𝑡) in
the following.

3: for 𝑡 = 1, . . . , 𝐾 do

4: 𝐼 (𝑡) = t.
5: Select 𝐼 (𝑡)-th codebook to perform the beam alignment and

collect RSS feedback.
6: Lookup the RSS-MCS table and obtain the maximum ad-

missible rate for data transmission phase, yielding that
𝑟 (𝑡) = 𝑟𝑚 (𝑡 ) and𝑚(𝑡) ∈ [𝑀].

7: Prior update: 𝛼𝑚 (𝑡 ),𝐼 (𝑡 ) := 𝛼𝑚 (𝑡 ),𝐼 (𝑡 ) + 1.

8: Mean update: 𝜇𝐼 (𝑡 ) :=
𝜇𝐼 (𝑡 )𝑁𝐼 (𝑡 )+𝑟 (𝑡 )𝐶eff

𝑘

𝑁𝐼 (𝑡 )+1 .
9: Arm counter update: 𝑁𝐼 (𝑡 ) := 𝑁𝐼 (𝑡 ) + 1.
10: end for

11: for 𝑡 = 𝐾 + 1, . . . ,𝑇 do

12: 𝐿(𝑡) = argmax𝑘∈[𝐾 ]+ 𝜇𝑘 .
13: Leader counter update: 𝑙𝐿 (𝑡 ) := 𝑙𝐿 (𝑡 ) + 1.
14: if 𝑀𝑜𝑑 (𝑙𝐿 (𝑡 ) , 𝛾) == 0 then
15: 𝐼 (𝑡) = 𝐿(𝑡).
16: else

17: for 𝑘 ∈ N+
𝐿 (𝑡 ) do

18: Sample d𝑘 ∼ 𝐷𝑖𝑟 (𝜶𝑘 ) .
19: end for

20: 𝐼 (𝑡) = argmax𝑘∈N+
𝐿 (𝑡 )

𝐶eff
𝑘
rTd𝑘 .

21: end if

22: Select 𝐼 (𝑡)-th codebook to perform the beam alignment and
collect RSS feedback.

23: Lookup the RSS-MCS table and obtain the maximum ad-
missible rate for data transmission phase, yielding that
𝑟 (𝑡) = 𝑟𝑚 (𝑡 ) and𝑚(𝑡) ∈ [𝑀].

24: Prior update: 𝛼𝑚 (𝑡 ),𝐼 (𝑡 ) := 𝛼𝑚 (𝑡 ),𝐼 (𝑡 ) + 1.

25: Mean update: 𝜇𝐼 (𝑡 ) :=
𝜇𝐼 (𝑡 )𝑁𝐼 (𝑡 )+𝑟 (𝑡 )𝐶eff

𝑘

𝑁𝐼 (𝑡 )+1 .
26: Arm counter update: 𝑁𝐼 (𝑡 ) := 𝑁𝐼 (𝑡 ) + 1.
27: end for

Figure 2: Experimental setup

5.2 Real-world measurement collection

In this part, we present our experimental setup and the collected
real-world channel measurements. The testbed used for capturing
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Figure 3: Example beam patterns of the 6 codebooks gener-

ated by the SiBEAM Sil6342 60 GHz phased arrays.

Figure 4: Sketchmap of a spacious lab inwhich themmWave

channel measurements are taken. Different markers form

different potential trajectories of RX.

the SNR measurements consists of two 12-antenna SiBEAM Sil6342
phased arrays that up/down convert the signal to/from 60 GHz,
and two N210 USRPs with a bandwidth of 5 MHz, as shown in
Figure 2. By controlling the number of activated antennas 𝑁Ant
and using phased array calibration techniques proposed by [42],
we can generate directional beams of different widths. The arrays
do not allow transmit power adjustment. Since our antenna array
has only 12 elements, there is no major gain in having too many
codebooks (as their resolutions will be too close); thus, we generate
6 representative codebooks as shown in Figure 3.

