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Systems to Conserve Mobile Terminals’ Energy
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Abstract—In this paper, we study several ways in which mobile
terminals can backoff on their uplink transmit power in order
to extend battery lifetimes. This is particularly effective when
a wireless system is underloaded as the degradation in user’s
perceived quality of service can be negligible. The challenge,
however, is developing a mechanism that achieves a good tradeoff
among transmit power, idling/circuit power, and the performance
customers will see. We consider systems with flow-level dynamics
supporting either real-time or best effort (e.g., file transfers)
sessions. The energy-optimal transmission strategy for real-time
sessions is determined by solving a convex optimization. An
iterative approach exhibiting superlinear convergence achieves
substantial amount energy savings, e.g., more than 50% when
the session blocking probability is 0.1% or less. The case of file
transfers is more subtle because power backoff changes the system
dynamics. We study energy-efficient transmission strategies that
realize energy-delay tradeoff. The proposed mechanism achieves
a 35%–75% in energy savings depending on the load and file
transfer target throughput. A key insight, relative to previous
work focusing on static scenarios, is that idling power has a signif-
icant impact on energy-efficiency, while circuit power has limited
impact as the load increases.

Index Terms—Energy-efficiency, flow-level dynamics, idling/cir-
cuit power, wireless systems.

I. INTRODUCTION

W IRELESS cellular systems such as WiMAX are
evolving to support mobile broadband services [1].

Though future wireless systems promise to support higher
capacity, this will be achieved, in most cases, at the expense
of higher energy consumption resulting in shorter battery life-
times for mobile terminals. So, work on energy conservation
has become a critical and active research area. Unlike previous
research on energy conservation in sensor and wireless local
area networks (LAN) [2]–[8], we focus on energy saving
techniques for broadband cellular systems, e.g., WiMAX or
3GPP-LTE. Specifically, we focus on reducing uplink RF trans-
mission energy recognizing it is one of the main contributors
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to battery consumption (e.g., 60% in time division multiple
access (TDMA) phones [4]). Other energy consumption such
as display or microprocessor, etc., are not considered in this
paper.

Not unlike most networking infrastructure (particularly that
supporting data), wireless access networks are unlikely to be
fully utilized all the time. Indeed as a result of time varying,
non-stationary loads, or unpredictable bursty loads these net-
works are often overdesigned to be able to support a peak load
condition, and so often underutilized. For example Internet ser-
vice providers’ networks see a long term utilization as low as
20% [9]. Similarly a substantial fraction of Wi-Fi hotspot ca-
pacity is unused [10]. More generally, due to the high varia-
tions in capacity that a wireless access system can deliver to
various locations in its coverage area, e.g., up to three orders of
magnitude difference, one can also expect high variability in the
system load [1], [11]. Furthermore in some cases, e.g., cellular
networks, a substantial amount of bandwidth is set aside to en-
sure that calls are not dropped during handoffs; for example, a
0.5% of call dropping probability requires 30% of system ca-
pacity to be reserved [12]. This further contributes to underuti-
lization of the system, even when the loads are heavy. The cen-
tral premise of this paper is that wireless access networks whose
resources are occasionally underutilized can provide their users
a better service/value by reducing mobile terminal energy con-
sumption while causing a controlled or imperceptible impact on
user’s perceived quality of service (QoS).

The basic idea towards conserving energy is as follows. As a
rough model for the relationship between power and capacity,
consider Shannon’s capacity formula

(1)

where is the transmission rate, is the spectral bandwidth,
is the output power of the RF power amplifier, is the

channel gain, and is the noise power. Note that the output
power (defined as the power dissipated into the air) is an expo-
nential function of the transmission rate. Thus a small back off
in the transmission rate results in an exponential reduction in
output power. The cost of doing so is a slow down in transmis-
sions. So if users are insensitive to such slow downs a system
can realize beneficial tradeoffs.

Users or applications are insensitive to slow downs if the
expected quality of service is met. For real-time or streaming
services this means meeting the required transmission rates.
Thus when a wireless access point is underloaded one can back
off from a user’s individual instantaneous peak transmission
rate without impacting the perceived performance. By contrast,
for file transfers, reducing transmission rates will impact file
transfer delays, yet may still be desirable if noticeable energy
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Fig. 1. Flow-level model for uplink transmission in a dynamic system. One
user corresponds to one flow.

savings can be achieved. Specifically, for the downlink, fast
transmission may be critical to ensure users’ satisfaction with
web browsing applications or file download speeds. However,
on the uplink, e.g., uploading of files such as pictures or emails,
users may be quite delay-tolerant, so much so that transfers
could be carried out as background processes. For best effort
traffic it makes sense to set a target average throughput users
might expect over a given time window. This recognizes the
fact that file transfer delays depend on average throughput
rather than instantaneous transmission rate. The time window
reflects the time scales on which such averages make sense,
e.g., seconds to minutes. The bigger the time windows the
more flexibility a wireless system has in exploiting transient
underloads to conserve energy.

In this paper, we focus on dynamic user populations and
traffic loads in a cellular system where new flows, either
real-time sessions or file transfers, are initiated at random
and leave the system after being served—these are sometimes
referred to as flow-level dynamics [13], see Fig. 1. Dynamic
systems are, in general, hard to analyze and have not been
studied as extensively as the static versions, i.e., with a fixed
set of backlogged users.

To better understand the challenges involved, consider a
TDMA system supporting, a stationary dynamic load, of file
transfer requests. If one slows down the uplink transmission
rate to save energy then the number of users in the system
may grow, resulting in excess power consumption associated
with users that idle while awaiting transmission. Indeed al-
though ideally idling users turn off their transmission chains,
in practice they still consume power due to leakage current1
[14], [15]. Hence, in a dynamic system, if the transmission
rates are excessively reduced, the number of users that are
idling may accumulate resulting in excessive overall idling
power consumption. This makes tradeoffs between energy
conservation and delay somewhat complex. Another challenge
is to capture the power consumptions from several components
in RF transmission chain of active users (as opposed to idling
users). Even though the power amplifier is the main consumer

1Idling power consumption depends on the specific power amplifier design.
For example, power amplifier for WiMAX from Analog Devices consumes 2.5
to 25 mW during idling period [14].

of power, other analog devices such as mixers, filters, local
oscillators, D/A converters, may also consume nonnegligible
power called circuit power [5], [15].

