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Abstract

We investigate the benefits of channel-aware (opportunistic) scheduling of transmissions in ad-hoc
networks. The key challenge in optimizing the performance of such systems is finding a good compromise
among three interdependent quantities: the density and channel quality of scheduled transmitters, and
the resulting interference at receivers. We propose two new channel-aware slotted CSMA protocols: op-
portunistic CSMA (O-CSMA) and quantile-based CSMA (QT-CSMA) and develop stochastic geometric
models allowing us to quantify their performance in terms of spatial reuse and spatial fairness. When
properly optimized these protocols offer substantial improvements in performance relative to CSMA –
particularly when the density of nodes is moderate to high. Moreover, we show that a simple version of
Q-CSMA can achieve robust performance gains without requiring careful parameter optimization. The
quantitative results in this paper suggest that channel-aware scheduling in ad-hoc networks can provide
substantial benefits which might far outweigh the associated implementation overheads.

I. INTRODUCTION

Evaluating and optimizing the capacity of wireless ad-hoc networks has been one of the goals of
the networking and information theory research communities for a last decade. Due to the inherent
randomness in such networks, e.g., locations of nodes, wireless channels, and node interactions governed
by protocols, researchers have developed stochastic models that can parsimoniously capture the uncertainty
of such environments while still giving insight on system performance and optimization. Work based on
stochastic geometric models have perhaps been the most successful in terms of providing reasonably
realistic, yet mathematically tractable, results, see e.g., [5], [44], [20]. This paper leverages this line
of work to study the performance of networks operated under two channel-aware slotted CSMA type
protocols.

One of the important factors determining the capacity of a wireless network is the degree of spatial
reuse; this is mainly determined by the associated medium access control protocol. The following basic
protocols: ALOHA, Opportunistic ALOHA (O-ALOHA), and CSMA have been studied in detail in
literature. We discuss these briefly below.

This is an extended version of a paper presented at SpaSWiN 2011. This work is supported by NSF grant CNS-0917067. The
authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC
resources that have contributed to the research results reported within this paper. URL: http://www.tacc.utexas.edu
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Figure 1: A realization of modified Matérn hardcore process : randomly distributed points are the
realization of marked Poisson point process where each point has an independent identically distributed
mark denoting its timer value in [0, 1]. If a point has the smallest timer value in its neighborhood
(neighborhood is not shown here but formally defined later in (3)), then, it is selected as a CSMA
transmitter. Selected CSMA transmitters were drawn inside boxes.

ALOHA is a basic MAC protocol in which spatially distributed nodes simply transmit with some
probability p. A mathematical model for a spatial version of an ALOHA based wireless ad-hoc network
is detailed in [5]; various extensions capturing the impact of modulation techniques on the transmission
capacity have been studied, see e.g., [44]. Because transmitters contend independently, the transmission
probability p should be properly chosen as a function of node density so as to achieve a high spatial
reuse. This involves finding a compromise between a high density of transmitters and associated excessive
interference which deteriorates the quality of transmissions and accordingly leads to low spatial reuse.

In [2], [43], the performance of an opportunistic version of spatial ALOHA (O-ALOHA)1 was evalu-
ated. In their models, only qualified transmitters, namely nodes whose channel quality to their associated
receivers exceeds a threshold γ, can transmit with probability p. The resulting spatial reuse is thus affected
by both parameters. When properly tuned, this simple channel-aware MAC can increase spatial reuse by
roughly 40% relative to simple ALOHA.

Although O-ALOHA can dramatically increase spatial reuse by qualifying nodes seeing good channels,
it still suffers from collisions which limits its performance. Unlike (O-)ALOHA, carrier sense based
medium access (CSMA) protocols achieve high spatial reuse by coordinating transmissions. In [28], [3],
a modified Matérn hardcore process model for a spatial slotted CSMA protocol was introduced. Each
node contends with its ‘neighbors’ via a uniformly distributed contention timer. The node with the earliest
timeout wins. As a result the transmitters end up being nicely separated, see e.g., Fig. 1. Based on this
model, CSMA is shown to increase spatial reuse by roughly 25% over basic ALOHA.

1The ALOHA considering channel state information (a.k.a opportunistic ALOHA) in single hop network was introduced and
studied in [1], [34].
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In this paper, we extend the CSMA ad-hoc network model introduced in [3] to study two simple
channel-aware MAC protocols. In the first scheme, named opportunistic CSMA (O-CSMA), we use a
channel quality threshold γ, as introduced in [2], [43], to qualify nodes to participate in the CSMA
contention process. Optimizing performance of such networks requires selecting γ as a function of node
density and channel variation distributions. In the second scheme called quantile-based CSMA (QT-
CSMA), nodes contend based on the quantile of the channel quality to their associated receivers. Doing
so allows nodes to transmit when their channel is the ‘best’ in their neighborhood. This also ensures
that each node gets a fair share of access opportunities among the nodes in its neighborhood, and
circumvents the problem of choosing a density dependent qualification threshold. This is particularly
desirable if channel statistics seen across nodes are heterogeneous. Quantile-based scheduling approaches
for downlinks in cellular networks were introduced and studied in [33], [32], [31], [6] and in the wireless
LAN setting in [21], [11].

The performance metrics considered in this paper are spatial averages of network performance, which
means the performance metric captures an average over possible realizations of nodes’ locations. This is
particularly meaningful, since in real world scenarios nodes are irregularly placed and/or motion might
make a performance metric which is a function of nodes’ location is less informative. To that end, we
characterize the performance as seen by a typical node using tools from stochastic geometry together
with analytical/numerical computation methods.

a) Contributions: This paper makes the following four contributions.
First, to our knowledge, this is the first attempt to evaluate CSMA-based opportunistic MAC protocols

in ad-hoc networks, namely O-CSMA and QT-CSMA. Our approach captures the delicate interactions
between the channel gains and interference statistics underlying the performance of opportunistically
scheduled nodes in ad-hoc networks.

Second, we evaluate the sensitivity of spatial reuse to various protocol parameters, showing a clear
advantage of QT-CSMA over O-CSMA which in turn have substantially better performance than sim-
ple ALOHA based schemes. To that end, we characterize the interplay between the density of active
transmitters and the quality of transmissions as the function of qualification threshold γ and carrier
sensing threshold ν. In addition, we explore the maximum achievable spatial reuse under O/QT-CSMA
in asymptotically dense networks by scaling γ as the function of node density. We show that both
O/QT-CSMA exhibit a ‘phase transition’ phenomenon for spatial reuse depending on the scaling of γ.

Third, this paper is the first to evaluate the spatial fairness realized by these protocols and to find
that QT-CSMA can achieve better fairness than CSMA. Specifically we introduce and quantify a spatial
fairness index among sets of nodes sharing the same number of neighbors, and which captures the impact
of random nodes’ placements.

Finally, we study tradeoffs between spatial fairness and spatial reuse, and compare the Pareto-frontier
of O-CSMA and that of QT-CSMA. In particular, we show that quantile-based CSMA without a quali-
fication step (QT0-CSMA) achieves a performance comparable to that of O/QT-CSMA in terms of both
fairness and the density of successful transmissions, which is then a robust and attractive choice from an
engineering perspective. We present some initial discussion of implementation consideration for such a
protocol.
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b) Related Work: The two-hop wireless network studied in [18] is perhaps the first analytical model
for a multi-hop wireless network. A similar model was used in [37], [38] to study the performance of
slotted ALOHA and CSMA protocols respectively. Subsequently [39] and [7] have considered general
multi-hop wireless networks.

The Markovian model for a multi-hop CSMA wireless network introduced in [7] has been the basis of
much subsequent work. The network is modeled as a graph, where each node denotes a transmitter and
if a pair of transmitters can interfere with each other’s receivers they are connected by an edge. Thus
viable sets of transmitters correspond to independent sets. A MAC protocol can be modeled as a Markov
chain over independent sets, whose stationary distribution captures the long run performance seen by
nodes, but is hard to evaluate.

This idealized model was later extended and widely used to show various insights on system behavior
and performance [42][13][12][41][40][14]. In [42], various throughput approximations for CSMA/CA
based networks are developed, and various fairness driven scheduling methods are proposed and evaluated.
The authors show that on a simple linear network with three nodes, CSMA/CA can be very unfair when
nodes are aggressively accessing the medium. This problem arises due to location dependent contention in
the multi-hop network setting, and can be serious since it can lead to node starvation [26][16]. Based on
the Markov chain model in [7] and [42], [13] studies the impact of asymmetry or so-called border effects
and carrier sensing ranges on fairness in a linear topology. The authors confirm that unfairness is due to
asymmetry in the network topology, which implies that unfairness can be removed, to a large extent, by
either increasing the size of 1D networks or making carrier sense range larger than the receive range.
However, it turns out that, in 2D grid networks, a phase-transition like phenomenon occurs whereby
unfairness in a large network arises sharply if the intensity of nodes’ access is sufficiently high [12]. The
emergence of this phenomenon is a result of the regular structure of the grid-network and it vanishes
as the network becomes irregular. Still CSMA-based networks exhibit various degrees of unfairness. To
explore how to make the CSMA network fair, [41] and [40] introduce a Markov chain model, with
node-specific access intensities which equalize the per-node throughput. This approach was also used in
[27], which introduced a framework translating various fairness objectives to corresponding contention
resolution algorithms. The above described Markovian model is simple enough and somewhat tractable,
so widely accepted. However, the Markovian model is too idealized to incorporate various PHY/MAC
parameters and random factors such as node locations, fading channels2 and aggregate interference at
receivers, all of which have a substantial impact on the performance of individual nodes and the overall
network.

With the introduction of the IEEE 802.11 protocol, several researchers have attempted to analyze
multi-hop wireless networks using the IEEE 802.11. [10] was one of the early efforts which provided
an analytical model for a given fixed network and computed the lower bound on the sum throughput of
transmitter-receiver pairs for a given network. However, the model’s simplified physical layer, so-called
protocol model, does not take into account the impact of aggregate interference. Later, [9] provided a
more sophisticated model which takes into account various PHY and MAC layer parameters. The authors
linearly approximated the access probability of individual nodes as a function of its success probability

2Note that random fading is crucial for studying opportunistic scheduling.
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and found a linear system like relationship between success probabilities and transmission probabilities of
nodes in a given network. This gives a reasonable approximation of the per-node throughput, however, the
work does not reveal how the system is affected by various system parameter selections or the inherent
randomness in wireless environment. Furthermore performance is evaluated for a given fixed network,
which is less informative considering mobile nature of wireless nodes.

The above limitations - i.e., not taking into account random fading channel, random node locations,
impact of aggregate interference, and capture effect3 - are naturally addressed in research based on
stochastic geometric models, see e.g., [20], [5], [36], [44], on which our work is based. In this line of
work, the performance metrics of interest is an average over random environments (including fading,
node locations, protocols, etc), which can be more informative in terms of representing typical behavior.
Specifically the CSMA related work of [3] and [28] used a spatial point process to model spatially
distributed wireless nodes using a CSMA-like MAC protocol. These works successfully approximated
the statistics of the aggregate interference resulting from CSMA-like MAC nodes by those of a non-
homogeneous Poisson point process of interferers. The approximation was validated via simulation and
was shown to match well. However, characterizing the exact interference statistics is still very hard
and has remained an open problem. As a response to this, subsequent work in [17], [15] suggested
an alternative approximation for the performance of CSMA nodes which is accurate for asymptotically
sparse networks. The carrier sense mechanism models have also been successfully used to study cognitive
radio networking scenarios in [24], [23], [29].

Our work is different from the above work in the following aspects. First, we build upon the CSMA
model in [3] incorporating opportunistic scheduling schemes. We consider the dependency between
the channel gain of a scheduled node and the activity of the surrounding nodes (or accordingly the
statistics of interference), which has to our knowledge not been explored before. Second, we consider the
fairness for slotted (or synchronized) CSMA networks. In particular, we study how system parameters
and opportunistic CSMA protocols can change the fairness characteristics of the slotted CSMA network.

A. Organization

In Section II, we describe our system model, including details for our two proposed opportunistic
MAC protocols. In Section III, the transmission and success probability of a typical node under the two
MAC protocols are derived. These will be used later to compute the two performance metrics. In Section
IV, we compare the numerical results for the spatial reuse of O-CSMA and QT-CSMA networks under
three node density regimes, and in Section V, the fairness of such networks is evaluated and tradeoffs
between spatial reuse and fairness are considered under various parameter values. We describe possible
implementations of proposed protocols in Section VI and conclude in Section VII.

3If two transmitters happen to send their packets to the same receiver, the one with a higher signal strength can be received
with non-zero probability. This is called as a capture effect.
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II. SYSTEM MODEL

A. Node Distribution and Channel Model

We model an ad-hoc wireless network as a set of transmitters and their corresponding receivers.
Transmitters are distributed in R2 as an independently marked homogeneous Poisson Point Process (PPP)
Ψ = {Xi, Ei, Ti,Fi,F

′
i}, where Φ ≡ {Xi}i≥1 is the PPP with density λ denoting the set of transmitters

or their locations in R2 and Ei is an indicator function which is equal to 1 if a node Xi transmits
and 0 otherwise. The value of Ei is governed by the medium access protocol used and the activity of
other nodes {Xj}j 6=i. We assume that the receiver of each transmitter is located r meters away from
the transmitter. The direction from a transmitter to its receiver is randomly distributed, i.e., uniformly on
[0, 2π]. Throughout this paper, we only consider the performance as seen by a typical receiver.