In our evaluation, we consider that 𝐾 = 6 codebooks, given in
Figure 3 are available at the TX, and the RX uses the fixed Codebook
6. The size of codebook {𝑆𝑘 }𝐾𝑘=1 can be calculated with 𝑆𝑘 = 360

𝑏𝑘
by considering a 2D beam scanning. Due to the limited bandwidth
of USRP and the overhead/challenges of implementing a real-time
system with user mobility, we use the testbed to measure the SNRs
along certain predefined trajectories of RX and interpolate the
values SNR with respect to the distance between TX and RX given a
target velocity (4 m/s). The sampled positions of the RX are shown
in Figure 4. At each position, the SNR is measured 4 times for
each codebook at the TX. Implementing a real-time system for
performance evaluation would be a promising future direction but
out of the scope of this work. For simplicity, we did not collect
measurements for non-line-of-sight (NLOS) scenarios since we
perform the beam sweeping with directional beams and the NLOS
scenarios will simply result in higher path loss, which is handled
by our developed MAB framework.

Based on the above setting, we further compute the values of
key parameters as follows. The effective coefficients (𝐶eff

1 , . . . ,𝐶
eff
𝐾
)

is computed by 𝑇 train
𝑘

= 𝑆𝑘𝑆𝐾𝑇
mer and𝐶eff

𝑘
= (𝑇 slot −𝑇 train

𝑘
)/𝑇 slot,

and they are (0.9184, 0.8042, 0.6410, 0.3962, 0.3146, 0.2166). To com-
pute the ground truth distribution {p𝑘 }𝐾𝑘=1, we use the distribution
statistics of the interpolated SNRs. We then draw samples from the
calculated distributions during the simulation. We omit the exact
values of {p𝑘 }𝐾𝑘=1 due to the space limitation. The expected instan-

taneous data rate
(
rTp1, . . . , rTp𝐾

)
can be calculated as (0.1397,

0.2940, 0.4390, 0.5879, 0.6626, 0.7507). The eventual expected re-
wards of the 𝐾 codebooks (𝜇1, . . . , 𝜇𝐾 ) are (0.1283, 0.2364, 0.2814,
0.2329, 0.2084, 0.1626). It can be verified that the above setting satis-
fies bothAssumption 2 and 3. We run the evaluation for𝑇 = 10000
time slots and average the results by 200 realizations.

5.3 Discussions on performance comparison

In Figure 5a, we show the performance of the proposed WMTS
when there is no prior knowledge of any problem structure. First,
it can be seen that WMTS outperforms the state-of-the-art bandit
algorithms and has a much smaller cumulative regret. Moreover,
WMTS converges much faster than the other algorithms, this im-
plies that our proposed algorithm can provide more flexibility and
robustness in non-stationary environments, in which the channel
distribution is time-varying. Further, we can observe that GMTS
also provides a competitive performance.

In Figure 5b, we present the performance gain achieved by the
CWMTS algorithmwhen the nondecreasing property (i.e.Assump-

tion 2) is known to hold. As we can see, CWMTS does not provide
a better regret performance than WMTS, but it converges much
faster than WMTS.

In Figure 5c, we further show the performance of CWMTS and
UWMTS (𝛾 = 3) given that the unimodality property (i.e. Assump-

tion 3) is known to hold. Some interesting observations can be
drawn: (1) CWMTS outperforms OSUB (𝛾 = 3) and UWBTS when
it uses the property that the rewards have the unimodal pattern. (2)
It is clear that UWMTS outperforms all the other algorithms given
the unimodality, and the performance improvement is significant,
which is consistent with Remark 12. (3) All the algorithms using
multinomial distribution converge faster than the other algorithms.

If a random selection policy is adopted (instead of a learning-
based policy), the average normalized throughput would remain at
1
𝐾

∑𝐾
𝑘=1 𝜇𝑘 = 0.2083. In contrast, our online learning framework can

learn the optimal codebook quickly, and the normalized through-
put would be almost 𝜇𝑘∗ = 0.2814, which implies a throughput
improvement by more than 35%.

While the regret as a function of time provides one metric for
the time taken to converge, another metric would be the number
of times each codebook has been used until time 𝑡 . Please refer to
Appendix B in the full paper of this work [41] for supplementary
simulation results on this. Finally, it is worth pointing out that
our channel measurements are all collected under LOS condition.
Appendix B in [41] also provides the evaluation results under the
scenario when the NLOS condition frequently occurs.