Earlier research on power control mainly focused on control-
ling interference rather than reducing energy consumption, i.e.,
sustaining a required signal-to-interference ratio (SIR) for reli-
able voice connections [16]–[18]. Energy-efficient power con-
trol was first explored in the context of sensor networks [2],
[3]. The authors proposed ‘lazy scheduling’ where packets are
transmitted as slowly as possible while meeting packet delay
constraints. Lazy scheduling performs smoothing on arriving
packets and thus makes output packet flows less ‘bursty.’ This
leads to significant energy savings.

The work in [4], [19], [20] further explore energy-delay trade-
offs under various scenarios; they study minimizing the average
transmit power subject to average buffer delay constraints under
two state Gilbert-Elliot channels, fading channels, and additive
white Gaussian noise (AWGN) channels, respectively. In fading
environments, the use of opportunistic transmission to save en-
ergy was studied in [21]–[24]; i.e., when the channel is good,
transmit power is increased. However, the above work neglects
circuit power, idling power and flow-level dynamics.

Recent results show that if circuit power is taken into ac-
count, circuit energy consumption increases monotonically as
the transmission time grows [5], [7], [25], [26]. Thus, we cannot
slow down the transmission rate arbitrarily, and indeed, there
exists an energy-optimal transmission rate. In solving this opti-
mization problem, the work in [5] focuses on the physical mod-
ulation techniques with a single sender and receiver pair for
sensor networks. Cross-layer optimizations are also proposed
with a view on capturing the physical and medium access con-
trol (MAC) layer in small scale sensor networks [6] and in wire-
less LANs [7], and further up-to the routing layer [8]. Energy-ef-
ficient transmission strategy for orthogonal frequency division
multiple access (OFDMA) system considering circuit power
was proposed in [27]. However, previous work has addressed
static systems, not dynamic systems, and thus could not capture
the coupling between power backoff and its impact on system
dynamics. For example, idling power consumption may become
huge when the number of users accumulate, e.g., 10–100, albeit
only occasionally [15].

Contributions: We highlight the contributions of this paper
as follows.

First, based on a detailed transmit power model, we show that
idling power has a substantial impact on energy efficiency when
reducing transmission rate changes the system dynamics, e.g.,
in the case of file transfers. Previous work has focused on static
systems, thus only the impact of circuit power was exhibited.
However, we show that, as the load increases, circuit power is
asymptotically negligible in the case of dynamic systems. Nev-
ertheless, circuit power remains important in the case of systems
supporting real-time sessions.

Second, we show how energy savings scale with the average
load in a stationary system. Our flow-level queueing model cap-
tures the dynamic behavior of real systems and indicates that
energy can be significantly saved when the system is under-
loaded. For example, in the case of real-time sessions, when
the call blocking probability is less than 0.1%, more than 50%
of energy can be saved without compromising user-perceived
performance. In the case of file transfers, we demonstrate that
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35%–75% of the energy can be saved depending on the loads
and target throughput.

Third, we propose two practical energy saving techniques for
real-time sessions and file transfers, respectively. In the case
of real-time sessions, we formulate the problem as a convex
optimization and solve it in an iterative fashion exhibiting su-
perlinear convergence. Our energy-optimal transmission policy
minimizes the adverse impact of circuit power while reducing
the output power level of mobile terminals at the cell edge, e.g.,
by 15 dB. This in turn can be beneficial in mitigating inter-cell
interference. In the case of file transfers, we propose an en-
ergy-efficient algorithm that exploits energy-delay tradeoff con-
sidering users’ preferences. The proposed algorithm addresses
the possibly unfavorable impact of idling power.

Our work is significant in its wide applicability to future
broadband wireless systems, which promise to support higher
capacity but, in most cases, at the expense of much higher
energy expenditures.

Organization: The paper is organized as follows. In
Section II, we describe our system model and assumptions.
Section III is devoted to the optimization for energy-efficiency
for real-time sessions. We address the energy savings for file
transfers in a dynamic system in Section IV and conclude the
paper with Section V.

II. SYSTEM MODEL

A. Assumptions

We consider a centralized wireless communication system
where a base station serves multiple mobile terminals, e.g.,
WiMAX or 3GPP-LTE. For simplicity, we assume that the
system is shared via TDMA. Note, however, that the same
approach is applicable in the context of frequency division
multiple access (FDMA), and furthermore, already applied
to multiple input multiple output (MIMO) systems [15]. We
define a time frame as the fixed time period during which every
user is scheduled once. We use to denote the time frame
index and for continuous time. Since energy savings are more
important at mobile terminals than at the base station, we focus
on uplink transmissions as shown in Fig. 1. Our framework
is also applicable to downlink transmissions to conserve the
energy consumption at the base station.2

Our goal is to reduce the energy consumed in uplink RF
transmission of mobile terminals. We assume that the transmis-
sion rate is continuous, and the power/rate mapping function is
convex and differentiable.

B. Flow-Level Model for System Dynamics

We will study a dynamic system where the number of on-
going users varies with time. User sessions/flows arrive to the
system according to a Poisson process with rate and leave
after being served. Such models are traditionally used in mod-
eling flow-level dynamics in communication networks, see [13],
[28]–[30]. We will separately consider the case where a flow
corresponds to real-time session or a file transfer, in Section III

2However, saving energy at the base station may increase the energy con-
sumption at the mobile terminals. This is because power consumption at recep-
tion is roughly independent of the receiving data rate, and fast transmission is
more beneficial in saving energy at mobile terminals by reducing the circuit and
idling energy consumption.

and Section IV respectively. The system dynamics are captured
by a flow-level queueing model shown in Fig. 1 which tracks the
arrival and departure process of users (or flows), see, e.g., [13].
We will assume each user corresponds to a single flow, and so
user and flow are used interchangeably. We refer to the number
of flows in the system as the system’s state in the sequel.

C. Minimizing Energy Consumption in a Stationary System

Our objective is to minimize the energy consumption of a
typical3 flow in a stationary system. Let be
a random process modeling the power consumption of a typical
flow, starting at 0 and whose typical sojourn time is modeled by
a random variable . Letting denote the energy consumption
of a typical flow, our goal will be to minimize

(2)

subject to either sustaining minimum rate requirements for
real-time sessions or achieving an average throughput for file
transfers. Minimizing (2) is not straightforward because both

and may depend on system dynamics; in particular in
the case of file transfers they are not independent, i.e., power
backoff may reduce but increase . However for a sta-
tionary system, minimizing the average energy consumption of
a typical flow is equivalent to minimizing the average system
power consumption. This is akin to Little’s law and formally
stated as follows.