Let Fi = (Fij : j) be a vector of random variables Fij denoting the fast fading channel gains between
the ith transmitter and the receiver associated with jth transmitter. In particular, Fii denotes the channel
gain from ith transmitter to its associated receiver. We assume that Fij are identically distributed (i.i.d.)
with mean µ−1, i.e., Fij ∼ F (For two random variables A and B having the same distribution, we
write A ∼ B.), with cumulative distribution function (cdf) G (x) = P (F ≤ x). Let F′i =

(
F ′ij : j

)
be

the vector with coordinates F ′ij where F ′ij is the random variable denoting the fast fading gain between
the ith transmitter and the jth transmitter. The random variable F ′ij are assumed symmetric4 and i.i.d,
i.e., F ′ij = F ′ji and F ′ij ∼ F . In this paper, we only consider the Rayleigh fading case where F has an
exponential distribution with cdf G (x) = 1 − exp{−µx} for x ≥ 0, but other fading models could be
considered. Let ‖x‖ denote the norm of the vector x ∈ R2 and l(‖x− y‖) = ‖x− y‖α be the path loss
between two locations x ∈ R2 and y ∈ R2 with pathloss exponent α > 2. Then, the interference power
that the jth receiver at location y experiences from the ith transmitter at location x is Fij/l (‖x− y‖).

B. Signal to Interference Ratio Model

The performance of a receiver is governed by its signal to interference plus noise ratio (SINR). Under
the model given above, the SINR seen at the i-th receiver is

SINRi =
Fii/l (r)

IΦ\{Xi} +W
, (1)

where IΦ\{Xi} =
∑

Xj∈Φ\{Xi}EjFji/l (‖Xi −Xj‖) is the aggregate interference power, or so-called shot
noise, and W is the thermal noise. We shall focus on interference limited networks, when the impact of
thermal noise is comparatively negligible. In this paper we focus on such a regime and let W = 0. The
reception model we consider is the so-called outage reception model, where a receiver can successfully
decode a transmission if its received SINR exceeds a decoding threshold t, i.e., the i-th receiver gets
log (1 + t) bits per second (bps) per transmission if SINRi > t and zero otherwise5.

4Unlike F ′
ij , Fij is not symmetric, i.e., Fij 6= Fji.

5Instead of outage model, one can consider SINR model, where the performance of a typical receiver is given as
E0 [log(1 + SINR0)] bits per second where SINR0 is the SINR of a typical receiver [2]. This is an appropriate model
for wireless devices using adaptive modulation and coding technique. In this paper, we consider the outage model for simplicity,
but it can be easily extended to the adaptive modulation model.
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C. Carrier Sense Multiple Access Protocols

We consider a slotted CSMA network, where nodes compete with each other to access a shared
medium. Carrier sensing is followed by data transmission at each slot. Each node contends with its
‘neighboring’ nodes using a (uniformly distributed on [0, 1]) timer value. The timer value is independent
of everything else and each node transmits if it has the smallest timer value in its neighborhood and
defers otherwise. CSMA provides a way to resolve contentions among nodes but does not take advantage
of channel variations. In what follows, we introduce two distributed opportunistic CSMA protocols which
take advantage of channel variations amongst transmitters and their receivers: opportunistic CSMA (O-
CSMA) and Quantile-based CSMA (QT-CSMA).

Under O-CSMA, nodes whose channel gains are higher than a fixed threshold γ qualify to contend; we
call this the qualification process. We assumed that channel feedback from each receiver is available to
its associated transmitter each slot. Qualified nodes in turn, contend for transmission with their neighbors
on that slot. Specifically, let Φγ = {Xi ∈ Φ | Fii > γ} denote the set of qualified nodes or contenders.
Note that Φγ is a subset of Φ which is generated by independent marks with probability

pγ = P(F > γ), (2)

so it is a homogeneous PPP with density λγ ≡ λpγ . Each contender Xi ∈ Φγ has a set of qualified nodes
with which it contends. We say two transmitters Xi and Xj contend if the received interference they
see from each other is larger than the carrier sensing threshold ν, i.e., if F ′ij/l(‖Xi −Xj‖) > ν and by
symmetry F ′ji/l(‖Xi −Xj‖) > ν. We call the set of contenders of a node its neighborhood and denote
it by

N γ
i =

{
Xj ∈ Φγ s.t. F ′ji/l(‖Xi −Xj‖) > ν, j 6= i

}
. (3)

Contending nodes are not allowed to transmit simultaneously since they can potentially interfere with
each other. To avoid collisions, every slot each node Xj in Φγ picks a random timer value Tj which
is uniformly distributed on [0, 1]. At the start of each time slot node Xj starts its own timer which
expires in Tj seconds. Each node senses the medium until its own timer expires. If no node (in its
neighborhood) begins transmitting prior to that time, then, it starts transmitting, otherwise it defers. Under
this mechanism, a node transmits only if the node’s timer value is the minimum in its neighborhood, i.e.,
when Ti is equal to minj:Xj∈N γ

i ∪{Xi} Tj .
Note that the qualification process is a mechanism selecting nodes with high channel gains. Thus, all

qualified nodes have channel gains larger than γ. The posterior channel distribution after qualification is
F conditioned on that F > γ, so given by a shifted exponential distribution

Gγ(x) ≡ P(F < x|F > γ) = (1− exp{−µ(x− γ)})1{x ≥ γ}. (4)

The qualification process not only increases the signal strength but also reduces the amount of interference,
and therefore we can expect successful transmissions. However, the parameter γ should be chosen
judiciously; otherwise there will either be too many transmitting nodes generating too much interference
or too few transmitting nodes resulting in low spatial reuse. Neither case is desirable. Note that when
γ = 0 this model corresponds to the standard CSMA one proposed in [3].
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Under QT-CSMA one also has a qualification process with threshold γ. However, the active transmitters
in a neighborhood are selected based on the quantile of their current channel gain; we refer to this as
quantile scheduling. Specifically, we assume that channel quality Fii is available to the transmitter Xi,
and at each slot a qualified transmitter Xi computes its channel quantile Qi = Gγ (Fii) using its channel
gain Fii (conditioned on that Fii > γ). This transforms the channel distribution to a uniform distribution
on [0, 1], which serves both as a relative indicator for channel quality and to determine the timer for
collision avoidance. More precisely under QT-CSMA Xi sets its timer value, say Ti, to 1 − Qi and
starts sensing the medium until its timer expires. If no transmitting node is detected prior Ti, then, the
node accesses the medium, otherwise it defers. In other words, node Xi transmits only if it has the
highest quantile in its neighborhood, i.e., when Qi = Qmax

i where Qmax
i ≡ maxj:Xj∈N γ

i ∪{Xi}Qj . Let
Fmax
i,γ = G−1

γ (Qmax
i ) be the channel fade of a transmitting node Xi or the channel fade given node Xi

transmits, where G−1
γ (·) is the inverse function of Gγ(·). Let Nγ

i = |N γ
i | for simplicity; then Fmax

i,γ is a
Nγ
i + 1st order statistic, i.e.,

Fmax
i,γ = max

[
F1,γ , F2,γ , · · · , FNγ

i +1,γ

]
, (5)

whose distribution conditioned on Nγ
i = n is given by

P
(
Fmax
i,γ ≤ x|Nγ

i = n
)

= (1− exp{−µ(x− γ)})n+1 1{x ≥ γ}. (6)

Note that QT-CSMA further exploits opportunism beyond the qualification process. Unlike O-CSMA,
a QT-CSMA node transmits only when it has the best channel condition in its neighborhood, which
should further improves its likelihood of successful transmission. One may surmise that QT-CSMA may
work well even without qualification process since the quantile scheduling will fully take advantage of
opportunistic gain from many nodes (so-called multi-user diversity). This will be explored later. For that
purpose, we shall denote QT-CSMA with γ = 0 by QT0-CSMA.

D. Notation

For a random variable I , let LI (s) = E
[
e−sI

]
be the Laplace transform of I . Let ‖x‖ be the magnitude

of x ∈ R2. Given a countable set C, let |C| be the cardinality of C. Let 1{·} denote the indicator function
and let Bl ≡ b(0, l) denote a ball centered at the origin with radius l. R+ denotes the set of non-negative
real numbers. Let Φ be a stationary point process and Y be a property of Φ. We will use below the
reduced Palm probability P!0 of Φ. Intuitively, the probability that Φ satisfies the property Y under P!0

is the conditional probability that Φ \ {0} satisfies property Y given that Φ has a point at 0. This will
be denoted as follows: P0(Φ\{0} ∈ Y) = P0!(Φ ∈ Y). We define Φ0 as a point process Φ given 0 ∈ Φ.
E0 denotes Palm expectation, which is interpreted as the conditional expectation conditioned on a node
at the origin [36], [4].

III. TRANSMISSION PERFORMANCE ANALYSIS

In this section, we derive expressions for the access and transmission success probabilities which in
turn are used to compute the density of successful transmissions for our opportunistic scheduling schemes.
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Table I: Summary of notations

Xi i-th transmitter or its location in R2

Φ Poisson point process denoting the set of transmitters {Xi}.
λ Density of nodes in Φ

F Generic exponential random variable with mean 1/µ denoting short term fading gain
Fij Short term fading gain between transmitter Xi and the receiver associated with Xj

F ′
ij(= F ′

ji) Short term fading gain between transmitter Xi and the transmitter Xj
γ Qualification threshold
pγ Probability that a transmitter to qualify (= P(F > γ))

Φγ Set of qualified transmitters
Fγ Fading gain of O-CSMA
Gγ(·) Cdf of random variable Fγ
ΦγM Set of active transmitters using CSMA protocol
Φγ0
M Set of active transmitters ΦγM given 0 ∈ ΦγM
ν Carrier sense threshold
t Decoding threshold
λγ Density of qualified transmitters (= λpγ)

Nγ
0 Size of neighborhood of a typical node

Fmax
0,γ (Nγ

0 + 1) Fading gain of a typical QT-CSMA transmitter when the size of its neighborhood is Nγ
0

r Distance between a transmitter and its associated receiver
Nγ
s,0 Size of neighborhood of typical node under the assumption F ′

ij = E[F ] in Section V-A
IΦγ
M

\{0} Aggregate interference power from transmitters in ΦγM\{0}
In,x
Φ
γ
M

\{0} Aggregate interference power from transmitters in ΦγM\{0} conditioned on that the associated

typical node has Nγ
0 = n contenders and it has channel gain Fmax

0,γ (Nγ
0 + 1) = x

λdens Asymptotic density of active transmitters
ΦdensM Point process of active CSMA transmitters with density λdens

IΦdens
M

\{0} Aggregate interference power from transmitters in ΦdensM \{0}

We begin by defining performance metric and restating some known results from [2], [3] modified to fit
to our setting.

A. Spatial Reuse

As a measure of spatial reuse, we will use the density of successful transmissions which is defined as
the mean number of nodes that successfully transmit per square meter. This is given by

dsuc = λptxpsuc, (7)

where λ denotes the density of transmitters, ptx denotes the transmission probability of a typical trans-
mitter, and psuc denotes the transmission success probability. This metric not only measures the level
of spatial packing through λptx but also the quality of transmissions through psuc, which captures the
interactions (though interference) among spatially distributed nodes.

Other relevant metrics, such as transmission capacity [44] given by log(1 + t)λptxpsuc or throughput
density [2] given as E[log(1 + SINR)]λptx, could be used instead of (7), however we focus on (7) for
simplicity.
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B. Previous Results

Proposition 1. (Laplace Transform of Shot-Noise for Non-homogeneous Poisson Field) [3] Let Φh =

{Xi, Fi} be an independently marked non-homogeneous PPP in R2 with spatial density h(x)dx. Then,
the Laplace transform of the associated shot-noise interference IΦh(r) =

∑
Xi:(Xi,Fi)∈Φh

Fi/l(‖Xi − r‖)
at location r ∈ R2 is given by

LIΦh (r)(s) = E
[
e−sIΦh (r)

]
= exp

{
−
ˆ
R2

(
1− LF

(
s

l(‖x− r‖)

))
h(x)dx

}
. (8)

In particular, if Fi ∼ F is an exponential random variable with rate µ, we have

LIΦh (r)(s) = exp

{
−
ˆ
R2

h(x)

1 + µ
s l(‖x− s‖)

dx

}
. (9)

Proposition 2. (Mean Neighborhood Size) [3] The number of neighbors of a typical node is Poisson
with mean

N̄γ
0 = E [Nγ

0 ] = E0

 ∑
Xi∈Φγ\{0}

1 {Fi > νl(||Xi||)}

 = λγ
ˆ
R2

exp {−νµl (||x||)} dx =
2πλγΓ(2/α)

α(νµ)2/α
.

(10)

Proposition 3. (Conditional Transmission Probability under CSMA Protocol) [3] For the O-CSMA model
given in Section II with qualified transmitter density λγ , the probability that a qualified node x1 ∈ R2

transmits given there is a transmitter x0 ∈ R2 with |x1−x0| = τ which transmits (i.e., wins its contention),
i.e., P (E1 = 1|E0 = 1, {x0, x1} ⊂ Φγ , |x1 − x0| = τ) ≡ h(τ, λγ), is

h (τ, λγ) =

2
b(τ,λγ)−N̄γ

0

(
1−e−N̄

γ
0

N̄γ
0

− 1−e−b(τ,λ
γ)

b(τ,λγ)

) (
1− e−νµl(τ)

)
1−e−N̄

γ
0

N̄γ
0

− e−νµl(τ)

(
1−e−N̄

γ
0

(N̄γ
0 )

2 − e−N̄
γ
0

N̄γ
0

) , (11)

where

b (τ, λγ) = 2N̄γ
0 − λ

γ

ˆ ∞
0

ˆ 2π

0
e−νµ(l(x)+l(

√
τ2+x2−2τx cos θ))xdθdx. (12)

Proposition 4. (Plancherel-Parseval Theorem) C3.3 of [8] If σ1 and σ2 are square integrable complex
functions, i.e.,

´
R |σi(x)|2 dx <∞ for i = 1, 2, then

ˆ
R
σ1(x)σ∗2(x)dx =

ˆ
R
σ̂1(s)σ̂∗2(s)ds, (13)

where σ̂i(s) =
´
R σi(x)e−2jπsxdx is the Fourier transform of σi and σ∗i is the complex conjugate of σi.