6 RELATEDWORK

(1) Model-driven beamwidth optimization: One of the most
related lines of work is beamwidth optimization. In [34], the authors
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Figure 5: Regret performance based on real-world measurements: (a). No knowledge of problem structure. (b). With problem

structure that instantaneous data rates are nondecreasing. (c). With problem structure that effective data rates are unimodal.

initially modeled and derived the trade-off caused by beamwidth in
a multi-user mmWave network. Similar optimizations that balance
the beamforming gain and the beam training overhead were also
investigated in [14, 24, 27]. However, their solutions heavily depend
on the physical layer assumptions or prior knowledge such as
channel model, beam pattern model, and network topology, which
restricts their flexibility in practical deployments in MANETs where
the channel is rapidly changing. In contrast with these prior work,
our proposed MAB-based solutions are model-free, and thus do not
rely on the assumption of channel or user mobility.
(2) Data-driven codebook construction: Some recent work has
used offline data-driven machine learning methodologies to per-
form beam alignment and beamwidth selection simultaneously.
In [38], a deep learning technique was exploited to learn an optimal
set of beam pairs by considering the environment information as
feature spaces. Similarly, in [12], a large amount of experimental
data were gathered to build a beamforming codebook of minimum
size and subject to a guaranteed gain. Besides, a geo-located context
database was built in [15] to assist the beam width/directions selec-
tion. [12, 15, 38] all showed that significant system improvement
was achieved over conventional beam alignment strategies. These
offline data-driven approaches however require a large amount of
historical data for a given deployment site, which limits its fast
implementation. Further, since they only focused on the success-
ful connection probability of the eventually learned codebook, the
trade-off between beam alignment quality and data transmission ef-
ficiency was not exploited therein. Finally, no theoretical guarantee
of performance was provided.
(3) Beamalignment (includinghierarchical search): Other than
codebook optimization, much of the prior work focuses on select-
ing the best beam from a single codebook without considering
the effect of beam resolution, for example, [23] proposed Agile-
Link which finds the best beam by a random hashing and voting
mechanism. Some work exploits a priori knowledge of the chan-
nel to avoid exhausted beam search [15, 18, 29, 35, 42]. However,
prior information would require additional sensors or statistics.
Moreover, adaptive approaches were also investigated: ACO was
proposed in [30] to estimate the full channel, whereas four probes
per antenna element are required, which results in poor scalability.
Another approach – hierarchical search – starts (in each time slot)
from a coarse beam and progressively uses finer beams to shorten
the training time [28, 39]. However, it has several drawbacks: lim-
ited coverage due to the initial use of wide beams [28]; zooming in
wrong directions due to beam imperfectness and interference [23];

and large feedback overhead (per measurement) in asymmetric
links where devices have to respond by directional beams due to
power limitation [32]. A learning-based hierarchical beam align-
ment strategy was proposed in [11], which sequentially learns a
beamforming vector for single-path channel models, and provides
notable gains in the low SNR region. In contrast, we have focused
on the mmWave codebook selection by dynamically learning a site-
specific or device-specific codebook over time. Indeed, the above
algorithms could be incorporated into our framework by regarding
different algorithms (or an algorithm with different parameters) as
different “abstract codebooks”.
(4) Related bandit algorithms Thompson Sampling (TS) is a
widely used method for solving MAB problems. In [25], a regret
bound was shown for TS with Bernoulli arms. In [20], the weighted
binary TS was derived based on [25] to deal with the case where the
reward of each Bernoulli arm was multiplied by a different constant.
One of the most related work is [33], in which the authors provided
the regret bound for TS withmultinomial arms of the same support.
The above algorithms, however, do not exploit structure across arms
and satisfy asymptotic optimality for unstructured bandit problems.
In [21], the constrained weighted binary TS was proposed to allow
incorporating general structural properties among arms. An im-
proved performance was achieved, but an efficient implementation
is still lacking (see also Section 4.3.1). To exploit reward unimodal-
ity, the OSUB algorithm was proposed in [13] based on KL-UCB. A
very recent work [36] derived a theoretical guarantee for UTS with
Bernoulli arms. Our proposed algorithms augment these prior stud-
ies. We highlight that we provide the first theoretical guarantees
for UTS with weighted multinomial rewards.

7 CONCLUSIONS

In this work, we have considered the codebook selection prob-
lem in mmWave MANETs with rapidly-varying wireless channels.
We have modeled it as a MAB problem and have proposed novel
TS-based algorithms with/without knowing the structures among
codebooks. We have derived the theoretical regret upper bounds for
the proposed algorithms. The real-world mmWave measurements
based evaluation has validated the benefits of our algorithms.
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