Theorem 1 (Energy-Power Equivalence): Let be a random
variable denoting the stationary system power consumption,
be a random variable denoting the energy consumed to serve a
typical user’s flow, and be the arrival rate of users/flows to the
system. Then, if the system is stationary

(3)

Proof: This result is intuitive and can be shown via
Brumelle’s theorem [31], which is a generalized version of
Little’s law.

Based on Theorem 1, we below focus on minimizing the av-
erage system power consumption which in turn minimizes the
average energy consumed by a typical mobile terminal.

D. Transmission Power Model

A key element of our work is to have a proper transmit power
model. The power consumption in a real transmission chain de-
pends on various factors such as drain efficiency of the RF power
amplifier and associated circuit blocks [5], [15]. It also depends
on classes of power amplifiers, modulation schemes and power-
saving mechanisms [32]. To have a realistic but also analytically
tractable power model, we assume that the power consumed
by the power amplifier is linearly dependent on output power
of power amplifier, i.e., constant drain efficiency [5]. Then, the
power equation at transmission rate can be derived from
(1) to give

active
idling

(4)

3For simplicity we define performance metrics for typical flows directly in
terms of appropriate random variables rather than introducing Palm probabili-
ties.
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Fig. 2. Transmission power model in TDMA systems.

TABLE I
SYSTEM PARAMETERS

where is the drain efficiency, which is defined as the ratio of the
output power and the power consumed in the power amplifier;

is the circuit power; and is the idling power [5], [15]. To
simplify our notation, we let , i.e., the signal-to-noise
ratio (SNR) when the transmit power, defined below, is 1. We
summarize our terminologies as follows.

1) Active power: When a user is transmitting, the active power
is the collective power consumption in the transmission
chain, i.e., the sum of the transmit power and circuit power
as shown in Fig. 2.

2) Transmit power: We refer to as the
transmit power which captures the power consumed in
the power amplifier. Transmit power is the main factor of
power consumption in the transmission chain and equal to
the output power divided by the drain efficiency.

3) Circuit power : The circuit power includes several cir-
cuit blocks in the transmission chain and remains almost
constant irrespective of the transmission rate . It is mod-
eled in [5], [15], by ,
where , , , stand for the power consump-
tion from a digital-to-analog converter, a mixer, a filter, a
frequency synthesizer, respectively.

4) Idling power : Recall that our focus herein is on TDMA
systems; one user transmits at any time instance, and all
other users wait to be scheduled. Users who do not transmit
but wait are said to be idling, as opposed to active. As
shown in Fig. 2, idling users turn off their transmission cir-
cuits and power amplifier to save energy, but they still con-
sume idling power , ranging from a few to tens of mW,
due to leakage currents [14]. Even though could be neg-
ligible in a static system, it remains non-negligible in a dy-
namic system [15]. We will see the impact of idling power,
particularly for the case of file transfers in Section IV.
Power-related parameters are summarized in Table I.

III. ENERGY SAVINGS FOR REAL-TIME SESSIONS

In this section, we consider realizing energy savings in sys-
tems supporting real-time, e.g., video/voice, sessions on the up-
link. We show that the energy-optimal transmission policy is

given by a dynamic policy determined by convex optimization
problems associated with fixed user populations.

A. Problem Formulation

We assume that the arrivals of real-time sessions follow a
Poisson process with arrival rate and have holding times
which are identical, independent with mean . (Note that the
distribution of the holding time is not necessarily exponential.)
Let be the session rate requirement and be the instan-
taneous uplink transmission rate of user . Then, in a TDMA
system, the fraction of time user is active is . Let be the
maximum feasible transmission rate for user , which depends
on the maximum output power . Then,

.
We assume that call admission control allows a new user into

the system only if there are resources to support the request, e.g.

(5)

where denotes the set of ongoing users and is a new user
(either new call or handoff). Let be the maximum number
of users determined by a proper call admission control. {From
the insensitivity property, irrespective of the distribution of
holding times, the stationary distribution is the same as that of
an - queue, i.e., the distribution is simply
given by [33]

(6)

where and . The
blocking probability of real-time sessions is given by Erlang-B
formula as [34].

From Theorem 1, our objective is to minimize the average
system power consumption while satisfying for all

. Note that in this case backing off on transmit power will not
change since allocating more bandwidth does not imply
real-time users would leave the system earlier. We refer to this
as a decoupling property.4 Thus, the problem reduces to one of
optimizing power consumption for a static user population.

Now, we consider the convex optimization associated with
minimizing power for a static user population. In every time
frame , we solve

(7)

where is a vector whose elements are and ,
. We solve the optimization problem when the system is

underutilized, i.e., when for all are achievable. We put
the subscript for , , and to accommodate the heteroge-
neous users.

4In Section IV, we will see that decoupling property does not hold for system
dynamics of file transfers.
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Note that and may vary over different frames yet for
simplicity we drop the time dependence. The optimization needs
to be redone when or changes. As we will see in the sequel,
the superlinear convergence speed and reuse of the previously
determined optimal values make this optimization quickly com-
putable on the fly.

The interpretation of the above optimization is as follows.
When user transmits, the system power consumption is

. This is weighted
by , the fraction of time user transmits. The sum over all
users gives the average system power consumption. In addition,
for a fraction of time , all users consume
idling power .

By manipulating the above we have an equivalent but simpler
optimization problem given by

Problem

(8)

(9)

where . Note that Problem is a convex optimiza-
tion with an inequality constraint because the objective function
is a weighted sum of convex functions of . Because the circuit
power is higher than the idling power in practice, we assume

. {We note that it can be shown through a change of vari-
ables, and setting , the original optimization
problem also represents the optimal spectral bandwidth alloca-
tion problem in a frequency-flat fading FDMA system where
is the fractional bandwidth for user having the required rate .

B. Solution: An Energy Optimal Transmission Policy

We propose an energy optimal transmission strategy for real-
time sessions based on an iterative solution to Problem .
Given , and , the base station solves the convex optimiza-
tion problem using Lagrangian method. The optimal Lagrange
multiplier is then computed by Newton’s method, which guar-
antees superlinear convergence (faster than exponential). The
base station then broadcasts the optimal Lagrange multiplier to
mobile terminals, which, in turn, independently determine an
associated transmission rate/power level. This makes for a scal-
able implementation.