C. O-CSMA

Access Probability of a Typical Transmitter: The access probability is the probability that a typical
node transmits. As described earlier, under O-CSMA, only nodes who qualify can contend, so the network
after the qualification process is indeed equivalent to a network with node density λγ . The channel dis-
tribution function of a qualified node, say Xi is given by (4). Let Ei = 1{Fii > γ, Ti < minj:Xj∈N γ

i
Tj}

be the transmission indicator for Xi ∈ Φ, i.e., that it qualifies and wins the contentions process in its
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neighborhood, and Φγ
M = {Xi ∈ Φ|Ei = 1} be the set of active transmitters. We define the transmission

probability of the typical node (at the origin) as

poptx (λ, γ, ν) = P0

(
F00 > γ, T0 < min

j:Xj∈N γ
0

Tj

)
. (14)

Note that the two events in (14) are independent. To compute the probability of the second event, we
condition on T0, i.e.,

P0

(
T0 < min

j:Xj∈N γ
0

Tj

)
= E0

[
P0

(
T0 < min

j:Xj∈N γ
0

Tj | T0

)]
. (15)

The conditional probability within the above expectation is the probability that X0 has no neighboring
node whose timer value is less than T0, i.e.,

P0
(
{Xj ∈ Φ\{X0} s.t. Fjj > γ, F ′j0 > νl (‖Xj −X0‖) , j 6= 0, Tj < T0} = ∅ | T0

)
. (16)

The density measure of such nodes at location x ∈ R2 with Fjj = f1,Fj0 = f2 and Tj = m is

Λ(dm, df1, df2, dx) = 1 {m < T0} dm1 {f1 > γ}G(df1)1 {f2 > νl (‖x‖)}G(df2)λdx.

Thus, the conditional void probability of such nodes, i.e., (16), corresponds to

exp

{
−
ˆ
R2

ˆ ∞
0

ˆ ∞
0

ˆ 1

0
Λ(dm, df1, df2, dx)

}
= exp

{
−M0pγ

ˆ
R2

1−G (νl ‖x‖)λdx
}

= exp
{
−M0pγN̄0

}
. (17)

Substituting (17) into (15) gives

poptx (λ, γ, ν) =
1− exp

{
−pγN̄0

}
N̄0

. (18)

Note that the spatial mean number of contenders for a typical node under O-CSMA is given by pγN̄0

since individual nodes qualify with probability pγ . The case with γ = 0 (or pγ = 1) corresponds to the
pure CSMA scheme without a qualification step.

Transmission Success Probability of a Typical Receiver: Next, we compute the transmission success
probability of a receiver associated with a typical active transmitter. This is equivalent to the success
probability of the receiver of transmitter X0 = 0 given X0 ∈ Φγ

M :

popsuc (λ, γ, ν, t) = P0

(
F00/l(r)

IΦγM\{0}
> t | F00 > γ

)
, (19)

where
IΦγM\{0} ≡

∑
Xj∈ΦγM\{0}

Fj0/l (‖Xj − (0, r)‖) (20)

is shot noise interference seen at the receiver of the transmitter X0 ∈ Φγ
M . When we refer the shot noise

without P0(·), we will use IΦγ0
M \{0} instead of IΦγM

to explicitely denote X0 ∈ Φγ
M . Then, the shot noise
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of interest can be written as

IΦγ0
M \{0} ≡

∑
Xj∈Φγ0

M \{0}

Fj0/l (‖Xj − (0, r)‖) . (21)

For notational symplicity let Fγ be a random variable with the distribution function (4) which is inden-
pendent of F00. Then, (19) can be rewritten as follows by conditioning on Fγ :

P0
(
Fγ > tl(r)IΦγM\{0}

)
= E

[
P0
(
Fγ > tl(r)IΦγM\{0} | Fγ

)]
. (22)

Note that it is hard to compute (22) since Φγ0
M\{0} is a point process induced by the qualification

process followed by the CSMA protocol, which has dependency among node locations. It is called
as a Matérn CSMA process [3]. Thus, following [3], we approximate the shot noise IΦγ0

M \{0} with
IΦγ0

h \{0} =
∑

Xj∈Φγ0
h \{0} Fj0/l(||Xj − (0, r)||) which is a shot noise seen at the receiver of X0 in a

non-homogeneous PPP Φγ
h with density λγh (τ, λγ) for τ > 0, where λγ ≡ pγλ and h(τ, λ) is the

conditional probability that a CSMA transmitter at distance τ from the origin be active conditioned on an
active CSMA transmitter at the origin with the density of nodes being λγ , see (11). Since h is a function
which converges to 0 as τ → 0, and converges to poptx as τ → ∞, it captures well the modification of
the interference due to the presence of the transmitter at the origin. The h for a certain parameter sets is
shown in Fig. 9a. Then, we have

P0
(
Fγ > tl(r)IΦγM\{0}

)
≈ E

[
P0
(
Fγ > tl(r)IΦγh\{0} | Fγ

)]
. (23)

Let ξh(x) be the probability density function of IΦγ0
h \{0}. Then, using an indicator function, we can

rewrite right hand side of (23) as

E
[ˆ ∞
−∞

ξh(x)1{0 < x <
Fγ
tl(r)

}dx
]
. (24)

Clearly 1{0 < x < Fγ
tl(r)} is square integrable for r > 0 and t > 0, and ξh(x) is square integrable6. We

can apply Plancherel-Parseval Theorem in (13) to (24) followed by a change of variables to get
ˆ ∞
−∞
LI

Φ
γ0
h
\{0}

(2iπtl(r)s)
LFγ (−2iπs)− 1

2πis
ds. (25)

Noting that LFγ (s) = µ
µ+se

−sγ , we get

popsuc (λ, γ, ν, t) ≈
ˆ ∞
−∞
LI

Φ
γ0
h
\{0}

(2iπl (r) ts)

µ
µ−2iπs exp {2iπsγ} − 1

2iπs
ds. (26)

The last step is to compute the Laplace transform LI
Φ
γ0
h
\{0}

(s) which is given as

LI
Φ
γ0
h
\{0}

(s) = exp

{
−λγ

ˆ ∞
0

ˆ 2π

0

h (τ, λγ) τdθdτ

1 + µf (τ, r, θ) /s

}
, (27)

6Note that the pdf of Poisson shot noise interference from Poisson transmitters with finite density is square integrable, see
[2]. The existence of a Poisson point process of which shot noise dominates I

Φ
γ0
h

\{0} implies that the pdf of I
Φ
γ0
h

\{0} is square
integrable.
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where f (τ, r, θ) = l
(√

τ2 + r2 − 2τr cos θ
)

. Replacing (27) into (26) gives a numerically computable
integral form for the outage probability.

D. QT-CSMA

Access Probability of a Typical Transmitter: Computing the access probability of a typical QT-
CSMA node is not much different from that of an O-CSMA node. Under QT-CSMA, a node can
transmit if its timer expires first or equivalently it has the highest quantile in its neighborhood. Let
Ei be the transmission indicator of node Xi ∈ Φ, i.e., Ei = 1

{
Fii > γ,Qi > maxj:Xj∈N γ

i
Qj
}

. Let
Φγ
M = {Xi ∈ Φ s.t. Ei = 1} be a thinned version of Φ containing only active transmitters. Then, using

a similar technique as above, the access probability of a typical node X0 at the origin under QT-CSMA
is computed as follows:

pqttx (λ, γ, ν) = E0

[
pγ

Nγ
0 + 1

]
=

1− exp
{
−pγN̄0

}
N̄0

. (28)

Since all Qis in (28) are uniform random variables, the result is the same as (18).
Transmission Success Probability of a Typical Receiver: Next we compute the transmission success

probability of a receiver associated with a typical transmitter X0 at the origin. To determine the success
probability, we need to characterize the fading gain Fmax

0,γ and the interference power that the receiver
experiences. We shall explicitly denote the fact that Fmax

0,γ depends on Nγ
0 +1 by writing Fmax

0,γ (Nγ
0 +1) in

what follows. The aggregate interference from concurrent active transmitters in Φγ0
M\{0} to the receiver

of X0 is given by IΦγ0
M \{0} as (21). Then, the success probability of a typical QT-CSMA receiver is

written as
pqtsuc(λ, γ, ν, t) = P0(Fmax

0,γ (Nγ
0 + 1) > tl(r)IΦγM\{0}). (29)

Unlike the case in (22), the Fmax
0,γ (Nγ

0 + 1) is no longer independent of IΦγ0
M \{0}. To see this intuitively,

consider two extreme cases. First, suppose Fmax
0,γ (Nγ

0 +1) has a very small value, say ε, then, this implies
the channel gains of X0’s neighbors are concentrated within the small interval [0, ε]; so, the neighbors
of X0’s neighbors are not likely to defer their transmissions, which in turn means X0’s receiver would
experience somewhat stronger interference. By contrast, if Fmax

0,γ (Nγ
0 + 1) has a large value, say ω, then,

the fading gains of X0’s neighbors would be distributed on [0, ω], which is more likely to cause their
neighbors to defer. This on average makes the interference level seen at the receiver smaller than in the
previous case.

That is, IΦγ0
M \{0} depends on both Nγ

0 and Fmax
0,γ (Nγ

0 +1). By conditioning on Nγ
0 and Fmax

0,γ (Nγ
0 +1),

(29) can be written as

E0
[
P0
(
Fmax

0,γ (Nγ
0 + 1) > tl(r)IΦγM\{0} | N

γ
0 , F

max
0,γ (Nγ

0 + 1)
)]
. (30)

As in (22), we approximate IΦγ0
M \{0} for a given Nγ

0 = n and Fmax
0,γ (Nγ

0 +1) = x by a non-homogeneous
Poisson point process Φγ

u with density λγu(n, x, τ, λ, γ), where u(n, x, τ, λ, γ) is the conditional proba-
bility that a node y1 transmits conditioned on following facts: 1) y0 transmits, i.e., E0 = 1, 2) Nγ

0 = n,
3) Fmax

0,γ (Nγ
0 + 1) = x or equivalently y0’s timer value T0 is given as t0 = 1 − Gγ(x), 4) both y0 and
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y1 belong to Φγ , and 5) y1 is τ meter away from y0. This can be written as

u(n, x, τ, λ, γ) = P(E1 = 1|E0 = 1, Nγ
0 = n, Fmax

0,γ (Nγ
0 + 1) = x, {y0, y1} ⊂ Φγ , |y0 − y1| = τ). (31)

Using the fact that 1−Gγ(x) is one-to-one mapping from [γ,∞] to [0, 1], we can rewrite (31) as

u(n, x, τ, λ, γ) = P(E1 = 1|E0 = 1, Nγ
0 = n, T0 = t0, {y0, y1} ⊂ Φγ , |y0 − y1| = τ). (32)

Note that the probability (32) is a function of n, t0, τ and λγ ; so it is convenient to use the function u′

such that
u(n, x, τ, λ, γ) = u′(n, 1−Gγ(x), τ, λγ).

It is shown in Appendix A that this function is given by

u′(n, t0, τ, λ) =
N̄0G(νl(τ))

n+ (N̄0 − n)G(νl(τ))

(
(1− e−t0N̄0(1−ps))

N̄0(1− ps)
+

+ (1− t0)e−N̄0(1−ps)
n∑
k=0

k!

ηk+1

1− e−η
k∑
j=0

ηj

j!

(n
k

)
pks(1− ps)n−k

)
, (33)

with ps = ps(τ, λ) = 2− b(τ,λ)
N̄0

, and η = N̄0(1− ps)(t0 − 1). Then, (30) can be approximated with

E0
[
P0
(
Fmax

0,γ (Nγ
0 + 1) > tl(r)IΦγu\{0} | N

γ
0 , F

max
0,γ (Nγ

0 + 1)
)]
. (34)

Let ξn,xu be the conditional pdf of IΦγ0
u \{0} given Nγ

0 = n and Fmax
0 (Nγ

0 + 1) = x. Then, (34) can be
rewritten as

E0

[ˆ ∞
−∞

ξ
Nγ

0 ,F
max
0,γ (Nγ

0 +1)
u (y)1

{
0 ≤ y ≤

Fmax
0,γ (Nγ

0 + 1)

tl(r)

}
dy

]
, (35)

where 1
{

0 ≤ y ≤ Fmax
0,γ (Nγ

0 +1)

tl(r)

}
and ξn,xu are both square integrable, see [2]. Applying the Plancherel-

Parseval Theorem in (13) and performing the change of variables gives

pqtsuc(λ, γ, ν, t) ≈ E0

[ˆ ∞
−∞
L
I
N
γ
0
,Fmax

0,γ
(N
γ
0

+1)

Φ
γ
u\{0}

(2iπl(r)ts)
exp

{
2iπsFmax

0,γ (Nγ
0 + 1)

}
− 1

2iπs
ds

]
. (36)

Note that the expectation in (36) is with respect to Nγ
0 and Fmax

0,γ (Nγ
0 + 1), and In,x

Φγ0
u \{0}

is a random
variable with cdf P0(IΦγu\{0} < z|Nγ

0 = n, Fmax
0 (Nγ

0 + 1) = x). We have

LIn,x
Φ
γ0
u \{0}

(s) = exp

{
−λγ

ˆ ∞
0

ˆ 2π

0

u′(n, 1−Gγ(x), τ, λγ)τdθdτ

1 + µf(τ, r, θ)/s

}
. (37)

Replacing (37) into (36) gives the numerically computable approximation of pqtsuc.