Let denote the Lagrange multiplier associated with the con-
straint in Problem . The Lagrangian function is then given by

This is a convex optimization so the necessary and sufficient
conditions for optimality are given by Karush-Kuhn-Tucker
(KKT) conditions [35], i.e., for all

and (10)

where denotes the optimal multiplier and is the optimal
. From , we have that

(11)

Suppose that is known; the algorithm to compute will
be provided in Appendix I. Then the base station broadcasts

, and mobile terminals solve (11). Unlike the previous work
which approximated the solution assuming high transmission
rate [36] or used interior point method [37], we directly use the
Lambert W function and obtain a closed form solution. Lambert
W function also contributes to computing in an efficient way
combined with Newton’s method, see Appendix I. Recall
is defined as [38]

(12)

and a concave, monotone increasing and differentiable function.
We assume that mobile terminals have tabulated or can compute

. The solution to (11) is then given by

(13)

and, the optimal output power level for is given by

(14)

Let us consider two simple examples capturing the character
of such uplink power control.

Example 1 (Homogeneous Case 1): Suppose , and
, then we have that for all , i.e., the

sum of all required rates. This yields the same power allocation
across all users irrespective of their individual rate requirements,
but a time allocation to each user is proportional to .

Example 2 (Homogeneous Case 2): Suppose still that ,
but now that . In this case (13) implies that
for all , but may be greater than . This will
occur when the circuit power is large, so transmitting quickly
and then idling is more beneficial than fully utilizing the time
resource.

C. Energy-Savings Under Various Loads

So far, we considered the optimization for a fixed number of
users. Recall that our objective is to minimize the per-flow en-
ergy in a dynamic system, and it is of interest to see how energy
saving benefits scale under various loads. To demonstrate this,
we consider, for simplicity, homogeneous users with identical

and rate requirement , so user index is dropped. We com-
pare three transmission policies. The baseline policy is such that
each terminal transmits at the maximum rate, i.e., the instanta-
neous transmission rate is . The second policy simply
scales with the number of users, so , which fully utilizes
the time resource. The third policy is our energy optimized one
where is given by (13). Let denote the system power
consumption in state ; it is given by

(15)

Then, the average system power consumption is
where is given in (6). From Theorem

1 and considering the call blocking probability , the
average per-flow energy is given by

(16)
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Fig. 3. Energy saving for real-time sessions under various loads. � �

��� kbps for all users, � � ��, � � ���� Mbps, � � �	� s,

������ ��� ��� ���� ����
 �
����� � �� dB, other parameters are
shown in Table I.

Representative results for the three policies are shown in Fig. 3.
As can be seen, the optimal policy (solid line) significantly saves
energy with respect to the baseline (dashed line). Per-flow en-
ergy is reduced by more than 50% when the call blocking prob-
ability is 0.1% or less. The energy saving benefits become more
significant when the loads are low. Recall that energy savings
come at no cost in terms of compromising user perceived per-
formance.

Remark 3.1: The second policy (dash-dot line) ex-
hibits an interesting behavior in Fig. 3; this policy is asymp-
totically optimal as the loads grow, however, far from optimal
when the loads are low. This is because of the impact of circuit
power. When the loads are low, and is usually small, the circuit
energy may dominate the transmit energy. Thus, transmitting
faster than the required rate (i.e., ) saves energy. Recall
that Example 2 demonstrated this effect in a static system; here
we see the analogous effect for the dynamic system.

D. Spatial Power Smoothing and Fair Energy Savings

A further gain of our energy-optimal transmission policy is
that both the output power levels and total power consumptions
of mobile terminals are spatially smoothed. Let us consider an
example. A base station is placed at (0,0) and 100 mobile termi-
nals are placed every 30 m on a 10 by 10 square grid. We con-
sider both of large and small scale fading; specifically path loss
with exponent 3 and i.i.d. Rayleigh fading channels. Fig. 4(a)
exhibits the output power levels when all terminals are allocated
an equal fraction of time. As can be seen, the output powers gen-
erally increase with the distance from the base station. Fig. 4(b)
exhibits the output powers after applying our energy optimal
transmission policy; the power levels are significantly smoothed
and almost same across the cell. Fig. 4(c) and (d) are the side
views of (a) and (b), which reveal that the deviation of output
powers are reduced significantly, i.e., from 40 to 5 dB. Fur-
thermore, at the cell edge, the optimization reduces the output
power levels by up to 15 dB. Even though we do not consider
intercell interference in this paper, reduced output power at the
cell boundary suggests that our energy-saving mechanism could

Fig. 4. Spatial power smoothing. (a) Equal time fraction allocation. (b) Op-
timized rate and time fraction. (c) Side view of (a). (d) Side view of (b):
� � �� kbps, ���� ���� �������� � �, ���� 
���� � ��� m, 100 users,
��

�
 �
� ����! � � GHz, other parameters are shown in Table I.

contribute to reducing inter-cell interference in multiple cell sce-
nario.

IV. ENERGY SAVINGS FOR FILE TRANSFERS

In this section, we consider energy savings in the context of
uplink file transfers. Our focus is again on flow-level dynamics,
and understanding how energy-savings can exploit times when
the system is underloaded. A practical algorithm is proposed to
achieve energy-efficiency and target throughput. The approach
is then combined with opportunistic scheduling to exploit time-
varying channels.

There are three key differences between achieving energy
savings in system supporting real-time sessions versus file trans-
fers. First, real-time sessions have strict rate requirements that
must be achieved, otherwise, the sessions may be dropped. By
contrast, file transfers are delay-tolerant, and users can specify
a target throughput considering their preferences between en-
ergy savings and fast transmission. For example, a user with
sufficient residual battery may prefer fast transmission, but an-
other user with scarce battery may prefer slow transmission to
benefit from the energy-delay tradeoff. Second, in the case of
real-time sessions, the stationary distribution of the number of
users is independent of the power control policy; we called this
the decoupling property. In the case of file transfers, however,
power control changes the stationary distribution, which makes
the problem more challenging. Third, in determining energy-ef-
ficient transmission, circuit power was important for real-time
sessions, but, as we will see, idling power plays a more crucial
role in the case of file transfers.

A. Energy Savings in an Underutilized System

Recall our claim that energy can be saved without substan-
tially impacting user perceived performance in an underutilized
system. For purposes of developing some insight, consider two
simple examples from the perspective of different time scales.

Example 3 (Long-Term Time Scale): If an M/M/1 processor
sharing system is stationary, the average file delay is given by

where is the average file size, is the
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Fig. 5. Time varying number of users in a dynamic system with offered
load 30%. Individual target throughput is (a) 5.10 Mbps, (b) 1275 kbps, and
(c) 318 kbps, and the arrival processes are identical. Simulation setup is given
in Section IV-H.

file arrival rate, and is the system capacity (or equivalently,
system throughput.5) So, the system capacity to achieve an av-
erage delay is given by . Suppose that the
arrival rate over a long time scale is reduced to . Then, could
in principle be adapted to this and reduced to
and energy can be saved without impacting average file delay.

Example 4 (Short-Term Time Scale): Fig. 5 exhibits
when the mean offered load is 30%. Unlike

the previous case, let us consider short term dynamics. As can
be seen in Fig. 5(a), the base station frequently experiences
periods when the system is idle, i.e., no users, corresponding
to periods when the resources are essentially unused. These
periods can be leveraged to save energy, by having users can
backoff on their transmit power and rate as long as the resulting
performance is acceptable. As shown in Fig. 5(b) and (c) when
such a strategy is used the system utilization increases, yet
energy may be conserved.

One might think that a backoff on transmit power decreases
the SNR which may in turn increase the link error rate. This
could lead to packet losses, which would be bad for our real-time
sessions and bad for file transfers because TCP performance
deteriorates over lossy wireless channels. However, adaptive
modulation and coding (AMC) are used in real systems, and
the transmission rate can be reduced accordingly as the SNR
decreases while preserving the target bit error rate (BER) [1],
[21]. In addition, Hybrid Automatic Repeat reQuest (HARQ) is
used at the physical layer in cellular systems such as WiMAX,
3GPP-LTE, HSDPA, HSUPA, etc. to hide local link errors from
TCP senders [1], [39]. As a consequence TCP performance is
not likely to be degraded by using the energy saving techniques
we present hereafter.

B. Problem Formulation

Let us go back to the system model shown in Fig. 1 to for-
mulate the problem in a dynamic system. Our objective is to

5System capacity in this paper is not the same notion as the information the-
oretic capacity.

minimize , see (2), while achieving a target throughput per
user denoted by ; can be thought of as a tuning parameter
controlling the tradeoff between fast transmission and energy
savings.

In minimizing in a stationary system, the two key ele-
ments are the system capacity, and how it is shared among on-
going flows. The system capacity not only determines the de-
parture rate of flows but also controls the energy consumption
of mobile terminals. We describe three models for the system
capacity as a function of , denoted by . We assume for
simplicity that users have the same target throughput and expe-
rience homogeneous channels, so the user index is dropped.

Baseline Policy: Suppose all users are scheduled for an equal
fraction of time and transmit at the full power to achieve the
maximum achievable throughput. In this case the system ca-
pacity is not state dependent, and given by

(17)

where is the maximum uplink capacity achievable by any
individual user, and the scheduling discipline can be modeled as
a processor sharing queue. Among the “fair” policies we con-
sider, this one minimizes the file transfer delay, but expends the
most power.

State-Dependent Policy: Alternatively, consider a state-de-
pendent transmission policy where the system capacity is given
by

(18)

The intuition underlying (18) is as follows. Assuming once
again a processor sharing scheduling discipline, as long as the
system is not overloaded, capacity is allocated so that each user
sees its target throughput , but no more than that. Thus the
system capacity grows linearly in , i.e., until it
reaches the maximum system capacity . This policy repre-
sents a simple model for exploiting dynamic spare capacity to
conserve energy by allowing the transmit power (and also the
rate) to backoff.

Opportunistic Policy: If channels are time-varying, we may
use opportunistic scheduling. In the simplest case where users
are homogeneous, the system capacity using max-rate sched-
uling [40] would

(19)

where , is a random variable denoting the channel ca-
pacity of user . Note that under max-rate scheduling for a ho-
mogeneous system each user would be served an equal fraction
of time, thus processor sharing is again roughly a good approx-
imation for how users are scheduled.

C. Flow-Level Dynamics

Given the above three simple models for system capacity we
now obtain a Markov chain model for the number of ongoing
flows in the system. We assume that the arrivals of file transfer
requests follow an independent Poisson process with arrival rate

and have independent file sizes with mean . Note that we
do not assume the file sizes are exponentially distributed. Let

denote a random process representing the
number of ongoing file transfers at time . Then, if file sizes
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are exponentially distributed, is a Markov process with state
space and rate matrix is given by

for

The stationary distribution , if it exists, is given by

(20)

where is the traffic load (bits per second) and
. Note that the in-

sensitivity property for Processor sharing queue ensures this
distribution also holds for general file size distributions [41]. In
the sequel, we let be a random variable with distribution .
In steady state, the average system power consumption is given
by where is a function which
captures the overall system power expenditure in state and
given by

(21)

because, at any time instance, one user is transmitting at the
instantaneous rate and users are idling. Finally, from
Theorem 1, the average energy per flow is given by

(22)

Note that depends on the system capacity , i.e., these
are coupled together, see (20). Hence, the subtlety here is
that, by backing off on transmit power one likely increases the
number of flows in the system making the overall optimization
of the dynamic system more challenging.

D. Energy-Delay Tradeoffs: Numerical Results

Next, we investigate how changing the tuning parameter in
(18) impacts the energy and delay performance; specifically, by
reducing from , different performance pairs for delay and
energy are obtained; these are shown in Fig. 6. When ,
the state-dependent policy is identical to the baseline; the delay
is the smallest but the energy consumption is the highest. This
baseline is exhibited by in Fig. 6. Then, as is reduced, energy
is saved but average delay increases. We consider three power
models, differing in whether they include the effect of circuit
and/or idling power. As can be seen, Power Model 1 comprises
both circuit and idling power and significant amount of energy,
e.g., up-to 60% relative to the baseline, can be saved as is
reduced (solid line). Interestingly, however, if is excessively
reduced, the energy consumption grows again. This is because
further reducing results in an increased number of idling users
expending excessive idling energy. Thus there exists an energy-
optimal target throughput where the most benefit is achieved.
Before investigating energy optimal throughput, we first provide
a lemma emphasizing the weak impact of circuit power on the
energy consumption.

Lemma 1 (Bounded Circuit Energy): If a dynamic system is
stationary, the impact of circuit energy per flow is monotonically
increasing as the delay grows, but bounded by .