IV. SPATIAL REUSE

In this section, we compare the spatial reuse achieved by O-CSMA vs QT-CSMA in three different
node density regimes. To better understand the results or the behavior of protocols as a function of λ,
γ, and ν, we first study how transmission probability and success probability change as the functions of
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the parameters, and then we compare the performance of O-CSMA and QT-CSMA. A brief performance
comparison between O-ALOHA and O-CSMA follows.

A. System Behavior in Function of System Parameters

Density of Active Transmitters λptx: In Fig 2, we show the density of active transmitters λptx as a
function λ. As λ increases, a higher number of active transmitters is achieved, which saturates to a value
we will call the asymptotic density of active transmitters.

Definition 5. (Asymptotic density of active transmitters) For a given carrier sensing threshold ν, the
asymptotic density of active transmitters λdens(ν) is defined as

λdens(ν) ≡ lim
λ→∞

λpoptx(λ, γ, ν) = lim
λ→∞

λpqttx(λ, γ, ν). (38)

Note that λdens(ν) is not the function of γ, since numerator exp{−pγN̄0} in p
op/qt
tx (λ, γ, ν) vanishes

as λ → ∞, see (18) and (28). It is easy to show that λdens(ν) = 1/N̂0, where N̂0 = N̄γ
0 /λ

γ =

E[
´
R2 1 {F ′ > νl(‖x‖)} dx] is the mean neighborhood area of a typical transmitter. Note that since each

active transmitter occupies the area of average size N̂0, intuitively, we can have at most 1
N̂0

active
transmitters per unit space in the asymptotically dense network. Note that both O-CSMA and QT-CSMA
have the same asymptotic density of transmitters λdens(ν) due to the transmitter selection process of the
CSMA protocol.

As γ increases, the density of qualified transmitters, λpγ , reduces, which accordingly decreases λptx,
but the limiting value λdens(ν) is not affected. As ν increases, the mean neighborhood area N̂0 gets
smaller which allows a higher density of active transmitters, and accordingly λdens(ν) increases as a
function of ν.

Success Probability of O-CSMA: Fig. 3a shows the success probability popsuc(λ, γ, ν, t) as a function
of λ for various γ and ν values. The general behavior of popsuc(λ, γ, ν, t) is as follows. As γ increases, the
signal quality at receivers improves and at the same time the density of active transmitters goes down,
which results in reduced interference at the receiver. Thus, increasing γ increases SINR at receivers, and
thus increases success probability. If ν increases, the mean neighborhood area goes down resulting in a
higher number of active transmitters, which accordingly generate a stronger aggregate interference. Thus
both the received SINR and success probability are decreased. Regarding the behavior of popsuc(λ, γ, ν, t)
as a function of λ, we have the following proposition.

Proposition 6. If λ→∞ while ν, γ <∞ are fixed, we have that

lim
λ→∞

popsuc(λ, γ, ν, t) = lim
λ→∞

P0
(
Fγ > tl(r)IΦγM\{0}

)
< 1. (39)

This is because Fγ is exponentially distributed with an infinite support and IΦγ0
M \{0} converges in

distribution to a random variable IΦdens0M \{0} ≡
∑

Xi∈Φdens0M \{0} Fi0/l(|Xi|), where Φdens0
M is a Matérn

CSMA point process with a density λdens(ν) given an active transmitter at the origin, see Appendix B.
Since both random variables have infinite support in R+, P0

(
Fγ > tl(r)IΦγM\{0}

)
converges to a positive

value between 0 and 1. It is not easy to find the limit since this would require characterizing IΦdens0M \{0}.
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Figure 2: The density of active transmitters for O/QT-CSMA increases and saturates as λ increases due
to the carrier sensing in CSMA protocol. Increasing the qualification threshold γ reduces the density
of qualified transmitters without affecting the asymptotic density of active transmitters λdens(ν); so the
effect is a shift of the curves to the right hand side. Increasing carrier sensing threshold ν increases
λdens(ν) since it makes the mean size of a typical transmitter’s neighborhood smaller.

Success Probability of QT-CSMA: Fig. 3b shows the success probability pqtsuc(λ, γ, ν, t) as a function
of λ for various γ and ν values. The general behavior of pqtsuc(λ, γ, ν, t) is as follows. As γ increases, the
interference seen at the receiver decreases due to the reduced density of active transmitters. However it is
not clear how the received signal strength would change. Indeed increasing γ, should shift Fγ to the right
hand side (improving the signal strength) but, at the same time, it decreases the size of neighborhood,
thus reducing the opportunistic gain from picking the node with the best channel. Fig. 3b suggests that
the positive effect is larger than the negative effect. And, as ν increases, pqtsuc(λ, γ, ν, t) decreases due
to the increased interference. One thing to note is that if the density λ becomes large enough, then, the
success probability increases and eventually converges to 1 due to the increasing opportunistic gain; this
is summarized in the following proposition.

Proposition 7. If λ→∞ while ν, γ <∞ are kept fixed, we have

lim
λ→∞

pqtsuc(λ, γ, ν, t) = lim
λ→∞

P0
(
Fmax
γ (Nγ

0 + 1) > tl(r)IΦγM\{0}
)

= 1. (40)

This result can be intuitively understood as follows. As λ increases, Nγ
0 and Fmax

γ (Nγ
0 + 1) increase

(meaning limλ→∞ P(Nγ
0 > x) = 1 and limλ→∞ P(Fmax

γ (Nγ
0 + 1) > x) = 1 for all fixed x > 0), and

IΦγ0
M \{0} converges in distribution to a random variable IΦdens0M \{0} defined in Proposition 6. The success

probability of O-CSMA and QT-CSMA are compared in the following proposition.

Proposition 8. Under the same parameter set t, γ, ν, and λ, the success probability of QT-CSMA is
always larger than O-CSMA, i.e., pqtsuc(λ, γ, ν, t) ≥ popsuc(λ, γ, ν, t).
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If the qualification threshold γ increases, it increases Fγ
so the success probability increases, and the limiting value
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ing threshold ν increases, it increases the density of active
transmitters, which accordingly increases interference, which
deteriorates the success probability.
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(b) As λ increases, the success probability of QT-CSMA
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increasing opportunistic gain. As the qualification threshold γ
increases, the success probability increases due to increased
opportunistic gain. While, if carrier sensing range ν increases,
the success probability decreases due to increased aggregate
interference power.

Figure 3: The success probability versus the density of transmitters for various ν and γ.

This follows from a stochastic ordering relation : Fmax
γ ≥st Fγ , see (5). Note that this implies

that the density of successful transmissions of QT-CSMA is always higher than that of O-CSMA, i.e.,
dqtsuc(λ, γ, ν, t) ≥ dopsuc(λ, γ, ν, t) for a given parameter set t, γ, ν and λ.

Remark 9. The above observations suggest that the effects of adjusting γ and ν are similar in that both
control the amount of interference in the network versus the opportunistic gain which are achieved.
However, this does not imply that O-CSMA can optimize its performance by tweaking only one of them
while fixing the other, but interestingly this seems to work for QT-CSMA. In the following sections, we
will further explore this idea of reducing the number of parameters for QT-CSMA.

B. Performance Comparison of O-CSMA and QT-CSMA

We consider networks in three different density regimes : a network with an intermediate density, an
asymptotically dense network, and an asymptotically sparse network. By asymptotically dense (sparse)
networks, we mean networks whose node density λ keeps increasing to ∞ (decreasing to 0). Dense
and sparse, networks are particularly interesting since the former gives maximum performance limits for
O-CSMA and QT-CSMA networks under a given parameter set, and the latter allows us to evaluate the
performance of an individual node because it is a regime where interactions with other nodes vanish. In
addition to the importance of the two regimes, we have popsuc and pqtsuc converging to 1 for an appropriately
scaled or chosen γ in these two regimes, which allows a simple analysis. While, in the intermediate
density regime, popsuc and pqtsuc are strictly less than 1, so we can only compare their performance through
numerical computations.
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Networks in an intermediate density regime: We evaluate the performance of a network in an
intermediate density regime for various γ and ν values. Note that it is no surprise to find that QT-CSMA
always does better than O-CSMA under the same parameter set, see Proposition 8. Thus, we focus instead
on the comparison between QT0-CSMA (QT-CSMA with γ = 0) and O-CSMA.

Case ν = 1: Fig.4a shows the density of successful transmissions for QT0-CSMA and O-CSMA as
a function of λ for various values of γ and for ν = 1, t = 1, and µ = 1. For comparison, ALOHA,
CSMA and O-ALOHA are also plotted using our model. The figure confirms the behavior of ALOHA
for increasing node density. Unlike ALOHA, the density of successful transmissions of CSMA does
not converge to 0 as λ increase due to carrier sensing and controlled network interference. To take
advantage of channel variations from many users, ALOHA can use channel threshold method, which we
call O-ALOHA.

O-CSMA with similar threshold mechanism works as follows. As λ gets larger, dopsuc(γ, λ) increases
as a result of the increasing density of active transmitters; however they converge to fixed values since
both the density of active transmitters and success probability converge. If λ gets large, dopsuc increases
and converges to a value less than λdens. While if λ is small, dopsuc decreases as γ increases because the
losses coming from the decreased density of active transmitters are not compensated by the gain from
the increased quality of transmissions.

The performance of QT0-CSMA is also shown. Interestingly, the performance of QT0-CSMA seems
to be better than O-CSMA for all λ values. This proves that quantile scheduling without qualification
can fully take advantage of opportunistic gains for the given parameter set. The trends are similar when
ν = 0.1, which are not shown here.

Case ν = 5 : Fig. 4b shows three interesting phenomena. First, as λ increases, the density of successful
transmissions of O-CSMA peaks and then decreases to converge to its limiting value. The peak happens
since λpoptx(λ) converges earlier than popsuc(λ). Roughly speaking, if dopsuc(λ) hits its peak, λpoptx(λ) is very
close to its limiting value and from that point it increases very slowly, while popsuc(λ) keeps decreasing
and converges at a larger λ value. Note that this phenomenon implies that the interference suppression
from carrier sensing capability is not working well in a high density network. In other words, the carrier
sensing threshold ν = 5 is too large (or neighborhood of a node to narrowly defined) making the system
less robust to changes in node density. The monotonic behavior shown in Fig. 4a seems to be more
desirable since it is predictable for system designer/operators.

The second interesting phenomenon is that the density of successful transmissions for QT0-CSMA is
worse than that of O-CSMA when 2 / λ / 3 × 10. This is again due to ν too large. If ν is too large,
the size of neighborhood become too small for QT0-CSMA to take advantage of opportunistic gains
and the small neighborhood induces a dense packing which accordingly results in strong interference.
Considering ν as a parameter controlling both interference and opportunistic gain, the smaller values are
desirable.

Third, the density of successful transmissions for QT0-CSMA keeps increasing as λ increases. This
happens because the size of neighborhood keeps increasing as λ increases. Indeed, the limiting value is
even higher than the maximum value which O-CSMA can achieve. This will be further explored later
when we consider a dense network.
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(a) For ν = 1, the density of successful transmission of
QT0-CSMA is uniformly higher than that of O-CSMA for
all node densities λ > 0 and qualification thresholds γ > 0.
Appropriately chosen ν (or neighborhood size) both increases
opportunistic gain of QT0-CSMA and controls the amount of
aggregate interference effectively even for large λ.
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(b) If ν is set to too large (small neighborhood), the CSMA
protocol allows too many active transmitters which generate
too strong aggregate interference for increasing λ. Further-
more due to the small neighborhood size, QT0-CSMA cannot
fully take advantage of opportunism. While O-CSMA can
increase γ to select only nodes with high channel gains. This
corresponds to the case where ν is inappropriately chosen for
QT0-CSMA.

Figure 4: The density of successful transmissions in a network with intermediate density

Remark 10. The above results show that performance is highly dependent on the selected parameters. For
O-CSMA, both ν and γ should be chosen appropriately. However, for QT0-CSMA, only ν needs to be
selected, which is the key advantage of using QT0-CSMA. As shown above if ν is properly chosen, QT0-
CSMA provides a more robust7 performance than O-CSMA. Considering λ is usually an uncontrollable
parameter, this kind of robust property is very desirable.

Asymptotically Dense Networks: The maximum achievable performance of O/QT-CSMA is obtained
when λ → ∞ since this is the regime where the space can be packed with a maximum number of
active transmitters. To study this regime, we fix ν for both O-CSMA and QT-CSMA and study how
the selection of γ affects the density of successful transmissions. Intuitively, for both O-CSMA and QT-
CSMA to achieve high performance in dense networks, one should select γ to take advantage of nodes’
high channel gains. Recall that increasing γ makes the received signal power stronger, which results in
higher success probability, but at the same time it makes it harder for nodes to qualify. Thus, the question
is how to scale γ as a function of λ.

In the sequel, we will show that γ should be increased no faster than as a logarithmic function of λ
to achieve maximal performance, otherwise the network degenerates and behaves like a sparse network.
We will show that a “phase transition” occur for the density of successful transmissions depending on
the scaling speed of γ. To that end, we consider following fact.