Proof: The average circuit power consumption in the
system is . From Theorem 1,

Fig. 6. Energy-delay tradeoff for various throughput �.
(� � �����s, � � ���� Mbps, ��	
	� ��� � ���,

	�	��	� ��� ���� ������ 
�	 �
��������� ����� dB. Model 1:
� � ���� mW, � � !� mW, Model 2: � � ���� mW, and � � � mW,
Model 3: � � � � � mW. Other parameters are given in Table I.)

the average circuit energy per flow denoted by is given by
. Since is decreasing

in delay, is monotonically increasing as delay grows, but
bounded by .

Theorem 2 (Asymptotically Negligible Circuit Energy): If a
dynamic system is stationary, the impact of circuit energy per
flow becomes asymptotically negligible as the load grows.

Proof: From Lemma 1, the bound is decreasing as
grows, and thus the circuit energy becomes asymptotically

negligible as the load grows.
Although Lemma 1 and Theorem 2 are simple, they demon-

strate a key difference between static and dynamic systems.
Here are two supporting examples.

Example 5: To focus on the circuit energy effect, we set
the idling power as zero in this example. We compare Power
Model 2 (with transmit and circuit power) with Model 3 (with
transmit power only). Fig. 6 shows that Model 2 consumes more
energy than Model 3 by the amount of circuit energy. As can be
seen, the energy gap between Model 2 and 3 is monotonically
increasing as the delay grows, but quickly saturates to . As
a result, the energy decreases monotonically in delay.

This result is surprising because it is the opposite of what hap-
pens in static systems, i.e., long delay ultimately increased the
energy consumption and thus there existed an energy-optimal
throughput (or delay), see [5], [7], [25], [26].

Example 6: To have an insight on diminishing impact of cir-
cuit energy, we plot the energy consumption for Model 2 for
various offered loads. In Fig. 7, we exhibit the energy and delay
in the case of single user; the energy increases linearly when the
delay is large (and the slope becomes identical to circuit power

). However, for stationary systems, as the offered loads grow
(5% to 50%), the impact of circuit energy is gradually dimin-
ishing, and finally, we see the monotonically decreasing energy
consumption in delay. This confirms that for dynamic systems
circuit energy is asymptotically negligible as the load grows.

E. Stationary Analysis

To enable a more quantitative analysis, we consider a regime
where , i.e., the maximum system capacity far exceeds

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 15,2010 at 22:02:30 UTC from IEEE Xplore.  Restrictions apply. 



810 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 3, JUNE 2010

Fig. 7. The weak impact of circuit power in energy-delay
tradeoff: � � ����� mW, � � � mW, � � ���� Mbps,
�	
	��	 ��� ���� ������� ���	 ������������ ����� dB. Other
parameters are given in Table I.

individual users’ target throughput, and the system load is light.
This captures the system dynamics as goes to zero (or delay
goes to ). Then (22) can be simplified using the approximation

. The queue’s stationary distribution in (20) is
then roughly Poisson with parameter . Let denote
the energy per flow at , i.e.,

Recognizing the first term as the moment generating function
of a Poisson random variable, one obtains

(23)

Note that, as , (23) also captures the energy expenditure
for a single user which sees no other flows than itself

(24)

The first term in (23) accounts for transmit energy, which in-
creases exponentially in given a fixed . This implies if is
reduced (i.e., the system load is reduced), significant energy can
be saved while maintaining the same . The second term in (23)
accounts for circuit energy. As mentioned in Lemma 1 and The-
orem 2, as goes to zero, the circuit energy goes to . Fur-
thermore as the load grows, it becomes asymptotically negli-
gible.

The third term in (23) accounts for idling energy that plays
a crucial role in determining the energy-efficiency. As can be
seen, as is decreasing, the idling energy is increasing while the

transmit energy (the first term) is decreasing. Hence, has
an energy-optimal throughput for a given , which we denote by

(25)

One can attempt to determine by solving ,
yet this equation does not have a closed form solution. Instead,
to get a sense of its characteristics, we will use a linear approxi-
mation around , i.e., , where

and are Taylor series coefficients of . Simple cal-
culus gives the following approximation for the energy-optimal
per-flow throughput:

(26)

Remark 4.1 (Throughput Region): Equation (26) suggests
the throughput region where the throughput can be
traded off with energy. Otherwise, both of the average delay and
the energy performance are bad.

Interestingly, is an increasing function of SNR ; so trans-
mitting faster when channels are good indeed saves energy. In
addition, fast transmissions are beneficial when idling power
is high; otherwise accumulated users will consume too much
idling energy.

F. CUTE Algorithm

Although we derived the energy-optimal throughput for a sta-
tionary system, it is not straightforward to apply this result in
real system. Users experience heterogeneous and time-varying
channels, the number of users will change, and the system may
not be stationary; even if quasi-stationary, it may not be easy to
correctly estimate in (26). In this section, we propose a simple
practical algorithm that does not use the prior knowledge of the
traffic load but simply relies on the current system state .

Energy-Efficient Rate: The key idea is to replace the energy-
optimal throughput (26), obtained in a stationary regime, with
state-dependent one associated with each time frame . Consider
an uplink which is equally time shared by users. The av-
erage energy per bit for user to achieve throughput
during one time frame is given by

where is a user-indexed version of (4). Note
that each user uses only a fraction of time frame and so
the instantaneous rate must be . The most energy-efficient
individual throughput can be determined based on

(27)

i.e., the throughput that minimizes the average energy per bit.
Since (27) is differentiable and convex, is given by simple
calculus such as

(28)
Using (28), each mobile can determine its own energy efficient
rate given .

Remark 4.2 (Energy-Opportunistic Transmission): Note that
is energy-opportunistic in the sense that is an in-

creasing function of ; if the channel is good, increasing the
transmission rate saves energy (and vice versa). This is similar
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to the time-domain water filling, which is known to be the op-
timal transmission policy over a time-varying channel [21].

Constraints: Two additional constraints play a role. First
the maximum instantaneous transmission rate of a user is in
practice bounded, say by . Thus when there are users
sharing the system, the highest achievable user throughput
is . Second users can specify their own target
throughput considering their residual batteries and fast
transmission. Thus, energy-efficient rate is upper and lower
bounded, and the throughput for user is given by

(29)

Relaxing Target Throughput: Since file transfers are delay
tolerant, we do not need to achieve instantaneously. Instead,
we might consider achieving it over a reasonable averaging
window. We define the exponentially averaged throughput
as

(30)

where corresponds to weight on the past. To meet
on average, we choose such that

which yields

(31)

This relaxes the time scale over which the performance target
should be met and contributes to further energy savings. Fig. 8
exhibits how such averaging time scales save energy while
keeping the average file delays almost the same (solid ).
In summary the proposed algorithm realizes the following
throughput:

(32)

We refer to this transmission policy as CUTE meaning Con-
serve User Terminals’ Energy. In a run time CUTE alternates
among three transmission modes—energy-efficient mode at

, target mode at and capacity-constrained mode at
—in accordance with the system state, throughput

history and channel fluctuations so that CUTE achieves (or
exceeds) a target throughput while saves energy.