7By “robust” we mean QT0-CSMA gives better performance than O-CSMA in all λ values.
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Proposition 11. If both λ→∞ and γ →∞, then,

lim
λ,γ→∞

popsuc(λ, γ, ν, t) = 1. (41)

This is because, for O-CSMA, Fγ keeps increasing as γ increases (meaning that limγ→∞ P (Fγ > x) =

1 for any fixed x > 0) while IΦγ0
M \{0} converges in distribution to a limiting random variable IΦdens0M \{0},

see Appendix B.
Following theorem provides our main result on the performance O-CSMA in the asymptotically dense

regime.

Theorem 12. For λ → ∞ and fixed ν > 0, the asymptotic density of successful transmissions is upper
bounded by the asymptotic density of transmitters, i.e.,

lim
λ→∞

dopsuc(λ, γ, ν, t) ≤ λdens(ν), (42)

where equality holds when γ(λ) = c log(λ/λq) with constants c < 1
µ and λq > 0.

Proof: We have a few cases to consider depending on the scaling of γ. First, if γ is a fixed constant,
we have that

lim
λ→∞

λpoptx = lim
λ→∞

1− exp{−e−µγλN̂0}
N̂0

= λdens(ν) (43)

and 0 < limλ→∞ p
op
suc(λ, γ, ν, t) < 1 by Proposition 6. Thus, we have limλ→∞ d

op
suc(λ, γ, ν, t) < λdens(ν).

While if γ = c log(λ/λq) for c > 0 and λq > 0, we have

lim
λ→∞

λpoptx = lim
λ→∞

1− exp{−λ1−µcλµcq N̂0}
N̂0

=


λdens if c < 1

µ

λdens(1− exp{−λqN̂0}) if c = 1
µ

0 if 1
µ < c,

(44)

and limλ→∞ p
op
suc(λ, γ, ν, t) = 1 by Proposition 11. This completes the proof.

Theorem 12 says that γ(λ) needs to be scaled no faster than as a logarithmic function of λ, specifically
γ(λ) = c log(λ/λq), for an O-CSMA network to achieve its maximum asymptotic density of successful
transmissions. In doing so, a logarithmic increase is the fastest, but increasing speed should not be too fast.
Precisely, it should be slow enough to have a sufficient number of contending nodes so as to increase
spatial reuse. More specifically, we see a sharp performance change or phase transition phenomenon
depending on the value of speed parameter c as shown in (44), see Fig.5. The phase transition phenomenon
can be explained by observing how the density of qualified transmitters

λpγ(λ) = λe−µγ(λ) = λ1−µcλµcq (45)

behaves as a function c when λ→∞. Depending on the value of c we have following three cases.

• If c < 1
µ , then we have limλ→∞ λpγ(λ) =∞, which implies there exists enough qualified contenders

to achieve high spatial reuse.
• If c = 1

µ , then the we have limλ→∞ λpγ(λ) = λq. The constant density implies that the space can
not be fully reused due to a lack of qualified nodes to compete and fill the space.
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Figure 5: The asymptotic density of successful transmissions for O/QT-CSMA exhibits a phase transition
phenomenon depending on the value of scaling speed constant c when qualification threshold γ is selected
as the logarithm function of node density λ: γ = c log(λ/λq) with c > 0 and a > 0. The quantities in the
square bracket denote the associated density of qualified nodes limλ→∞ λpγ(λ) which are always larger
than their associated asymptotic density of successful transmissions.

• If c > 1
µ , then we have limλ→∞ λpγ(λ) = 0 because of γ increasing too fast compared to λ. This

means that the density of qualified nodes decreases as λ increases.

Note that the gap between λdens and λdens(1− exp{−λqN̂0}) in (44) can be made arbitrarily small by
selecting λq large.

The asymptotic performance of QT-CSMA can also be analyzed in a similar way. Theorem 12 implies
that if γ is scaled as a logarithmic function of λ, QT-CSMA will also experience the same phase transition
phenomenon. While QT-CSMA can achieve λdens(ν) for any non-negative constant γ.

From the above discussion, both O and QT-CSMA with γ = c log(λ/λq) with 0 < c < µ−1 and QT-
CSMA with γ = c log(λ/λq) with 0 ≤ c < µ−1 can achieve the same maximum asymptotic performance
λdens(ν) in dense networks. However, for a given parameter set (t, γ, ν, λ), QT-CSMA is always better
than or equal to O-CSMA.

QT0-CSMA’s performance gain compared to O-CSMA is given in following corollary.

Corollary 13. For a given ν > 0, if γ is scaled like γ(λ) = c log(λ/λq), then, the performance gain of
QT0-CSMA to O-CSMA is given by

lim
λ→∞

dqtsuc(λ, 0, ν, t)

dopsuc(λ, γ, ν, t)
= lim

λ→0

pqttx
poptx

=


1 if c < 1

µ

1
1−e−λqN̂0

if c = 1
µ

∞ if 1
µ < c.

(46)

Asymptotically Sparse Networks: In this section, we consider asymptotically sparse networks, where
λ → 0. Note that the density of successful transmissions in this case goes to 0, but the comparison
(performance ratio) is still meaningful since it is equivalent to comparing the performance of an individual
transmitter-receiver pair experiencing no interference. For a fixed γ > 0, the O-CSMA and QT-CSMA
have the same asymptotic performance: limλ→0

dqtsuc(λ,γ,ν,t)
dopsuc(λ,γ,ν,t)

= 1 since limλ→0
pqtsuc(λ,γ,ν,t)
popsuc(λ,γ,ν,t)

= 1. Whereas
QT0-CSMA has an exponential gain (as a function of γ) versus O-CSMA. This is captured in the next
result.
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Theorem 14. For λ → 0 and ν > 0, the asymptotic performance gain of QT0-CSMA to O-CSMA with
a fixed γ ≥ 0 is given by eµγ .

Proof: Using limλ→0
pqtsuc(λ,0,ν,t)
popsuc(λ,γ,ν,t)

= 1, it is straightforward to compute the gain. Applying L’Hopital’s
rule, we have

lim
λ→0

dqtsuc(λ, 0, ν, t)

dopsuc(λ, γ, ν, t)
= lim

λ→0

pqttx
poptx

= lim
λ→0

1− exp{−λN̂0}
1− exp{−e−µγλN̂0}

= lim
λ→0

exp{−λN̂0(1− e−µγ)}
e−µγ

= eµγ .

(47)
This is an expected result since O-CSMA nodes qualify with probability pγ = e−µγ and qualified nodes in
the sparse network will transmit with almost no contention. This shows that in sparse networks O-CSMA
should select γ = 0 to get the same performance as QT0-CSMA.

Note that in the above two cases (asymptotically dense and sparse networks) it turned out that O-CSMA
needs to adapt its γ value as a function of node density λ to maximize its performance. This is a big
disadvantage for O-CSMA versus QT0-CSMA since it is hard to estimate λ in practice.

C. Performance Comparison of O-CSMA and O-ALOHA

In this section, we compare the asymptotic performance of O-CSMA and O-ALOHA in [2], [43] for
which the density of successful transmissions is given by doAsuc = λpoAtx p

oA
suc, where poAtx is the transmission

probability of each node and poAsuc is the success probability of a typical node. By selecting poAtx = pγ , we
can make the density of active transmitters in O-ALOHA network be equal to the density of qualified
transmitters in O-CSMA. We have following result for the performance of O-CSMA and O-ALOHA.

Theorem 15. Under the above setting poAtx = pγ and γ = c log(λ/λq) with λq > 0 and c > 0, we have
following asymptotic performance ratio depending on the value of c:

lim
λ→∞

dopsuc
doAsuc

= lim
λ→∞

λpoptxp
op
suc

λpγpoAsuc(λ, γ)
=


∞ if c < 1

µ

λcsma(ν)(1−exp{−λqN̂0})
λqpoAsuc(λ,γ) if c = 1

µ

1 if c > 1
µ .

(48)

where poAsuc(λ, γ) =
´∞
−∞ LI(2iπl(r)ts)

LFγ (−2iπs)−1

2iπs ds with LI(s) = exp
{
−λpγ2π

´∞
0

τ
1+µτα

s

dτ
}

and

LFγ (s) = e−sγ µ
µ+s , see [2].

Proof: Depending on the value of c, we have three cases. First, if c < 1
µ , the density of transmitters

for O-ALOHA keeps increasing as λ→∞, which makes a typical receiver using O-ALOHA experience
a success probability of 0 due to increasing interference which is unbounded. While dopsuc converges to a
non-zero value, so we have infinite gain in this case. Second, if c = 1

µ , the density of qualified transmitters
for both O-CSMA and O-ALOHA converge to finite numbers, so the amount of interference is limited,
accordingly this results in non-zero performance. Third, if c > 1

µ , the densities of qualified transmitters in
O-CSMA and transmitters in O-ALOHA decrease to 0 and both popsuc and poAsuc → 1 as λ→∞. Applying
L’Hopital’s rule, we have ratio 1.
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V. SPATIAL FAIRNESS

A. Unfairness in CSMA Networks

In this section, we compare the spatial fairness performance of the O/QT-CSMA protocols. It has been
reported that non-slotted CSMA networks are unfair [12], [42]. The two main reasons are the irregular
topology of network and the combination of carrier sensing mechanism and binary exponential backoff
which can cause starvation. There have been efforts towards improving fairness by tuning protocols, for
example, adjusting carrier sensing range [13] or using node specific access intensity [42], [41], [40].

In slotted systems, unfairness partially disappears simply due to slotting. Indeed in a slotted system, all
nodes’ contention windows are reset every slot, which prevents starvation. Accordingly, fairness improves
significantly. However, unfairness due to irregular topologies remains. We will show in this section that
our opportunistic scheduling scheme can improve fairness.

B. Spatial Fairness

We define two spatial fairness indice which capture a fairness of the long-term (time-averaged)
performance across nodes in space. The first captures the heterogeneity in performance due to nodes’
locations. Recall that the performance of node, say Xi, is affected by the remaining nodes and their
locations, i.e. Φ\{Xi} and channel gains Fi and F′i, where F′i = (F ′ij : j 6= i). Let fi(Φ,Fi,F′i) be a
finite value associated with Xi ∈ Φ denoting its performance. Then, E [fi (Φ,Fi,F

′
i) | Φ = φ] denotes

the time-averaged (or equivalently, the average w.r.t. Fi and F′i of the) performance for Xi given Φ = φ.
To evaluate the fairness of E [fi (Φ,Fi,F

′
i) | Φ = φ] across nodes Xi ∈ Φ = φ in space we introduce

Jain’s fairness index 8, where

F̃I = lim
l→∞

(∑
Xi∈φ∩Bl E [fi (Φ,Fi,F

′
i) | Φ = φ]

)2

|φ ∩Bl|
∑

Xi∈φ∩Bl (E [fi (Φ,Fi,F′i) | Φ = φ])2 . (49)

Given the spatial ergodicity of homogeneous PPPs, see [4], and simple algebra, it is easy to see that (49)
becomes

F̃I =

(
E0 [E [f0 (Φ,F0,F

′
0) | Φ]]

)2
E0[(E [f0 (Φ,F0,F′0) | Φ])2]

, (50)

where F0 and F′0 denote the channel fading of a typical node at the origin and accordingly E [f0 (Φ,F0,F
′
0) |Φ]

denotes the performance seen by the node X0.
The second fairness index captures the heterogeneity in performance across the sets of nodes with the

same size of neighborhoods. We, let f̃i(Ni,Fi,F
′
i) be a finite performance metric associated with Xi,

where Ni is the number of neighbors of Xi. Then, E
[
f̃i(Ni,Fi,F

′
i)|Ni = n

]
denotes the time-averaged

(or Fi and Fi’-averaged) value associated with Xi given Xi has a neighborhood of size Ni = n. The

8Jain’s fairness index for a given positive allocation x = (xi : i = 1, · · · , n) is given as FIx =
(
∑n
i=1 xi)

2

n
∑n
i=1 x

2
i

. Note that the
maximum value of FI is 1 which is achieved when all xis have the same value. If total resource b =

∑n
i=1 xi is allocate equally

only to k entities out of n, e.g, xi = b
k

for i = 1, · · · , k and xi = 0 for i = k+ 1, · · · , n, then, we have FIx = k/n. See [22].
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corresponding Jain’s fairness index is given as

FI =

(
E0
[
E
[
f̃0 (N0,F0,F

′
0) | N0

]])2

E0

[(
E
[
f̃0 (N0,F0,F′0) | N0

])2
] . (51)

Unlike (50), (51) does not capture a performance variability across nodes with the same number of
contenders. However, (51) is a useful metric which is computable in many cases. Depending on the
performance metric f() of interest, we sometimes have FI = F̃I. In the sequel, we will focus on F̃I as
our measure of spatial fairness.

C. Spatial Fairness for Access Frequency

We first evaluate spatial fairness in terms of the fraction of time that each node can access the medium.
We will show how nodes’ random locations impact this metric. We need the following assumption.

Assumption 1. We assume that the contenders of node Xi is the set of nodes located in the disc
b(Xi, (νµ)−α) or equivalently F ′ij = 1

µ = E[F ] with probability 1.
Under this assumption, the neighbors of a node is not affected by fading, so the size of a node’s

neighborhood stays fixed, e.g., might be based on the average channel gain. This might be a reasonable
assumption in a system, e.g., where each node’s contending neighbors are dynamically maintained based
on their average fading gains to the node. Note that Fij is still a random variable. Let

Nγ
s,i = Nγ

s,i(Φ) = |{Xj ∈ Φ : 1/µl(‖Xi −Xj‖) > ν, i 6= j}|

be a random variable denoting the size of Xi’s neighborhood under the static fading assumption9, it
corresponds to the number of nodes inside a disk b(Xi, (νµ)−

1

α ). This is a Poisson random variable with
mean λπ(νµ)−

2

α . Recall that a node with n contenders accesses the channel with probability pγ
n+1 . This

corresponds to the fraction of time the node accesses the channel. We will call this quantity as the access
frequency of the node to differentiate it from the access probability (e.g., poptx or pqttx) which is interpreted
as the fraction of nodes transmitting in space in a typical slot. Note that since the access frequency
depends only on Nγ

s,i, so we have E[fi(Φ,Fi,F
′
i)|Φ] = E[f̃i(N

γ
s,i,Fi,F

′
i)|N

γ
s,i] = pγ

Nγ
s,i+1 . Thus we have

following lemman regarding spatial fairness index on access frequency:

Lemma 16. If E[f̃i(N
γ
s,i,Fi,F

′
i)|N

γ
s,i] is given as pγ

Nγ
s,i+1 , the spatial fairness index is given as follows :

FIac(N̄
γ
s,0) =

(
E
[

pγ
Nγ
s,0+1

])2

E
[(

pγ
Nγ
s,0+1

)2
] =

eN̄
γ
s,0 + e−N̄

γ
s,0 − 2

N̄γ
s,0

(
Ei(N̄γ

s,0)− log N̄γ
s,0 − η

) , (52)

where N̄γ
s,0 = E[Nγ

s,0], Ei (x) = −
´∞
−x t

−1e−tdt is the exponential integral function, and η = 0.5772 . . ..
is the Euler-Mascheroni constant.

Proof: It is straightforwad to compute using Nγ
s,0 ∼ Poisson(N̄γ

s,0) and Ei(x)−log x−η =
∑∞

n=1
xn

n·n!

(see 8.214.2 in page 884 of [19]).

9Note the difference between Nγ
s,i and Nγ

i , where the latter is the number of neighbors without the static fading assumption.
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(a) The fairness index on access frequency decreases as the
mean number of contenders N̄γ

s,0 decreases, but it rises soon
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s,0 increases. The fairness has minimum value ∼ 0.73
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(b) The fairness index on successful transmissions of O-
CSMA is equal to the fairness index on access frequency of
O-CSMA. While, QT-CSMA’s quantile scheduling increases
fairness significantly because under QT-CSMA, nodes with
larger neighborhood size has higher success probability, which
compensates its low access frequency.

Figure 6: Fairness index on access frequency versus the mean number of contenders N̄γ
s,0 (ν) under fading

vector assumption.

Fig.6a shows the fairness index of access frequency for O/QT-CSMA versus N̄γ
s,0 (ν). If N̄γ

s,0 is small,
almost every contending node sends, in fact all transmitters have access frequency close to pγ , so the
fairness index is close to 1. If N̄γ

s,0 is relatively small, as N̄γ
s,0 (which is mean and the variability of the

number of contenders) increases, the variability of access frequency, i.e., pγ
Nγ
s,0+1 , across nodes increases

resulting in a decrease in fairness. However, if N̄γ
s,0 is relatively large, the fairness index eventually

increases again since, in this regime, the variability of access frequency pγ
Nγ
s,0+1 decreases and converges

to 0, which in turn increases fairness. Note that the fairness curve has its minimum value 0.73019 . . ..
Specifically, the minimizer n∗ ≡ arg minn>0 FIac(n) ≈ 2.9736657 can be found by numerically solving
d

dnFIac(n) = 0. Based on this, we have following proposition.

Proposition 17. Under Assumption 1, the spatial fairness for access frequency of slotted O/QT-CSMA
is worst, roughly 0.73 when the mean number of contenders of a typical transmitter is roughly 3.

D. Spatial Fairness of the Frequency of Successful Transmissions

In this section, we consider the fairness of the frequency of successful transmissions. Specifically, we
will show that opportunistic CSMA schemes can, to a certain extent, remove topological unfairness. We
first define the spatial fairness of the frequency of successful transmissions.

For O-CSMA, we define pγ
Nγ
s,0+1 p̄

op
suc(γ,N

γ
s,0) as the frequency of successful transmissions of a typical

receiver with Nγ
s,0 neighbors, where pγ

Nγ
s,0+1 is the access frequency and p̄opsuc(γ,N

γ
s,0) is the conditional

success probability conditioned on that its associated transmitter has Nγ
s,0 contenders, which is given by
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p̄opsuc(γ,N
γ
s,0 = n) = P0

(
Fγ > tIΦγM\{0}

l(r)|Nγ
s,0 = n

)
≈ E0

[ˆ ∞
−∞
L
I
N
γ
s,0

,Fγ

Φ
γ
u\{0}

(2iπl(r)ts)
e2iπsFγ − 1

2iπs
ds
∣∣∣Nγ

s,0 = n

]
, (53)

where IN
γ
s,0,Fγ

Φγ0
u \{0}

given Nγ
s,0 = n is the interference seen by a typical receiver conditioned on that it has n

neighbors. Accordingly, the fairness index is given by

F̃Iopsuc(γ, N̄
γ
s,0) =

(
E0
[

pγ
Nγ
s,0+1 p̄

op
suc(γ,N

γ
s,0)
])2

E0

[(
pγ

Nγ
s,0+1 p̄

op
suc(γ,N

γ
s,0)
)2
] . (54)

For QT-CSMA, we take a similar approach. We define pγ
Nγ
s,0+1 p̄

qt
suc(γ,N

γ
s,0) as the frequency of suc-

cessful transmission of a typical receiver with Nγ
s,0 neighbors, where pγ

Nγ
s,0+1 is the access frequency and

p̄qtsuc(γ,N
γ
s,0) is the conditional success probability conditioned on that its associated transmitter has Nγ

s,0

contenders, which is given by

p̄qtsuc(γ,N
γ
s,0 = n) = P0

(
Fmax

0,γ (Nγ
s,0 + 1) > tIΦγM\{0}

l(r)|Nγ
s,0 = n

)
.

≈ E0

[ˆ ∞
−∞
L
I
N
γ
s,0

,Fmax
0,γ

(N
γ
s,0

+1)

Φ
γ
u\{0}

(2iπl(r)ts)
e2iπsFmax

0,γ (Nγ
s,0+1) − 1

2iπs
ds
∣∣∣Nγ

s,0 = n

]
. (55)

The fairness metric of interest in this section corresponds to the second type (51) only, and the corre-
sponding fairness index of successful transmission is given by

F̃Iqtsuc(γ, N̄
γ
s,0) =

(
E0
[

pγ
Nγ
s,0+1 p̄

qt
suc(γ,N

γ
s,0)
])2

E0

[(
pγ

Nγ
s,0+1 p̄

qt
suc(γ,N

γ
s,0)
)2
] . (56)

Using the expression of L
I
N
γ
s,0

,Fmax
0,γ

(N
γ
s,0

+1)

Φ
γ0
u \{0}

in (37) and Nγ
s,0 ∼ Poisson(N̄γ

s,0), F̃Iqtsuc can be numerically

computed.
F̃Iopsuc and F̃Iqtsucare plotted in Fig.6b for γ = 0. The figure shows that the fairness on the frequency

of successful transmissions achieved by QT0-CSMA is improved versus that of O-CSMA. The gain
is significant in the regime where N̄γ

s,0 is less than or equal to roughly 10. In this regime, QT0-CSMA
increases the success probability of receivers a lot. This reduces the performance differences among nodes
caused by different access frequency (or topology) since nodes with a large number of neighbors who
get low access frequency have higher success probability. In other words, the higher success probability
compensates the low access frequency, which decreases the variability in performance. In the regime where
N̄γ
s,0 is large (or ν is small), the density of concurrent transmitters becomes small, which generates weak

interference. Thus, most nodes succeed in their transmissions with high probability irrespective of the
number of neighbors, so in this regime there is no much gain from opportunism increasing the success
probability. Thus, QT0-CSMA and O-CSMA have almost the same performance. As γ increases, fairness
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decreases and eventually converges to the fairness curve of O-CSMA where γ →∞ since there will be
little difference between p̄qtsuc and p̄opsuc.

So far, it has been shown that opportunistic CSMA can improve fairness. However, with this results
only, it is not clear how these protocols tradeoff the density of successful transmissions versus fairness.
We consider this next.

E. Tradeoff between Spatial Fairness and Spatial Reuse

It has been noted that there exists a limited set of network topologies (e.g., line or circle networks)
where both high fairness and “spatial reuse” or “throughput” can be both achieved [41], [14]. However,
in the random networks we consider, there will be tradeoffs due to the randomness of node locations,
contentions and protocols. To explore these we introduce the following notations.

Definition 18. (FD-pair) We call (a, b) an achievable FD-pair if a fairness index a and density of
successful transmissions b can be achieved under a given protocol parameter choice.

Definition 19. (Dominance) For FD-pairs (a, b) and (c, d) ∈ R2
+, we say that the (a, b) dominates (c, d)

if a ≥ c and b ≥ d. We denote this relation with (c, d) � (a, b).

We consider the set of FD-pairs that are not dominated by any other pairs, i.e., the Pareto-frontier. For
a given FD-pair (a, b), we define the set of FD-pairs dominated by (a, b) as follows.

Definition 20. (Dominated set) For a FD-pair (a, b) ∈ R2
+, we call the set

Λ(a, b) =
{

(x, y) ∈ R2
+ s.t. (x, y) � (a, b)

}
(57)

as the dominated set of the FD-pair (a, b). Note that (a, b) ∈ Λ(a, b).

In particular, we define the dominated set for O-CSMA, for a given t and λ, by

Ωop(λ, t) =
⋃

γ≥0,ν≥0

Λ(F̃Iopsuc(λ, γ, ν, t), d
op
suc(λ, γ, ν, t)). (58)

The dominated set for QT-CSMA is similarly defined. The dominated set QT0-CSMA for a given t and
λ is defined as

Ωqt
0 (λ, t) =

⋃
ν≥0

Λ(F̃Iqtsuc(λ, 0, ν, t), d
qt
suc(λ, 0, ν, t)). (59)

Definition 21. (Pareto-Frontier) For a given set of FD-pairs, the subset of FD-pairs which are not
dominated by any other FD-pairs is called as Pareto-frontier.

We plotted three pareto-frontiers for O-CSMA, QT-CSMA, and QT0-CSMA or their dominated sets
Ωop(λ, t) ,Ωqt(λ, t) and Ωqt

0 (λ, t) for two decoding SIR t = 1 and t = 10 in Fig. 7a and 7b respectively.
We note that the dominant set of QT-CSMA is the super set of that of O-CSMA. This gain comes from
the joint improvement of spatial reuse and fairness performance. One notable thing is that Ωqt

0 (λ, t) is very
close to Ωqt(λ, t), which shows again the effectiveness of quantile-based approach in taking advantage
of dynamic channel variations and mult-user diversity.
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Figure 7: Comparison of the dominated sets of O-CSMA, QT-CSMA and QT0-CSMA.

Figure 8: Slot structure for CDMA case.

VI. SYSTEM IMPLEMENTATION

In this section, we briefly describe a possible implementation of the O/QT-CSMA protocols. We will
focus on the aspect of slot structure together with the operation of protocols but not give full fledged
detailed protocols - this is beyond the scope of this paper. We will make several key assumptions in
our development. First, we assume that nodes are perfectly synchronized with external and/or internal
aids, e.g., each node might use pilot signals from GPS-synchronized cellular base stations and might run
a distributed synchronization algorithm to further synchronize as done in [46]. For a discussion of the
impact of imperfect sync, see [35]. Second, we assume that fading is symmetric and changing each slot.
Third, the node density λ is assumed to be in a moderate range, i.e., not unrealistically dense.

In what follows, we describe a possible frame structure for transmissions. It is composed of two
sub-slots : one for signaling and the other for data transmission, see Fig. 8.

A. Signaling sub-slot

In the signaling sub-slot, each transmitter sends a pilot signal to its associated receiver and the receiver
feeds back the measured channel status between them. We consider the method suggested in [2], where
the receiver estimates its channel status based on the received pilot power. However, the received pilot
at the receiver may include both desired and undesired signals (interference) which makes the estimate
inaccurate. To mitigate the impact of interference, we can assign each transmitter a CDMA code (CDMA
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approach) or a time slot (TDMA approach) for sending its pilot signal. However, since the number of
codes or time slots are limited, two or more nodes can use the same resource, so the protocol should
be designed to work in such a way that two nodes using the same resource are sufficiently separated to
mitigate the impact of interference, e.g., as done in [25], [30]. One can also use an OFDM approach like
[46], where each node picks a single sub-carrier to send its pilot signal.

Once the receiver estimates its channel status, it feeds back the estimate, say F̂ii. If the transmitter uses
O-CSMA and F̂ii > γ, then it contends otherwise it defers. While, if it uses QT-CSMA and F̂ii > γ, then
it updates its channel status statistics Ĝγ(i.e. empirical cdf of F̂ii) and determines its current discretized
version of quantile as k

w if k
w ≤ Ĝγ(F̂ii) <

k+1
w for k = 0, · · · , w− 1, where w is the maximum number

of mini-slots (similar to the size of the contention window) used for contention.