Remark 4.3 (Energy-Efficient Mode): The energy-efficient
mode is the most “desirable;” indeed when and
feasible, user is served faster than its target and saves energy
as well. If the system is underutilized, or channels are good,
users are more likely to operate in this mode because can
be high, see (28).

Otherwise, if , the user defers energy-saving and
is served at in order to meet the target throughput. Users
with low SNR tend to operate in the target mode. If the system
is congested or SNR is bad, that user may be in the capacity-
constrained mode.

The following results are shown in the Appendix II.
Theorem 3 (Convergence of CUTE): Suppose that the

number of users and channel gains are fixed, and consequently

Fig. 8. Additional energy saving by relaxed target rate in Rayleigh fading chan-
nels. � � ��� kbps (1.5-s delay for 60-kB file), � � ��� Mbps, 30% of-
fered load. (a) Average energy per file. (b) Target delay ���, and the achieved
delay ���. Parameters are same to the simulations in Section IV-H.

and are fixed. Then, the average
throughput and the transmission rate both converge
to . Thus, if feasible, CUTE converges
to the greater of and , otherwise, to .

Theorem 4 (Convergence Speed): Both of and con-
verge to the equilibrium rate at least exponentially fast.

G. CUTE With Opportunistic Scheduling

Opportunistic scheduling is desirable to enhance users’
throughput when they see time-varying channels. Opportunistic
scheduling for power control was first proposed in [23], but
the authors exploited opportunism not to save energy but to
enhance throughput. Clearly, opportunistic scheduling can
serve both purposes. CUTE is compatible with various types of
opportunistic scheduling such as [40], [42]–[45]. The benefit
of backing off the transmit power is more apparent when
opportunistic scheduling is used versus round-robin scheduling
because scheduled users are more likely to be experiencing high
SNRs, and operating at energy-efficient mode, see Remark 4.3.

To this end, we consider modifying our time sharing dis-
cipline. Consider the case where rather than serving all users
in each frame, we schedule only a single user and assume the
frame length is reduced to the channel coherence time. Let
denote the index of the scheduled user under an opportunistic
policy on frame . The proposed transmission policy under an
opportunistic scheduling for user is

(33)

where is the indicator function and is redefined as

Note that we use instead of because only one
user is scheduled per time frame. Also, note that is used
instead of , and is modified giving

(34)
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Fig. 9. Energy-delay tradeoffs with round-robin scheduling. (a) CUTE algorithm to mitigate the impact of circuit/idling power on energy-delay tradeoff: � � ���,
������ 	�
� � ���. (b) Without energy-efficient rate. (c) With energy-efficient rate.

where is computed during the time frames where user has
been served.

H. Simulation Results

To validate the effectiveness of the CUTE algorithm, we es-
timated the average energy consumption per file transfer versus
the average delay using flow-level event-driven simulations.
On each time frame, new user requests arrive according to a
Poisson process with rate . Each user requests exactly one file
that is log normally distributed with mean 60 kB [13]. Users are
assumed to experience independent Rayleigh fading channels.
Our simulation parameters are , dB,
and an ergodic channel capacity is 5.1 Mbps. Other parameters
are given in Table I. The average received SNR at the base sta-
tion when the mobile terminal transmits at its maximum output
power is 17.5 dB. When mobile terminals reduce the target
throughput, and power backoff is used, the average received
SNR decreases. The number of time frames per simulation is
1 000 000. We plot the energy-delay tradeoff curves for

Mbps to show how the user’s preference on energy savings
against fast transmission impacts the energy-delay tradeoff.

Fig. 9 demonstrates energy-delay tradeoffs under round-robin
scheduling. Fig. 9(a) exhibits four curves: transmit power only
(dashed ), transmission and circuit power (dashed ), trans-
mission, circuit and idling power (solid ), and CUTE algo-
rithm (solid ). As expected, idling and circuit power increase
the average energy. Furthermore, the impact of idling energy
dominates when delay is large. This is because the accumulated
users result in high idling energy consumption. By contrast, cir-
cuit energy becomes bounded by mW as stated in
Lemma 1. Comparing solid line with solid line shows how
the CUTE algorithm significantly improves the energy-delay
performance in the presence of idling and circuit power. Per-
haps surprisingly, CUTE dominates the case where the system
energy expenditures involve only transmit power. This is be-
cause as mentioned in Remark 4.2 transmitting at rate is
energy-opportunistic.

Fig. 9(b) shows the average energy and delay when

(35)

i.e., without the energy efficient rate . The three curves
correspond to offered loads of 10%, 30%, and 50% of the er-
godic capacity. Without using , power backoff cannot fully
realize energy-delay tradeoffs, moreover the adverse effect of
idling power emerges when delay is high. Interestingly, the
curve for the offered load of 10% is different from the other
two cases. This is because the circuit energy effect is relatively
dominant when is low, see Theorem 2 and Example 6.

Finally, Fig. 9(c) shows the performance of CUTE when
(35) is replaced by (32). Not only are undesirable energy-delay
pairs removed but also energy savings can be seen to be
significant—as much as 70%. We simulated various offered
loads demonstrating that energy saving benefits are higher
when the offered load is lower. Comparing subfigure (b) with
(c) we see that CUTE significantly improves both energy and
delay performance. For example, at an offered load 30%, the
delay/energy pair at (3 s, 225 mJ) in Fig. 9(b) moves to (0.9 s,
116 mJ) in Fig. 9(c); the delay is reduced more than three times
and energy consumption is cut by half. This is not surprising
because the energy-efficient mode will serve a user faster than
the target to save energy, see Remark 4.3.

Results for the case where opportunistic scheduling is used
are shown in Fig. 10. The availability of perfect channel state
information is assumed in simulating opportunistic scheduling.
We reduce the time frame length to 1 msec. As with the case
of the round-robin scheduling, energy consumption increases
as the delay grows but CUTE successfully removes the un-
desirable energy and delay pairs. The energy consumption is,
however, a lot less than the case of round-robin scheduling. For
example, comparing Fig. 9(a) and Fig. 10(a) shows that, when
the delay is 0.5 second, CUTE with round-robin consumes
140 mJ while CUTE with opportunistic scheduling expends
70 mJ. Comparing Fig. 9(c) and Fig. 10(c) with offered load
50% also shows that both of the energy and delay become less
than half.