B. Data sub-slot

In the data transmission sub-slot, qualified nodes contend and only winners transmit. In the contention
phase composed of w mini-slots, each qualified node sets its timer value to a random value uniformly
distributed in {1, 2, · · · , w} if it is O-CSMA node, or sets it to k defined above if it is QT-CSMA node.
All qualified nodes start to decrement their timer values by one every mini-slot. All nodes whose timer
values reach 0 start transmitting from the mini-slot until the end of the data sub-slot. Other nodes which
sense the transmissions prior to their timeout defer in the slot.

Since w is finite, a collision can occur if two or more nodes select the same minislot. The transmission
probability (considering collision) with w mini-slots is computed as

pcoltx (w) = pγ
∑
i=0

[
w∑
t=1

1

w

(
1− t

w

)i] pγN̄ i
0

i!
e−pγN̄0 =

pγ
(
1− exp

{
−pγN̄0

})
w
(
exp

(
pγN̄0/w

)
− 1
) . (60)

Note that we can easily show pcoltx (w) converges as w → ∞ to the transmission probabilities without
collision given (18) and (28). Note that to see overall impact of collision, psuc also needs to be recomputed
considering collision. Studying the impact of collision is left to future work.

VII. CONCLUSION

In this paper, we considered the spatial reuse and fairness for wireless ad-hoc networks using two
different channel-aware CSMA protocols. We used an analytical framework based on stochastic geometry
to derive the transmission probability and success probability for a typical node, and from there two spatial
performance metrics, the density of successful transmissions and spatial fairness index were computed.
By capturing the delicate interactions among system parameters (qualification threshold γ, carrier sense
threshold ν), the density of transmitters, aggregate interference, and spatial reuse and fairness, we showed
that QT-CSMA achieves higher spatial reuse and fairness than O-CSMA, and more interestingly the
simple version of QT-CSMA with one less parameter achieves robust spatial reuse in a wide range of
node densities. To better understand the interactions between joint spatial reuse and fairness performance,
we characterized the dominated sets of spatial fairness-reuse pair under Q/O-CSMA. Although O-CSMA
has one more parameter to adjust, its dominated set was smaller than that of QT-CSMA. Suprisingly, the
simple version of QT-CSMA (QT0-CSMA) has almost the same dominated set as QT-CSMA. Thus, we
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conclude that the joint carrier sense and quantile scheduling approach of QT-CSMA is not only an effective
way in improving spatial reuse/fairness performance by compromizing interference and transmitter density
but also a practical low complexity approach with one less parameter and robustness.
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APPENDIX A
DERIVATION OF u′(n, t0, τ , λ)

In this appendix, we derive u′ for n ∈ {0, 1, 2, · · · }, t0 ∈ [0, 1), τ > 0, and λ > 0, which is defined as

u′(n, t0, τ, λ) = P(E1 = 1 | E0 = 1, N0 = n, T0 = t0, {y0, y1} ⊂ Φ, |y0 − y1| = τ).
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Let Φ = {Xi} be an homogeneous PPP with density λ. N0 is the number of neighbors of y0 and T0 is
the timer value of y0. In the sequel, we omit the conditioning events {y0, y1} ⊂ Φ and |y0− y1| = τ for
simplicity. By applying Bayes’ rule, we have

P(E1 = 1 | E0 = 1, N0 = n, T0 = t0) =
P(E1 = 1, E0 = 1 | N0 = n, T0 = t0)

P(E0 = 1 | N0 = n, T0 = t0)
. (61)

The denominator is simply given by

P(E0 = 1 | N0 = n, T0 = t0) = (1− t0)n (62)

since for y0 to transmit, all its n neighbors should have timer values larger than t0 independently. To
compute the numerator, we condition on the event that y0 and y1 are neighbors, i.e., {y1 ∈ N0} =

{F ′01 > νl(‖y0 − y1‖)}, then by the law of total probability we have

P(E1 = E0 = 1 |N0 = n, T0 = t0) = P(E1 = E0 = 1, y1 ∈ N0 | N0 = n, T0 = t0)︸ ︷︷ ︸
=0

+ P(E1 = E0 = 1 | N0 = n, T0 = t0, y1 /∈ N0)︸ ︷︷ ︸
C

P(y1 /∈ N0 | N0 = n, T0 = t0).︸ ︷︷ ︸
D

(63)

If y0 and y1 can see each other, it is impossible for both to transmit at the same time, so the first term
is equal to 0. We denote the second and third terms by C and D respectively.

A. Computing C

The term C is a conditional probability conditioned on that y0 and y1 do not see each other. However,
they may share some neighbors; so to compute this term we need to further condition on the event that
some of y0’s contenders are also seen by y1. Let K = N0 ∩ N1 be the set of shared neighbors between
y0 and y1 and K(τ) ≡ |K| be the number of them. Note that K(τ) ∼ Poisson(K̄(τ)) where the mean
K̄(τ) is computed as

K̄(τ) = E

[∑
Xi∈Φ

1
{
F ′i0 > νl(‖Xi − y0‖)

}
1
{
F ′i1 > νl(‖Xi − y1‖)

}]

= λ

ˆ
R2

P(Fi0 > νl(‖x‖))P(Fi1 > νl(‖x− y1‖))dx

= λ

ˆ 2π

0

ˆ ∞
0

e−µν(l(r)+l(
√
τ2+r2−2τr cos θ))rdrdθ. (64)

By conditioning on the number of shared neighbors, K = K(τ), we rewrite the C as

C =

n∑
k=0

P(E0 = E1 = 1 | N0 = n, T0 = t0,K = k, y1 /∈ N0)︸ ︷︷ ︸
≡Ak

P(K = k | N0 = n, T0 = t0, y1 /∈ N0)︸ ︷︷ ︸
≡Bk

.

(65)

We let the first and second terms in the summation be Ak and Bk respectively.
1) Computing Bk: Bk is the probability that two nodes y0 and y1 share k common contenders

conditioned on that y0 has n contenders. Since each contender of y0 is independently seen by y1, the
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number of shared contenders K for a given N0 is a Binomial random variable with parameters n and
ps, where ps is the probability that one of y0’s neighbors is seen by y1. Then, we have

Bk = P(K = k | N0 = n, T0 = t0, y1 /∈ N0) (66)

a
= P(K = k | N0 = n, y1 /∈ N0) =

(
n

k

)
pks(1− ps)n−k

where in a
=, we used the fact that {T0 = t0} is independent of {K = k}, and ps(τ) is computed as

ps(τ) = P(X ∈ N1 | X ∈ N0)

a
=

E [P(X ∈ N1, X ∈ N0 | X)]

E [P(X ∈ N0 | X)]

=
λ
´
R2 P(F ′0 > νl(||x||))P(F ′1 > νl(||x− y1||))dx

λ
´
R2 P(F > νl(||x||))dx

=
K̄(τ)

N̄0
. (67)

In a
=, we conditioned on the location of X in R2. Using (12), (67) can be rewritten as ps = ps(τ, λ) =

2− b(τ,λ)
N̄0

.
2) Computing Ak: Ak can be rewritten as

Ak =

ˆ 1

0
P(E1 = E0 = 1 | N0 = n, T0 = t0,K = k, T1 = t1, y1 /∈ N0)dt1

by conditioning on that the timer value of y1 equal to t1, i.e., {T1 = t1}. Note that either all the shared
neighbors in K have timer values larger than t1, i.e., {T cj ≥ t1, ∀Cj ∈ K} where T cj is the timer value
of contender Cj ∈ K, or there exist one or more neighbors with timer value(s) smaller than t1, i.e.,
{∃Cj s.t. T cj < t1}. Using the law of total probability, the probability inside the integral can be written
as follows:

P(E1 =E0 = 1 | N0 = n, T0 = t0,K = k, T1 = t1, y1 /∈ N0)

= P(E1 = E0 = 1 | N0 = n, T0 = t0,K = k, T1 = t1, y1 /∈ N0, T
c
j ≥ t1∀Cj ∈ K)︸ ︷︷ ︸

≡Ak1

(68)

× P
(
T cj ≥ t1∀Cj ∈ K | N0 = n, T0 = t0,K = k, T1 = t1, y1 /∈ N0

)︸ ︷︷ ︸
≡Ak2=(1−t1)k

(69)

+ P(E1 = 1, E0 = 1 | N0 = n, T0 = t0,K = k, T1 = t1, y1 /∈ N0,∃Cj s.t. T cj < t1)︸ ︷︷ ︸
≡Ak3=0

(70)

× P(∃Cj s.t. T cj < t1 | N0 = 1, T0 = t0,K = k, T1 = t1, y1 /∈ N0).

Let (68), (69), and (70) be Ak1, Ak2, and Ak3 respectively. We have Ak3 = 0 since if there exist any
neighbor with timer value strictly smaller than t1, it prevents y1 from transmitting, so E1 can not be 1.
Ak2 is the probability that all shared neighbors in K have timer values larger than t1, which is simply
given as Ak2 = (1− t1)k since each timer is independent and uniform in [0, 1]. Before we compute Ak1,
we need to define several random variables.
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• Let N1 ∼Poisson(N̄0) be a random variable denoting the number of contenders of y1.
• Let N1x ∼Poisson(N̄1x) be a random variable denoting the number of contenders of y1 which are

not shared by y0. Note that N1x +K = N1 and N̄1x = N̄0(1− ps).
• Let N<t1

1x ∼Poisson(N̄<t1
1x ) be a random variable denoting the number of contenders of y1 which are

not shared by y0 and with timer values smaller than t1. Note that N̄<t1
1x = t1N̄1x = t1N̄0(1− ps).

To compute Ak1, we consider the following two sub-cases t1 ≤ t0 and t0 < t1. If t1 ≤ t0, then

• y1 transmits (or E1 = 1) only if it finds no additional neighbors who have timer values smaller than
t1 and are not seen by y0, i.e, if N<t1

1x = 0, and
• y0 transmits (or E0 = 1) only if all T cj ∼ Uniform[t1, 1] ∀Cj ∈ K is larger than t0, which happens

with probability
(

1−t0
1−t1

)k
and remaining n − k contenders have timer values larger than t0, which

happens with probability (1− t0)n−k.

Note that, as in the previous case, {E0 = 1} and {E1 = 0} are conditionally independent; so we have
that

Ak1 = e−N̄
<t1
1x

(1− t0)n

(1− t1)k
if t0 ≥ t1. (71)

In the other case where t0 < t1,

• y0 transmits (or E0 = 1) if n − k neighbors have timer values larger than t0, which happens with
probability (1− t0)n−k, and

• y1 transmits (or E1 = 1) only when it finds no additional neighbors who have timer values smaller
than t1 and do not see y0, i.e., N<t1

1x = 0.

Note that, as previous case, {E0 = 1} and {E1 = 0} are conditionally independent; so we have

Ak1 = e−N̄
<t1
1x (1− t0)n−k if t0 < t1. (72)

Ak1 in the above two cases can be written as follows using indicator functions:

Ak1 = e−t1N̄0(1−ps)
(

(1− t0)n

(1− t1)k
1 {t1 ≤ t0}+ (1− t0)n−k1 {t0 < t1}

)
. (73)

Unconditioning with respect to the event {T1 = t1} in Ak1Ak2 gives

Ak =

ˆ 1

0
e−t1N̄0(1−ps)

(
(1− t0)n1 {t1 ≤ t0}+ (1− t0)n−k(1− t1)k1 {t0 < t1}

)
dt1

= (1− t0)n
ˆ t0

0
e−t1N̄0(1−ps)dt1 + (1− t0)n−k

ˆ 1

t0

(1− t1)ke−t1N̄0(1−ps)dt1

a
= (1− t0)n

(
1− e−t0N̄0(1−ps)

N̄0(1− ps)
+

(t0 − 1)e−N̄0(1−ps) (Γ(k + 1, η)− Γ(k + 1))

ηk+1

)

b
= (1− t0)n

1− e−t0N̄0(1−ps)

N̄0(1− ps)
+

(1− t0)e−N̄0(1−ps)k!

ηk+1

1− e−η
k∑
j=0

ηj

j!

 . (74)

where in a
=, Γ (a, x) =

´∞
x ta−1e−tdt is the incomplete gamma function with Γ(a) ≡ Γ(a, 0) and

η = N̄0(1 − ps)(t0 − 1), and in b
= we used the fact that Γ(k+1,η)

Γ(k+1) =
∑k

j=0
ηj

j! e
−η. Replacing (74) and
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(66) in (65) gives

C = P(E1 = E0 = 1|N0 = n, T0 = t0, y1 /∈ N0) =

n∑
k=0

AkBk. (75)

B. Computing D

We now compute D = P(y1 /∈ N0 | N0 = n, T0 = t0) in (63). Note that {N0 = n} and {y1 /∈ N0}
are not independent since it is likely that y1 is the neighbor of y0 if N0 = n is large, but {y1 /∈ N0} and
{T0 = t0} are independent since being neighbors of a node does not depend on timer values. Thus, we
have D = P(y1 /∈ N0|N0 = n). Applying Bayes’ rule, we get

D =
P(y1 /∈ N0, N0 = n)

P(N0 = n)
=

P(N0 = n | y1 /∈ N0)P(y1 /∈ N0)

P(N0 = n)
, (76)

where we have
P(N0 = n | y1 /∈ N0) =

N̄n
0

n!
e−N̄0 (77)

and
P(y1 /∈ N0) = P(F ′10 < vl(τ)) = G(νl(τ)) (78)

for numerator. To compute P(N0 = n), the denominator10 in (76), we need to consider whether y1 is
seen by y0 or not. Using the law of total probability, we have

P(N0 = n) =P(N0 = n | y1 ∈ N0)P(y1 ∈ N0) + P(N0 = n | y1 /∈ N0)P(y1 /∈ N0)

=
N̄n−1

0

(n− 1)!
e−N̄0 (1−G(νl(τ))) +

N̄n
0

n!
e−N̄0G(νl(τ))

=
N̄n−1

0

(n− 1)!
e−N̄0

(
1 +

(
N̄0

n
− 1

)
G(νl(τ))

)
(79)

Note that as expected P(N0 = n) → P(N0 = n | y1 /∈ N0) as τ → ∞ (or G(τ) → 1), and P(N0 =

n)→ P(N0 = n | y1 ∈ N0) as τ → 0 (or G(τ)→ 0). Then, replacing (77), (78), and (79) in (76) gives
the following for n ≥ 0,

D =
N̄0G(νl(τ))

n+ (N̄0 − n)G(νl(τ))
. (80)

Recall that D is the probability that y1 is not the neighbor of y0 given N0 = n. Thus, D → 1(D → 0)

as τ →∞(τ → 0) makes sense.