I. What Happens in High Loaded Systems?

As can be seen in Fig. 9(c), when the offered load is 70%,
when the energy/delay curve of the CUTE al-
gorithm starts growing again. This highlights the fact that op-
timizing user-perceived energy consumption based on consid-
ering what is optimal for fixed numbers of users need not by
optimal in the dynamic regime. Specifically the energy optimal
rate , is specified given a fixed number of users, and is
a monotonically decreasing function of , see (28). Thus
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Fig. 10. Energy-delay tradeoffs with opportunistic scheduling. (a) CUTE algorithm to mitigate the impact of circuit/idling power on energy-delay tradeoff: � �

���, ������ 	�
� � ���. (b) Without energy-efficient rate. (c) With energy-efficient rate.

when the offered load is high, and so is , users throughputs
may be too slow leading to increased numbers

of users in the system and increased idling power consumption.
As a consequence, operating at the static energy-optimal rate
might not be good for a heavily loaded system. Note, in this re-
spect, the work of [5]–[7], [27] may be also problematic.

To circumvent this potential problem one can restrict users
from setting their target throughputs too small. Alternatively
the energy efficient rate can be modified so it has a
lower bound; for example, in (28) can be replaced by

where is given by . Here is
the utilization when the system is declared to be highly loaded.
Note that is the average number of users when the average
utilization is in processor sharing system. Roughly
speaking, when the load is less than , operates as before,
but when the load exceeds , is increased by for
fast processing. Figs. 9(c) and 10(c) show the results when

(dashed lines) and exhibit monotonically decreasing
energy/delay curves (and also better performance) even when
the system is overloaded.

V. COEXISTENCE OF TWO TYPES OF USERS

So far we have deliberately partitioned users into two types:
real-time sessions and file transfers. A question then arises as
to whether it is possible to consider them joint optimization
of energy and performance criteria. Considering the difficulty
of optimizing the case of file transfers alone, this remains an
open question, particularly in a dynamic system. One possible
way is to use time-scale separation. Assuming the time scale
of real-time sessions is much larger than that of file transfers,
the state-dependent algorithm for file transfers and the opti-
mization for real-time sessions can be done at the same time,
but “separately”. This requires dividing the time frame into two
subframes, one for real-time and the other for file transfers.
The ratio between two subframes can be judiciously determined
from the engineering point of view by service providers con-
sidering the reliability of real-time sessions and energy saving
benefits of each type. One might try to find the optimal subframe
ratio—we leave this as an problem for further research.

VI. CONCLUSION

This work is, to our knowledge, the first to study energy
saving techniques for wireless systems subject to dynamic
loads. The key idea is simple: to reduce uplink transmit power,

but, to do so in a manner that neither leads to excessive
idling/circuit power, nor degrades user perceived performance.
We found that idling power, which was previously neglected
in static systems, plays a crucial role in energy-efficiency
when systems are dynamic, specifically for file transfers. By
contrast, the impact of circuit power, which has been addressed
in previous work, is limited and asymptotically negligible as
the system load grows. Future broadband wireless systems
promise to deliver much higher capacity, but in some cases at
a much higher energy cost. As such, given the importance of
battery lifetimes for mobile terminals, and potential savings in
the uplink transmit energy on the order of more than 50% for
real-time sessions and 35%–75% for file transfers exhibited in
this paper, our approach appears to be quite promising.

This work is not the final word on this topic. As mentioned
earlier we expect the approach to be suitable for a broader set
of multiple access technologies, e.g., beyond TDMA, FDMA to
OFDMA, and extended to multiple cell scenario. Another inter-
esting observation is that such energy saving techniques effec-
tively reduce the output power level of mobile terminals and this
in turn might be beneficial to mitigating inter-cell interferences.
Thus one might expect to achieve even better energy savings,
or in the case of file transfers to see an improved energy-delay
tradeoff.

APPENDIX I
FINDING THE OPTIMAL LAGRANGE MULTIPLIER

We determine the optimal Lagrange multiplier based on
an iterative method that exhibits superlinear convergence. Let
denote the uplink utilization of the system, i.e.,

(36)

By substituting (13) into (36), we have

(37)

Note that is a convex and monotone decreasing function of
. From KKT conditions in (10), the optimal satisfies

if and only if . Otherwise . So consider setting the
initial value as and let us check two possible cases for

.
Case 1) If , then and and are deter-

mined from (13) and (14). This is the case for Example 2.
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Case 2) If , the rate vector is not feasible, and
should be increased until equals 1. Since is convex

and monotonically decreasing in , Newton’s method can be
used to solve iteratively, i.e.,

(38)

where

(39)

and if , and
[38]. Although converges to superlinearly (because it is
Newton’s method [35]), a good initial value further reduces the
number of iterations. In particular, we start the iteration at
where

(40)

and . Because ,
, and decreases monotonically, finally hits 1. The

iteration ends when enters the interval where we
set . The number of iterations to convergence is mostly
less than 10. If starting with an optimal multiplier obtained in
the previous time frame, the iterative optimization was found to
converge after 3–5 iterations in a system with time-correlated
Rayleigh fading channels.

APPENDIX II

Proof of Theorem 3: If converges, then, from (30), it
is obvious that also converges to the same value. So, we
only show that converges to . By
substituting (32) into (30)

Let .
Then, , and we show that converges to

by considering the fixed point equa-
tion and the geometry of the iteration. In Fig. 11(a)
where , if is feasible, i.e., it is obvious
from the figure that the convergence point is ,
i.e., the intersection of and line (e)

. If as plotted by line (c3), the con-
vergence point is . So, converges
to . Similarly, in Fig. 11(b) where , if

is feasible, i.e., it is obvious from the figure
that the convergence point is , i.e., the intersec-
tion of and line (e) . If

as plotted by line (c2), the convergence point is
. So, converges to .

Combining these two results completes the proof.
Proof of Theorem 4: If intersects , con-

verges in one iteration. If intersects

Fig. 11. Geometric proof of convergence theorem. (a) In the case of � � � ,
�� ��� converges to ����� � �� ����. (b) In the case of � 	 � , �� ��� converges
to ����� � �� ����.

where is either or , converges to exponentially
fast because

and . Thus, large means slow convergence.
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