C. Computing u′

Now, replacing term C in (75) and D in (80) to (63) gives

P(E1 = E0 = 1|N0 = n, T0 = t0) =
N̄0G(νl(τ))

n+ (N̄0 − n)G(νl(τ))

n∑
k=0

AkBk. (81)

10Recall that P(N0 = n) is indeed P (N0 = n | ||y0 − y1|| = τ).



36

Finally, (61) is given as

u′(n, t0, τ, λ) =
N̄0G(νl(τ))

n+ (N̄0 − n)G(νl(τ))

(
1− e−t0N̄0(1−ps)

N̄0(1− ps)
+

+ (1− t0)e−N̄0(1−ps)
n∑
k=0

k!

ηk+1

1− e−η
k∑
j=0

ηj

j!

(n
k

)
pks(1− ps)n−k

)
, (82)

where ps = ps(τ, λ) = 2− b(τ,λ)
N̄0

and η = N̄0(1− ps)(t0 − 1).

D. Impact of n and t0

Fig.9a gives plots for u′(n, t0, τ, λ) for t0 = 0.5, λ = 1 and for n = 0, · · · , 20. Observe how u′

changes as the distance τ between y0 and y1 changes. As τ gets large, y1 behaves like a typical node in
space which is not affected by the existence of y0. The latter case is verified by the fact that all curves
u′ converge to the value 1−e−N̄0

N̄0
as τ → ∞, which is indeed the transmission probability of a typical

CSMA node. As τ gets small, there is a strong correlation between y1 and y0 which are likely to be
neighbors. The behavior of u′ in this case depends on the value of n. In particular, if n = 0, u′ increases
as τ → 0; since y1 will see no contenders as is the case for y0, while if n > 0, as τ → 0, y1 will see
one or more contenders as seen by y0, and it will be more likely that y1 is a neighbor of y0. If y1 is a
neighbor of y0, then due to the condition {E0 = 1}, y1 must have a timer value larger than t0, so the
conditional transmission probability u′ approaches 0. As n increases, y1 is more likely to be preempted
by y0 and its neighbors, thus u′ decreases.

Fig.9b shows the impact of y0’s timer value, t0, on u′ for n = 5. Note that the condition {E0 = 1}
implies that n neighbors of y0 have timer values between t0 and 1. Thus, if t0 gets large, y1 will transmit
with high probability since the neighbors of y0 will have timer values larger than t0, which can be easily
preempted by y1’s timer. While if t0 gets small, y1 is more likely to be preempted by y0’s neighbors, so
u′ decreases in this case.

APPENDIX B
CONVERGENCE OF IΦγM

Consider a Matérn CSMA process which is induced by a CSMA mechanism from a PPP with density
λ. In this CSMA network, the density of active transmitters λptx converges to a value as λ→∞ due to
the CSMA protocol. Accordingly, the amount of interference seen at a typical receiver also converges to
a random variable, say IΦdensM

. The objective of this section is to prove that IΦdensM
is almost surely finite,

i.e., P(IΦdensM
<∞)=1.

To that end, we first show that for a given monotonically increasing sequence of node densities λ[1] ≤
λ[2] ≤ λ[3] ≤ · · · and associated marked PPPs Ψ[i], Ψ[2], Ψ[3], · · · denoting transmitters, the sequence of
aggregate interference seen by a typical receiver IΦ

[1]
M
, IΦ

[2]
M
, IΦ

[3]
M
, · · · ,11 stochastically and monotonically

11Φ
[i]
M is a Matérn CSMA point process associated with the original marked process Ψ[i]. The relation is explained in detail

later.
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Figure 9: h(·) is a function computed in (11). u′(·) is a function we computed above for N0 = n ≥ 0
and t0 ∈ [0, 1).

increases, i.e.,
IΦ

[1]
M
≤st IΦ

[2]
M
≤st IΦ

[3]
M
≤st · · · . (83)

We will use coupling argument to show this. To that end, we will construct the copy Ψ(n) of each process
Ψ[n] and couple them such that following strict inequalities hold with probability 1:

IΦ
(1)
M
≤ IΦ

(2)
M
≤ IΦ

(3)
M
≤ · · · , (84)

where IΦ
(n)
M

is the associated aggregate interference of Ψ(n) seen at a typical receiver for n = 1, 2, · · · 12.
Note that we use square bracket [n] to denote n-th original process and curly bracket (n) to denote the
copy of it. Clearly, (84) implies convergence of IΦ

(n)
M

to a random variable, say IΦdensM
(possibly infinite).

We will then use the results in [45] to show that IΦdensM
is almost surely finite.

A. Constructing n-th network Ψ(n)

We consider
Ψ(n) =

{(
X

(n)
i , E

(n)
i , T

(n)
i

)}
(85)

given (X
(n)
0 = 0, E

(n)
0 = 1, T

(n)
0 ,F

(n)
0 ,F

′(n)
0 ) ∈ Ψ(n), with a node density λ[n], where T (n)

i ∼ Uniform[0, 1]

are marks corresponding timer values and

E
(n)
i = 1

{
T

(n)
i < min

X
(n)
j ∈N

(n)
i

T
(n)
j

}

is the transmission indicator of node X
(n)
i . Let Φ(n) = {X(n)

i } and Φ
(n)
M = {X(n)

i ∈ Φ(n) | E(n)
i =

1}. Then, the aggregate interference seen by the receiver of a transmitter X0 is given as IΦ
(n)
M

=

12Φ
(i)
M is a Matérn CSMA process associated with the copied process Ψ(i).
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∑
Xj∈Φ

(n)
M \{0}

F
(n)
ji /l(‖Xj − (0, r)‖).

B. Constructing coupled timers

We scale the timer values T (n)
i for the n-th network such that it is uniformly distributed in [0, λ[n]

λ[n+1] ],
i.e., let T (n)

ci = λ[n]

λ[n+1]T
(n)
i . Let a PPP with scaled timer values as

Ψ(n)
c =

{(
X

(n)
i , E

(n)
i , T

(n)
ci

)
| (X(n)

i , E
(n)
i , T

(n)
i ) ∈ Ψ(n)

}
. (86)

Note that the timer value scaling maintains the order of timer values, so there is no change in Ei. Let
Φ

(n)
c = {X(n)

i } and Φ
(n)
cM = {X(n)

i ∈ Φ
(n)
c | E(n)

i = 1}, then, the aggregate interference from Φ
(n)
cM is the

same as IΦ
(n)
M

, i.e.,
IΦ

(n)
cM

= IΦ
(n)
M
. (87)

C. Differential PPP

Consider an another marked PPP

Ψ̂(n) =
{(
X̂

(n)
i , Ê

(n)
i , T̂

(n)
i

)}
(88)

with density λ̂[n] = λ[n+1] − λ[n] for the given λ[n+1] ≥ λ[n] and Φ̂(n) = {X̂(n)
i } and Φ̂

(n)
M = {X̂(n)

i ∈
Φ̂(n) | Ê(n)

i = 1}13. By construction we will ensure that Ψ̂(n) is independent of Ψ(n). We let the timer
values T̂ (n)

i be uniformly distributed on [ λ[n]

λ[n+1] , 1] and have nodes X̂(n)
i to contend nodes with those in

Ψ̂(n) as well as in Ψ(n). Let F̂ ′(n)
ji be the fading channel between X̂

(n)
j ∈ Φ̂(n) and X̂

(n)
i ∈ Φ̂(n) and

H
′(n)
ji as the fading channel between a transmitter X(n)

j ∈ Φ(n) and a transmitter X̂(n)
i ∈ Φ̂(n). Then, we

can define two different neighborhoods for X̂(n)
i : one in Φ̂(n) given as

N̂ (n)
i =

{
X̂

(n)
j ∈ Φ̂(n) | F̂ ′(n)

ji > νl(
∥∥∥X̂(n)

j − X̂(n)
i

∥∥∥), j 6= i
}

(89)

and the other in Φ(n) given as

M(n)
i =

{
X

(n)
j ∈ Φ(n) | H ′(n)

ji > νl(
∥∥∥X(n)

j − X̂(n)
i

∥∥∥)
}
. (90)

Using above definitions, we can define the transmission indicator as

Ê
(n)
i = 1

{
T̂

(n)
i < min

{
min

X̂
(n)
j ∈N̂

(n)
i

T̂
(n)
j , min

X
(n)
k ∈M

(n)
i

T
(n)
k

}}
. (91)

Note that every node in Φ̂(n) which contends with at least one node in Φ(n) defers its transmission since
its timer value is always larger than λ[n]

λ[n+1] . Let

∆IΦ̂
(n)
M

=
∑

X̂
(n)
j ∈Φ̂

(n)
M

H
(n)
j0 /l(

∥∥∥X̂(n)
j − (0, r)

∥∥∥)

be the interference seen by the receiver of the transmitter X0 in Φ
(n)
M from transmitters only in Φ̂

(n)
M ,

where H(n)
j0 is the fading channel gain between a transmitter X̂(n)

j ∈ Φ̂(n) and the receiver of X0 ∈ Φ(n).

13Note that we do not condition on 0 ∈ Φ̂
(n)
M .
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Figure 10

D. Constructing n+ 1th network Ψ(n+1)

Now, we construct Ψ(n+1) by the union of the the timer scaled point process and the differential point
process:

Ψ(n+1) = Ψ(n)
c ∪ Ψ̂(n). (92)

Note that Ψ
(n)
c and Ψ{n} contribute λ[n]

λ[n+1] and 1− λ[n]

λ[n+1] fraction of nodes to Ψ(n+1) respectively. This
makes a randomly chosen node in Ψ(n+1) has a timer value uniformly distributed on [0,1]. Thus, Ψ(n+1) =

{(X(n+1)
i , E

(n+1)
i , T

(n+1)
i )} is indeed a marked PPP with density λ[n+1], where T

(n+1)
i is uniformly

distributed on [0,1]. Let IΦ
(n+1)
M

be the aggregate interference seen by a typical receiver, then, it is given
as the sum of the interferences

IΦ
(n+1)
M

= IΦ
(n)
cM

+ ∆IΦ̂
(n)
M
, (93)

since IΦ
(n)
cM

is independent of nodes in Ψ{n}, which is the direct result of the timer value separation. Now

clearly the two point processes Ψ
(n)
c and Ψ(n+1) are coupled such that their aggregate interference satisfy

:
IΦ

(n)
cM
≤ IΦ

(n+1)
M

. (94)

Using (87), this can be rewritten as IΦ
(n)
M
≤ IΦ

(n+1)
M

, which implies the stochastic dominance relation
IΦ

(n)
M
≤st IΦ

(n+1)
M

. Since IΦ
(n)
M
∼ IΦ

[n]
M

and IΦ
(n+1)
M

∼ IΦ
[n+1]
M

, we have

IΦ
[n]
M
≤st IΦ

[n+1]
M

. (95)

Fig.10 summarizes our coupling argument.

E. Convergence of IΦ
[n]
M

Since increasing random variables converge (possibly to ∞), IΦ
(n)
M

(or equivalently IΦ
[n]
M

) converges
to a random variable as n → ∞. Let the converging value be denoted by IΦdensM

≡ limn→∞ IΦ
[n]
M

. We
rewrite the results from [45] in our context as follows.
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Proposition 22. (Existence of shot noise) [45] For a given random variable I , if lims→0 E[e−sI ] = 1,
then, I has a well-behaved distribution or finite almost surely.

Note that Φdens
M is a Matérn CSMA point process with density λdens, which is stationary and ergodic.

Then, we can apply following results from [45].

Proposition 23. (Necessary and sufficient conditions, Corollary 1.2 in [45]). The necessary and sufficient
conditions for the existence of IΦdensM

are
ˆ ∞

0

ˆ δ

0
xw(x; y)ydxdy <∞, and (96)∣∣∣∣ˆ ∞

0

ˆ δ

0
w(x; y)ydxdy

∣∣∣∣ <∞ (97)

for δ > 0, where w(x; y) = P (F > xyα) = exp{−µxyα}.
Using the fact that x ≤ δ and w(x; y) > 0, it is sufficient to show (97) only, i.e., we have

ˆ ∞
0

ˆ δ

0
xw(x; y)ydxdy ≤ δ

ˆ ∞
0

ˆ δ

0
w(x; y)ydxdy

=
δ

µ

ˆ ∞
0

y1−α(1− exp{−µδyα})dy (98)

a
= − δ2− 2

α

αµ2/α
Γ

(
2− α
α

)
<∞. (99)

In a
=, we used the results in 370p of [19], which holds for α > 2. Using Theorem 2 of [45] and bounding

technique, one can also show the existence of the approximate of IΦdensM
, which is a non-homogeneous

Poisson shot noise.


